
Z. Angew. Math. Phys. (2022) 73:84
c© 2022 The Author(s), under exclusive licence to Springer Nature
Switzerland AG
0044-2275/22/020001-27
published online March 30, 2022
https://doi.org/10.1007/s00033-022-01729-5

Zeitschrift für angewandte
Mathematik und Physik ZAMP

Analysis of a reaction–diffusion system about West Nile virus with free boundaries in
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Abstract. We put forward a reaction–diffusion cooperative system for the West Nile virus in a spatial heterogeneous and time
almost periodic environment with free boundaries. The existence, uniqueness and regularity estimates of the global solution
for this epidemic model are given. Focused on the effects of spatial heterogeneity and time almost periodicity, we introduce
the principal Lyapunov exponent λ(t) dependent on t and get the initial infected critical size L∗ which plays a vital part in
analyzing the threshold dynamics and the long-time asymptotic behaviors of the solution. We build the spreading–vanishing
dichotomy regimes of this model and obtain several criteria determining the spreading or vanishing. Our analysis result
suggests that the solution converges to a positive time almost periodic function (U∗(x, t), V ∗(x, t)) locally uniformly when
the spreading occurs. We discover that the initial disease infected domain and the front expanding rate have momentous
impacts on the permanence and extinction of the disease. Moreover, we give the lower and the upper bound estimates about
the asymptotic spreading speeds of the double free fronts when the spreading happens.
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1. Introduction

West Nile virus (WNv) is one of the most serious mosquito-borne epidemic diseases threatening people’s
lives by invading people’s nervous system, which spreads mainly through mosquitoes as the vectors and
biting birds as the hosts. Concentrated on the temporal transmission of the WNv, there have been many
studies by ordinary differential equations to explore the existence and stability of the equilibrium, and
introduce the basic reproduction number as a threshold value to study the transmission dynamics of
WNv, such as [1–5] and references therein.

In reality, the outbreak of the disease is not always caused by a single factor. The casual migration
movements of the infected bird populations and mosquitoes populations are usually random, so the spatial
diffusion term should be into consideration. Therefore, only using ordinary differential systems to describe
the spatial propagation of the West Nile virus is no more suitable. To investigate the spatial dependence
of WNv, Lewis et al. [6] investigated the following simplified reaction–diffusion cooperative system for
WNv model. ⎧

⎨

⎩

∂U
∂t = D1

∂2U
∂x2 + α1β

V
N1

(N1 − U) − γU,

∂V
∂t = D2

∂2V
∂x2 + α2β

U
N1

(N2 − V ) − dV,
(1.1)

where U(x, t) and V (x, t) are the densities of the infected birds and mosquitoes at location x and time t,
respectively; the diffusion coefficients for birds and mosquitoes are D1 and D2 which D2 is much less than
D1; α1, α2 are the WNv transmission probability per bite to birds and mosquitoes; β is the biting rate of
mosquitoes on birds; d is the adult mosquito death rate; γ is the bird recovery rate from WNv; N1, N2 are
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constants denoting the total population of birds and adult mosquitoes. Under the assumptions that the
whole parameters in (1.1) are positive constants, they discussed the long-time dynamics of the solution
and gave an estimate for the spreading speed of (1.1) by comparison theorem. Maidana and Yang [7] used
the traveling wave solution of the WNv model to study the spatial spreading of the disease across North
America and analyzed the dependence of the wave speed on several factors, such as vertical transmission,
recovery ratio, disease death rate, diffusion rate and advection rate.

The infected boundaries driven by birds and mosquitoes migrating from one habitat to another usually
change with respect to time. Thus, applying the fixed domain to describe the moving fields of the vectors
and hosts is not appropriate. Free boundaries conditions have largely attracted lots of concentrations
recently and they are frequently used in biological mathematical models, for instance, [8–13]. Given the
moving infected boundaries, Lin and Zhu [14] investigated a reaction–diffusion system to explore the
spatial spreading of WNv using free boundaries to represent the disease spreading fronts. Tarboush et
al.[15] studied a WNv model which incorporates a partial differential equation and an ordinary differen-
tial equation with moving boundaries. Cheng and Zheng [16] considered a reaction–advection–diffusion
WNv model with double free boundaries and studied the influence of advection terms on the boundary
asymptotic spreading speeds.

In our living real world, the habitats for birds and mosquitoes are not usually homogeneous. The
environmental diversity is a pretty worthwhile factor to consider in studying epidemic models. In view of
the spatial heterogeneity, Allen et al. [17] studied the following SIS reaction–diffusion model in 2008,

⎧
⎪⎪⎨

⎪⎪⎩

∂S
∂t = dSΔS − β(x)SI

S+I + γ(x)I, x ∈ Ω, t > 0,

∂I
∂t = dIΔI + β(x)SI

S+I − γ(x)I, x ∈ Ω, t > 0,

∂S
∂n = ∂I

∂n = 0, x ∈ ∂Ω, t > 0,

(1.2)

where domain Ω ⊂ R
k(k ≥ 1) is bounded with smooth boundary ∂Ω; S(x, t) and I(x, t) are the pop-

ulation densities of susceptible and infected individuals at position x and time t; positive constants dS

and dI represent diffusion rates for the susceptible and infected populations; β(x) is the disease trans-
mission rate at position x and γ(x) is the disease recovery rate at position x, both of which are positive
Hölder continuous functions, respectively. They studied the effects of the heterogeneous media and the
individual movement of susceptible and infected populations on the permanence and eradication of the
disease and obtained the global dynamics of model (1.2) by the basic reproduction number. Zhou and Xi-
ao [18] explored a diffusive logistic system in a heterogeneous environment with free boundary conditions.
Zhao and Wang [19] considered a prey–predator model in higher spatial dimensions and heterogeneous
environment. There are also many other studies concentrated on spatial heterogeneity, such as [20–23].

Apart from the spatial heterogeneity, the temporal heterogeneity caused by alternations of seasonality
is also a significant factor in influencing the propagation of the disease. Peng and Zhao [24] investigated
the model (1.2) in a time-periodic heterogeneous environment in which the transmission rate β(x, t) and
recovery rate γ(x, t) are periodic in t. Zhang and Wang [25] studied a diffusive SIR time-periodic system
and investigated the spatial dynamics of this epidemic model. Shan et al. [26] investigated a periodic
compartmental WNv model with time delay and obtained the effects of seasonal recurrent phenomena
on the spreading and recurrence of the epidemic disease.

From a biological view, the effects of the alternation of seasons on the disease transmission rate,
disease recovery rate and the disease death rate are not same. Thus, the periods of these parameters for
the epidemic model are usually different. Therefore, we had to look for a more reasonable mathematical
model. Considering the differences of the periodic coefficients, it is significant to study the time almost
periodic system. Shen and Yi [27] studied the convergence of the positive solution for almost periodic
models of Fisher and Kolmogorov type. Huang and Shen [28] investigated the spreading dynamics of KPP
models in time almost periodic and space periodic environment and gave the estimates of the spreading
speed. Wang and Zhao [29] discussed the basic reproduction ratio R0 and obtained its computing formula
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for almost periodic compartmental ordinary differential epidemic models. Wang et al. [30] investigated a
reaction–diffusion SIS model in a time almost periodic environment and discussed the influences of the
basic reproduction number R0 on the persistence or extinction of the solution for the epidemic model.
Recently, Qiang et al. [31] studied a nonlocal reaction–diffusion model with time delay in almost periodic
media and discussed the threshold dynamics.

