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1. Introduction

We consider the following equation

ut = J ∗ u − u + f(u), (x, t) ∈ R
2 × (0,+∞) (1.1)

with the nonlocal dispersal operator (J ∗ u − u)(x, t) =
∫

R2

J(x − y) (u(y, t) − u(x, t)) dy. The kernel

J ∈ C1(R2) satisfies

(J1) J ≥ 0 is radial symmetric and has unit integral;

(J2)

∞∫

0

J(r)eλrdr < ∞ for some λ > 0.

The nonlinearity f ∈ C2(R) has only three zeros 0, a and 1, and satisfies

(F1) f ′(0) < 0, f ′(a) > 0, f ′(1) < 0 and

1∫

0

f(u)du �= 0;

(F2) sup
s∈[0,1]

f ′(s) < 1.

Obviously, if J(x) = 1
4πλe− |x |2

4λ for any given λ > 0 or J(x) is compactly supported with symmetric
property, then it satisfies (J1)–(J2). Condition (F2) guarantees that the solution of the corresponding
Cauchy problem of (1.1) has the same regularity with its initial function [13].

Traveling waves of (1.1) are widely used to model nonlocal diffusion phenomena in fields such as
physics, chemistry, ecology and epidemiology. In one-dimensional space, traveling wave solutions have the
form u(x, t) = U(ξ), ξ = x + ct, where U is the wave profile and c is the wave speed. It is referred to
[1,6,8,9,19,29] for the mathematical study on traveling waves of (1.1).
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Let

J1(x) =
∫

R

J(x, x2)dx2. (1.2)

Then under the condition (J1), J1 is nonnegative and even, with unit integral on x ∈ R. It is also not
difficult to prove that J ′

1(x) ∈ L1(R) with the aid of condition (J2). Then under the condition (F1), the
following equation

− (J1 ∗ U − U)(ξ) + cU ′(ξ) − f(U(ξ)) = 0, U ′(ξ) > 0, ξ ∈ R (1.3)

admits a unique (up to translation) solution U connecting 0 and 1. Moreover, U is of class Ck+1 if f is
of class Ck for some k ≥ 1, and its speed c is given by

c =

1∫

0

f(u)du

∞∫

−∞
(U ′(ξ))2 dξ

,

which can be positive or negative [1]. We assume that c > 0 in the present paper, and the case c < 0
can be dealt with by a same way. Furthermore, the wave profile U and its derivative U ′ have exponential
behaviors near ±∞:

B1e
−δ1ξ ≤ 1 − U(ξ) ≤ A1e

−λ1ξ, when ξ → +∞,

B2e
δ2ξ ≤ U(ξ) ≤ A2e

λ2ξ, when ξ → −∞,

U ′(ξ) ≤ A3e
−λ3|ξ|, when |ξ| → +∞,

(1.4)

where Ai, Bi, λi, δi(i ∈ {1, 2, 3}) are positive constants, see [9,10]. Following the technique as in [9, Section
1.5], we can also get that U ′′ has exponential behavior near ±∞.

Studies on the existence and stability of nonplanar traveling waves for the classical reaction diffusion
equations or systems are already quite a lot, see [2–5,11,12,16,17,20–23,26] and references therein for
scalar equations, and see [15,18,24,25,27,28] and references therein for reaction–diffusion systems. While
there are still few studies on nonplanar traveling waves of nonlocal dispersal equations. Chan and Wei
proved the existence of pyramidal traveling wave solutions for the fractional bistable equation [7], and Li
et al. proved the existence of pyramidal traveling wave solutions for the bistable nonlocal equation [14].
However, to the best of our knowledge, there is still no result about the stability of nonplanar traveling
wave solutions for the nonlocal dispersal equations. In the current paper, we aim to prove the existence
and stability of V-shaped traveling fronts for (1.1).

Since the curvature accelerates propagation of waves, it is naturally to assume that the speed s of
nonplanar traveling waves satisfies s > c. Without loss of generality, we also assume that the solutions
travel towards the x2−direction; thus, they have the form u(x, t) = û(x1, x2 + st, t), and û satisfies

{
ût − (J ∗ û − û) + sûx2 − f(û) = 0, (x, t) ∈ R

2 × (0,+∞),
û(x, 0) = u0(x), x ∈ R

2.
(1.5)

Throughout this paper, we denote the solution of (1.5) by û(x, t;u0). In this paper, we first find a
nontrivial steady-state function V (x) of (1.5), i.e., V (x) satisfies

L [V ] := −(J ∗ V − V ) + sVx2 − f(V ) = 0 in R
2, (1.6)

and then prove its stability.
Let m∗ =

√
s2 − c2/c and

v−(x) = U
( c

s
(x2 + m∗|x1|)

)
= max

1≤j≤n

{
U
( c

s
(x2 + m∗x1)

)
, U

( c

s
(x2 − m∗x1)

)}
. (1.7)
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Then, v−(x) is a subsolution to (1.6). Actually, denote v1
j (x) := U(Aj · x) with Aj = c

s (m∗, 1). If we let
ξ = Ay with A a 2 × 2 orthonormal matrix whose first row is Aj , then we have

∫

R2

J(x − y)U(Aj · y)dy =
∫

R2

J(y)U(Aj · (x − y))dy =
∫

R2

J(A−1ξ)U(Aj · x − ξ1)dξ

=
∫

R2

J(ξ)U(Aj · x − ξ1)dξ =
∫

R

J1(ξ1)U(Aj · x − ξ1)dξ1.

See (1.2) for the definition of J1. It follows that

L [v1
j (x)] = − [(J ∗ U(Aj ·))(x) − U(Aj · x)] + sUx2(Aj · x) − f(U(Aj · x))

= −(J1 ∗ U − U)(Aj · x) − cU ′(Aj · x) − f(U(Aj · x)) = 0,

which means that v1
j (x) is a planar wave to (1.6). Similarly, denote v2

j (x) := U(Aj · x) with Aj =
c
s (−m∗, 1), and then, we can get L [v2

j (x)] = 0. Thus, v−(x) is a subsolution.
Now we give the main results.

