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Abstract. In this paper, we show that the position and the derivative operators, q̂ and D̂, can be treated as ladder operators
connecting various vectors of two biorthonormal families, Fϕ and Fψ . In particular, the vectors in Fϕ are essentially

monomials in x, xk, while those in Fψ are weak derivatives of the Dirac delta distribution, δ(m)(x), times some normalization

factor. We also show how bi-coherent states can be constructed for these q̂ and D̂, both as convergent series of elements
of Fϕ and Fψ , or using two different displacement-like operators acting on the two vacua of the framework. Our approach
generalizes well- known results for ordinary coherent states.
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1. Introduction

The relevance of coherent states (CS) in quantum mechanics is rather well established. Since their intro-
duction, as the more classical among the quantum states [1], they have been studied, refined and extended
in different ways. Several applications to concrete physical systems have also been considered. A list of
monographs and edited volumes on CS is the following, where the interested reader can find also many
other references: [2–8].

One of the standard ingredients when dealing with CS is a pair of ladder operators, c and c†, which
most of the times are assumed to satisfy the so-called canonical commutation relation (CCR): [c, c†] = 11.
Here 11 is the identity operator on the Hilbert space H where c and c† are defined. It is useful to stress
that, as it is well known, these operators are unbounded. For this reason, the CCR needs to be properly
defined, considering, for instance, its strong version [c, c†]f(x) = f(x), ∀f(x) ∈ S(R), or in some other
properly chosen subspace of H. It is not really necessary to use CCR to construct CS. CS have also been
constructed for fermions, see, e.g., [6] and references therein. And other possible approaches also exist
which still give rise to states with properties analogous to those of CS. This is, in particular, the case of
nonlinear CS [9,10]. Several other generalizations have been proposed during the years by many authors,
and with different aims, from the vector CS to the so-called Gazeau–Klauder CS.

CS have also been considered in that slightly extended version of quantum mechanics in which the
observables, and the Hamiltonian in particular, are not required to be self-adjoint. This is the case of
PT -Quantum Mechanics [11–14], or of pseudo-Hermitian Quantum Mechanics [15]. We refer to [16] for
some of these appearances. Another class of CS, which in our opinion is more appropriate when studied
in connection with PT or pseudo-Hermitian Quantum Mechanics, has been proposed in [17] and then
considered in details by us in recent years. We refer to [18] for a quite updated review of the results on this
specific topic, with a specific view to pseudo-bosons, to their number-like operators, and to the so-called
(weak) bi-coherent states: these states are (generalized) eigenstates of the two lowering operators, a and
b†, associated with the following deformation of the CCR: [a, b] = 11, where a �= b†. The essential idea
of bi-coherent states is that, since we have two lowering operators, we could have two coherent states,
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ϕ(z) and Ψ(z). However, since a and b† are different, but connected, it is reasonable to imagine that ϕ(z)
and Ψ(z) satisfy useful results only when taken in pairs, in analogy with what happens when going from
orthonormal to biorthonormal bases. The reason why we adopt here the adjective generalized for ϕ(z)
and Ψ(z) is that, in principle, it could happen that they do not belong to L2(R). In fact, this effect has
been found and discussed in several papers, both in a rather general (and abstract) approach to quantum
mechanics [19,20], and more recently for some concrete choices of a and b [21–24]. In particular, in these
references, it has been shown that, when going from [c, c†] = 11 to [a, b] = 11, it might happen that L2(R) is
no longer the natural vector space to work with. It could be necessary to work with compatible spaces [24],
or even with (tempered) distributions [21]. This is due to the fact that a and b could be really different
one from the other, as far as they satisfy (the strong or weak form of) [a, b] = 11. In particular, this is
true if we put a = D̂ = d

dx = ip̂, and b = q̂, the derivative and the multiplication operators. Here p̂ is the
momentum operator. This particular choice, first considered under this perspective in [23], will be at the
basis of this paper where our main interest will be focused on the bi-coherent states associated with them.
In particular, we will show that (weak) bi-coherent states can be introduced for these operators, and how.
An interesting relation with delta function of complex argument will appear as a simple consequence of
our approach. We will also discuss the role of the displacement-like operators in connection with our
states.

More in detail, the paper is organized as follows. In Sect. 2, we review some results on q̂ and D̂,
considered as ladder operators on nonsquare-integrable functions. In view of this unusual interpretation,
in Sect. 3 we show how these operators can be associated with specific bi-coherent states which we call
weak, in view of their intrinsic distributional nature. These states are introduced via convergent series
of the vectors introduced in Sect. 2. Some plots of these states are given in Sect. 4, where we also put
in evidence some differences between our states and ordinary CS. In Sect. 5, we show that these states
can also be introduced by acting on two different vacua with two different displacement-like operators.
Our conclusions are given in Sect. 6. To keep the paper self-contained, we devote Appendix A to a brief
introduction to pseudo-bosons and their bi-coherent states in Hilbert spaces, while in Appendix B we
discuss two interesting applications of a formula connected with the Dirac delta distribution with complex
argument mentioned above.

2. The operators q̂ and D̂

In the first part of this section, we briefly introduce the problem, together with some of the results already
deduced in [23].

Let us consider the following operators defined on H = L2(R): q̂f(x) = xf(x), (D̂g)(x) = g′(x),
the derivative of g(x), for all f(x) ∈ D(q̂) = {h(x) ∈ L2(R) : xh(x) ∈ L2(R)} and g(x) ∈ D(D̂) =
{h(x) ∈ L2(R) : h′(x) ∈ L2(R)}. Of course, the set of test functions S(R) is a subset of both sets above:
S(R) ⊂ D(q̂)∩D(D̂). The adjoints of q̂ and D̂ in H are q̂† = q̂ and D̂† = −D̂. We have [D̂, x]f(x) = f(x),
for all those f(x) for which the commutator makes sense. In particular, for instance, the commutator
makes sense on any f(x) ∈ S(R). However, if we look for the vacua of a = D̂ and b = q̂, we easily find
that, with a suitable choice of the normalizations, these are ϕ0(x) = 1 and ψ0(x) = δ(x) so that neither
ϕ0(x) nor ψ0(x) belong to S(R) or even to L2(R). Nonetheless, many of the results listed in Appendix A
for pseudo-bosons can be extended to the present situation.

First of all, let us check if Eq. (A.2) still makes some sense. Indeed, we have

ϕn(x) =
bn

√
n!

ϕ0(x) =
xn

√
n!

, ψn(x) =
(a†)n

√
n!

ψ0(x) =
(−1)n

√
n!