However, there are few studies on mosquito-borne diseases using the almost periodic systems. For the
sake of better exploring the mechanisms of the disease outbreak and more reasonably describing the trans-
mission rules of WNv, almost periodic mathematical biological models incorporate spatial heterogeneity
with time almost periodicity should be vitally considered to study the transmission of WNv. Motivated by
the previous studies, different from the ordinary differential equations and the reaction–diffusion periodic
model, we investigate the following WNv model with double free boundaries in spatial heterogeneous and
time almost periodic media,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ut = D1Uxx + α1(x, t)β N1−U
N1

V − γ(x, t)U, g(t) < x < h(t), t > 0,

Vt = D2Vxx + α2(x, t)β N2−V
N1

U − d(x, t)V, g(t) < x < h(t), t > 0,

U(x, t) = V (x, t) = 0, x = h(t) or x = g(t), t > 0,
h(0) = h0, h′(t) = −μUx(h(t), t), t > 0,

g(0) = −h0, g′(t) = −μUx(g(t), t), t > 0,
U(x, 0) = U0(x), V (x, 0) = V0(x), −h0 ≤ x ≤ h0,

(1.3)

where α1(x, t), α2(x, t), γ(x, t), d(x, t) ∈ C2+α0,1+
α0
2 (R× [0,∞)) are positive bounded functions for some

α0 ∈ (0, 1), and they are uniformly almost periodic in t. Moreover, we assume that α1(x, t), α2(x, t),
γ(x, t), d(x, t) have positive upper and lower bounds. (g(t), h(t)) denotes the moving infected domain
of WNv. Meanwhile, we suppose that the double free boundaries submit to classical Stefan conditions
obeying the Fick’s first law, that is, g′(t) = −μUx(g(t), t) and h′(t) = −μUx(h(t), t), where μ is positive.
Considering that the scale of movements of birds is much larger than that of the mosquitoes, it is
reasonable to assume that the infected boundary movements are driven by the infected birds. Similar free
boundary condition assumptions have been applied in some ecological and epidemical models in previous
studies, such as in [9,10,14].

To simplify the value of parameters in this model, denote

a1(x, t) :=
α1(x, t)β

N1
, a2(x, t) :=

α2(x, t)β
N1

, d1(x, t) := γ(x, t), d2(x, t) := d(x, t), (1.4)

then a1(x, t), a2(x, t), d1(x, t), d2(x, t) ∈ C2+α,1+ α
2 (R× [0,∞)) for any α ∈ (0, α0). Further, in view of the

assumptions about α1(x, t), α2(x, t), γ(x, t), d(x, t) and (1.4), there are positive constants âi ãi, d̂i, d̃i such
that

âi ≤ ai ≤ ãi, d̂i ≤ di ≤ d̃i, i = 1, 2. (1.5)

On the basis of the previous simplifications and assumptions, we are going to investigate the following
simplified WNv system,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ut = D1Uxx + a1(x, t) (N1 − U) V − d1(x, t)U, g(t) < x < h(t), t > 0,
Vt = D2Vxx + a2(x, t) (N2 − V ) U − d2(x, t)V, g(t) < x < h(t), t > 0,

U(x, t) = V (x, t) = 0, x = h(t) or x = g(t), t > 0,
h(0) = h0, h′(t) = −μUx(h(t), t), t > 0,

g(0) = −h0, g′(t) = −μUx(g(t), t), t > 0,

U(x, 0) = U0(x), V (x, 0) = V0(x), −h0 ≤ x ≤ h0.

(1.6)
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For the convenience of studying, we suppose that the initial functions U0 and V0 satisfy
{

U0(x) ∈ C2([−h0, h0]), U0(±h0) = 0, 0 < U0(x) ≤ N1 in (−h0, h0) ,
V0(x) ∈ C2([−h0, h0]), V0(±h0) = 0, 0 < V0(x) ≤ N2 in (−h0, h0) .

(1.7)

In this paper, our primary purpose is to research a reaction–diffusion WNv model with moving in-
fected regions (g(t), h(t)) in the spatial heterogeneous and time almost periodic media, and discuss the
effects of the spatial heterogeneity and time almost periodicity on the spreading and vanishing of the
epidemic disease. Actually, our cooperative epidemic model (1.6) is first proposed to incorporate the
spatial heterogeneity with time almost periodicity in studying the epidemic disease. We first give the
global existence, uniqueness and regularity estimates of the solution, the method of which is not trivially
similar to homogeneous WNv models (see Theorems 2.1, 3.1 and 3.4). Since the habitat is heterogeneous
and the boundary is moving, the general basic reproduction number is difficult to be calculated as the
threshold value. To overcome this obstacle, we introduce the principal Lyapunov exponent λ(t) with
respect to time t (see Sect. 4) and get the initial infected domain L∗ as a threshold value. Moreover,
we obtain the corresponding spreading–vanishing dichotomy regimes of the West Nile virus using it (see
Theorem 2.2). We prove that the eventually infected domain is no more than 2L∗ when the vanishing
occurs. Importantly, we prove that the solution for system (1.6) converges to a time almost periodic
function for fixed x in bounded subsets of R when the spreading occurs. We use some new techniques in
proving this result, whose asymptotic behavior is very different from other homogeneous WNv models,
the solution of which converges to a positive constant equilibrium, such as [1,6,14]. Our results show
that the spatial heterogeneity and temporal almost periodicity driven by spatial differences and seasonal
recurrence lead to the cyclic appearance of the cases of infection. Further, we show that the initial WNv
infected domain and the front expanding rate have momentous impacts on the permanence and extinc-
tion of the epidemic disease. What is more, the spreading speed for propagation of WNv is a significant
index to describe the epidemic scale for disease, but many previous studies focus less on the research of
the asymptotic spreading speed for WNv in the heterogeneous environment because of the difficulties in
research. Here, we provide the estimates of lower and upper bound about the double free boundaries for
the heterogeneous model (1.6)(see Theorem 2.4). Our techniques developed in studying almost periodic
systems different from other homogeneous or periodic systems can be applied in other almost periodic
systems and cooperative epidemic models.

The rest of the paper is arranged as follows. In Sect. 2, we first prepare some preliminaries and as-
sumptions, then present the main results. In Sect. 3, we provide a detailed proof of the global existence,
uniqueness and regularity estimates of the solution for problem (1.6) in the time almost periodic and
spatial heterogeneous environment. In Sect. 4, considering the spatial heterogeneity and time almost pe-
riodicity, we introduce the principal Lyapunov exponent and obtain some vital properties of this threshold
value. In Sect. 5, we explore the long-time asymptotic behaviors of the solution for heterogeneous system
(1.6) by giving the spreading–vanishing dichotomy regimes. In Sect. 6, we present the estimates about
the asymptotic spreading speeds for the double spreading fronts.