Theorem 1.1. (Existence) Assume (J1)–(J2) and (F1)–(F2) hold. For each s > c, (1.6) admits a solution
V∗(x) with ∂x2V∗(x) > 0 in R

2 and

lim
R→+∞

sup
|x|≥R

∣
∣V∗(x) − v−(x)

∣
∣ = 0, (1.8)

v−(x) < V∗(x) < 1, x ∈ R
2. (1.9)

Then u(x, t) = V∗(x1, x2 + st) is a traveling front of (1.1), whose global average speed tends to c along
with time, i.e.,

lim
|t1−t2|→∞

dist(Lt1 , Lt2)
|t1 − t2| = c, (1.10)

where Lt represents the level set of u(x, t) at time t.

Theorem 1.2. (Stability) Let v0 ∈ C(R2, [0, 1]) satisfy v0 − v− ∈ L1(R2) and

lim
R→+∞

sup
|x|≥R

|v0(x) − v−(x)| = 0,

v−(x) ≤ v0(x), ∀ x ∈ R
2.

Then, we have

lim
t→+∞ ||v(·, t; v0) − V∗(·)||L∞(R2) = 0.

Remark 1.3. (1.8) implies that V∗(x) has V-shaped level sets and behaves like planar traveling waves far
away in the space. The speed of V∗(x) is a semi-continuum, that is, s ∈ (c,+∞), which is quite different
to classical bistable case, while (1.10) tells that the average speed of V∗(x) is unique and always equals
the planar wave’s speed c.

In the next section, we establish the existence result. The proof looks simpler than that of [14] but is
a little different. In Sect. 3, we obtain the stability result.

2. Existence of V-shaped traveling fronts

For any s > c, the equation

s =
ϕxx

1 + ϕ2
x

+ c
√

1 + ϕ2
x
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admits a unique solution ϕ(x) whose asymptotic line is y = m∗|x| satisfying m∗|x| ≤ ϕ(x), see [16].
Furthermore, there exist positive constants K0,K1,K2,K3 such that for all x ∈ R,

max |ϕ′(x)| ≤ K0, (2.1)

max{|ϕ′′(x)|, |ϕ′′′(x)|} ≤ K1sech(γx), (2.2)

K2sech(γx) ≤ s
√

1 + ϕ′(x)2
− c ≤ K3sech(γx), (2.3)

μ− ≤ μ(x) =
s(ϕ(x) − m∗|x|)
s − c

√
1 + ϕ′(x)2

≤ μ+, (2.4)

where μ± > 0 are constants and γ = sm∗ = s
√

s2−c2

c > 0.

2.1. Construction of a supersolution

By the assumption (F1), there exists a positive constant δ0 ∈ (0, 1
4 ) such that

− f ′(u) ≥ κ1 if |u| ≤ 2δ0 or |1 − u| ≤ 2δ0, (2.5)

where κ1 := 1
2 min{−f ′(0),−f ′(1)} > 0.

Lemma 2.1. There exist a positive constant ε+
0 and a positive function α+

0 (ε) such that for any ε ∈ (0, ε+
0 )

and α ∈ (0, α+
0 (ε)), the function

v+(x; ε, α) = U

(
x2 + 1

αϕ(αx1)√
1 + (ϕ′(αx1))2

)

+ εsech(γαx1), (2.6)

is a supersolution to (1.6) and

lim
R→∞

sup
|x|≥R

|v+(x; ε, α) − v−(x)| ≤ 2ε, (2.7)

v−(x) < v+(x; ε, α) for x ∈ R
2. (2.8)

Proof. Assume α ∈ (0, 1) and write v+(x) instead of v+(x; ε, α) throughout the proof. Denote

ζ(x) =
x2 + 1

αϕ(αx1)
√

1 + (ϕ′(αx1))2
and σ(x1) = sech(γαx1),

then v+(x) can be rewritten as v+(x) = U(ζ(x)) + εσ(x1). By the equation (1.3) and the definition of
L , we have

L [v+(x)] = −(J ∗ v+ − v+)(x) + s∂x2v
+(x) − f(v+(x))

= −(J ∗ U(ζ(·)))(x) − ε(J ∗ σ)(x) + (J1 ∗ U)(ζ(x)) + εσ(x1)

+
s

√
1 + (ϕ′(αx1))2

U ′(ζ(x)) − cU ′(ζ(x)) + f(U(ζ(x))) − f(v+(x)).

Denote

I := −(J ∗ U(ζ(·)))(x) + (J1 ∗ U)(ζ(x)), II := −ε(J ∗ σ)(x) + εσ(x1),

III :=

(
s

√
1 + (ϕ′(αx1))2

− c

)

U ′(ζ(x)), IV := f(U(ζ(x))) − f(v+(x)).

Now we estimate the four terms.
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(1) Estimate of term I. Since J is radially symmetric, it is easy to see that

I = −
∫

R2

J(y)U(ζ(x − y))dy +
∫

R

J1(μ)U(ζ(x) − μ)dμ.

Let

A =

⎛

⎝
ϕ′(αx1)√

1+(ϕ′(αx1))
2

1√
1+(ϕ′(αx1))

2

1√
1+(ϕ′(αx1))

2
− ϕ′(αx1)√

1+(ϕ′(αx1))
2

⎞

⎠ ,

and ξ = Ay, where ξ = (μ, ν)T . Such an orthogonal transformation gives that μ = ϕ′(αx1)√
1+(ϕ′(αx1))

2
y1 +

1√
1+(ϕ′(αx1))

2
y2. Then
∫

R

J1(μ)U(ζ(x) − μ)dμ =
∫

R2

J(ξ)U(ζ(x) − μ)dμdν

=
∫

R2

J(AyT )U

⎛

⎝ζ(x) − ϕ′(αx1)y1 + y2√
1 + (ϕ′(αx1))

2

⎞

⎠dy1dy2

=
∫

R2

J(y)U

⎛

⎝x2 − y2 + 1
αϕ(αx1) − ϕ′(αx1)y1

√
1 + (ϕ′(αx1))

2

⎞

⎠dy1dy2.