δ(n)(x), (2.1)

for all n = 0, 1, 2, 3, . . .. Here δ(n)(x) is the n-th weak derivative of the Dirac delta function. We see that
ϕn(x), ψn(x) ∈ S ′(R), the set of the tempered distributions [25], that is the set of the continuous linear
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functionals on S(R). This suggests to consider a† and b as linear operators acting on S ′(R). For this
reason, in [23] we have considered the (extended) action of q̂ and D̂ to S ′(R). This was possible also
because a, b, a† and b† all map S ′(R) into itself. Hence, the following (weak) pseudo-bosonic commutation
relation makes sense:

[a, b]ϕ(x) = ϕ(x), (2.2)

for all ϕ(x) ∈ S ′(R). In [23], the following ladder and eigenvalue equations have been deduced for the
elements of Fϕ = {ϕn(x)} and Fψ = {ψn(x)}:

b ϕk(x) =
√

k + 1 ϕk+1(x), a†ψk(x) =
√

k + 1 ψk+1(x), (2.3)

k = 0, 1, 2, 3, . . ., and

aϕk(x) =
√

k ϕk−1(x), b†ψk(x) =
√

k ψk−1(x), (2.4)

k = 0, 1, 2, 3, . . ., with the understanding that aϕ0(x) = b†ψ0(x) = 0. Moreover, introducing N = ba =
q̂D̂,

Nϕk(x) = kϕk(x), N†ψk(x) = kψk(x), (2.5)

for all k = 0, 1, 2, 3, . . ..
As discussed in Appendix A, for D-PBs the families of vectors Fϕ and Fψ are biorthogonal, and, if

the vacua are chosen to satisfy 〈ϕ0, ψ0〉 = 1, they are biorthonormal. Here, the first problem is to give
a meaning to the scalar product between these vectors. In fact, it is well known that, in general, two
(tempered) distributions cannot be multiplied. However, see [26], there are exceptions: for some particular
pairs of tempered distributions, one can indeed define a map which extends the scalar product in L2(R).
And this is in fact possible for each pair (ϕk(x), ψm(x)), ∀k,m ≥ 0.

First we observe that the scalar product between two good functions, for instance, f(x), g(x) ∈ S(R),
can be written in terms of a convolution between f(x) and the function g̃(x) = g(−x): 〈f, g〉 = (f ∗ g̃)(0).
Following [22,23,26], this approach was used in a quantum mechanical settings, to extend the ordinary
scalar product of L2(R) to elements F (x), G(x) ∈ S ′(R) as the following convolution:

〈F,G〉 = (F ∗ G̃)(0), (2.6)

whenever this convolution exists. In order to compute 〈F,G〉, it is therefore necessary to compute (F ∗
G̃)[f ], f(x) ∈ S(R), that is, the action of F ∗ G̃ on the test function f(x), and this can be computed by
using the equality (F ∗ G̃)[f ] = 〈F,G ∗ f〉.

We refer to [23] for the details of the computation. We report here only the result, which is the
following: if F (x) = xn and G(x) = δ(m)(x), then

(F ∗ G̃)(x) =

⎧
⎨

⎩

0 if m > n
(−1)nn! if m = n
(−1)m n!

(n−m)!x
n−m if m < n,

so that (F ∗ G̃)(0) = (−1)nn!δn,m. Hence,

〈ϕn, ψm〉 = δn,m, (2.7)

showing that the families Fϕ and Fψ are biorthonormal, in our extended sense.
As always, it is useful to check if Fϕ and Fψ give rise to some resolution of the identity, as in (A.5),

for some suitable subspace of H. In what follows, we will slightly refine the results found in [23].
We first need to compute 〈f, ϕn〉 and 〈ψn, g〉, for suitable functions f(x) and g(x). It is easy to see,

using (2.6), that, for all f(x) ∈ S(R),

〈f, ϕn〉 = (f ∗ ϕ̃n)(0) =
∫

R

f(x) ϕn(x) dx. (2.8)
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This is not unexpected, since it is nothing that the same result we would get working formally with f(x)
and ϕn(x) as if they were both square integrable functions. Incidentally we observe that f(x) ϕn(x) is
integrable for all n ≥ 0, being the product of a monomial and a function in S(R). In fact, f(x) ϕn(x) ∈
S(R) as well, ∀n ≥ 0. Formula (2.6) also implies that, ∀g(x) ∈ S(R),

〈g, ψn〉 = (g ∗ ψ̃n)(0) =
∫

R

g(x) ψn(x) dx =
1√
n!

∫

R

g(n)(x) δ(x) dx =
1√
n!

g(n)(0), (2.9)

n ≥ 0. In deducing this formula, we have also used the definition of the weak derivative of distributions,
which produces, for instance, 〈g, δ′〉 = −〈g′, δ〉 = −g′(0).

Let us now introduce the set A(R) of all those functions f(x) which admit Taylor expansion ∀x ∈ R,
f(x) =

∑∞
n=0

1
n!f

(n)(0)xn. Sometimes in the literature the elements of A(R) are called real analytic
functions [27]. Then, we introduce

SA(R) = S(R) ∩ A(R), (2.10)

i.e., the set of all the functions in S(R) which are also real analytic.

Remark. It may be not so evident that the set S(R) contains also functions which are not real analytic.
However

p(x) =

{

e−(x2+ 1
x2 ), if x �= 0

0, if x = 0,

is such a function. In fact, it is C∞ and goes to zero, together with all its derivatives, faster than any
inverse power of x. However, its k-th derivative in x = 0, p(k)(0), is zero for all k ≥ 0, so that p(x) cannot
be expanded in x = 0.

Before going on, we need to prove the following simple lemma, which will be used to prove Theorem 2:

Lemma 1. Let {sN (x), N ∈ N} be a sequence of complex-valued functions uniformly convergent to s(x) in
R, and let F (x) ∈ L1(R) be a given function. Suppose that σN (x) = sN (x)F (x), σ(x) = s(x)F (x) ∈ L1(R),
∀N ∈ N. Then,

lim
N→∞

∫

R

σN (x) dx =
∫

R

σ(x) dx.

Proof. The uniform convergence of sN (x) to s(x) implies that ∀ε > 0 ∃Nε > 0 such that, ∀N > Nε,
|sN (x) − s(x)| ≤ ε, ∀x ∈ R. Therefore, for all such N ’s, |σN (x) − σ(x)| ≤ ε|F (x)|, ∀x ∈ R. Hence,

∣
∣
∣
∣
∣
∣

∫

R

σN (x) dx −
∫

R

σ(x) dx

∣
∣
∣
∣
∣
∣
≤
∫

R

|σN (x) − σ(x)|dx ≤ ε

∫

R

|F (x)|dx,

which can be made as small as we want. �

Slightly modifying and refining what proved in [23], we now deduce the following result:

Theorem 2. (Fϕ,Fψ) are SA(R)-quasi bases.

Proof. Let f(x), g(x) ∈ SA(R). Using (2.8) and (2.9), we have
∞∑

n=0

〈f, ψn〉〈ϕn, g〉 =
∞∑

n=0

1√
n!

f (n)(0)
∫

R

xn

√
n!

g(x) dx =
∫

R

∞∑

n=0

1
n!

f (n)(0)xn g(x) dx = 〈f, g〉,
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using Lemma 1 putting σN (x) =
∑N

n=0
1
n!f

(n)(0)xn g(x), σ(x) = f(x) g(x), which are both in S(R) and,
therefore in L1(R), and recalling that f(x) ∈ A(R).

In a similar way, one can show that
∞∑

n=0

〈f, ϕn〉〈ψn, g〉 = 〈f, g〉,

which concludes the proof.
�

Then, we can say that the operators a = D̂ and b = q̂ are weakly pseudo-bosonic in the sense that they
and their Hermitian conjugates act on two different vacua producing two sets of distributions which are
mutually orthogonal, in an extended sense, and produce a resolution of the identity on the set SA(R).
The role of Fϕ and Fψ in connection with bi-coherent states will be discussed in the next section.