2. Preliminaries and main results

In the section, we make some preparations and display our main results.

2.1. Preliminaries

First, we recall several definitions about almost periodic function from Section 2.1 of [27] or Section 3
of [32].
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Definition 2.1. (i) A function f(t) ∈ C(R,Rk)(k ≥ 1) is called an almost periodic function if for any
ε > 0, the set

T (f, ε) := {τ ∈ R | |f(t + τ) − f(t)| < ε for any t ∈ R}
is relatively dense in R. We say a matrix function A(t) is almost periodic if every entry of it is almost
periodic function.

(ii) A function f(x, t) ∈ C(R × R,R) is uniformly almost periodic in t if f(x, ·) is almost periodic for
every x ∈ R, and f is uniformly continuous on E × R for any compact set E ⊂ R.

(iii) A function f(x, t, u, v) ∈ C(R × R × R
m × R

n,Rk)(m,n, k ≥ 1) is uniformly almost periodic in t
with x ∈ R and (u, v) in bounded sets if f is uniformly continuous for t ∈ R, x ∈ R and (u, v) in bounded
sets and f(x, t, u, v) is almost periodic in t for every x ∈ R, u ∈ R

m and v ∈ R
n.

Definition 2.2. (i) The hull of a uniformly almost periodic matrix A(x, t) is defined by

H(A) = {B(·, ·) | ∃ tn → ∞, such that B(x, t + tn) → A(x, t) uniformly for t ∈ R,

x in bounded sets}.

(ii) The hull of a uniformly almost periodic matrix F (x, t, u, v) is defined by

H(F ) = {G(·, ·, ·, ·) | ∃ tn → ∞, such that G(x, t + tn, u, v) → F (x, t, u, v)

uniformly for t ∈ R, (x, u, v) in bounded sets}.

In general, the system (1.6) can be seen as the special form of the following system,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = D1uxx + f1(x, t, u, v), g(t) < x < h(t), t > 0,

vt = D2vxx + f2(x, t, u, v), g(t) < x < h(t), t > 0,

u(x, t) = v(x, t) = 0, x = h(t) or x = g(t), t > 0,
h(0) = h0, h′(t) = −μux(h(t), t), t > 0,
g(0) = −h0, g′(t) = −μux(g(t), t), t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), −h0 ≤ x ≤ h0,

(2.1)

where initial data (u0, v0) satisfy (1.7), and fi(x, t, u, v) satisfies the following conditions for i = 1, 2.
(H1 ) fi(x, t, u, v) ∈ C1(R4), Dfi(x, t, u, v) = (∂fi

∂x , ∂fi

∂t , ∂fi

∂u , ∂fi

∂v ) is bounded for (x, t) ∈ R × R and
(u, v) in bounded sets.

(H2 ) There exist positive constants M and N such that

sup
t∈R,x∈R,
u≥M,v∈R

f1(x, t, u, v) < 0, sup
t∈R,x∈R,
u∈R,v≥N

f2(x, t, u, v) < 0,

sup
t∈R,x∈R,
u≥0,v≥0

∂f1

∂u
(x, t, u, v) < 0, sup

t∈R,x∈R,
u≥0,v≥0

∂f2

∂v
(x, t, u, v) < 0.

(H3 ) fi and Dfi are uniformly almost periodic in t ∈ R with x ∈ R and (u, v) in bounded sets.
(H4 ) Let

F (x, t, u, v) =
(

f1(x, t, u, v)
f2(x, t, u, v)

)

. (2.2)

For any given sequences {xn} ⊂ R and {Gn} ⊂ H(F ), there exist subsequences {xnk
} ⊂ {xn} and

{Gnk
} ⊂ {Gn} such that lim

k→∞
Gnk

(x+xnk
, t, u, v) exists for t ∈ R uniformly and (x, u, v) in bounded sets.

In this paper, we take

f1(x, t, U, V ) = a1(x, t)(N1 − U)V − d1(x, t)U,

f2(x, t, U, V ) = a2(x, t)(N2 − V )U − d2(x, t)V. (2.3)
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Then the system (1.6) which satisfies the above assumptions is cooperative and monostable.
Define matrix function A(x, t) by

A(x, t) :=

⎛

⎝

∂f1(x,t,U,0)
∂U

∂f1(x,t,0,V )
∂V

∂f2(x,t,U,0)
∂U

∂f2(x,t,0,V )
∂V

⎞

⎠ =
( −d1(x, t) a1(x, t)N1

a2(x, t)N2 −d2(x, t)

)

. (2.4)

Moreover, we assume that A(x, t) satisfies
(H5 ) There exists some L∗ > 0 such that inf

x̃∈R,L≥L∗
λ(A(· + x̃, ·), L) > 0.

Where λ(A,L) is the principal Lyapunov exponent and L∗ is a constant dependent on ai(x, t),Di, Ni,
di(x, t) for i = 1, 2, which will be explicitly explained in Sect. 4.

2.2. Main results

Next we will present our main results for problem (1.6). In Sect. 3, we will prove that h′(t) > 0 and g′(t) <
0 in t ∈ (0,+∞). Therefore, we denote g∞ := lim

t→∞ g(t), h∞ := lim
t→∞ h(t) and h∞−g∞ := lim

t→∞(h(t)−g(t)).

Further, we can obtain that g∞ ∈ [−∞, 0) and h∞ ∈ (0,∞].

Theorem 2.1. (Existence and uniqueness) Assuming any given initial functions (U0, V0) satisfy (1.7). For
any α ∈ (0, α0), there exists a time T such that the system (1.6) admits a unique solution (U, V ; g, h) ∈
(C2+α,1+ α

2 ([g(t), h(t)]× (0, T ]))2 × (C1+α/2((0, T ]))2, where T is dependent on α, h0, ||U0||C2([−h0,h0]) and
||V0||C2([−h0,h0]).

Remark 2.1. Actually, the solution for system (1.6) uniquely exists for all t ∈ (0,∞) (see Theorem 3.4).

In order to investigate the asymptotic dynamics of system (1.6), we first introduce the following
system, {

Ut = D1Uxx + a1(x, t)(N1 − U)V − d1(x, t)U, −∞ < x < ∞, t > 0,
Vt = D2Vxx + a2(x, t)(N2 − V )U − d2(x, t)V, −∞ < x < ∞, t > 0.

(2.5)

The equation (2.5) admits a unique positive time almost periodic solution (see Step 2 for Theorem 5.6).
Now we have the following spreading–vanishing dichotomy result of (1.6).

Theorem 2.2. (Spreading–vanishing dichotomy) Supposing (H1)–(H5) hold and the initial functions
(U0, V0) satisfy(1.7). Let (U, V ;U0, V0, h0) be the solution of (1.6), for such L∗ in (H5), the following
spreading–vanishing dichotomy regimes hold:

Either
(1) Vanishing: h∞−g∞ ≤ 2L∗ and lim

t→+∞ U(x, t;U0, V0, h0) = 0, lim
t→+∞ V (x, t;U0, V0, h0) = 0 uniformly

in x ∈ [g∞, h∞];
or
(2) Spreading: h∞ − g∞ = ∞ and lim

t→+∞(U(x, t;U0, V0, h0) − U∗(x, t)) = 0, lim
t→+∞(V (x, t;U0, V0, h0) −

V ∗(x, t)) = 0 locally uniformly for x in R, where (U∗(x, t), V ∗(x, t)) is the unique positive time almost
periodic solution of (2.5).

