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Abstract. This paper studies the stability and decay estimates of solutions to the two-dimensional (2D) magneto-micropolar
fluid equations with partial dissipation. We first establish the L2-decay estimates for global solutions and their derivative
with initial data in L'(R?). Furthermore, we show the global stability of these solutions in H*(R?), and the decay rates of
these global solutions and their higher derivatives when the initial data belongs to the negative Sobolev space H_l(RQ) (for
each 0 <1< 1).
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1. Introduction

The 3D incompressible magneto-micropolar fluid equations can be written as
Ou+u-Vu=-Vr+ (u+x)Au+b- Vb +2xV X w,
Ow+u-Vw—9VV w+4dyw = kAw + 2xV X u,
Ob+u-Vb=vAb+b-Vu, (1.1)
V-ou=0, V-b=0,
u(z,y, 2,0) = ug(x,y,2),w(z,y,2,0) = wo(z,y, 2),b(x,y, 2,0) = bo(x,y, 2),
where (z,y,z) € R® and t > 0, u(z,y,2,t),w(z,y, 2,t),b(z,y,2,t) and 7(z,y, z,t) denote the velocity
of the fluid, microrotational velocity, the magnetic field and the hydrostatic pressure, respectively. u, x
and % are, respectively, kinematic viscosity, vortex viscosity and magnetic Reynolds number. v and x are
angular viscosities. The 3D magneto-micropolar equations reduce to the 2D micropolar equations when

u = (ul(mvyvt)7u2(xay7t)v0)a Tr:ﬂ-(x;yﬂf)a
b= (bl (:177 Y, t)a bQ(xa Y, t)a 0)7 W = (07 07 w3(1'7 Y, t))
More explicitly, the 2D incompressible magneto-micropolar fluid equations can be written as
Ou+u-Vu=(u+ x)Au—Vr+b-Vb+2xV X w,
Oyw + u - Vw + 4dyw = kAw + 2xV X u,
Ob+u-Vb=vAb+b-Vu, (1.2)
V-u=V-b=0,
u(xv Y, 0) = ’LL0(£L'7 y)a W(1'7 Y, 0) = wO(xa y)7 b(xv Y, 0) = bO(xa y)v

where we have written u = (uy,uz), b = (b1, b2) and w for wz for notational brevity. It is worth noting
that, in the 2D case,

N =V xXu=0zus — Oyur
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is a scalar function representing the vorticity, and V x w = (Oyw, —0,w).

The magneto-micropolar equations were introduced in [1] to describe the motion of incompressible,
electrically conducting micropolar fluids in the presence of an arbitrary magnetic field. It has attracted
considerable attention from the community of mathematical fluids (see, e.g., [2-12]). The magneto-
micropolar equations share similarities with the Navier—Stokes equations, but they contain much richer
structures than Navier—Stokes. It is well-known that the L? decay problem of weak solutions to the 3D
Navier—Stokes equations, i.e., (1.1) with w = 0, b = 0 and x = 0, was proposed by the celebrated work
of Leray [13]. By introducing the elegant method of Fourier splitting, the algebraic decay rate for weak
solutions was first obtained by Schonbek [14]. Later, the result in [14] is sharpened and extended in
[15], see also [16]. Recently, in [17] Zhao obtained the decay rates of solutions for the three-dimensional
incompressible Navier-Stokes equations with damping term |u[?~'u (3 > 3).

When (1.2) has full dissipation (namely, u, x, &, v > 0), the global existence and uniqueness of solutions
can be obtained easily (see, e.g., [8,18]). For more results related to the well-posedness of solutions, one
refers to [19-25] and the reference therein. However, for the inviscid case (namely, (1.2) with g > 0,
X > 0, Kk = v = 0 and Au replaced by w), the global regularity problem is still a challenging open
problem. Therefore, it is natural to study the intermediate cases, namely (1.2) with partial dissipation.

In certain physical regimes and under suitable scaling, the full Laplacian dissipation is reduced to a
partial dissipation. One notable example is the Prandtl boundary layer equation in which only the vertical
dissipation is included in the horizontal component (see, e.g., [26]). This paper focuses on a system of the
2D incompressible magneto-micropolar equations that is closely related to (1.2),

Ou+u-Vu=(u+x)Au—Vr+b-Vb+2xV X w,

Ow +u - Vw + dxyw = kAw + 2xV X u,

atbl +u- Vbl = uﬁyybl + b- Vul,

8,5[)2 +u- Vbz = Vamzbg + b- VUQ,

V-u=V-b=0,

U(J),y,O) = UO(l',y),OJ(l‘,y,O) = WQ(I‘,y),b(JI,y,O) = bo(ﬂ?,y)

(1.3)

When the magnetic fluid by = b = 0, the system (1.3) reduces to the 2D incompressible micropolar fluid
equations, which describe some physical phenomena such as the motion of animal blood, liquid crystals
and dilute aqueous polymer solutions. Micropolar fluid model was first proposed by Eringen [27], while
the existences of weak and strong solutions were studied by Galdi and Rionero [28] and Yamaguchi [29].
The global well-posedness of the micropolar equations with full viscosity was obtained by Lukaszewicz
[18]. Dong and Chen [19] via using Fourier splitting method proved the L?-decay rates for global solutions
of the 2D micropolar equations. Guterres, Melo, Nunes and Perusato [12] improved the decay rates of w
in L?(R?) and the decay estimates of the higher-order derivatives of w.