3. Bi-coherent states

In Appendix A, we briefly discuss how pseudo-bosonic operators on some Hilbert space H can be used to
construct two power series in z ∈ C which are both convergent in all the complex plane and which have
some interesting properties similar to those of ordinary CS. In particular, they are eigenstates of the two
pseudo-bosonic annihilation operators and produce a resolution of the identity on some dense subspace
G of H, see formulas (A.10) and (A.11). Here we want to show that similar results can be deduced also
in our settings, where neither ϕn(x) nor ψn(x) can satisfy any bound like those in (A.8), since they are
not square integrable functions.

We start introducing the set, already considered in [28],

G =
{
f(x) ∈ S(R) : ekxf(x) ∈ S(R), ∀k ∈ C

}
.

This set is dense in L2(R), since it contains D(R), the set of compactly supported C∞ functions. It is
possible to check that, ∀f(x) ∈ G, the series

∑∞
k=0

zk√
k!

〈f, ϕk〉 converges for all z ∈ C. More explicitly,
we can check that, ∀z ∈ C and ∀f(x) ∈ G,

∞∑

k=0

zk

√
k!

〈f, ϕk〉 =
∫

R

f(x)ezx dx. (3.1)

Indeed, we have, taken N ∈ N and using (2.8),
N∑

k=0

zk

√
k!

〈f, ϕk〉 =
∫

R

f(x)
N∑

k=0

(zx)k

k!
dx −→

∫

R

f(x)
∞∑

k=0

(zx)k

k!
dx,

when N → ∞, so that (3.1) follows. The limit N → ∞ can be moved inside the integral because of
Lemma 1, identifying σN (x) with f(x)

∑N
k=0

(zx)k

k! and σ(x) with f(x)ezx, which are both in L1(R)
because of the properties of the functions in G.

As it is done in [24] and in [18], this suggests us to define a functional Fϕ on G as follows:

Fϕ[f ](z, z) = e− |z|2
2

∞∑

k=0

zk

√
k!

〈ϕk, f〉 = e− |z|2
2

∫

R

ezx f(x) dx, (3.2)

which in turns suggests to define the function ϕ(z;x) = e− |z|2
2 ezx, so that we can also write

Fϕ[f ](z, z) =
∫

R

ϕ(z;x) f(x) dx = 〈ϕ(z), f〉. (3.3)
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Remark. It might be useful to notice that, even if ϕ(z;x) depends on both z and x, the dependence on x
does not appear in 〈ϕ(z), f〉. The reason is obvious: x is integrated out, here, so that the scalar product
does not depend on x. The same notation will be adopted in the rest of the paper, for similar quantities.

The same analysis, but with some difference, can be repeated for the companion series of
∑∞

k=0
zk√
k!

〈f, ϕk〉, i.e., for
∑∞

k=0
zk√
k!

〈f, ψk〉. We start recalling that, see (2.9), 〈g, ψn〉 = 1√
n!

g(n)(0) for all g(x) ∈
S(R). This implies, in particular, that

∞∑

k=0

zk

√
k!

〈f, ψk〉 =
∞∑

k=0

zk

k!
f (k)(0) =

∞∑

k=0

zk

k!
f (k)(0) = f(z) (3.4)

for all functions in SA(R). Here f(z) =
∑∞

k=0
zk

k! f (k)(0), which is clearly convergent ∀z ∈ C, because of
the definition of A(R). As in (3.2), we define a linear functional Fψ on SA(R) and its related representation
ψ(z;x), as follows

Fψ[g](z, z) = e− |z|2
2

∞∑

k=0

zk

√
k!

〈ψk, g〉 = e− |z|2
2 g(z) =

∫

R

ψ(z;x) g(x) dx = 〈ψ(z), g〉, (3.5)

∀g(x) ∈ SA(R). This could be formally rewritten as

ψ(z;x) = e− |z|2
2 δ(x − z), (3.6)

where the Dirac delta distribution with complex argument appears. We refer to [29–31] for some results
on this specific topic. In Sect. 4, we plot formulas (3.3) and (3.5) for some specific choice of f(x) and
g(x), and we compare the results also with the plot of ordinary CS. These plots will suggest an interesting
interpretation for these states.

Using now the same steps as for ordinary CS, we can check that ϕ(z;x) and ψ(z;x) satisfy the following
resolution of the identity:

〈f, g〉 =
∫

C

d2z

π
〈f, ϕ(z)〉〈ψ(z), g〉 =

∫

C

d2z

π
〈f, ψ(z)〉〈ϕ(z), g〉, (3.7)

for all f(x), g(x) ∈ SA(R) ∩ G. Indeed, we have, for instance,

∫

C

d2z

π
〈f, ϕ(z)〉〈ψ(z), g〉 =

∫

C

d2z

π
e−|z|2

( ∞∑

k=0

zk

√
k!

〈f, ϕk〉
)( ∞∑

l=0

zl

√
l!

〈ψl, g〉
)

=
1
π

∞∑

k,l=0

〈f, ϕk〉〈ψl, g〉√
k! l!

∫

C

d2ze−|z|2zk zl = 〈f, g〉,

since
∫

C

d2ze−|z|2zk zl = πδl,kk!. The conclusion follows from Theorem 2. Incidentally, we observe also

that we have moved the sums outside the integral. This is, in general, a dangerous operation. However,
here, as formula (3.8) confirms, this can be done.

Formula (3.7), together with (3.3) and (3.5), allows us to write

∫

R

f(x) g(x) dx = 〈f, g〉 =
∫

C

d2z

π

⎛

⎝e− |z|2
2

∫

R

f(x) ezx dx

⎞

⎠

(

e− |z|2
2 g(z)

)

,
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which can be rewritten, changing the order of the integration,

∫

R

f(x) g(x) dx =
∫

R

f(x)

⎡

⎣

∫

C

d2z

π
e−|z|2ezxg(z)

⎤

⎦ dx.

This equality should be satisfied for all f(x), g(x) ∈ SA(R) ∩ G, which is true if the following equality
holds, at least weakly on SA(R) ∩ G:

∫

C

d2z

π
e−|z|2ezxg(z) = g(x), (3.8)

∀g(x) ∈ SA(R)∩G. This identity looks interesting, since it can be seen as a sort of integral representation
of the Dirac delta distribution with complex argument.

In fact, this equality can be checked explicitly for many functions, not necessarily in SA(R) ∩ G. In
particular, for instance, it holds for all polynomials. In Appendix B, we will check (3.8) for all monomials
xn and for the gaussian e−x2

.
More at an abstract level, we can recover (3.8) using the following rather general idea: since g(x)

belongs, in particular, to S(R), it is clear that it admits a Fourier transform ĝ(p) which is still in S(R)
and that g(x) = 1√

2π

∫

R
ĝ(p) eipx dp. If we now call α and β, respectively, the real and the imaginary parts

of z, z = α + iβ, we can write

g(z) =
1√
2π

∫

R

ĝ(p) eipz dp =
1√
2π

∫

R

ĝ(p)eβp eipα dp,

which is surely well defined if, for instance, ĝ(p) ∈ G since, when this is true, then ĝ(p)eβp ∈ S(R) by
definition. Hence, g(z) can be seen as the inverse Fourier transform of ĝ(p)eβp, which exists.