Remark 2.2. When the spreading occurs, the long-time asymptotic behavior of the solution for WNv
model (1.6) is largely different from homogeneous models, which converge to a trivial constant equilibrium.

Theorem 2.3. (Spreading–vanishing threshold) Suppose that (H1)–(H5) hold. For any given h(0), g(0)
and the initial functions (U0, V0) satisfying (1.7), let (U, V ;U0, V0, g, h) be the solution of (1.6), for such
L∗ in (H5), the followings hold:

(1) If λ(0) > 0, then h(0) − g(0) ≥ 2L∗, further, h∞ − g∞ = ∞, thus, the spreading occurs;
(2) If λ(0) < 0, then there exists a constant μ∗ ≥ 0 such that the spreading occurs when μ > μ∗ and

vanishing occurs when 0 < μ ≤ μ∗.
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Remark 2.3. The explicit explanation for the principal Lyapunov exponent λ(t) can refer to Sect. 4.
The above theorem gives the sufficient conditions about the spreading and vanishing of the disease. The
critical size L∗ determines the persistence or extinction of WNv by influencing the sign of the principal
Lyapunov exponent (see Sect. 5).

The following result is about the asymptotic spreading speed estimates for the double free boundaries.

Theorem 2.4. (Asymptotic spreading speed) Assume that (H1)–(H5) hold. Let (U, V ; g, h) be the solution
of system (1.6), then the asymptotic spreading speeds of the leftward front and the rightward front satisfy:

c∗(μ) ≤ lim inf
t→∞

−g(t)
t

≤ lim sup
t→∞

−g(t)
t

≤ c∗(μ) (2.6)

and

c∗(μ) ≤ lim inf
t→∞

h(t)
t

≤ lim sup
t→∞

h(t)
t

≤ c∗(μ), (2.7)

where c∗(μ), c∗(μ) dependent on μ are the asymptotic spreading speeds of the problem (6.1) and (6.2),
respectively.

3. Existence and uniqueness

In this section, we will show the existence and uniqueness of the global solution for the system (1.6).
Since the system (1.6) can be regarded as a special case of the system (2.1). We only need to give an
explicit proof for the system (2.1). Although there are similar results about the solution for epidemic
models with constant coefficients, the proofs of the (2.1) in the heterogeneous environment can not be
easily obtained by analogy. Therefore, we provide a detailed proof according to Theorem 1.1 ([33]).

Theorem 3.1. Assume that (H1)–(H4) hold. For any α ∈ (0, α0) and any given (u0, v0) satisfying (1.7),
there exists T > 0 such that the system (2.1) admits a unique solution (u, v, g, h) ∈ (C1+α,(1+α)/2(DT ))2×
(C1+α/2([0, T ]))2, where DT = {(x, t) ∈ R

2 | x ∈ [g(t), h(t)], t ∈ [0, T ]}, and T is only dependent on
α, h0, ||u0||C2([−h0,h0]) and ||v0||C2([−h0,h0]).

Proof. We divide this proof into two steps.
Step 1 The local existence of the solution for problem (2.1).
Let

y =
2x

h(t) − g(t)
− h(t) + g(t)

h(t) − g(t)
,

m(y, t) = u(x, t), n(y, t) = v(x, t),

f̃1(y, t,m, n) = f1(x, t, u, v),

f̃2(y, t,m, n) = f2(x, t, u, v),

(3.1)

then direct calculation gives

∂y

∂x
=

2
h(t) − g(t)

:=
√

A(y, g(t), h(t)),

∂y

∂t
= −y(h′(t) − g′(t)) + (h′(t) + g′(t))

h(t) − g(t)

:= B(y, g(t), g′(t), h(t), h′(t)),

(3.2)
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and (m,n) satisfy the following system,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mt − D1Amyy + Bmy = f̃1(y, t,m, n), y ∈ (−1, 1), 0 < t ≤ T,

nt − D2Anyy + Bny = f̃2(y, t,m, n), y ∈ (−1, 1), 0 < t ≤ T,
m(±1, t) = 0, n(±1, t) = 0, 0 < t ≤ T,

m(y, 0) = u0(h0y), n(y, 0) = v0(h0y), y ∈ [−1, 1].

(3.3)

Meanwhile, h(t) and g(t) satisfy
{

h(0) = h0, h
′(t) = −μ 2

h(t)−g(t)my(1, t), 0 < t ≤ T,

g(0) = −h0, g
′(t) = −μ 2

h(t)−g(t)my(−1, t), 0 < t ≤ T.
(3.4)

Next, we will show the existence of the solution for (3.3) with (3.4).

Let h∗ = −μu′
0(h0), g∗ = −μu′

0(−h0), T0 = min
{

1, h0
2(2+h∗) ,

h0
2(2−g∗)

}
,

Γ =
{
h0, h

∗, g∗, ||u0||C2([−h0,h0]), ||v0||C2([−h0,h0])

}
,

ΘT = {(g, h) ∈ (C1([0, T ]))2 | h(0) = h0, g(0) = −h0, h
′(0) = h∗, g′(0) = g∗,

||h′ − h∗||L∞ ≤ 1, ||g′ − g∗||L∞ ≤ 1}, (3.5)

then h∗ > 0, g∗ < 0 and ΘT is a bounded closed convex subset of (C1([0, T0]))2 for any 0 < T ≤ T0.
Let

Θ∗
T0

= {(g, h) ∈ (C1([0, T0]))2 | h(0) = h0, h
′(0) = h∗, g′(0) = g∗, ||h′ − h∗||L∞ ≤ 2,

||g′ − g∗||L∞ ≤ 2}.

For any given (g, h) ∈ ΘT , we can extend h and g such that (g, h) ∈ Θ∗
T0

. Hence, if (g, h) ∈ ΘT , then
(g, h) ∈ Θ∗

T0
. And h(t) and g(t) satisfy

|h(t) − h0| ≤ T0||h′||∞ ≤ T0(2 + h∗) ≤ h0

2
,

|g(t) − (−h0)| ≤ T0||g′||∞ ≤ T0(2 + g∗) ≤ T0(2 − g∗) ≤ h0

2

(3.6)

for any t ∈ [0, T0], then h(t) ∈ [h0
2 , 3h0

2 ] and g(t) ∈ [− 3h0
2 ,−h0

2 ] in [0, T0]. Hence, the transformations
(3.1) and (3.2) are well defined for t ∈ [0, T0]. Applying the standard parabolic equation theory ([34]),
there exists a T∗ ∈ (0, T0] such that there is a unique solution (m(y, t), n(y, t)) ∈ (C1+α, 1+α

2 (ΔT∗))2

for problem (3.3) with T∗ dependent on Γ, α, ||u0||∞ and |||v0||∞. And there exists a positive constant
C1(Γ, α, T∗, T−1