Let

μ∗(t) =
x2 − y2 + (1 − t)

(
1
αϕ(αx1) − ϕ′(αx1)y1

)
+ t · 1

αϕ(α(x1 − y1))
√

1 + (ϕ′(α(x1 − ty1)))
2

,

and define F (t) = −U(μ∗(t)), t ∈ (0, 1), and then, (2.9) can be written as

I =
∫

R2

J(y) (−U(μ∗(1)) + U(μ∗(0))) dy =
∫

R2

J(y) (F (1) − F (0)) dy. (2.9)

Denote y1(t) = α(x1 − ty1). Then, μ∗
t (t) = A(t) + B(t)μ∗(t), where B(t) = αϕ′(y1(t))ϕ

′′(y1(t))y1

1+(ϕ′(y1(t)))
2 and

A(t) =
− (

1
αϕ(αx1) − ϕ′(αx1)y1

)
+ 1

αϕ(α(x1 − y1))
√

1 + (ϕ′(y1(t)))
2

=
α
2 ϕ′′(y1(τ))y2

1√
1 + (ϕ′(y1(t)))

2
, τ ∈ (0, 1).

Furthermore, At(t) = A(t)B(t), and thus, μ∗
tt(t) = 2A(t)B(t) + (Bt(t) + B2(t))μ∗(t), where

Bt(t) =
−α2y2

1

[
(ϕ′′(y1(t)))

2
(
1 − (ϕ′(y1(t)))

2
)

+ ϕ′(y1(t))ϕ′′′(y1(t))
(
1 + (ϕ′(y1(t)))

2
)]

[
1 + (ϕ′(y1(t)))

2
]2 .

Following from (2.1)–(2.2), we have

|A(t)| ≤ αK1y
2
1sech(γα(x1 − τy1)),

|B(t)| ≤ αK0K1|y1|sech(γα(x1 − ty1)),
|Bt(t)| ≤ α2K1(1 + K0)(1 + K2

0 )y2
1sech(γα(x1 − ty1)).

Since F (1) − F (0) = F ′(0) +
1∫

0

(1 − t)F ′′(t)dt and

F ′(t) = −U ′(μ∗(t))μ∗
t (t), F ′′(t) = −U ′′(μ∗(t))(μ∗

t (t))
2 − U ′(μ∗(t))μ∗

tt(t),
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we have

|−U(μ∗(1)) + U(μ∗(0))|
≤ |−U ′(μ∗(0)) (A(0) + B(0)μ∗(0))|

+
∣
∣
∣
∣

1∫

0

(1 − t)
[

− U ′′(μ∗(t))
(
A2(t) + 2A(t)B(t)μ∗(t) + B2(t)(μ∗(t))2

)

−U ′(μ∗(t))
(
2A(t)B(t) + (Bt(t) + B2(t))μ∗(t)

) ]
dt

∣
∣
∣
∣

≤ CUσ(x1)
(
αK1y

2
1eγ|y1| + αK0K1|y1|

)
+ CUσ(x1)

1∫

0

(1 − t)
(
α2K2

1y4
1

+4α2K0K
2
1 |y1|3 + 2α2K2

0K2
1y2

1 + α2K1(1 + K0)(1 + K2
0 )
)
eγ|y1|dt

≤ CUK∗ασ(x1)
(|y1| + 4y2

1 + 4|y1|3 + y4
1

)
eγ|y1|, (2.10)

where K∗ = max{K1,K
2
1 ,K0K1,K0K

2
1 ,K2

0K2
1 ,K1(1 + K0)(1 + K2

0 )} and

CU = max{||U ′(μ)||∞, ||U ′′(μ)||∞, ||U ′(μ)μ||∞, ||U ′′(μ)μ||∞, ||U ′′(μ)μ2||∞}.

Here, || · ||∞ is the supremum norm about μ ∈ R. And in the above estimate we use the inequality
sech(x1 + y1) ≤ sechx1 · e|y1|. Combining (2.9)–(2.10) and the above estimates, we have

I| ≤ CUK∗ασ(x1)
∫

R2

J(y)
(|y1| + 4y2

1 + 4|y1|3 + y4
1

)
eγ|y1|dy.

Under the condition (J2), the integral
∫

R2

J(y)
(|y1| + 4y2

1 + 4|y1|3 + y4
1

)
eγ|y1|dy is bounded for some

λ > 0, and thus, there exists a constant C1 > 0 such that

|I| ≤ C1ασ(x1).

(2) Estimate of term II.

II = −ε

∫

R2

J(y) (σ(x1 − y1) − σ(x1)) dy

= εγα

∫

R2

J(y)σ′(x1 − θy1)y1dy,

where θ ∈ (0, 1). Since sech′x = sechx · e−x−ex

ex+e−x , we have

|II| ≤ εγασ(x1)
∫

R2

J(y)|y1|eγ|y1|dy.

Again the assumption (J2) guarantees that
∫

R2

J(y)|y1|eγ|y1|dy is bounded for some λ > 0, and thus, there

exists a constant C2 > 0 such that

|II| ≤ C2εγασ(x1).

(3) Estimate of terms III and IV . By (2.3), we have

0 < K2σ(x1)U ′(ζ(x)) ≤
(

s
√

1 + (ϕ′(αx1))2
− c

)

U ′(ζ(x)).
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About the fourth term, we have

IV = −f ′
(
U(ζ(x)) + θ̃εσ(x1)

)
· εσ(x1),

where θ̃ ∈ (0, 1).
In order to prove L [v+(x)] ≥ 0, we consider two cases.
Case 1. U(ζ(x)) ≥ 1 − δ0 or U(ζ(x)) ≤ δ0.

Then, −f ′
(
U(ζ(x)) + θ̃εσ(x1)

)
≥ κ1 by (2.5), provided that 0 < ε < δ0. And thus

L [v+(x)] ≥ − (C1 + C2γε) ασ(x1) + κ1εσ(x1) ≥ 0

for any α satisfying α ≤ κ1ε
C1+C2γ .