Remarks. (1) Notice that requiring that g(x) ∈ G does not necessarily imply that ĝ(p) ∈ G. It only
implies that ĝ(p + ik) ∈ S(R) for all fixed k ∈ C. But this formula is not particularly useful for us,
here.

(2) However, there are important examples of functions in G whose Fourier transforms are still in G.
This is the case, for instance, of all the Hermite functions en(x) = 1√

2n n!
√

π
Hn(x)e−x2/2. Indeed,

they all belong to G, of course. Moreover, since their Fourier transforms ên(p)’s coincide, a part
some inessential factor (and a rename of the variable), with en(x) themselves, [32], ên(p) ∈ G as
well.

Going back to the left-hand side of (3.8), we have, after some rearrangement,
∫

C

d2z

π
e−|z|2ezxg(z) =

1
π
√

2π

∫

R

dp ĝ(p)
∫

R

dαe−α2
eα(x+ip)

∫

R

dβe−β2
eβ(p+ix)

=
1√
2π

∫

R

dp ĝ(p)eipx = g(x),

as we had to check. Here we have used the gaussian integrals
∫

R

dαe−α2
eα(x+ip) =

√
πe(x+ip)2/4 and

∫

R

dβe−β2
eβ(p+ix) =

√
πe(p+ix)2/4.

Remark. We have deduced formula (3.8) from (3.7). Using the results in Appendix B, or the explicit
check proposed here, we could reverse the procedure and use (3.8) to check (3.7).
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The vectors ϕ(z;x) and ψ(z;x) are also (weak) eigenstates of a and b†, as any CS is expected to be.
Indeed, we can prove that ∀f(x) ∈ G and ∀g(x) ∈ SA(R), we have

〈f, aϕ(z)〉 = z〈f, ϕ(z)〉, 〈g, b†ψ(z)〉 = z〈g, ψ(z)〉, (3.9)

which are our weak versions of the eigenvalue equations for CS. The evident asymmetry in these formulas
could be removed by working on a common set, SA(R) ∩ G, but we prefer to keep this more general
version of formulas (3.9).

First we observe that G is closed under derivation. Indeed, if f(x) ∈ G, then it is possible to check
that f ′(x) ∈ G as well. The proof is easy and will not be given here. Now we have, using (3.2),

〈f, aϕ(z)〉 = −〈f ′, ϕ(z)〉 = −e− |z|2
2

∞∑

k=0

zk

√
k!

〈f ′, ϕk〉 = e− |z|2
2

∞∑

k=0

zk

√
k!

〈f, ϕ′
k〉.

Here we have used the definition of the weak derivative in the first and in the last equalities. Now, since
ϕ′

0(x) = 0 and ϕ′
k(x) =

√
k ϕk−1(x), k ≥ 1, with standard computations we get

〈f, aϕ(z)〉 = e− |z|2
2

∞∑

k=1

zk

√
k!

〈f,
√

k ϕk−1〉 = ze− |z|2
2

∞∑

l=0

zl

√
l!

〈f, ϕl〉 = z〈f, ϕ(z)〉,

as we had to prove. In the last equality, we have introduced l = k − 1.
The proof of the second equality in (3.9) works in a different way, due to the fact that the ψk(x) are

not functions (even if not square integrable, like the ϕk(x)’s), but genuine distributions.
The proof is based on the fact that, if g(x) ∈ SA(R), then xg(x) ∈ SA(R) as well. This is easy to

check. Now, using (3.5), we have

〈g(x), b†ψ(z)〉 = 〈xg(x), ψ(z)〉 = e− |z|2
2 z g(z) = e− |z|2

2 z g(z) = z 〈g(x), ψ(z)〉,
as we had to prove.

The conclusion is that, at the price of working weakly on suitable subsets of L2(R), for the operators
q̂ and D̂ it is possible to introduce two functionals Fϕ and Fψ, or equivalently two z-dependent vectors
ϕ(z;x) and ψ(z;x), which share with ordinary CS some of their essential properties. It is important
to stress that, in what we have done so far, our weak bi-coherent states have been introduced by two
convergent series, following the same underlying idea of the states introduced in Appendix A, see (A.9).
In Sect. 5, we will discuss the role of displacement-like operators in connection with our states.

4. Some plots

In this section, we show some plots of the evaluations of (3.3) and (3.5) for a particular choice of f(x) and
g(x), and we compare these plots with those of the ordinary CS, Φ(z, x) = 1

π1/4 e−(x−√
2�{z})2/2+i

√
2x�{z}.

More specifically, we will consider f(x) ≡ g(x) = fσ(x) = 1
σ

√
2π

e− |x|2
2σ2 . As shown in the plots, the results

are strongly dependent on the value of σ.
We see from Figs. 1, 2 and 3 that the behavior of the three states can be very different. In particular,

if we compare |Fϕ[fσ](z, z)| with |Fψ[fσ](z, z)|, we see that while |Fϕ[fσ](z, z)| decays very fast along
�(z), but not along �(z), |Fψ[fσ](z, z)| behaves exactly in the opposite way. And this is independent of
the value of σ. In fact, this same behavior is recovered also for other values of σ, other than those plotted
here. On the other hand, the behavior of the standard CS |FΦ[fσ](z, z)| is the one we expect, localized
in both �(z) and in �(z) and not so strongly dependent on σ. The three plots in each figure look really
different. This is very close to what one of us found also for other examples of bi-coherent states leaving
in some Hilbert space [18]: the two bi-coherent states are always different one from the other, but they
are connected by some sort of symmetry. Here, for instance, a part from some scaling factor, we see that
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Fig. 1. Plots of |Fϕ[fσ ](z, z)| (a), |Fψ [fσ ](z, z)| (b), |FΦ[fσ ](z, z)| (c) for σ = 0.95

Fig. 2. Plots of |Fϕ[fσ ](z, z)| (a), |Fψ [fσ ](z, z)| (b), |FΦ[fσ ](z, z)| (c) for σ = 1

|Fψ[fσ](z, z)| for σ < 1 looks like a rotated version of |Fϕ[fσ](z, z)| for σ > 1. Of course, it would be
interesting to understand if this is general, or strictly connected to the choices we have considered here.
This question, together with other similar aspects of bi-coherent states, will be considered in a future
paper.