∗ ) such that

||m||
C1+α, 1+α

2 (ΔT∗ )
+||n||

C1+α, 1+α
2 (ΔT∗ )

≤ C1(Γ, α, T∗, T−1
∗ ),

where ΔT∗ = [−1, 1]× [0, T∗]. In view of the choice of Γ in (3.5), T∗ is only dependent on Γ and α. Hence,

||m||
C1+α, 1+α

2 (ΔT∗ )
+ ||n||

C1+α, 1+α
2 (ΔT∗ )

≤ C1,

with C1 dependent on Γ and α. Moreover, for 0 < T ≤ T∗, it follows

||m||
C1+α, 1+α

2 (ΔT )
+ ||n||

C1+α, 1+α
2 (ΔT )

≤ C1. (3.7)

Since m(y, 0) and n(y, 0) are more than but not identically equal to 0 for y ∈ [−1, 1], f̃i(y, t, 0, 0) ≥ 0,
aiNi ≥ 0 on [−1, 1] × [0, T ] and f̃i(y, t,m, n) satisfies (H1 ) for i = 1, 2, by the maximum principle (resp.
Positivity Lemma, [35]), then (m,n) > 0 for (y, t) ∈ (−1, 1) × (0, T ].
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Considering that the solution (m,n) depends continuously on the initial data (g, h) ∈ ΘT , let

h(t) = h0 − μ

t∫

0

2
h(s) − g(s)

my(1, s)ds,

g(t) = −h0 − μ

t∫

0

2
h(s) − g(s)

my(−1, s)ds

(3.8)

for t ∈ [0, T ], then (g, h) depends on (g, h) ∈ ΘT and

h(0) = h0, h
′
(0) = h∗, h̄′(t) > 0, g(0) = −h0, g

′(0) = g∗, ḡ′(t) < 0.

Moreover, it follows
h

′
(t) ∈ C

α
2 ([0, T ]), ||h′

(t)||
C

α
2 ([0,T ])

≤ C2,

g′(t) ∈ C
α
2 ([0, T ]), ||g′(t)||

C
α
2 ([0,T ])

≤ C2

(3.9)

for some C2 dependent on Γ and α.
Define F : D1 × D2 × ΘT −→ C(ΔT ) × C(ΔT ) × (C1([0, T ]))2 by F(m,n, g, h) = (m,n, g, h), where

D1 = {m ∈ C(ΔT )|m(y, 0) = u0(h0y), ||m − u0||C(ΔT ) ≤ 1},

D2 = {n ∈ C(ΔT )|n(y, 0) = v0(h0y), ||n − v0||C(ΔT ) ≤ 1}.

It is easy to see that F(m,n, g, h) = (m,n, g, h) if and only if (m,n, g, h) is the solution of (3.3) with
(3.4).

Combining (3.7) and (3.9), it follows

||m − u0||C(ΔT ) + ||n − v0||C(ΔT )

≤ ||m − u0||
C

1+α
2 ,0(ΔT )

T
1+α
2 + ||n − v0||

C
1+α
2 ,0(ΔT )

T
1+α
2

≤ C1T
1+α
2

(3.10)

and

||h′ − h∗||C([0,T ]) ≤ ||h′||
C

α
2 ([0,T ])

T
α
2 ≤ C2T

α
2 ,

||g′ − g∗||C([0,T ]) ≤ ||g′||
C

α
2 ([0,T ])

T
α
2 ≤ C2T

α
2 .

Therefore, if we take T = min
{

1, h0
2(2+h∗) ,

h0
2(2−g∗) , C

− 2
1+α

1 , C
− 2

α
2

}

, then F maps D1 × D2 × ΘT in-

to itself. Further, we can get that F is compact. Applying the Schauder fixed-point theorem to F ,
there exists a fixed point (m,n, g, h) ∈ D1 × D2 × ΘT . Applying the Schauder estimates, (m,n, g, h) ∈
(C1+α, 1+α

2 ([−1, 1]× [0, T ]))2×(C1+ α
2 [0, T ])2 is the solution of system (3.3) with (3.4). Hence, the problem

(2.1) has a solution (u, v, g, h) ∈ (C1+α, 1+α
2 ([g(t), h(t)] × [0, T ]))2 × (C1+ α

2 [0, T ])2.
Step 2 The uniqueness of the solution for problem (2.1).
Assume that (ui, vi, g, h)(i = 1, 2) ∈ D1 × D2 × ΘT are the two solutions of (2.1) for 0 < T 	 1.

Applying the strong maximum principle to ui, we can get that ui(x, t) > 0 for x ∈ (g(t), h(t)) and
0 < t < T . In view of ui(t, h(t)) = 0, ui(t, g(t)) = 0, it follows uix(t, h(t)) < 0, uix(t, g(t)) > 0 for i = 1, 2,
which implies h′(t) > 0, g′(t) < 0 for t ∈ (0, T ), then we can suppose that

h0 ≤ h(t) ≤ h0 + 1,−h0 − 1 ≤ g(t) ≤ −h0 (3.11)

for t ∈ [0, T ], and ui ≤ ||u0||∞ + 1, vi ≤ ||v0||∞ + 1 in [g(t), h(t)] × [0, T ] for i = 1, 2.
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As in transformations (3.1), take mi(y, t) = ui(x, t), ni(y, t) = vi(x, t) for i = 1, 2, then (y, t) ∈
[−1, 1] × [0, T ].

Let m = m1 − m2, n = n1 − n2, h = h1 − h2, g = g1 − g2, direct calculation gives the following system,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mt − D1A1(y, t)myy + B1(y, t)my − a1(y, t)m − ã1(y, t)n

= D1(A1 − A2)m2yy + (B2 − B1)m2y + b1(y, t)y(h−g)+(h+g)
2 , y ∈ (−1, 1), 0 < t ≤ T ,

nt − D2A1(y, t)nyy + B1(y, t)ny − a2(y, t)m − ã2(y, t)n
= D2(A1 − A2)n2yy + (B2 − B1)n2y + b2(y, t)y(h−g)+(h+g)

2 , y ∈ (−1, 1), 0 < t ≤ T ,

m(±1, t) = 0, n(±1, t) = 0, 0 < t ≤ T ,

m(y, 0) = n(y, 0) = 0, y ∈ (−1, 1),

(3.12)

with

h′(t) = μ(
2

h2(t) − g2(t)
m2y(1, t) − 2

h1(t) − g1(t)
m1y(1, t)),

g′(t) = μ(
2

h2(t) − g2(t)
m2y(−1, t) − 2

h1(t) − g1(t)
m1y(−1, t)),

(3.13)

for 0 < t ≤ T, h(0) = 0, g(0) = 0, i = 1, 2, where

Ai(y, t) =
4

(hi(t) − gi(t))2
,

Bi(y, t) = −y(h′
i(t) − g′

i(t)) + (h′
i(t) + g′

i(t))
hi(t) − gi(t)

,

bi(y, t) =

1∫

0

fix(t,H(h1, h2, g1, g2, s),m2, n2)ds,

ãi(y, t) =

1∫

0

fin(t,
y(h1 − g1) + (h1 + g1)

2
,m2, n2 + s(m1 − m2))ds,

ai(y, t) =

1∫

0

fim(t,
y(h1 − g1) + (h1 + g1)

2
,m2 + s(m1 − m2), n1))ds,

H(h1, h2, g1, g2) =
y(h2 + s(h1 − h2) − (g2 + s(g1 − g2))) + (h2 + s(h1 − h2) + (g2 + s(g1 − g2)))

2
.