When w = 0 and x = 0, the system (1.3) reduces to the 2D incompressible Magnetohydrodynamic
(MHD) equations with partial magnetic diffusion. The global existence and regularity have been obtained
in [30] and proved the large time decay rates for smooth solutions of the 2D MHD equations with fractional
dissipation partial and magnetic diffusion, that is, Au in (1.3) is replaced by (—A)%u, and « is required
to belong to (1, 3).

Due to the complex structure of (1.2), when there is only partial dissipation, the global regularity
problem can be quite difficult. However, many important progress has recently been made on this direction
(see, e.g., [7,25,30-35]). In [25,32,34], the global regularity of the 2D magneto-micropolar equations with
various partial dissipation cases was obtained. When the magneto-micropolar equations only have velocity
dissipation and magnetic diffusion, namely, (1.1) with £ = 0, Niu and Shang [36] proved the optimal L%
decay estimates of weak solutions, and also obtained the decay rates of global solutions in H*(s > ) and

32 '~ spaces with 0 < m < s and in 32 1 with0 <m < 1 . When (1.2) only has microrotational dissipation
and magnetic diffusion(namely, Au replaced by u), the decay estimates of solutions have been obtained
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by Shang and Gu [37,38]. Shang and Gu [37] also proved the global existence of classical solutions for
(1.3).

In this paper, we study the global well-posedness and the decay estimates of solutions to (1.3). Moti-
vated by [36], we first establish the L?-decay estimates for global solutions and their derivative with initial
data in L'(R?). Secondly, we establish the global existence result to system (1.3) in H?®(R?). Furthermore,
we show the decay rates of these global solutions and their higher derivatives.

We now list the main results of the paper. The first result is the decay estimates of global solutions
in L? space.

Theorem 1.1. Let 4 > 0, x > 0, v > 0 and k > 0. Assume that (ug,wo,bo) € H'(R?) N LY(R?), with
V-ug =0 and V -by = 0. Then, the global solutions (u,w,b) of (1.3) satisfies, for all t > 0,

l(®)llzz + lw(®)llz2 + b2 < CO+1)72, (1.4)

IVa(®)]l2 + Vet 2 + [IVoE) 12 < C(L+ )72 (1.5)

We remark that the magnetic field b only has partial dissipation in (1.3), the classic Fourier splitting
method which relies on decomposing the whole space into two time-dependent sub-dependent does not
apply. To do so, we used the method of [39], to obtain the L2-decay estimates for global solutions of (1.3).

The next theorem is devoted to the global existence and the time decay estimates of solutions to system
(1.3) with small initial data in Sobolev space. The process of proving the existence of global solutions is
similar to [36]. For the sake of simplicity, we only pay attention to the global a priori bounds of (u,w, b),
and we can obtain the global existence in H*(R?). Furthermore, by using the interpolation inequality,
energy estimates and the technique of Fourier analysis, we obtain the corresponding time decay rates of
these solutions.

More precisely, the following theorem establishes a unique global solution when the initial data
(ug,wo, bo) is sufficiently small in H*(R?), and obtain the decay rates of these global solutions and
their higher derivatives, as stated blow.

Theorem 1.2. Let > 0, x > 0, v > 0 and k > 0. Assume that (ug,wo,bo) € H*(R?) with s > 0 and
V-ug =V -byg=0. Then, the following two statements hold:

(I) Let s > 1, then there exists a positive constant ey, such that for all 0 < € < €, if
[0l w2y + ol Fre (rey + 10l Fre m2)y < €, (1.6)
then system (1.3) has a unique global solution (u,w,b) satisfying, for any t > 0,
()1 Fre g2y + N0 Fre ey + 101710 (g2
t
+ [ TU Byt + 1967 sy + 19000 By o < e a7
0

where C' > 0 is a constant independent of t.
(I) Let s > 1, suppose that (ug,wo,bo) € H(R?) with 0 < | < 1. Then, the global solution (u,w,b)
satisfies the following decay estimates:
1) For all real number m with 0 < m < s, we have

M L2(R2) Mw L2(R2) m L2(R2) < 7ﬂ7i. (18)
[ D™ u(t)|] + [[D™w ()]l + [ D™b()]| <Cl+1t)" =72
it) For 0 <m < s—1, we have

|D™w(t) 12y < COAL+HT 575, (1.9)

This decay estimate of w(t) is improved from (1.8) to (1.9).



100 Page 4 of 20 M. Li ZAMP

Remark 1.3. Since L”(R?) — H~(R?) when 0 < I < 1 and p € (1,2], thus Theorem 1.2 also holds for
(UO,wo,bQ) S LP(R2> with pE (1,2].

The proof of the global existence part of Theorem 1.2 relies on the global a priori bound for
| (w,w,b)|| s (r2y. For the proof of (II) in Theorem 1.2, compared with [36], here we used the negative

homogeneous Sobolev space H ~(R?) to study the decay estimates of (1.3). Since the space dimension
n = 2, Sobolev’s inequality in L? is invalid, then we used Sobolev—Nirenberg-Gagliardo inequality to
overcome this difficulty.

The rest of this paper is divided into four sections. In Sect. 2, we provide some lemmas to be used later.
Sections 3 and 4 state the proofs of Theorems 1.1 and 1.2, respectively. To simplify the notation, we will

write [ f for [ fde, | flle for | fllzage). 1]z and [ £lls- for [I£] . ge) and |l s). respectively,

R2

£l s for £l 35 (g2)-

2. Preliminaries

As preparation, we recall the following lemmas.