5. Displacement-like operators

We recall that, for an ordinary CS Φ(z), we usually meet one of the following, all equivalent, expressions:

Φ(z) = D(z)e0 = ezc†−zce0 = e− 1
2 |z|2

∞∑

n=0

zn

√
n!

en. (5.1)

D(z) = ezc†−zc is called displacement operator, and it is unitary. Here c and c† are the usual bosonic
ladder operators satisfying [c, c†] = 11. In the situation considered in this paper, the annihilation operator
is a = D̂, while the creation operator is b = q̂. Hence, the operator D(z) should be replaced by a different
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Fig. 3. Plots of |Fϕ[fσ ](z, z)| (a), |Fψ [fσ ](z, z)| (b), |FΦ[fσ ](z, z)| (c) for σ = 1.05

operator1 which we formally write V (z) = ezq̂−zD̂. We could, of course, work formally with V (z), for
instance using the BCH-formula [6]. But this is not what is interesting for us. We prefer to give a rigorous
meaning to V (z), and this will be done in the first part of this section. In particular, we will show that the
vector ϕ(z;x) in (3.3) can be defined in complete analogy with (5.1), ϕ(z;x) = V (z)ϕ0(x). In the second
part of this section, we will also show that the other bi-coherent state, the vector ψ(z;x) in (3.5), can
be deduced by a second displacement-like operator W (z) as in ψ(z;x) = W (z)ψ0(x), with W (z) deduced
out of V (z) replacing q̂ and D̂ by their adjoint.

5.1. Introducing V (z)

Let us introduce the sequence of functions hn(x; z, z) as follows

hn(x; z, z) =
1
n!

(
zq̂ − zD̂

)n

ϕ0(x), (5.2)

n = 0, 1, 2, 3, . . .. Our aim is to prove that
∑∞

n=0 hn(x; z, z) converges; its sum coincides with ϕ(z;x) and
can be used to introduce the operator V (z) as follows:

V (z)ϕ0(x) =
∞∑

n=0

hn(x; z, z) = ϕ(z;x).

First of all we prove that hn(x; z, z) can be written as follows:

hn(x; z, z) =
[n
2 ]
∑

k=0

(−1)k

2k (n − 2k)! k!
|z|2k (xz)n−2k, (5.3)

for all n ≥ 0, where
[

n
2

]
is the integer part of n

2 . We begin noticing that (5.2) can be rewritten as

hn+1(x; z, z) =
1

n + 1

(
zq̂ − zD̂

)
hn(x; z, z), (5.4)

n ≥ 0, with h0(x; z, z) = ϕ0(x).
In proving our claim, it is convenient to distinguish between even n, n = 2l, and odd n, n = 2l + 1,

l = 0, 1, 2, 3, . . ., We then use induction on n. In particular, we show that (5.3) returns (5.2) if n = 0 and

1We indicate our displacement-like operators here and in the following with V (z) and W (z), even if both these operators
also depend on z. This is to simplify the notation.
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that, when acting as in (5.4), we go from h2l to h2l+1, and from h2l+1 to h2(l+1), covering in this way all
possibilities.

If n = 0, formula (5.2) produces h0(x; z, z) = ϕ0(x) = 1, which is the same result we get from (5.3)
for n = 0, clearly. Now, let us assume that for some n = 2l formula (5.3) holds true:

h2l(x; z, z) =
l∑

k=0

(−1)k

2k (2l − 2k)! k!
|z|2k (xz)2l−2k. (5.5)

We want to prove that, acting as in (5.4), we recover the following expression for h2l+1(x; z, z):

h2l+1(x; z, z) =
l∑

k=0

(−1)k

2k (2l + 1 − 2k)! k!
|z|2k (xz)2l+1−2k. (5.6)

The proof is long but easy. We give here only the main steps. Using (5.5), we have
(
zq̂ − zD̂

)
h2l(x; z, z)

=
l∑

k=0

(−1)k

2k (2l − 2k)! k!
|z|2k (xz)2l+1−2k − z

l−1∑

k=0

(−1)k

2k (2l − 2k)! k!
|z|2k z2l−2k(2l − 2k)x2l−2k−1

=
l∑

k=0

(−1)k

2k (2l − 2k)! k!
|z|2k (xz)2l+1−2k +

l−1∑

k=0

(−1)k+1

2k (2l − 2k − 1)! k!
|z|2(k+1) (xz)2l−1−2k

=
(xz)2l+1

(2l)!
+ (2l + 1)

l∑

k=1

(−1)k |z|2k (xz)2l+1−2k

2k (2l − 2k + 1)! k!
.

In this last step, we have written explicitly the contribution k = 0 in the first sum, changed k into k + 1
in the second sum, and unified the two sums

∑l
k=1 obtained in this way, simplifying the formula where

possible. Hence, we have

1
2l + 1

(
zq̂ − zD̂

)
h2l(x; z, z) =

l∑

k=0

(−1)k

2k (2l + 1 − 2k)! k!
|z|2k (xz)2l+1−2k,

which is h2l+1(x; z, z) in (5.6), as we had to check.
Now we should show that

1
2l + 2

(
zq̂ − zD̂

)
h2l+1(x; z, z) = h2l+2(x; z, z),

where h2l+1(x; z, z) is given in (5.6) while h2l+2(x; z, z) can be found replacing l with l + 1 in (5.5).
This check is completely analogous to that described above, and will not be repeated. The conclusion is
therefore that each function hn(x; z, z) in (5.2) can be written as in (5.3).

The next step consists in computing
∑∞

n=0 hn(x; z, z). Indeed, if this series converges, formula (5.2)
suggests that this sum is what can be interpreted as V (z)ϕ0(x). In this computation, it is useful to use

the identity
∑∞

n=0

∑[n
2 ]

k=0 Ak,n =
∑∞

n=0

∑∞
k=0 Ak,n+2k, which in our computation, identifying Ak,n with

(−1)k

2k (n−2k)! k!
|z|2k (xz)n−2k, returns

∞∑

n=0

hn(x; z, z) =
∞∑

n=0

[n
2 ]
∑

k=0

(−1)k

2k (n − 2k)! k!
|z|2k (xz)n−2k =

∞∑

n=0

(xz)n

n!

∞∑

k=0

1
k!

(

−|z|2
2

)k

,

so that
∞∑

n=0

hn(x; z, z) = e− |z|2
2 ezx = ϕ(z;x),
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as we wanted to prove. Of course, since
∑∞

n=0
1
n!

(
zq̂ − zD̂

)n

= ezq̂−zD̂ = V (z), at least formally, we
could also write

∞∑

n=0

hn(x; z, z) = ezq̂−zD̂ϕ0(x) = V (z)ϕ0(x) = e− |z|2
2 ezx = ϕ(z;x). (5.7)

We should probably stress that this formula is not the definition of V (z), since, among the other issues,
it only indicates us how V (z) acts on a single state, ϕ0(x). We should also recall that ϕ0(x) /∈ L2(R).
Hence, ϕ0(x) cannot belong to the domain of V (z), strictly speaking. This is because, given an operator
T on some Hilbert space H, its domain D(T ) is usually meant to be a subspace of H [33].

It is possible to extend the action of V (z) to all monomials ϕl(x), as we will show now. In particular,
we will check that, ∀l ≥ 0, V (z)ϕl(x) can be defined as follows:

V (z)ϕl(x) =
∞∑

n=0

1
n!

(
zq̂ − zD̂

)n

ϕl(x) =
1√
l!

e− |z|2
2 ezx(x − z)l. (5.8)

Of course, and not surprisingly, none of the functions in the right-hand side belong to L2(R). However,
they are all nice functions in x, z and z, which makes of V (z) an operator acting on a rather large set of
functions in a simple way.