In view of (H1 )–(H5 ), we can get ai, ãi, bi ∈ L∞(ΔT ) for i = 1, 2 with ||ai(y, t)||L∞ , ||ãi(y, t)||L∞

and ||bi(y, t)||L∞ dependent on h0, ||u0||L∞ and ||v0||L∞ . In view of (3.7)–(3.11), applying Lp theory for
parabolic equations and Sobolev imbedding theorem to system (3.12), there are positive constants C3, C4
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and C5 which depend on Γ and α such that

||m||
C1+α, 1+α

2 (ΔT )
+ ||n||

C1+α, 1+α
2 (ΔT )

≤ C3(D1||((h1 − g1)−2 − (h2 − g2)−2)m2yy||C(ΔT ) +
∥
∥
∥
∥b1

y(h − g) + (h + g)
2

∥
∥
∥
∥

C(ΔT )

+
∥
∥
∥
∥

(
y(h′

1 − g′
1) + (h′

1 + g′
1)

h1(t) − g1(t)
− y(h′

2 − g′
2) + (h′

2 + g′
2)

h2(t) − g2(t)

)

m2y

∥
∥
∥
∥

C(ΔT )

)

+ C3(D2||((h1 − g1)−2 − (h2 − g2)−2)n2yy||C(ΔT ) + |b2
y(h − g) + (h + g)

2
||C(ΔT )

+
∥
∥
∥
∥

(
y(h′

1 − g′
1) + (h′

1 + g′
1)

h1(t) − g1(t)
− y(h′

2 − g′
2) + (h′

2 + g′
2)

h2(t) − g2(t)

)

n2y

∥
∥
∥
∥

C(ΔT )

)

≤ C4(||h||C1([0,T ]) + ||g||C1([0,T ]) + ||h − g||C1([0,T ]) + ||h + g||C1([0,T ]))

≤ C5(||h||C1([0,T ]) + ||g||C1([0,T ])).

(3.14)

Applying the proofs of (5.4.3) and Theorem 5.5.4 ([36]) to my(y, t) and ny(y, t), without needing to
expand m and n to a larger domain, we obtain that there exists a positive constant C̃1 independent of
T−1 such that

[m]
Cα, α

2 (ΔT )
+ [my]

Cα, α
2 (ΔT )

≤ C̃1||m||
C1+α, 1+α

2 (ΔT )
,

[n]
Cα, α

2 (ΔT )
+ [ny]

Cα, α
2 (ΔT )

≤ C̃1||n||
C1+α, 1+α

2 (ΔT )
,

where [ · ] is the Hölder seminorm. Therefore, according to (3.14) and the above inequalities, it follows
that

[my]
Cα, α

2 (ΔT )
≤ C̃1C5(||h||C1([0,T ]) + ||g||C1([0,T ])),

[ny]
Cα, α

2 (ΔT )
≤ C̃1C5(||h||C1([0,T ]) + ||g||C1([0,T ])).

(3.15)

Combining (3.13) and (3.15), there is C6 dependent on Γ, α such that

[h′]C α
2 ([0,T ])

≤ μ

[
2

h1 − g1
my(1, t)

]

C α
2 ([0,T ])

+ μ

[(
2

h1 − g1
− 2

h2 − g2

)

m2y(1, t)
]

C α
2 ([0,T ])

≤ C6(||h||C1([0,T ]) + ||g||C1([0,T ]))

(3.16)

and

[g′]C α
2 ([0,T ])

≤ μ

[
2

h1 − g1
my(−1, t)

]

C α
2 ([0,T ])

+ μ

[(
2

h1 − g1
− 2

h2 − g2

)

m2y(−1, t)
]

C α
2 ([0,T ])

≤ C6(||h||C1([0,T ]) + +||g||C1([0,T ])).

(3.17)

Since h(0) = h′(0) = 0 and g(0) = g′(0) = 0, then

||h − h(0)||C1([0,T ]) ≤ 2||h′ − h′(0)||
C

α
2 ([0,T ])

T
α
2 ≤ C̃6||h||C1([0,T ])T

α
2 ,

||g − g(0)||C1([0,T ]) ≤ 2||g′ − g′(0)||
C

α
2 ([0,T ])

T
α
2 ≤ C̃6||g||C1([0,T ])T

α
2 .

Therefore, if T is small enough, then h = 0 and g = 0, which implies m = 0 and n = 0. Thus, the
local existence and uniqueness of the solution have been proved. �

Proof of Theorem 2.1. Let fi be defined by (2.3) for i = 1, 2. In view that a1(x, t), a2(x, t), d1(x, t), d2(x, t)
∈ C2+α,1+ α

2 (R × [0,∞)) for any α ∈ (0, α0) and have positive upper and lower bound, it follows that
fi(x, ·, U, V ) ∈ C1+ α

2 ([0, T ])(i = 1, 2) for the T in Theorem 3.1.
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Make the transformations as (3.1), combining (3.7) with (3.9), then, it can be obtained that

f̃i(y, t) := fi

(
y(h(t) − g(t)) + (h(t) + g(t))

2
, t,m(y, t), n(y, t)

)

∈ Cα, α
2 ([−1, 1] × [0, T ]) .

Using the Schauder theory for parabolic equations to system (3.3) and (3.4), we can get that

(m,n, g, h) ∈ (
C2+α,1+ α

2 ([−1, 1] × (0, T ])
)2 × (

C1+ α
2 (0, T ]

)2
.

Since the system (1.6) can be regarded as the special case of (2.1) and satisfies all of the assumptions in
Theorem 3.1, the system (1.6) admits a unique solution (U, V ; g, h) ∈ (C2+α,1+ α

2 ([g(t), h(t)] × (0, T ]))2 ×
C1+ α

2 ((0, T ])2. Thus, the local existence and uniqueness of the solution for system (1.6) are proved. �

For the convenience of later proof, we provide the following Comparison Principle in order to estimate
the boundedness of U(x, t), V (x, t) for system (1.6) and the free boundaries x = g(t) and x = h(t). The
lemma is similar to Lemma 3.5 in [10].