Lemma 2.1. (commutator estimates, see, e.g., [40,41]) Let s >0, 1 <r < oo and % = il +
with q1,p2 € (1,00) and p1,q2 € [1,00]. Then,

1A% f - Vgllr < CUVFllor [Agll Lo + [|A°Fl[Lr2 Vgl Lo ), (2.1)

1
q1 D2 q2

and

IA*(f @)llr < C (lgllzen 1A FllLar + [1A%gll ez [[fllLez) (2.2)

where A = (—A)% denotes the Zygmund operator, and [A®, f-V]g = A*(f-Vg) — f-VA®g and C’s are
positive constants depending on the indices s,r,p1,q1,p2 and qs.

Lemma 2.2. (see [42]) If p belongs to (1,2], then LP(R%) embeds continuously in H®(R?) with s = g %.

Next, we state the Sobolev—Nirenberg—Gagliardo inequality. For the sake of simplicity, the proof pro-
cess will not be described here, and the detailed proof can be found in [43].

Lemma 2.3. Letu € LY in R™ and its derivatives of order m, D™u € L", 1 < q,r < co. For the derivatives
Diu, 0 < j < m, the following inequality hold

ID7ullLe < ClID™ | lull 727, (2.3)
where
1 ] 1 1
:‘7+a<—m)+(1—a)7
p n roon q
for all a in the interval
J<a<1 (2.4)
m

(the constant depending only on n,m, j,q,r,a), with the following exceptional cases

1, If j =0, rm < n, ¢ = oo then we make the additional assumption that either u tends to zero at
infinity or u € LI for some finite ¢ > 0.

2, If 1 <r < oo, and m — j —n/r is a nonnegative integer then (2.3) holds only for a satisfying
j/m<a<l.

Finally, since 35’72 ~ H#, we recall the following Besov space interpolation estimate.
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Lemma 2.4. (see [44]) Fized m >1>k, and 1 < p < g <r < oo, we have

These parameters satisfy the following restrictions
1 6 1-6 1 0 1-06

l=kO0+m(1-0), —-=-+ — ==+ .

q T D q

Also 1 <p' < ¢ <1’ <0 and solving we have § = 2= € (0,1].

3. The proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. As preparations, we verify the following four propo-
sitions. The first proposition is as follows.

Proposition 3.1. Assume >0, x > 0,v > 0 and k > 0 and (ug,wo, by) € H'(R?) with V-uy = V-by = 0.
Then, the corresponding solution (u,w,b) of (1.3) obeys the following uniform bounds, for anyt > 0,

8u><
O+l ) 2 + [0 + 1 / IVur) [+ / Jo(r)Eadr
t
+2n/||vw(7)||22d7+2u/ (10,01 (7) 12 + | Bba(r)122) dr < C, (3.1)
0
and
t t
1172 + @172 + [IVw(t)]17 +#/||VQ(T)||:£2dT+H/||AW(T)||%2dT
0 0
t
+ /H(b,T)dT <C, (3.2)
0
where

Hb,t) = v / (Dasb1)? + (Dab2)? + (Byybr)? + (Byyb)?) da
RQ

and C'’s are positive constants depending on p, v, X, £ and ||(uo,wo, bo)| g1 only.

Proof of Proposition 3.1. Taking the L?-inner product to (1.3) with (u,w, by, by) and integrating in time
yield

d
3 (@I + [w@7e + IB@IZ:) + (1 + &) [Vuliz + <] VellZe + dxllw]ze

Do =

(10,0112 + [9uba22) = 4X/v X - wd, (3.3)
where we used the facts that,

/(b’VUl'bl+b'VU2'bQ)dI:/b'VU‘bdl':7\/b'Vb"U,dIE,

/qu~wdx:/wa~udx.
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By Holder’s inequality and the Young inequality, we have

4x/V X U - wdx
< 4x|[Vull 2 [|wll 2

4x?

e (34)

n
< (5 +x) IVullfe + ==

Inserting (3.4) into (3.3), we obtain
1d I 2x
5 57 (WO + 1O + 6OI:) + 517l + rl s + ax (1= 225 ) s
+v(|9yb1]|72 + [|0zb2]|72) < 0. (3-5)
Integrating (3.5) in [0, ¢], we can get (3.1) immediately.
Now we turn to prove (3.2). The vorticity @ =V X u, Vw and j = V x b satisfy
Q4+ u-VQA—(p+x)AQ=b-Vj - 2xAw,
O Vw + V(u - Vw) + 4xVw = kVAw + 2V, (3.6)
OJ +u-Vj—v0pppby + v0yy,b1 =b-VQ+ T (Vu, Vb),

where
T(Vu7 Vb) = 26301)1(69;’&2 + ayul) — 20,u1 (8wb2 + aybl)
Taking the L2-inner products of (3.6) with (Q, Vw, j), respectively, we have

2dt”QHL2 +(p+x) V7 = /b Vi de—?x/Aw Qdz, (3.7)
2dt||w;||L2 + x| Vo[22 + k] A2 _zx/w VQdm—/Vw Vu-Veds, (3.8
1d . .
sl + 1= [ 995+ Tias, (3.9)

where

I = I//(_axmsz + ayyybl)]dx
= l//(—amzme + ayyybl)(aa:b2 - aybl)dx

= V/[(amb2)2 + (ayyb2)2 + (8mb1)2 + (ayybl)z]dx = H(b,t),

due to the divergence free condition V - b = 09;b1 + 0yb2 = 0. By Holder’s inequality and Sobolev’s
inequality,