The proof of (5.8) goes like this: we start by extending (5.2). In particular, we put, for all n =
0, 1, 2, 3, . . .,

h[l]
n (x; z, z) =

1
n!

(
zq̂ − zD̂

)n

xl =
1
n!

(
zq̂ − zD̂

)n

(
√

l! ϕl(x)), (5.9)

l = 0, 1, 2, 3, . . ., and we prove that
∞∑

n=0

h[l]
n (x; z, z) = (x − z)le− |z|2

2 ezx, (5.10)

for all l ≥ 0. Of course h
[0]
n (x; z, z) = hn(x; z, z), n ≥ 0, see (5.2), This, together with (5.7), implies that

(5.10) holds for l = 0.
Now, let us assume that (5.10) holds for a given l. We want to check that the same equality holds also

when l is replaced by l + 1. For that, we will use the following formula:
[(

zq̂ − zD̂
)n

, q̂
]

= −nz
(
zq̂ − zD̂

)n−1

,

for n ≥ 1. Of course, this commutator is zero if n = 0. This formula can easily be derived when applied
to any sufficiently regular function. In particular, it is well defined on any polynomial in x. We observe
now that, using (5.9), h

[l+1]
0 (x; z, z) = xl+1, and

h[l+1]
n (x; z, z) =

1
n!

([(
zq̂ − zD̂

)n

, q̂
]

+ q̂
(
zq̂ − zD̂

)n)
xl

= − z
1

(n − 1)!

(
zq̂ − zD̂

)n−1

xl + x
1
n!

(
zq̂ − zD̂

)n

xl

for all n ≥ 1. Hence, we have
∞∑

n=0

h[l+1]
n (x; z, z) = h

[l+1]
0 (x; z, z) +

∞∑

n=1

h[l+1]
n (x; z, z)

= − z
∞∑

n=1

h
[l]
n−1(x; z, z) + x

∞∑

n=0

h[l]
n (x; z, z) = (x − z)

∞∑

n=0

h[l]
n (x; z, z),



ZAMP Bi-coherent states as generalized eigenstates. . . Page 13 of 20 119

with a change of variable in the first sum, n → n−1. Now, because of our induction assumption, formula
(5.10) holds for l. Hence, we conclude that

∞∑

n=0

h[l+1]
n (x; z, z) = (x − z)l+1e− |z|2

2 ezx,

as we had to prove.
Formula (5.8) is now an easy consequence of (5.10):

∞∑

n=0

1
n!

(
zq̂ − zD̂

)n

ϕl(x) =
1√
l!

∞∑

n=0

1
n!

(
zq̂ − zD̂

)n

xl =
1√
l!

(x − z)le− |z|2
2 ezx.

The output of this analysis is that, even if we are not identifying a domain for V (z), we have proved that
this operator can be defined on a very large set of functions. In particular, we have proven that V (z) can

be defined as a convergent series
∑∞

n=0
1
n!

(
zq̂ − zD̂

)n

on any polynomial. As already observed, the fact
that polynomials are not square integrable is not a problem here, since Hilbert spaces play only a minor
role in the analysis considered in this paper.

5.2. The operator W (z)

The general framework of pseudo-bosons shows that a and b are not the only ladder operators. In fact, a†

and b† behave as ladder operators too, see (A.3). This suggests that, as widely discussed in [18], a second
displacement-like operator W (z) does exist, which we can formally write

W (z) = eza†−zb† = e−zq̂−zD̂, (5.11)

since a† = −D̂ and b† = q̂. Of course, in complete analogy with what we have seen for V (z), it is

possible to check that W (z) can be defined on any polynomial since each series
∑∞

n=0
1
n!

(
−zq̂ − zD̂

)n

xl

converges for all z ∈ C and for all fixed l ≥ 0.
What is more interesting for us is to discuss the possibility to act with W (z) on ψ0(x), and to see

if the result is somehow related to ψ(z;x) in (3.5) and (3.6). In other words, we want to show that
W (z) produces, when acting on the vacuum ψ0(x), the bi-coherent state ψ(z;x). For that, we will try to
understand if and how 〈W (z)ψ0, f〉 can be defined, and if the result agrees with (3.5), i.e., if

〈W (z)ψ0, f〉 =
∫

R

ψ(z;x) f(x) dx = e− |z|2
2 f(z). (5.12)

First of all, we must clarify what 〈W (z)ψ0, f〉 is for us. In analogy with what we have done for V (z), we
will prove that, calling

wn(f ; z, z) =
1
n!

〈(
−zD̂ − zq̂

)n

ψ0, f
〉

, (5.13)

f(x) ∈ SA(R), the series
∑∞

n=0 wn(f ; z, z) converges for all z ∈ C. Hence, in view of the formal expression
(5.11), we put

〈W (z)ψ0, f〉 =
∞∑

n=0

wn(f ; z, z). (5.14)

As in Sect. 5.1, we can check that wn(f ; z, z) can be written as the following sum:

wn(f ; z, z) =
[n
2 ]
∑

k=0

(−1)k

2k (n − 2k)! k!
|z|2k zn−2k f (n−2k)(0). (5.15)
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Of course, the right-hand side of this formula is well defined, since f(x) is, in particular, a C∞ function.
The proof of (5.15) is similar to that for (5.3), but with some differences. In fact, due to the need of
introducing here the regularizing function f(x), formula (5.4) is replaced here by

wn+1(f ; z, z) =
1

n + 1
wn(z f ′ − z x f ; z, z), (5.16)

∀n ≥ 0. This formula is a consequence of the definition of wn(f ; z, z) in (5.13). Indeed, we have, with
easy computations,

wn+1(f ; z, z) =
1

n + 1
1
n!

〈(
−zD̂ − zq̂

)n

ψ0,
(
zD̂ − zq̂

)
f
〉

,

from which (5.16) follows. In deriving this result, we have moved (−zD̂ − zq̂) to the right, using in
particular the definition of the weak derivative of a distribution.

It is easy to see that (5.13) and (5.15) return the same result, f(0), when n = 0. Next, it is possible
to show that (5.15) satisfies (5.16) for n even and for n odd. In fact, the function in (5.15) satisfies both

w2l+1(f ; z, z) =
1

2l + 1
w2l(z f ′ − z x f ; z, z), (5.17)

and

w2l+2(f ; z, z) =
1

2l + 2
w2l+1(z f ′ − z x f ; z, z), (5.18)

for all l ≥ 0. The proof of these statements is based on the fact that, calling Φ(x) = z f ′(x) − z x f(x),
its m-th derivative

Φ(m)(x) =
{

z f ′(x) − z x f(x), if m = 0
z f (m+1)(x) − mz f (m−1)(x) − x zf (m)(x), if m ≥ 1,

so that

Φ(m)(0) =
{

z f ′(0), if m = 0
z f (m+1)(0) − mz f (m−1)(0), if m ≥ 1.