Lemma 3.2. (Comparison principle) Assume that T ∈ (0,+∞), h(t), g(t) ∈ C1([0, T ]), U, V ∈ C(D∗
T )

⋂

C2,1(D∗
T ) with 0 < U ≤ N1, 0 < V ≤ N2 and (U, V ;h, g) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U t − D1Uxx ≥ a1(x, t)(N1 − U)V − d1(x, t)U, g(t) < x < h(t), 0 < t < T,

V t − D2V xx ≥ a2(x, t)(N2 − V )U − d2(x, t)V , g(t) < x < h(t), 0 < t < T,

U(x, t) ≥ 0, V (x, t) ≥ 0, x = g(t) or h(t), 0 < t < T,

h(0) ≥ h0, h
′
(t) ≥ −μUx(h(t), t), 0 < t < T,

g(0) ≤ −h0, g
′(t) ≤ −μUx(g(t), t), 0 < t < T,

U(x, 0) ≥ U0(x), V (x, 0) ≥ V0(x), −h0 ≤ x ≤ h0,

(3.18)

then the solution (U, V ; g, h) of (1.6) satisfies

U(x, t) ≥ U(x, t), V (x, t) ≥ V (x, t),

h(t) ≥ h(t), g(t) ≥ g(t), for g(t) ≤ x ≤ h(t), t ∈ (0, T ],
(3.19)

where D∗
T = {(x, t) ∈ R

2 | x ∈ (g(t), h(t)), t ∈ (0, T ]}.

Remark 3.1. If (U, V ; g, h) satisfies the conditions of Lemma 3.2, then it is called the upper solution of
(1.6). The corresponding lower solution can be similarly defined by reversing the above inequalities.

In order to extend the local solution of (1.6) to all t ∈ (0,∞), according to Lemma 2.2 in [10] or
Lemma 2.5 and Lemma 2.6 in [16], we give the rough estimates about the supper and lower bound of
U(x, t), V (x, t), g′(t) and h′(t).

Lemma 3.3. Assume that T ∈ (0,+∞). Let (U, V ; g, h) be a solution of (1.6) for t ∈ (0, T ], then there
exists a positive constant C > 0 independent of T such that

0 < U(x, t) ≤ N1, 0 < V (x, t) ≤ N2, for g(t) < x < h(t), 0 < t ≤ T,

0 < h′(t) ≤ C,−C ≤ g′(t) < 0, for 0 < t ≤ T.
(3.20)

Now we turn to show the global existence of the solution for the problem (1.6).
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Theorem 3.4. For any given initial data (U0, V0) satisfying (1.7), the unique solution (U, V ; g, h) of (1.6)
exists for all t ∈ (0,∞).

Proof. Now we aim to show that the solution for system (1.6) can extend to all t ∈ (0,∞).
If the maximal existence interval of the solution is [0, Tmax), then we will show Tmax = +∞. On the

contrary, assuming that Tmax < +∞. According to Lemma 3.3, we can get that U(x, t) ≤ N1, V (x, t) ≤ N2

for (x, t) in [g(t), h(t)]× [0, Tmax). Moreover, for the above positive constant C in Lemma 3.3 independent
on Tmax, it holds that 0 < h′(t),−g′(t) ≤ C, follows h0 ≤ h(t) ≤ h0 +CTmax and −h0 −CTmax ≤ g(t) ≤
−h0 for t ∈ [0, Tmax).

As in transformation (3.1), take m(y, t) = U(x, t), n(y, t) = V (x, t). For any given T < Tmax, applying
the Lp theory to (1.6), there exists a positive constant C1 (Γ, N1, N2, Tmax) independent of T such that
‖m‖W 2,1

p (ΔT ) + ‖n‖W 2,1
p (ΔT ) ≤ C̃1 (Γ, N1, N2, Tmax), thus, (m,n) ∈ (W 2,1

p (ΔTmax
))2 for p > 3

1−α and

‖m‖W 2,1
p (ΔTmax ) + ‖m‖

C1+α, 1+α
2 (ΔTmax )

+ ‖n‖W 2,1
p (ΔTmax ) + ‖n‖

C1+α, 1+α
2 (ΔTmax )

≤ C̃1 (Γ, N1, N2, Tmax) .
(3.21)

In view of (3.13), we can get (h, g) ∈ (C1+ α
2 ([0, Tmax]))2 and

‖h‖
C1+ α

2 ([0,Tmax])
≤ C2 (Γ, N1, N2, Tmax) , ‖g‖

C1+ α
2 ([0,Tmax])

≤ C̃2 (Γ, N1, N2, Tmax) . (3.22)

Applying the Schauder theory to (1.6), we can get that (m,n) ∈ (C2+α,1+ α
2 ([−1, 1] × (0, Tmax]))2, then

it follows

‖m‖
C2+α,1+ α

2 ([−1,1]×[ε,Tmax])
+ ‖n‖

C2+α,1+ α
2 ([−1,1]×[ε,Tmax])

≤ C̃3 (ε,Γ, N1, N2, Tmax)

for any small 0 < ε 	 Tmax. Therefore, (U, V ) ∈ (C2+α,1+ α
2 ([g(t), h(t)] × (0, Tmax]))2 and

‖U‖
C2+α,1+ α

2 ([g(t),h(t)]×[ε,Tmax])
+ ‖V ‖

C2+α,1+ α
2 ([g(t),h(t)]×[ε,Tmax])

≤ C̃3 (ε,Γ, N1, N2, Tmax) . (3.23)

Thus, the system (1.6) admits a solution (U, V ; g, h) on (0, Tmax]. Take {Tn} ⊂ (0, Tmax) such that Tn →
Tmax as n → ∞. Let Tn be the initial time and (U (x, Tn) , V (x, Tn) ; g(Tn), h (Tn)) be the initial func-
tion. By Theorem 3.1, there is a constant t0 small enough dependent on g (Tn) , g′ (Tn) , h (Tn) , h′ (Tn) ,
‖U (·, Tn)‖C2([g(Tn),h(Tn)]) , and ‖V (·, Tn)‖C2([g(Tn),h(Tn)]) such that problem (1.6) admits a unique solu-
tion (Un, Vn; gn, hn) for t ∈ [Tn, Tn + t0] . Considering the uniqueness of the solution for (1.6), it follows
that the solution (U, V ; g, h) = (Un, Vn; gn, hn) for Tn ≤ t < min {Tn + t0, Tmax} , which implies that the
solution (U, V ; g, h) for (1.6) can be extended to [0, Tn + t0). According to (3.22) and (3.23), t0 can be
taken independent of n such that Tn + t0 > Tmax, which contradicts to the choice of Tmax. Thus, this
theorem has been proved. �

4. Principal Lyapunov exponent

In order to investigate the global dynamics for model (1.6), considering the spatial heterogeneity and
temporal almost periodicity, we first introduce the principal Lyapunov exponent and explore several
properties by skew-product semiflow methods, which will be frequently used in later studies.

For any given L > 0 and the uniformly almost periodic matrix function A(x, t) defined by (2.4),
consider the following equation,

{
It = D(x,D)I + A(x, t)I, −L < x < L, t > 0,
I(−L, t) = I(L, t) = 0, t > 0,

(4.1)

where −D(x,D) is a second-order strongly elliptic differential operator matrix of diagonal type with
D(x,D) = (Di∂ii) for i = 1, 2.
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Let X ↪→ C2([−L,L]) × C2([−L,L]) be the fractional power space (Chapter 1, [37]) with respect to
the sectorial operator −D(x,D) with homogeneous Cauchy boundary conditions, where D(−D(x,D)) =
{(u, v) ∈ (C2([−L,L]))2 | u(±L) = v(±L) = 0}. By the standard semigroup theory ([38]), for any I0 ∈ X,
there exists a unique solution I(t, ·; I0, A) of (4.1) satisfying I(0, ·; I0, A) = I0(·).
Definition 4.1. (Definition 4.3, Part II, [39]) We define the principal Lyapunov exponent λ(A,L) of (4.1)
as

λ(A,L) = lim sup
t→+∞

ln||Φ(A, t)||X
t

,

where Φ(A, t) satisfies Φ(A, t)I0 = I(t, ·; I0, A) for I0 ∈ X.