/ Tjda < O||Vul| 2 | V]| 21 |1

. . . v .
< Q2 llille21Ville < C@)IQZ:INZ2 + SIVilZe,

where we have used the fact that the Calderon-Zygmund operators are bounded on LP (1 < p < 00). It
is easy to verify that

Vi
JIVillZ: < H(b,1).
Indeed,
VIVillze = vl(92d, 07z = VI ((nsba = Duybr), (Dayba — Dyybr)) |72
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= v[|((Oaab2 + Oyybs), —(Ozab1 + 8yyb1))||%2 <4H(b,1).
Then, it follows from the above bounds and (3.9) that
1d
2dt
Combining (3.7), (3.8) and (3.10), we have

—lillz= + H(b t) < /b~Vdem+CllﬁHizlle%z~ (3.10)

d :
UQIZ + IV@llZe + [1711722) + 201 + )1 VQU L2 + 8x[I Vw72 + 2] Aw|[Z2 + H (b, 1)

< 8x/Vw -VQdz — 2/Vw -Vu - Vwdz + C||Q|12: 15|32
=0 +1+ I3, (3.11)
where we have used the fact that,
/b-Vdex = /b~Vde:v.

Next, we consider I; and I, respectively. Applying the Young inequality,
I, = 8x/Vw - VQdx

8x?2
< (p+ 20Vl + IIVwHLz,

and
12:72/Vw~Vu~dex

< ClIVull2 | Vel Zs
< sl 8wz + ClIVullZ: [Vw|Z..

Inserting I; and I into (3.11), we obtain

d Sx
QL + [IVellZe + 15172) + 1l VOIZ + —5- T2 ||Vw||L2 + 6| Aw||Zs + H(b, 1)

< O (l3ll7z + IVwllzz) (1272 + [VwlZ2 + HJHLz) -
Gronwall’s inequality, together with the fact that
150172 < 2[10sb2|72 + 21|18, 01|72

allows us to conclude that

‘ 3xp
1) 172 + IVw®)l7: + 15()]17 +M/||VQ(T)||2L2dT+ /HV )|72dr

t

t
+Iﬁ:/||Aw(T)||%2dT+/H(b,T)dT
0 0
t

< (120l + IVwol2 + lol2:) exp { € / (52 + [V (r)[22) dr
0
< (IIVuollzz + [VwollZ2 + [ Vboll72) exp {C ([luollZz + lwollzz + [[bollZ2) } -
which immediately yields (3.2). Thus, the proof of Proposition 3.1 is completed. O
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Remark 3.2. Because of V- b =0, it is easy to verify that
IVBll2r2y = IV X bll 2y < 2 (19yba(7)II72 + 10:b2(7)|1Z2) -
Therefore, we can rewrite (3.1) as
t

t
2x
I+l + PO+ [ IFu(r)dr + 85 (1= 225 ) [ ot ar
0 0

t t
+2H/||Vw(7')\|%2d7' + y/ IVb(r)[22dr < C.
0 0

The following proposition provides the decay rates for ||(Vu, Vw, V)| 2.

ZAMP

(3.12)

Proposition 3.3. Suppose (u, w, b) is a solution of (1.3) with the corresponding initial data (ug,wo,bo) €

H'(R?). Then,
[Vu(t)]| g2 + Vo) 22 + [ Vb(E)] 2 < C(1+1)~ 2.

Proof of Proposition 3.3. As in proof of Proposition 3.1, we have, for all 0 < s < t < 0o,

t t
lu)lZ> + lw®)llZ2 + IbE)I72 + u/ IVu(r)||Z2d7 + 2%/ IV (r)[[Z-dr

t
+ 21// (19461 (7172 + 10ab2()IZ2) d7 < [lus)l[72 + lw(s)lIT= + [b(s)[1Z2

and
t
12172 + Vw72 + 17 (E)N172 + H/ IVQ(r)|72d7
t ¢
—I—m/||Aw(7)|\%2d7+/H(b,T)dT
<(192)N172 + IVw(9)lI72 + l7(s)[172) exp {C ([uollZ2 + woll 72 + lboll72) } -
Therefore,
JI9b)Edr = [ ildr
0 0
< 2/ (102b2(T) 172 + 18yb1(T)||72) AT < C ([luoll7 + llwoll72 + IIbollZz2) ,
0
and

/IIVw(T)IIisz < C (IluollZz + llwollZ2 + lIbollZ2) »
0

/IIVU(T)II%sz < C ([luollZ2 + lwoll72 + lbollZ-) -
0

(3.13)

(3.14)

(3.15)
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A special consequence is that
t

/ (IVu(r)lIZ: + [Vw(r)llZ2 + [IVO(T)]Z2) d7 — 0, as t — oo

t

2

t
29

t(IVu®)lze + IVo®)IZ: + [Vo)I1Z:)

Integrating (3.15) with respect to s in (£,¢), we have

t
< 2exp {C (|luollZ: + llwollZ2 + lIbollZ2) } / (IVu()lZ> + Ve (r)l[72 + 1 Vb(7)II72) dr

2

<C.
Therefore, for any t > 1, we get
IVu®)|Z: + [IVo@)[[Z2 + VBl < Ct7H < CA+)7 (3.16)
Moreover, for any 0 < ¢t < 1, it follows from (3.15),
IVu(®)22 + IV (t)l|72 + [VE(D)I7: < C < O+ (3.17)

Then, (3.16) and (3.17) yield (3.13).
O

The following proposition which will play an important role to drive the decay estimates of Theorem
1.1.