Case 2. δ0 ≤ U(ζ(x)) ≤ 1 − δ0.
Denote U∗ = minU(x)∈[δ0,1−δ0] U

′(x) and f∗ = maxx∈[−1,2] |f ′(x)|. We have

L [v+(x)] ≥ − (C1 + C2γε) ασ(x1) + K2σ(x1)U∗ − εf∗σ(x1) ≥ 0

provided that (C1 + C2γ) α + εf∗ ≤ K2U∗. Let

ε+
0 := min

{

1, δ0,
K2U∗
2f∗

}

, α+
0 (ε) := min

{

1,
κ1ε

C1 + C2γ
,

K2U∗
2(C1 + C2γ)

}

,

then v+(x) is a supersolution if 0 < ε < ε+
0 and 0 < α < α+

0 (ε). A similar argument to that of Taniguchi
[20, Lemma 7] yields (2.7)-(2.8). The proof is complete. �

2.2. Proof of the existence result

First, we establish the comparison principle. Define

BUC(R2) := {u : R2 → R, u is bounded and uniformly continuous in R
2}.

Theorem 2.2. Assume that (J1) and (F1)–(F2) hold. Let u0(x) and ∂x2u0(x) belong to BUC(R2), and
then, the following Cauchy problem

{
ût = J ∗ û − û + bûx2 + f(û), (x, t) ∈ R

2 × [0,∞),
û(x, 0) = u0(x), x ∈ R

2,

has a unique solution û(x, t;u0) ∈ C(R2 × [0,∞), [0, 2]), which is also differentiable with respect to x2.
Here, b ∈ R is a nonzero constant. Moreover, if u0(x) is globally Lipschitz continuous, then û(x, t;u0) is
also a globally Lipschitz solution which is uniform in time.

Lemma 2.3. (Maximum principle) Assume that (J1) hold and that û ∈ C(R2 × [0,∞)) is bounded and
differentiable with respect to x2. If û satisfies

{
ût ≥ J ∗ û − û + bûx2 + K(x, t)û, (x, t) ∈ R

2 × [0,∞),
û(x, 0) ≥ 0, x ∈ R

2,

where K(x, t) : R
2 × [0,∞) → R is continuous and uniformly bounded, and b is a nonzero constant,

then û(x, t) ≥ 0 for (x, t) ∈ R
2 × [0,∞). Furthermore, if û(x, 0) �≡ 0 for x ∈ R

2, then û(x, t) > 0 for
(x, t) ∈ R

2 × (0,∞).
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Lemma 2.4. (Comparison principle) Assume that (J1) holds and u1, u2 ∈ C(R2×[0,∞)) are both bounded
and differentiable with respect to x2. Denote Lt[u] = ut −(J ∗u−u)+bux2 −f(u), where f is continuously
differentiable with respect to u, f ′(u) is uniformly bounded and b is a nonzero constant. If u1, u2 satisfy

{
Lt[u1] ≥ Lt[u2], (x, t) ∈ R

2 × [0,∞),
u1(x, 0) ≥ u2(x, 0), x ∈ R

2,

then u1 ≥ u2 on (x, t) ∈ R
2 × [0,∞). Furthermore, if u1(x, 0) �≡ u2(x, 0) for x ∈ R

2, then u1 > u2 for
(x, t) ∈ R

2 × (0,∞).

The proof of the above three results can be referred to [14]. Now we prove Theorem 1.1.

Proof of Theorem 1.1. After making a slight modification of the proof of [14, Theorem 1.1], we can prove
the existence of V∗ and (1.8)–(1.9). Now we focus on the proof of (1.10).

By the comparison principle, we have

v−(x1, x2 + st) < u(x, t) := V∗(x1, x2 + st) < v+(x1, x2 + st), ∀x ∈ R
2, t ∈ R, (2.11)

where v− and v+ are defined by (1.7) and (2.6), respectively. Fix a constant δ ∈ (0, 1) and denote the
level sets of v±(x1, x2 + st) = δ at time t by L±

t . Due to (2.11), the level sets L±
t and Lt do not intersect

each other at any time t. We know

L−
t =

{
(x1, g

−(x1, t)) ∈ R
2 : g−(x1, t) =

s

c
U−1(δ) − m∗|x1| − st

}

and

L+
t =

{

(x1, g
+(x1, t))∈R

2 : g+(x1, t)=
√

1+ϕ′(αx1)2U−1(δ−εσ(x1)) − ϕ(αx1)
α

− st

}

.

For convenience, we also denote

Lt =
{
(x1, g(x1, t)) ∈ R

2 : V∗(x1, g(x1, t) + st) = δ
}

.

Since

δ = v−(x1, g
−(x1, t) + st) = v+(x1, g

+(x1, t) + st) > v−(x1, g
+(x1, t) + st),

we know g−(x1, t) > g+(x1, t) for all x1 ∈ R and t ∈ R by the monotonicity of v−(x) on x2. Similarly,
there hold g−(x1, t) > g(x1, t) and g(x1, t) > g+(x1, t) for all x1 ∈ R and t ∈ R. In summary, there is

g−(x1, t) > g(x1, t) > g+(x1, t) for x1 ∈ R, t ∈ R. (2.12)

Moreover, we know that

dist(L−
t , L+

t ) = inf
x∈L−

t ,y∈L+
t

|x − y| ≤ inf
x1∈R

∣
∣g+(x1, t) − g−(x1, t)

∣
∣

≤ inf
x1∈R

(∣
∣
∣
s

c
U−1(δ) −

√
1 + |ϕ′(αx1)|2U−1(δ − εσ(x1))

∣
∣
∣+

ϕ(αx1)
α

− m∗|x1|
)

= 0

holds for each fixed α > 0. Consequently, dist(L±
t , Lt) = 0. Define

M∗ := sup
x1∈R,t∈R

∣
∣g+(x1, t) − g−(x1, t)

∣
∣ > 0.

Obviously, M∗ < +∞ for each fixed α. Now we take two moments t1, t2 ∈ R and assume s(t2 − t1) > M∗
without loss of generality. Under the assumption s(t2 − t1) > M∗, there holds g−(x1, t2) < g+(x1, t1),
and thus, L+

t1 does not intersect L−
t2 .