(5.19)

This result can be checked easily. Using now (5.19), after few simple computations, we find

w2l(z f ′ − z x f ; z, z)

=
l∑

k=0

(−1)k |z|2k

2k (2l − 2k)! k!
z 2l−2k+1f (2l−2k+1)(0) −

l−1∑

k=0

(−1)k |z|2k+2

2k (2l − 2k − 1)! k!
z 2l−2k−1f (2l−2k−1)(0)

= (2l + 1)
l∑

k=0

(−1)k |z|2k

2k (2l − 2k + 1)! k!
z 2l−2k+1 f (2l−2k+1)(0),

which implies (5.17). Formula (5.18) can be proved in a similar way.
Once we have proved (5.15), we can compute

∑∞
n=0 wn(f ; z, z), as in (5.14). As we did for hn(x; z, z), we

use the identity
∑∞

n=0

∑[n
2 ]

k=0 Ak,n =
∑∞

n=0

∑∞
k=0 Ak,n+2k, identifying now Ak,n with (−1)k

2k (n−2k)! k!
|z|2k zn−2k

f (n−2k)(0). We find
∞∑

n=0

wn(f ; z, z) =
∞∑

n=0

1
n!

z n f (n)(0)
∞∑

k=0

1
k!

(

−|z|2
2

)k

= e− |z|2
2 f(z),

which is formula (5.12), as we had to prove. Then, we can conclude that, other than V (z), we can also
consider the second displacement-like operator W (z) giving rise, in a weak sense, the bi-coherent state
ψ(z;x) when acting on the vacuum ψ0(x).
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5.3. The BCH-formula

We devote the last part of this section to check the validity of the BCH-formula for V (z) and W (z), when
applied, respectively, to ϕ0(x) and ψ0(x).

First we check that the following equalities are satisfied:

ezq̂−zD̂ϕ0(x) = e− |z|2
2 ezq̂e−zD̂ϕ0(x) = e

|z|2
2 e−zD̂ezq̂ϕ0(x), (5.20)

recalling that, as we proved in Sect. 5.1, ezq̂−zD̂ϕ0(x) = ϕ(z;x) = e− |z|2
2 ezx.

Our check is based on the same idea used before, when we introduced V (z) as a suitable convergent
series. In fact, since

1
n!

(−zD̂)nϕ0(x) = δn,0ϕ0(x),

∀n ≥ 0, the series
∑∞

n=0
1
n! (−zD̂)nϕ0(x) converges clearly to ϕ0(x). This suggests, in analogy with (5.7),

to put e−zD̂ϕ0(x) =
∑∞

n=0
1
n! (−zD̂)nϕ0(x) = ϕ0(x). Now, recalling that q̂ is the multiplication operator,

we have ezq̂e−zD̂ϕ0(x) = ezq̂ϕ0(x) = ezxϕ0(x) = ezx, so that the first equality in (5.20) follows. To check
the second, we start noticing first that, as just stated, ezq̂ϕ0(x) = ezx. Hence,

1
n!

(−zD̂)nezx =
1
n!

(−|z|2)n ezx,

so that

e
|z|2
2 e−zD̂ezq̂ϕ0(x) = e

|z|2
2

∞∑

n=0

1
n!

(−|z|2)n ezx = e− |z|2
2 ezx,

which again coincides with ϕ(z;x).

As for W (z), we recall first that, according to (5.12), 〈W (z)ψ0, f〉 = e− |z|2
2 f(z), for all f(x) ∈ SA(R).

Then, we want to check if this result can be found also using the BCH-formula for W (z), i.e., if we have

〈e− |z|2
2 e−zD̂e−zq̂ψ0, f〉 = 〈e |z|2

2 e−zq̂e−zD̂ψ0, f〉 = e− |z|2
2 f(z), (5.21)

for all f(x) ∈ SA(R).
To check the first identity, we use the definition of the weak derivative as follows:

1
n!

〈(−zD̂)n e−zq̂ψ0, f〉 =
1
n!

〈 e−zq̂ψ0, (zD̂)nf〉 =
z n

n!

∫

R

e−zx ψ0(x) f (n)(x) dx

=
z n

n!

∫

R

δ(x) e−zx f (n)(x) dx =
z n

n!
f (n)(0).

Then, we have

〈e− |z|2
2 e−zD̂e−zq̂ψ0, f〉 = e− |z|2

2

∞∑

n=0

1
n!

〈(−zD̂)n〉 e−zq̂ψ0, f〉 = e− |z|2
2

∞∑

n=0

z n

n!
f (n)(0) = e− |z|2

2 f(z),

which is what we had to check. As for the second equality in (5.21), we start noticing that

〈e |z|2
2 e−zq̂e−zD̂ψ0, f〉 = e

|z|2
2 〈e−zD̂ψ0, e

−zxf〉.
Now, due to the fact that e−zxf(x) ∈ S(R), we can use, as many times in this paper, the definition of
the weak derivative to deduce

1
n!

〈(−zD̂)nψ0, e
−zxf〉 =

z n

n!
〈ψ0, (D̂)n e−zxf〉 =

z n

n!

n∑

k=0

(
n
k

)

(−z)n−kf (k)(0).
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To compute the sum of all these contributions, we use now the identity
∑∞

n=0

∑n
k=0 Ak,n =

∑∞
n=0

∑∞
k=0

Ak,n+k, and we get

e
|z|2
2 〈e−zD̂ψ0, e

−zxf〉 = e
|z|2
2

∞∑

n=0

(−|z|2)n

n!

∞∑

k=0

z k

k!
f (k)(0) = e− |z|2

2 f(z),

once again.
Then, we conclude that BCH formula works in the present context. Of course, this is expected but

not entirely trivial since the operators we are dealing with are unbounded, and they act on distributions,
rather than on usual square-integrable functions.

Remark. It is maybe useful to observe that here we have focused our attention only on the action of V (z)
and W (z) on ϕ0(x) and ψ0(x), since this was enough for our purposes. Extending this result to other
vectors is not an easy task, in general. We refer to [18] for a detailed analysis of the BCH formula in a
Hilbert space settings.

6. Conclusions

In this paper, we have deduced some properties connected to the position and to the derivative (and
therefore the momentum) operators arising from noticing that they can be seen as weak pseudo-bosons
and, as such, they work as ladder operators on two different, but connected, sets of distributions.

In particular, after a preliminary section on these two sets, Fϕ and Fψ, we have investigated if and
how bi-coherent states can be defined for q̂ and D̂, and which are their properties. We have also shown
that this can be done directly, by means of suitable convergent series, but also by using two different
displacement-like operators, again defined as suitable convergent series.

In our knowledge, these aspects of q̂ and D̂ were not considered previously and open the way to several
interesting mathematical problems and to possible applications to physics, and to quantum mechanics in
particular.
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Appendix A: Few facts on pseudo-bosons and bi-coherent states

This appendix contains a list of useful definitions and results on pseudo-bosons and on bi-coherent states
in Hilbert spaces.

Let H be a given Hilbert space with scalar product 〈., .〉 and related norm ‖.‖. Let a and b be two
operators on H, with domains D(a) ⊂ H and D(b) ⊂ H, respectively, a† and b† their adjoint, and let D
be a dense subspace of H such that a	D ⊆ D and b	D ⊆ D. Here with x	 we indicate x or x†. Of course,
D ⊆ D(a	) and D ⊆ D(b	).