Proposition 3.4. Let (u,w,b) be a global solution of system (1.3), with V-ug = V-by = 0 and (ug,wo, by) €
LY(R?) N L%(R?). Then, there exists a constant C > 0, such that

|ﬁ(€at)| + |®(§’t)| + |l;1(€at)| + |l;2(£at)|
<C+C¢ / (lu(m)Z2 + w122 + [Ib(7)]1Z2) dr. (3.18)
0

Proof of Proposition 3.3. Applying the Fourier transform to system (1.3), we obtain:
O+ (p+ x) €20 = —F(Vr) + F(b-Vb) + 2xié x @ — F(u - Vu),
0 + K|E]PD + dx@ = 2xié x 1 — F(u - Vw),
8tb1 + V‘§2|2b1 = f[b . Vu1 —Uu- Vbl},
8tb2 + V‘51|2b2 = f[b . VUQ —Uu- VbQ}

(3.19)

Multiplying the (3.19)1, (3.19)2, (3.193 and (3.19)4 by w),w, El and §2, respectively, and summing up, we
have, noting that |i|? = a4
1d . . - A R .
5 37 Ul 117 4 [br |+ [b2?) + (4 X)Ll + sfg ][]
+ v ([& b1 + €07 [b2]*) + x|
= — F(Vn)a+ F(b-Vb)a — F(u- Vu)i — F(u- Vw)o + F(b- Vuy )by
— F(u- Vbi)by + F(b- Vua)by — F(u- Vba)by + 2xi x it + 2xi€ x 4l
=K+ Ky + -+ Kjp. (3.20)
For K, taking divergence to the first equation of (1.3), one yields

T=(-A) " (VeV)(beb—uu).
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And taking Fourier transformation obeys, nothing that |4| = |a]
Ky < |¢]|7]]al
< [ElClb @bl + [lu @ ul[L1)la|
< €Tz + lullZ2)lal.
For KQ,
Ky < [&]1b@ b|a] < [¢][[b® bl |a] < [€]l1BlIE |4l.

Similarly, we obtain
| K5 + Ka| < 20¢]([ull> + lwlZ2)(1al + 1)),
K5 + Kol < [€](1bl172 + luallZ + 1ba]172 + [lulZ2) 11|
< 2€|(f[ullZ + 1bl72)1ba ],
| K7 + K| < 20€[([ullZ2 + [[b]172) b2,
| Ky + Kio| < 4x(€]|@]]]

I
3(5

Inserting K1-Kjq into (3.20), we derive that

8 2

+x)IEP 1P +
X)[€l7al T 2y

d . . 3 - N .
T+ 117 + [br |+ [bol?) + e[l + 26l¢ %]
16

o+ 2x
<Ole|(lullzz + 10l 72 + llwlZ2)([al + |@] + [ba] + [ba]),

+ 20(|&2 (b1 + [€211521) +

which immediately yields

0t\/|ﬂ|2 1G24 (b1 |2 + 1622 < CLEI(lull 2 + 81172 + lw]1Z2)- (3.21)

Integrating (3.21) in [0, ¢], we obtain

\/I (B2 + ()2 + [br (1)12 + [ba (1) 2

< \/|a(0)\2 +|@(0)[2 + 151(0)[2 + [b2(0) |2 + Cl¢] /(IIU(T)H%2 + ()7 + lw(n)lZ2)dr
0

<C+Cl /(IIU(T)H%z + ()7 + lw(n)]Z2)dr

Thus, the proof of Proposition 3.3 is completed. O
The following proposition provides an auxiliary logarithmic decay estimate.

Proposition 3.5. Assume that (ug,wo,bo) € L'(R?) N L%(R?), then the global solution (u,w,b) of (1.3),
satisfies

()12 ga) + 1D() 122 g2y + lw() 722y < Cln~?(e + 1) (3.22)
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Proof of Proposition 3.4. Choosing a positive smooth function f(t) € C*°[0,00) satisfying f(0) = 1,
f(t) > 0 and

f'(®)
<1l, t>t 0
2f) = T
multiplying both sides of inequality (3.5) with f(¢), one shows that
d

7 O (le®lzz + 1b@)17: + lw®l72)] + erf (&) (IVu@IIZ + [VE@) 72 + Ve ()IlZ:)
< £'(®) (lu®lZ= + 1bONZ2 + lw®)lI2) |

where ¢; = min{u, 2k, r}. From this and together with Plancherel Theorem,

5 170 (18I + B - + 100)13:)] +eaf® [ 1672 (1O + lote)? + o)) ot
R2

< 7(0) [ (1P +12©)F + b(e)) de. (3.23)

R2

Letting B(t) = {f eR?||¢2 < - /f(t)) }, then we obtain
f(t) [ 168 (1a(€)P + (€)1 + b)) de
R2

>afe) [ 1P (1P +12)F + )R de
Be(t)
>af) (L) [ (3P +sOF + HOP) a

BE(t)

= /(1) / (1O + [2(©)1 + b)) ag — '(t) / (1@ + [2(©)1 + b)) aé.