The inequality (2.12) means that the level set Lt of u(x, t) is between those of L±
t for all x1 ∈ R at

any time t ∈ R. Thus by the definition of M∗ and the choice of ti (i = 1, 2), it is straightforward that

dist(Lt1 , Lt2) ≤ dist(L−
t1 , L

+
t2). (2.13)
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To obtain dist(L−
t1 , L

+
t2), it is sufficient to consider all the perpendicular segments from L+

t2 to L−
t1 except

those intersecting L+
t2 once more. Now take an arbitrary point x+

2 ∈ L+
t2 and find the corresponding

point x−
1 ∈ L−

t1 such that the segment generated by x+
2 and x−

1 is perpendicular to L−
t1 . We denote

this perpendicular segment by lx−
1 x+

2
. Obviously, lx−

1 x+
2

is also perpendicular to L−
t2 , and we denote their

intersection point by x−
2 . It follows immediately that

∣
∣x−

2 − x−
1

∣
∣ = c|t2 − t1|. Then for any x+

2 ∈ L+
t2 and

x−
i (i = 1, 2) chosen by this way, we have

dist(L−
t1 , L

+
t2) = inf

x+
2 ∈L+

t2

∣
∣x+

2 − x−
1

∣
∣

= inf
x+

2 ∈L+
t2

(∣
∣x+

2 − x−
2

∣
∣+

∣
∣x−

2 − x−
1

∣
∣
)

= inf
x+

2 ∈L+
t2

(∣
∣x+

2 − x−
2

∣
∣+ c|t2 − t1|

)

= dist(L−
t2 , L

+
t2) + c|t2 − t1| = c|t2 − t1|.

Here, | · | denotes the Euclidean norm in R
N (N ≥ 1). This fact and (2.13) yield that

lim
|t1−t2|→∞

dist(Lt1 , Lt2)
|t1 − t2| ≤ c.

Now we prove that the average speed is not less than c. For any given point xi ∈ Lti
(i = 1, 2), draw a

line passing through xi and parallel to the x2 axis. Necessarily, this line intersects L−
ti

at a point, which
is still denoted by x−

i . Since xi ∈ Lti
is arbitrary, x−

i is also arbitrary, and vice versa. Obviously,

|x2 − x1| ≥ |x2 − x−
1 | − |x−

1 − x1|
≥ |x−

1 − x−
2 | − |x−

2 − x2| − |x−
1 − x1|

≥ |x−
1 − x−

2 | − 2M∗
≥ c|t2 − t1| − 2M∗.

(2.14)

It follows from (2.14) that

lim
|t1−t2|→∞

dist(Lt1 , Lt2)
|t1 − t2| = lim

|t1−t2|→∞
infx1∈Lt1 ,x2∈Lt2

|x2 − x1|
|t1 − t2|

≥ lim
|t1−t2|→∞

infx−
1 ∈L−

t2
,x−

2 ∈L−
t2

∣
∣x−

2 − x−
1

∣
∣− 2M∗

|t1 − t2|
≥ lim

|t1−t2|→∞
c|t2 − t1| − 2M∗

|t1 − t2| = c.

This implies the average speed is larger than or equal to c. This completes the proof. �

3. Stability of V-shaped traveling fronts in R
2

This section establishes the stability result.

Lemma 3.1. For any M > 0, there exists a constant C > 0 such that

∂x2V∗(x) ≥ C and ∂x2v
+(x) ≥ C if |x2 + m∗|x1|| ≤ M,

where V∗ and v+ are given by Theorem 1.1 and (2.6), respectively. Moreover, we have

lim
R→∞

sup
|x2+m∗|x1||≥R

∂x2v
+(x) = lim

R→∞
sup

|x2+m∗|x1||≥R

∂x2V∗(x) = 0.
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Proof. The assertions about v+ are very straightforward. Now we prove the assertions about V∗. Since
∂x2V∗ > 0 in R

2, it suffices to prove that for any sequence {(xn, zn)}n≥1 ⊆ R
2 satisfying |(xn, zn)| → ∞

and |zn + m∗|xn|| ≤ M , there is

lim
n→∞ ∂x2V∗(xn, zn) > 0.

Now we prove this result by contradiction. Assume limn→∞ ∂x2V∗(x∗
n, z∗

n) = 0 for a certain sequence
{(x∗

n, z∗
n)}n≥1. Since v− < V < v+ in R

2 and notice that v− is a subsolution, we have

s∂x2V∗|(x∗
n,z∗

n) = J ∗ V∗ − V∗ + f(V∗)|(x∗
n,z∗

n)

> J ∗ v− − v+ + f(v−) + f(V∗) − f(v−)|(x∗
n,z∗

n)

= J ∗ v− − v− + f(v−) + f ′(Vτ )(V∗ − v−) + v− − v+|(x∗
n,z∗

n)

≥ s∂x2v
− + f ′(Vτ )(V∗ − v−) + v− − v+|(x∗

n,z∗
n),

(3.1)

where Vτ is between V∗ and v−. Under the condition |z∗
n + m∗|x∗

n|| ≤ M and |(x∗
n, z∗

n)| → ∞, there must
be |x∗

n| → ∞, and thus,

lim
n→∞ sech(γαx∗

n) = 0 and lim
n→∞

⎡

⎣ z∗
n + ϕ(αx∗

n)/α
√

1 + (ϕ′(αx∗
n))2

− c

s
(z∗

n + m∗|x∗
n|)
⎤

⎦ = 0.

Then, it follows that

lim
n→∞(v−(x∗

n, z∗
n) − v+(x∗

n, z∗
n)) = 0,

which further implies that

lim
n→∞(V∗(x∗

n, z∗
n) − v−(x∗

n, z∗
n)) = 0.

Let n → ∞ in (3.1), and then, we have

0 ≥ lim inf
n→∞ cU ′

( c

s
(z∗

n + m∗|x∗
n|
)

> 0,

which is a contradiction. Similarly,

s∂x2V∗ = J ∗ V∗ − V∗ + f(V∗)

< J ∗ v+ − v− + f(v+) + f(V∗) − f(v+)

= J ∗ v+ − v+ + f(v+) + f ′(Vτ )(V∗ − v+) + v+ − v−

≤ s∂x2v
+ + f ′(Vτ )(V∗ − v+) + v− − v+,

and thus ∂x2V∗ → 0 as
∣
∣ c
s (x2 + m∗|x1|)

∣
∣ → ∞. This completes the proof. �

Lemma 3.2. There exist positive constants ρ > 0, κ > 0 and δ ∈ (0, δ0) such that

u+(x, t) = V∗(x1, x2 + ξ + ρδ(1 − e−κt)) + δe−κt

is a supersolution, where ξ ∈ R is a constant and δ0 is defined in (2.5).