Definition 3. The operators (a, b) are D-pseudo bosonic if, for all f ∈ D, we have

a b f − b a f = f. (A.1)

When b = a†, this is simply the CCR for ordinary bosons. However, when the CCR is replaced by
(A.1), the situation changes. In particular, it is useful to assume the following:

Assumption D-pb 1.– there exists a nonzero ϕ0 ∈ D such that aϕ0 = 0.
Assumption D-pb 2.– there exists a nonzero Ψ0 ∈ D such that b† Ψ0 = 0.
Recalling that D is stable under the action of b and a†, we deduce that ϕ0 ∈ D∞(b) := ∩k≥0D(bk)

and Ψ0 ∈ D∞(a†), so that the vectors

ϕn :=
1√
n!

bnϕ0, Ψn :=
1√
n!

a†n
Ψ0, (A.2)

n ≥ 0, can be defined and they all belong to D. Hence, they also belong to the domains of a	, b	 and N 	,
where N = ba. Moreover, the following lowering and raising relations can be easily deduced:

⎧
⎪⎪⎨

⎪⎪⎩

b ϕn =
√

n + 1ϕn+1, n ≥ 0,
a ϕ0 = 0, aϕn =

√
n ϕn−1, n ≥ 1,

a†Ψn =
√

n + 1Ψn+1, n ≥ 0,
b†Ψ0 = 0, b†Ψn =

√
n Ψn−1, n ≥ 1,

(A.3)

together with the eigenvalue equations Nϕn = nϕn and N†Ψn = nΨn, n ≥ 0. If 〈ϕ0,Ψ0〉 = 1, then

〈ϕn,Ψm〉 = δn,m, (A.4)

for all n,m ≥ 0. Hence, FΨ = {Ψn, n ≥ 0} and Fϕ = {ϕn, n ≥ 0} are biorthonormal. The analogy with
ordinary bosons suggests us to consider the following:

Assumption D-pb 3.– Fϕ is a basis for H.
This is equivalent to requiring that FΨ is a basis for H as well. However, several physical models show

that Fϕ is not always a basis for H, but it is still total in H: if f ∈ H is orthogonal to ϕn, for all n, then
f = 0. For this reason, we prefer to adopt the following weaker version of Assumption D-pb 3 [28]:

Assumption D-pbw 3.– For some subspace G dense in H, Fϕ and FΨ are G-quasi bases.
This means that, for all f and g in G,

〈f, g〉 =
∑

n≥0

〈f, ϕn〉 〈Ψn, g〉 =
∑

n≥0

〈f,Ψn〉 〈ϕn, g〉 , (A.5)

which can be seen as a weak form of the resolution of the identity, restricted to G.
The families Fϕ and FΨ can be used to define two densely defined operators Sϕ and SΨ via their

action, respectively, on FΨ and Fϕ:

SϕΨn = ϕn, SΨϕn = Ψn, (A.6)

for all n. These operators play a very import role in the analysis of pseudo-bosons, since they map Fϕ

into FΨ and vice versa and define new scalar products in H is terms of which, for instance, the (new)
adjoint of b turns out to coincide with a. We refer to [23,28] for more details.
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According to [18], and references therein, Fϕ and FΨ can also be used to construct two vectors
depending on a complex variable z, ϕ(z) and ψ(z), which behave, when taken in pair, as the usual CS
do, at least under some aspects. In particular, if four strictly positive constants Aϕ, AΨ, rϕ and rΨ exist,
together with two strictly positive sequences Mn(ϕ) and Mn(Ψ), for which

lim
n→∞

Mn(ϕ)
Mn+1(ϕ)

= M(ϕ) > 0, lim
n→∞

Mn(Ψ)
Mn+1(Ψ)

= M(Ψ) > 0, (A.7)

where M(ϕ) and M(Ψ) could be infinity, and such that, for all n ≥ 0,

‖ϕn‖ ≤ Aϕ rn
ϕMn(ϕ), ‖Ψn‖ ≤ AΨ rn

ΨMn(Ψ), (A.8)

then the following series

ϕ(z) = e− |z|2
2

∞∑

k=0

zk

√
k!

ϕk, ψ(z) = e− |z|2
2

∞∑

k=0

zk

√
k!

Ψk, (A.9)

are all convergent in all the complex plane C. Moreover, for all z ∈ C,

aϕ(z) = zϕ(z), b†ψ(z) = zψ(z). (A.10)

We also have
∫

C

〈f,Ψ(z)〉 〈ϕ(z), g〉 dz

π
=
∫

C

〈f, ϕ(z)〉 〈Ψ(z), g〉 dz

π
= 〈f, g〉 , (A.11)

for all f, g ∈ G.
An obvious comment is that, contrarily to what happens for ordinary coherent states [4–6], the norms

of the vectors ϕn and Ψn need not being uniformly bounded, here. On the contrary, they can diverge with
n, see (A.8), still producing two everywhere convergent series. We refer to [18] for a generalized version
of this result, and for some connections of ϕ(z) and ψ(z) with displacement-like operators analogous to
that used for ordinary coherent states, U(z) = ez c−zc† , where [c, c†] = 11. It is maybe useful to stress here
that the vectors in (2.1) do not satisfy the bounds in (A.8), for any n. This is the reason why we have
proposed in this paper a larger framework, for q̂ and D̂.

Appendix B: on formula (3.8)

We first check that (3.8) holds for all monomials:

Rn :=
∫

C

d2z

π
e−|z|2ezxzn = xn, (B.1)

n = 0, 1, 2, 3, . . .. We start rewriting the integral above in polar coordinates: d2z = rdrdθ. Hence,

Rn =
1
π

∞∫

0

re−r2
dr

2π∫

0

dθe xreiθ

(re−iθ)n =
1
π

∞∫

0

rn+1e−r2
dr

2π∫

0

dθe−inθ+rxeiθ

.

But
2π∫

0

dθe−inθ+rxeiθ

= 2π (rx)n

n! , and therefore

Rn = 2
xn

n!

∞∫

0

r2n+1e−r2
dr = xn,

for all allowed values of n.



ZAMP Bi-coherent states as generalized eigenstates. . . Page 19 of 20 119

To check now formula (3.8) for gaussians, it is more convenient to use cartesian coordinate. For this
reason, we write z = α + iβ, so that

∫

C

d2z =
∫

R

dα
∫

R

dβ. Taking g(x) = e−x2
we have

I =
∫

C

d2z

π
e−|z|2ezxg(z) =

1
π

∫

C

d2zezxe−z(z+z) =
1
π

∫

R

dαe−2α2+αx

∫

R

dβeiβ(x+2α),

with minor computations. Now, observing that e−2α2+αx is a test function (in the variable α), we can
rewrite

I =
1
π

∫

R

dαe−2α2+αxπδ
(
α +

x

2

)
= e−x2

,

as we had to check.
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[25] Geĺfand, I.M., Shilov, G.E.: Generalized Functions, vol. I, Academic Press, New York (1964)
[26] Vladimirov, V.S.: Le distribuzioni nella fisica matematica. MIR, Moscow (1981)



119 Page 20 of 20 F. Bagarello and F. Gargano ZAMP

[27] Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions. Birkhäuser, Basel (1992)
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