R? B(t)
Substituting this result into (3.23), we have
d , . . ~
S 1O (ol + 1001+ 1w@I3)] < /@) [ (W©F +@F + BOF) de. (.20
B(1)
Employing (3.18), we have

[ (18P + 1@ + 16 ) ¢
B(t)

t 2
= | {62 ( / <||u<7>|%2+||w<f>||ia+||b<f>|%2>df) +1}d5

B(t)

t

Cf'(t) "(t))%t

< 0 /Hu iz + () zz + [b(r)]I72) dr.
0
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Inserting the above inequality into (3.24) and integrating in time from 0 to t (¢ > ty), one shows the
following integral inequality which is crucial for the large time decay for global solutions

F®) (lu®lzz + 1b@172 + lo®)Z)

<1O) (ol + ol + lol2:) + € [ LD ar
0
/ T)) [ 4 4 4
+C/ () / Ju(s)l|72 + lw(s) |72 + 1b(s)]|72) dsdT. (3.25)

25) and applying energy inequality (3.1), one yields

3.
(lu@®lZ2 + 16172 + lw®)IZ2)

2
.
SC+Cm@+ﬂ+/G;;Fth%HWw%rW%ﬁﬂ
0

0
Letting f(t) = (ln(e + t)) in (
(e+1)

< C+4Cln(e+t).
Thus, we have,
lu@®lZ2 + 1672 + llw®)]72 < Cln?(e + ).
This completes the proof of Proposition 3.4.

With the above propositions at our disposal, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. From Proposition 3.3, we completed the proof of (1.5) of Theorem 1.1, next we
start to prove (1.4) of Theorem 1.1.
Letting f(t) = (1 +¢)? and inserting it into (3.25), we obtain

(1482 (lu®)llL: + @[22 + lw®)Z:)

i T
T
<Co €+ +C [ T [l + ()L + [b)]1:) dsdr
0

sca+w+c//mwwm+mwm;+M@%amw
0 0
<c+n+c( (/\m V2 + [6() 12 + w(s)]22) In~%(e + 5)ds.
0

Denoting
N(t) = sup {(1+7)(lu(r)Z2 + ID(T)1Z2 + llw(r)]Z2)} -

0<r<t
Then, we have

N <C+ C’/N(s)(l +5) 1 In"2(e + s)ds.

0
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Applying Gronwall’s inequality, we obtain

[o0]

N(t) < Cexp /(1 +5) tin"2(e+s)ds p < C,
0
which implies the desired decay

[(®)llz2 + 1) 22 + lw(®)llz2 < C(1+1)72,
That is (1.4), and completed the proof of Theorem 1.1. O

4. The proof of Theorem 1.2

This section is devoted to proving Theorem 1.2.
We first prove the global stability part (I) of Theorem 1.2. As we know, it suffices to establish the
global a priori H® estimates.

Proof of (I) of Theorem 1.2. Applying A® to (1.3), we have

N u~+u- VA u — (u+ X)ANu = —A°Vr — [A° u - V]u+ A°(b- VD) + 2xA°V xw,  (4.1)
WN°w+u - VA w — KAN W+ AxAw = —[A°,u - V]w + 2YA®V X u, (4.2)
O N°by +u - VA by — v0yyAby = —[A% u - V]by + A%(b- Vuy), (4.3)
Oty + 1 - VA by — 10, Aby = —[A°,u - V]by + A®(b - Vug), (4.4)

where [A®, f - V]g = A®(f - Vg) — f - VA®g is commutator.
Dotting (4.1)—(4.4) by A®u, Aw, A®b; and A®bq, respectively, integrating the resulting equations in
R?, and adding them together, we easily obtain
1 d S S S S S S
g ullz2 + | A%w[|72 + A1 72 + [A%b2]172) + (1 + X) AVl T2 + Kl|A* V|7
+Ax[ A w22 + v(|A%Dybi |22 + [|A°zb2]|72)

< — /[As,u~V]u~ASu+/[AS,b~V]boASu7 /[AS,U~V]w~ASw

+4x/ASV X u- Nw— /[As,u -V]by - A%by — /[As,u - V]bg - A%by

+/[A5,b V]ur - A%y + /[As,b-V]ug A%y,
where we used the facts that,

/b-VASul -Asbl+/b~VAsu2-Asb2 :/b-VASu-Asz —/b-VASb-ASu,
and

/ASqu-Asw:/ASwa-ASu.

Due to the divergence free condition V - b = 0, we have

IA*Vb|[Z2 = [A*V x bl|7> < 2 ([[A*Ouball7s + [[A*Oybrl1Z2) |

IAB]IZ2 = [[A°ba][72 + | A%D2| 2.
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Then, it follows from the above bounds and facts that
1d

2

+ 4l A + ZIATVB| s

A" ul|Zs + [A*w]|Z2 + [A%BIT2) + (o + ) IA°VulZz + sl AVl L,

S—/[As,u-V}u-Asu—l—/[AS,b-V]b-ASu—/[AS,u-V]w-Asw

+4X/ASV><u-ASw—/[As,wV]b.ASbJr/[AS,b.V]u-Asb
=L +---+ I (4.5)

We first bound I;. Resorting to the commutator estimate (2.1), we have

|| = ‘/[As,u-VhpAsu

<A, u- Va2 | A V| 2
< C|\Vul|pos || ASul| 22 | AS V| 2.
Similarly,

L] = ‘/[As,b-v]b-Asu

< [[[A%, 0 - Vbl 2 |A° V| 2

< OV o< || A%D]| 2 ]| A*~ V| .
Again using the commutator estimate (2.1), we get
- /[As,u -V]w - Asw’