Proof. Let L̃ [u] = ut − (J ∗ u − u) + s∂x2u − f(u). Then, we have

L̃ [u+] = ρδκe−κt∂x2V∗ − δκe−κt − (J ∗ V∗ − V∗) + s∂x2V∗ − f(u+)

= ρδκe−κt∂x2V∗ − δκe−κt + f(V∗) − f(u+)

= δe−κt
(
ρκ∂x2V∗ − κ − f ′(V∗ + τδe−κt)

)
,

where τ ∈ (0, 1). To prove the lemma, we argue as follows.
Case 1. |x2 + m∗|x1|| > R0 for some R0 > 0 large enough.
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Without loss of generality, assume that R0 > 0 is large enough such that V∗ < δ0 or V∗ > 1 − δ0.
Then, we have

0 < V∗ + τδe−κt < 2δ0 or 1 − δ0 < V∗ + τδe−κt < 1 + δ0.

It then follows by (2.5) that

−f ′(V∗ + τδe−κt) > κ1.

Thus,

L̃ [u+] > δe−κt
(−κ − f ′(V∗ + τδe−κt)

)
> δe−κt (−κ + κ1) > 0

provided that κ < κ1.
Case 2. |x2 + m∗|x1|| ≤ R0.
In this case, it follows from Lemma 3.1 that ∂x2V∗ ≥ C := C(R0). Thus,

L̃ [u+] >

(

ρC − κ − max
u∈[0,1+δ0]

|f ′(u)|
)

> δκe−κt

(

ρC − 1 − maxu∈[0,1+δ0] |f ′(u)|
κ

)

> 0

provided that ρ > 1 + maxu∈[0,1+δ0] |f ′(u)|
κ . Taking 0 < κ < κ1, ρ > 1 + maxu∈[0,1+δ0] |f ′(u)|

κ and combining
the above two cases, we know L̃ [u+] > 0 in R

2. This completes the proof. �

The proof of the following lemma is very similar to that of Lemma 3.2, and we omit it here.

Lemma 3.3. There exist positive constants ρ > 0, κ > 0 and δ ∈ (0, δ0) such that

w+(x, t) = v+(x1, x2 + ξ + ρδ(1 − e−κt)) + δe−κt

is a supersolution, where ξ ∈ R is a constant δ0 is defined in (2.5).

Lemma 3.4. If u(x, t;u0) is the solution of the Cauchy problem
{

ut = J ∗ u − u − sux2 + f(u), x ∈ R
2, t > 0

u(x, 0) = u0(x), x ∈ R
2,

where the initial function u0 ∈ C(R2) satisfies u0 − v− ∈ L1(R2) and

lim
R→+∞

sup
|x|≥R

|u0(x) − v−(x)| = 0,

then for any fixed T > 0, we have

lim
R→+∞

sup
|x|≥R

|u(x, T ;u0) − v−(x)| = 0.

Proof. Let w(x) = U
(

c
s (x2 + ϕ(x1))

)
. First we show that w − v− ∈ L1(R2). In fact,

∫

R2

|w(x) − v−(x)|dx =
∫

R2

∣
∣
∣U
( c

s
(x2 + ϕ(x1))

)
− U

( c

s
(x2 + m∗|x1|)

)∣
∣
∣ dx

=
∫

R2

|U ′(τς(x) + (1 − τ)η(x))| (ς(x) − η(x))dx

≤
∫

R2

A3e
−λ3|τς(x)+(1−τ)η(x)|(ς(x) − η(x))dx
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≤ c

s

(
1 − c

s

)
μ+A3

∫

R2

e−λ3|τς(x)+(1−τ)η(x)|dx < +∞,

where τ ∈ (0, 1), ς(x) = c
s (x2 + ϕ(x1)) and η(x) = c

s (x2 + m∗|x1|). See (1.4) for A3, λ3 and see (2.4) for
μ+. It follows that w − u0 ∈ L1(R2). It is also not difficult to prove that

lim
R→+∞

sup
|x|≥R

|w(x) − v−(x)| = 0.

Thus, it suffices to prove that

lim
R→+∞

sup
|x|≥R

|u(x, T ;u0) − w(x)| = 0

for any given T > 0. Let Φ(x, t) := u(x, t;u0) − w(x). Then, it satisfies
{

Φt = J ∗ Φ − Φ − s∂x2Φ + f ′(Φτ )Φ, x ∈ R
2, t > 0,

Φ(x, 0) = u0(x) − w(x), x ∈ R
2,

where Φτ = τu + (1 − τ)w with τ ∈ (0, 1). Let Φ̂ be the solution of the following Cauchy problem
{

Φ̂t = J ∗ Φ̂ − Φ̂ − s∂x2Φ̂ + M Φ̂, x ∈ R
2, t > 0,

Φ̂(x, 0) = |u0(x) − w(x)|, x ∈ R
2,

where M := maxu∈[0,1] |f ′(u)|. By the maximum principle, Φ̂ ≥ 0 in R
2. By the comparison principle, it

is easy to verify that
|Φ(x)| ≤ Φ̂(x), ∀x ∈ R

2. (3.2)

In the following, we estimate Φ̂(x, t). Let Ψ(x, t) = Φ̂(x1, x2 + st, t), then Ψ satisfies
{

Ψt = J ∗ Ψ − Ψ + MΨ, x ∈ R
2, t > 0,

Ψ(x, 0) = |u0(x) − w(x)|, x ∈ R
2.

(3.3)

The solution of (3.3) can be expressed as

Ψ(x, t) = eMt

∫

R2

S(x1 − x, x2 − z, t)Ψ(x, z, 0)dxdz

= eMt

∫

R2

S(x, z, t)Ψ(x1 − x, x2 − z, 0)dxdz,

where S(x, t) = e−tδ0(x) + Kt(x) is the fundamental solution of (3.3) with initial data δ0, the Dirac
measure at zero and Kt(x) =

∫

R2

e−t(eĴ(y)t − 1)ei(x)·ydy with Ĵ the Fourier transform of J . It is not

difficult to verify that ||S(x, t)||L1(R2) ≤ 3. Then for any given T > 0,

Ψ(x, T ) ≤ eMT

⎛

⎜
⎝

∫

|(x,z)|≤R

+
∫

|(x,z)|>R

⎞

⎟
⎠ |S(x, z, T )|Ψ(x1 − x, x2 − z, 0)dxdz.