< A% u- Viwl| 2 |A*! Vw2
< C(IVullp [A*wllzz + [ Vol | A%ull L2) [ A* Vel e,

3] =

and

1+ ol = | 18,0 V1o 4%

+ ‘/[As7b~V]u~ASb
< (1A%, u- Vbl gz + |[A% b Vul|22) [A* 71 Vb] 2
< O(|[Vb]l oo [A%ull 2 + V]| oo [ A®D]| 12 ) [ AV 2.
For I, by the Young inequality
[La] < 4x[IA*Vul| L2 ]| Aw|[ 2

p ; A
< (5 + ) 1AVl + 1A%

Inserting the above estimates into (4.5), and note that ||f||ze < C| f|lgs with s > 1, and using the
Young inequality, we have

1d s S s I S S
5 g (IA%ul2e + IA%WIE + 1A%B]32) + SIAVaulZa + #l|A" Ve,
8ux 2 v 2
A® —IA*Vb
o Il + 580

<C A%l L2 (IVullFre + V@l + 1Vbl7e) + ClA |2 |Vl -

V(UHHS
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+ CIAb| 2|Vl [ VO o
1
<C(IVullis + IVwlFs + IVOIZ) (lullde + lwlie + [bl7-)=. (4.6)
Substituting (4.6) and (3.5) together, we get

d
3 (Il +llwllze + 1Bl7-) + ea (I Vullzs + [1VelF: + 1V0])

< C(IVullde + IVl + VOl (lull + ol + 1Bl3-)2 (4.7)
where ¢; = min{u, 2k, v}. This inequality indicates that, if the initial (ug,wq, by) satisfy, for 0 < e < eg =
(%)

[uoll = + llwoll7r= + llboll7- < e.
then the corresponding solution remains for all time. That is
lu@®)1e + lw®lFe + 16017 < e (4.8)

Next, we need to prove that (4.8) is correct. In fact, if suppose (4.8) is not true and Ty is the first time
such that (4.8) is violated, i.e.,

lu(To)Is + llw(To)lIre + 16(To)lI7re = e,
and (4.8) holds for any 0 < t < Ty. We can deduce from (4.7) that for any 0 <t < Ty,

d
&(IIUII%S HllwlFs +[16l1) + (er = VO Vull e + [IVwl s + [IVB][-) < 0.
Therefore,
lullfre + llwllEre + 1817 < lluollEs + llwoll s + [lboll7- < e

This is a contradiction. Thus, we get the uniform bound of (4.8). In addition,
t

/(HVU(T)II%S + VeI + Vo) F:)dr < Ce.
0

Therefore, the proof of (I) of Theorem 1.2 is completed.
O

Next, we start to prove (II) of Theorem 1.2. For the simplicity of the proof, we divide the main proof
into two parts. Firstly, we give the proof of (1.8), then prove that (1.9) is true. As a tool, we verify the
following proposition in the negative Sobolev space H ! with 0 <[ < 1.

Proposition 4.1. Let ¢y = min{p, 2k,v}. Then, for 0 <1< 1, we have
d
7 ellZr— 4 1ol + el + e (IVullfo + VBT + [ Velf-)
<C(|Vullzz + [IVwllzz + V0] 2) IVl 72" + V0] 12 ) (lullpz + [b]1g2)
X (Null g-o + 110l g1 + llewll -1)- (4.9)
Proof of Proposition 4.1. For 0 <1 < 1, similar to the process of (4.5) and the divergence free condition
V-u=V-b=0, we drive that
d
&(HUIIE_L F001% -0 + llwllF-) + 20 + 01 VullFo + 26Vl % + 8xlwllZ— + v VBI1F -
<2l V-l 1+ 20 I8l s + 2l Vol glloll e+ G+ 200 Pl
8x?
3 +X

+ ol + 20w - VBl gy + 16 Vel ) 1D] - (4.10)
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By Lemma 2.2, Holder’s inequality and Gagliardo—Nirenberg inequality, we have

and

lu- Vull g < Cllu-Vul| 2,

LTFT
lu-Vull 2, < Cllul 3 [ Vullze.

—1 l
lull 5 < ClIVull 2" lullz-.

Then,

1
lu- Vaull o < ClIVul 23" ully..

Similarly, we have

o Vbl -0 < CIIVBITZ D] 2,
[ V| gt + [|b- V| g

< C(IVull ' lullza1V0l 22 + [1V0] 22 181172 [ Vul| 2),
lu- Vol o < CIVWl R IVl Jullf:-

Combining (4.10) and (4.11)—(4.14), we obtain

d

3 el 100G+ el ) + e (IVull oy + 1Vl + Vel F)

<C(IVullzz +IVwliz2 + V8l 22) (IVull 2" + [Vl (lelze + 1b]l72)
X (lull g+ 110l g1 + lloll 1),

where ¢; = min{y, 2k, v}. Thus, the proof of Proposition 4.1 is completed.

Proof of (II) of Theorem 1.2.

together with Holder’s inequality and the divergence free condition V-u =V - b =0, we get
1d
2dt

+ ax|Amwl 2 + 2 A VB

= (A ul| 2o + A" wl[F2 + [A™D]Z2) + (1 + ) IA™ Vul 2o + £[AT Vw7

—/Am(u-Vu) ~Amu—|—/Am(b-Vb) A" — /Am(u-Vb) -A™b

+/Am(b-Vu) -Amb—/Am(u-Vu)) -Amw+4x/AmV X u-A"w
< A" (w @ w2 [A™ul pz + AT (0 @ b)|| 2| A u]| 2 + AT (w @ b) | 22 [ A™D]| 2
+H AT @ w)l L2 [A™b] 2 + AT (u @ w) || 2 [|A™w] L2 + AX A" V|72 ][ AT Vw7
=A) +As+ A3+ As+ As + As.
For Ay, applying the commutator estimate (2.2) and Lemma 2.3 yield

Ay < C(|lull = [IVull g lull g < Cllull sz [V ul|3;.,
where we used the facts that
1
[ull grm < CIIVUII’"“ |u II"‘“, ull e < CHUIIL“ IVull 275, m > 0.