For any ε > 0 small enough, there exist R1 > 0 and R2 > 0 big enough such that
∫

|(x,z)|>R1

|S(x, z, T )|Ψ(x1 − x, x2 − z, 0)dxdz

< sup
x∈R2

Ψ(x, 0)
∫

|(x,z)|>R1

|S(x, z, T )|dxdz <
ε

2eMT
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and ∫

|(x,z)|≤R1

|S(x, z, T )|Ψ(x1 − x, x2 − z, 0)dxdz <
ε

2eMT
, ∀x2

1 + x2
2 ≥ R2

2.

This implies that Ψ(x, T ) < ε for x2
1 + x2

2 ≥ R2
2 and thus limR→+∞ supx2

1+x2
2≥R2 Ψ(x, T ) = 0. Recall

Φ̂(x, t) = Ψ(x1, x2 − st, t) and we have limR→+∞ supx2
1+x2

2≥R2 Φ̂(x, T ) = 0. Then, the proof completes
following (3.2). �

Lemma 3.5. The solution u(x, t;u0) of the Cauchy problem
{

ut = J ∗ u − u − s∂x2u + f(u), x ∈ R
2, t > 0,

u(x, 0) = u0(x), x ∈ R
2,

(3.4)

depends continuously on the initial function u0(x). That is, if u1(x, t;u0,1) and u2(x, t;u0,2) are two
solutions of (3.4) with initial values u0,1 and u0,2, respectively, then we have

sup
x∈R2

|u1(x, t;u0,1) − u1(x, t;u0,2)| ≤ A(t) sup
x∈R2

|u0,1(x) − u0,2(x)|

for some A(t) depending only on t.

Proof. Let v(x, t) = u(x1, x2 + st). Then v(x, t) satisfies
{

vt(x, t) = J ∗ v(x, t) − v(x, t) + f(v(x, t)), x ∈ R
2, t > 0,

v(x, 0) = u0(x), x ∈ R
2.

The above problem is equivalent to the following integral equation

v(x, t) = e−μtu0(x) +

t∫

0

e−μ(t−s)(J ∗ v − v)(x, s) + μv(x, s) + f(v(x, s))ds,

where μ > 0 is a constant. Let w(x, t) := v2(x, t) − v1(x, t), then it satisfies

w(x, t) = e−μt (u0,1(x) − u0,2(x))

+

t∫

0

e−μ(t−s)(J ∗ w − w)(x, s) + μw(x, s) + f ′(wτ )w(x, s)ds

≤ sup
x∈R2

|u0,1(x) − u0,2(x)|

+

t∫

0

e−μ(t−s)
(
μ + ||f ′||L∞(R2)

) ||w(·, s)||L∞(R2)ds

It then follows that

||w(·, t)||L∞(R2) ≤ ||u0,1−u0,2||L∞(R2)+

t∫

0

e−μ(t−s)
(
μ+||f ′||L∞(R2)

) ||w(·, s)||L∞(R2)ds

By the Gronwall’s inequality, we have

||w(·, t)||L∞(R2) ≤ ||u0,1 − u0,2||L∞(R2)

(
1 + C1te

C1t
)
,

where C1 = μ + ||f ′||L∞(R2). Let A(t) = 1 + C1te
C1t. Then, the proof is complete. �
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Now, define

V ∗(x) = lim
t→∞ v(x, t; v+).

Then, V ∗ satisfies

−(J ∗ V ∗ − V ∗) + s∂x2V
∗ − f(V ∗) = 0 in R

2.

And by the comparison principle, there holds

v−(x) < V∗(x) ≤ V ∗(x) < min{1, v+(x)}.

Lemma 3.6. V∗(x) ≡ V ∗(x) in R
2.

Proof. Assume on the contrary that V∗(x) �≡ V ∗(x) in R
2. Then, they must be V∗(x) < V ∗(x). By the

aid of (2.7), we can find a δ > 0 small enough and a proper ξ > 0 such that

V ∗(x) ≤ V∗(x1, x2 + ξ) + δ.

Then, the comparison principle yields

V ∗(x) ≤ u+(x, t), ∀x ∈ R
2, t > 0.

Letting t → ∞ in the above inequality, we have

V ∗(x) ≤ V∗(x1, x2 + ξ + ρδ).

Define

Λ := inf{λ > 0 : V ∗(x) ≤ V∗(x1, x2 + λ),∀x ∈ R
2}.

Obviously Λ ≥ 0 and V ∗(x) ≤ V∗(x1, x2 + Λ). If Λ = 0, then the proof is done. Thus, we assume Λ > 0
to derive a contradiction. It follows from v−(x) < V∗(x) < V ∗(x) < v+(x) that

lim
x1→∞ V ∗(x1,−m∗x1) = U(0) and lim

x1→∞ V∗(x1,−m∗x1 + Λ) = U
( c

s
Λ
)

> U(0),

which implies that there must be

V ∗(x) < V∗(x1, x2 + Λ), ∀x ∈ R
2.

By Lemma 3.1, there exists a constant R∗ > 0 large enough such that

sup
|x2+m∗|x1||≥R∗−Λ

∂x2V∗(x) <
1
4ρ

. (3.5)

Define

Ω := {x ∈ R
2||x2 + m∗|x1|| ≤ R∗}.

Since
lim

R→∞
sup

|x|≥R,x∈Ω

(V∗(x1, x2 + Λ) − V ∗(x))

≥ lim
R→∞

sup
|x|≥R,x∈Ω

(
v−(x1, x2 + Λ) − v+(x)

)

= lim
R→∞

sup
|x|≥R,x∈Ω

(
v−(x1, x2 + Λ) − v−(x) + v−(x) − v+(x)

)

= lim
R→∞

sup
|x|≥R,x∈Ω

(
v−(x1, x2 + Λ) − v−(x)

)

= lim
R→∞

sup
|x|≥R,x∈Ω

U ′
( c

s
(x2 + m∗|x1| + τΛ)

) c

s
Λ > 0,

there exists a σ ∈ (0, δ0) small enough such that

V ∗(x) ≤ V∗(x1, x2 + Λ − 2ρσ), ∀x ∈ Ω.
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For x ∈ R\Ω, by (3.5) we have

V∗(x1, x2 + Λ − 2ρσ) − V∗(x1, x2 + Λ) = ∂x2V∗(x1, x2 + Λ − 2τρσ) · (−2ρσ)

≥ 1
4ρ

· (−2ρσ) = −1
2
σ.

To sum up, there is

V ∗(x) ≤ V∗(x1, x2 + Λ − 2ρσ) +
1
2
σ, ∀x ∈ R

2.

Then by the comparison principle, we have

V ∗(x) ≤ u+(x, t)

with ξ = Λ − 2ρσ. Let t → ∞ in the above inequality, then we have

V ∗(x) ≤ V∗(x1, x2 + Λ − ρσ),

which contradicts to the definition of Λ. Thus, Λ = 0 and the proof is complete. �

Now we show that the curved fronts V∗ are asymptotically stable under the condition that the initial
perturbation is positive.

Proof of Theorem 1.2. Denote v(x, t; v0) by v(x, t) for simplicity. On the one hand, since v−(x) ≤ v0(x),
by the comparison principle, we have

v−(x) ≤ v(x, t; v−) ≤ v(x, t) < 1, ∀x ∈ R
2, t > 0. (3.6)

On the other hand, a similar argument as [13, proposition 2.5] can deduce that

|v(x, t; v−) − v(y, t; v−)| ≤ L|x − y|, |vt(x, t; v−) − vt(y, t; v−)| ≤ L|x − y|
for any x,y ∈ R

2 and |vt| ≤ C, where L and C are constants independent of x,y and t. Thus, we have

lim
t→+∞ ||v(·, t; v−) − V∗(·)||L∞(R2) = 0. (3.7)

Similarly, we have
lim

t→+∞ ||v(·, t; v+) − V ∗(·)||L∞(R2) = 0. (3.8)

(3.6) and (3.7) imply that it suffices to prove that for any ε > 0, there exists T ∗ > 0 such that

v(x, t) ≤ V∗(x) + ε for t ≥ T ∗.

Step 1. Let A∗ = supx∈R2 ∂x2V∗(x), and take ρ > 0, κ > 0 as in Lemma 3.2. Then,

V∗(x1, x2 + ρδ) − V∗(x) = ρδ

1∫

0

∂x2V∗(x1, x2 + ρδτ)dτ < ρδA∗ <
ε

3

provided that δ < ε
3ρA∗ . In other words,

V (x1, x2 + ρδ) < V∗(x) +
ε

3
, ∀x ∈ R

2. (3.9)

Step 2. Fix δ > 0 in step 1. By (3.6), for any Tδ > 0, we have

v(x, t; v−) ≤ v(x, t) < 1, ∀x ∈ R
2, t ≥ Tδ > 0.

Following from Lemma 3.4, there exists a Rδ > 0 such that

v(x, Tδ) < v−(x) +
δ

2
for |x| ≥ Rδ. (3.10)
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Let α > 0 be small enough such that

U

(
x2 + 1

αϕ(αx1)√
1 + ϕ′(αx1)2

)

> U

(

−Rδ +
cϕ(0)
sα

)

≥ 1 − δ

2
for |x| ≤ Rδ.

In other words, if α is chosen to satisfy

0 < α < min

{

α+(β, δ),
cϕ(0)

s
[
U−1

(
1 − δ

2

)
+ Rδ

]

}

,

then

v+(x) ≥ 1 − δ

2
for |x| ≤ Rδ. (3.11)

Combining the inequalities (3.10) and (3.11), we have

v(x, Tδ) < v+(x) + δ, ∀x ∈ R
2.

Then, Lemma 3.3 and the comparison principle yield that

v(x, t + Tδ; v−) ≤ v(x, t + Tδ) < w+(x, t)

for t ≥ 0. Denote wt
+ := w+(x, t) and applying the comparison principle again, we have

v(x, t′ + t + Tδ; v−) ≤ v(x, t′ + t + Tδ) < v(x, t′;wt
+). (3.12)

Since v(x, t; v+) converges monotonically to V ∗(x) as t → +∞, it follows from (3.8) that there exists a
t1 > 0 such that

sup
x∈R2

|v(x, t1; v+,δ) − V ∗(x1, x2 + ρδ)| ≤ ε

3
,

where v+,δ = v+(x1, x2 + ρδ). On the other hand, Lemma 3.5 yields that

sup
x∈R2

|v(x, t1;u0) − v(x, t1; v+,δ)| ≤ A(t1) sup
x∈R2

|u0(x) − v+,δ|.

From the definition of w+, we know that there exists a T1 > 0 such that

A(t1) sup
x∈R2

|wt
+ − v+,δ| ≤ ε

3
for t ≥ T1.

Combining the above facts, we obtain that

|v(x, t1;wt
+) − V ∗(x, x2 + ρδ)|

≤ |v(x, t1;wt
+) − v(x, t1; v+,δ)| + |v(x, t1; v+,δ) − V ∗(x1, x2 + ρδ)|

≤ ε

3
+

ε

3
=

2ε

3
for t ≥ T1 and x ∈ R

2. It follows from (3.12) that

v(x, t1 + t + Tδ) < v(x, t1;wt
+) ≤ V ∗(x1, x2 + ρδ) +

2ε

3
for t ≥ T1 and x ∈ R

2. Take T ∗ = t1 + T1 + Tδ. By Lemma 3.6, we have

v(x, t) ≤ V ∗(x1, x2 + ρδ) +
2ε

3
= V∗(x1, x2 + ρδ) +

2ε

3
for t ≥ T ∗ and x ∈ R

2. Combining the above inequality and (3.9), we obtain

v(x, t) ≤ V∗(x) + ε for x ∈ R
2, t ≥ T ∗.

This completes the proof. �
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