Using the commutator estimate (2.2), Lemma 2.3 and the Young inequality lead to

Az < C([|bll o VOl gom ) [2tl|
< C(Ibl 90, 5% IVl Tl BV e

ZAMP

O

(1) We first prove (1.8). For 0 < m < s, similarly to the process of (4.5),

(4.15)
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< CODIE Nl 5 1987 1700 o + 9] )
< (lulla + 1blla=) 1Vl + [V ullF)-
Similarly,
As + Ay < C(Jlullz= + [1Bllz) (VD17

o+ 1VulF0),
As < C(llullas + llwllz) (1 Vw3

+ ||vu’||2 m)‘

H’"L
For Ag, applying the Young inequality, yields

H m 2 8X2 m 2
Ao < (5 +X)IA"Vulfa + 2w .

Inserting A;—Ag into (4.15), we obtain,

d
7 ellZrm + Il + [bl17) + e (1VullFn + IVl + IVOlG)

< Cllullas + lwllms + 0] (IVullFm + 1Vl + 1Vb]F0), (4.16)
where for 0 < m < s. Choosing the € in (4.8) sufficiently small (i.e.,e < (5%5)?), we have
d 1
3 Ul + Il + 18l1F) + 5 IVl + V@l + 1VBI1F.) < 0. (4.17)
Because 35’2 ~ Hs, applying Lemma 2.4, we get
il
[l grm < Cllu ’”““HV s (4.18)
6]l gm < O\|b||m+l+1 IIVbll’"“+1 (4.19)
ml
wllgm < Cllwllzt |V [ (4.20)
Therefore, if
[ullg—o + M0l g1 + lwll g0 < G (4.21)
and inserting (4.18)—(4.20) into (4.17), we obtain
d m4l+1
3 (1l + 10 + 1Bl ) + CUIVul Gy + 1Vl + [VBI) 5 <0, (4.22)
It implies that
el B A Nl + 101 < O+ )™ (4.23)

To make the proof more completed, therefore, we need to verify that (4.21) holds for 0 <1 < 1.
Next, we prove that (4.21). Where we will applying the bootstrapping argument. Assume that

luoll— + llwollF - + 1Boll - < Co. (4.24)
Suppose that for all ¢ € [0,T],
[u@ -+ lw @l + @) < 2Co. (4.25)
If we can drive that for all ¢ € [0,77],

a0 + lw@®lF - + 16O11% -

then an application of the bootstrapping argument would imply that the solution (u,w, b) of system
(1.3) satisfies (4.26) for all ¢ € [0,T], which implies (4.21). With (4.24) and (4.25) at our disposal,

300 (4.26)
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we shall show that (4.26) holds. Integrating (4.9) in [0,¢] with 0 < ¢ < T, together with (4.23),
(4.24) and (4.8), one infers that

a1 + D@1 - + lw @l

<lluoll% - + IlbolIF— + llwoll%—,
t
+Coiugt(IIUHH—z + bl + ”W”Hfl)/(HVU(T)”LZ +IVO(D)llL2 + V(7))
- 0

< (IVu(mlzz" + 1196 172") (lu(r)lze + 16(7)Il72) dr

t
1(1—1)

<Co+Ce' sup (||“|\H—z+||bHH—z+||wllg—z)/(1+T)*( = )dr
0<r<t
- 0

<Co+Ce sup (l[ullg— + [Ibll g1 + [wll 1) -
0<7<t

By choosing € in (4.8) sufficiently small, then the above inequality together with the Young inequality
yield (4.26) for all ¢ € [0,T], which close the proof. Then, we complete the proof of (4.21).
(2) Now, we start to prove (1.9). Applying D™ to the second equation of (1.3), dotting D™w and
integrating in R?, we get
1d
2 dt
< 2x/D’”V x - DMwdx — /Dm(u -Vw) - D™wdx

ID™wl[72 + K[| D™ wl[f2 + 4x[| D™ wl |7

< C (1D ullzz + D™ ullallwlze + lJullz [ D™ w] L2) [|1D™wl| 2
< C(ID™ g2 + D™l 2),

where we used the commutator estimate (2.2), Holder’s inequality and (1.7). Multiplying this equa-
tion by e*X!, integrating the resulting inequality in [0, ], together with (1.7) and (1.8), we have

t
|D™wl|| 2 <e™ || D™wpl| 12 + C / e~ X (| D™ u(7) | 2 + || D™ w(r) | p2)dT
0

t

2
<™+ C/ XD (| Dy (1) | 2 + | D™ (7) | 2)dr
0

t
* C/ e XD (| D™ Hy(7)|| g2 + || D™ (7)) g2 )dr
%

t
<Ce Xt 4 C/e_4X(t_T)(1 + T)_mTH_édT
%

1
2 i 2

+ Ot / dr / =) (| D (7|2, + D™ (r)|22)dr
0 0
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m41l_ 1

<Ce ™™ 4 Ce X3 4 O(1+14) "2 2
<C(l+7)" " 2.

Thus, we complete (1.9). Therefore, the proof of Theorem 1.2 is completed.
O
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