Assume that fi(i = 1, 2) satisfies (H1 )–(H4 ), then gi ∈ H(fi) satisfies (H1 )–(H4 ). Applying the
standard semigroup theory for parabolic equations, for any given gi ∈ H(fi) and (U0, V0) ∈ X+, there
exists a unique solution (U(·, t;U0, V0, g1, g2), V (·, t;U0, V0, g1, g2)) for the following equation

⎧
⎨

⎩

Ut = D1Uxx + g1(x, t, U, V ), −L < x < L, t > 0,
Vt = D2Vxx + g2(x, t, U, V ), −L < x < L, t > 0,
U(x, t) = V (x, t) = 0, x = −L or x = L, t > 0,

(4.2)

for all t > 0 with U(·, 0;U0, V0, g1, g2) = U0(x), V (·, 0;U0, V0, g1, g2) = V0(x), where X+ = {(u, v) ∈ X |
(u, v) ≥ 0},X++ = Int(X+).

Further, the system (4.2) generates a skew-product semiflow

Πt : X+ × H(f1) × H(f2) −→ X+ × H(f1) × H(f2), t ≥ 0

(U0, V0, g1, g2) �→ (U(·, t;U0, V0, g1, g2), V (·, t;U0, V0, g1, g2), g1 · t, g2 · t),
(4.3)

where gi · t(x, ·, U, V ) = gi(x, · + t, U, V ), i = 1, 2. It can be easily seen that Πt is continuous and compact
by Lemma 3.3.

Next, we introduce the definition of continuous separation for skew-product semiflow.

Definition 4.2. (Definition 3.11, [40]) The skew-product semiflow (4.3) is said to admit a continuous
separation if there are subspaces {X1(G)}G∈H(F ) and {X2(G)}G∈H(F ) with the following properties:

1) X = X1(G) ⊕ X2(G)(G ∈ H(F )) and X1(G),X2(G) vary continuously for G ∈ H(F );
2) X1(G) = span{I(G)}, where I(G) ∈ X++ and ‖I(G)‖ = 1 for G ∈ H(F );
3) X2(G) ∩ X+ = {0} for every G ∈ H(F );
4) Φ(G, t)X1(G) = X1(G · t) and Φ(t,G)X2(G) ⊂ X2(G · t) for any t > 0 and G ∈ H(F );
5) There are K1 > 0 and σ > 0 such that for any G ∈ H(F ) and w ∈ X2(G) with ‖w‖ = 1,

‖Φ(G, t)w‖ ≤ K1e
−σt‖Φ(G, t)I(G)‖, t > 0.

Lemma 4.1. λ(A(x, t), L) is monotonically increasing in L ∈ (0,∞).

Proof. According to Lemma 4.5 (Part III, [39]), the skew-product semiflow Πt generated by (4.3) is
strongly monotone in the sense that (U(·, t, U0, V0, g1, g2), V (·, t, U0, V0, g1, g2)) ∈ X++ for any t >
0, (U0, V0) ∈ X+, gi ∈ H(fi)(i = 1, 2). Thus, by Theorem 4.4 of [39], the skew-product semiflow (4.3)
admits a continuous separation, then there exists IL : H(A) → X++ with IL = (UL, VL) satisfying the
following properties:

(a) IL is continuous and ||IL(Ã)|| = 1 for any Ã ∈ H(A);

(b) λ(A,L) = lim
t→∞

ln ||I(·,t,IL,Ã)||
t = lim

t→∞
ln ||Φ(Ã,t)IL(Ã)||

t for any Ã ∈ H(A).

Assume that I(x, t, ILi
, A) for i = 1, 2 are the solutions for (4.2) with L = L1, L2, respectively. Without

loss of generation, supposing 0 < L1 < L2, then there is small τ > 0 such that IL2 ≥ τIL1 uniformly for
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x ∈ [−L1, L1]. According to the comparison principle, I(x, t, IL2 , A) ≥ I(x, t, τIL1 , A) for x ∈ [−L1, L1].
In view of (a) and (b), for any Ã ∈ H(A), it holds that

λ(A,L2) = lim
t→∞

ln ||I(·, t, IL2 , Ã)||
t

= lim
t→∞

ln ||Φ(Ã, t)IL2(Ã)||
t

≥ lim
t→∞

ln ||I(·, t, τIL1 , Ã)||
t

= lim
t→∞

ln(τ ||Φ(Ã, t)IL1(Ã)||)
t

= lim
t→∞

ln τ

t
+

ln ||I(·, t, IL1 , Ã)||
t

= λ(A,L1).

(4.4)

Thus, our proof is completed. �

Remark 4.1. In view of assumption (H5 ), L∗ is the minimum such that λ(A,L) > 0, then λ(A,L) > 0
for any L ≥ L∗.

Remark 4.2. In this paper, we always suppose that (H5 ) holds. According to Theorem 2.3 and Lemma
5.1 (see Sect. 5), considering the meaning of biology, we can explain this assumption in the sense that
the living habitat at the remote distance is in high risk of infection by the disease.

Considering that the infected domain (g(t), h(t)) is moving concerning time t, we introduce the cor-
responding principal Lyapunov exponent

λ(t) := λ

(

A,
h(t) − g(t)

2

)

, t ≥ 0

for the following system
{

It = D(x,D)I + A(x, t)I, g(t) < x < h(t), t > 0
I(h(t), t) = I(g(t), t) = 0, t > 0,

(4.5)

where −D(x,D) is a second-order strongly elliptic differential operator matrix of diagonal type with
D(x,D) = (Di∂ii) for i = 1, 2. In view of Lemmas 3.3 and 4.1, we can easily give the following result.

Theorem 4.2. λ(t) is monotonically increasing in t ∈ [0,∞).

5. The long-time dynamics of WNv

In this section, we will discuss the long-time dynamical behaviors of the solution for (1.6) and investigate
the conditions determining the spreading permanently or vanishing eventually for this disease.

First, we give the following definitions of vanishing and spreading for WNv.

Definition 5.1. The disease is vanishing if h∞ − g∞ < ∞ and

lim
t→+∞ ||U(·, t)||C(g(t),h(t)) = 0, lim

t→+∞ ||V (·, t)||C(g(t),h(t)) = 0;

The disease is spreading if h∞ − g∞ = ∞ and

lim inf
t→+∞ ||U(·, t)||C(g(t),h(t)) > 0, lim inf

t→+∞ ||V (·, t)||C(g(t),h(t)) > 0.

Next, for system (4.2), we recall a result similar to Theorem A in [41] which will be applied in proving
Theorem 2.2 and Theorem 2.3.
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Lemma 5.1. Let matrix function A(x, t) be defined by (2.4). For any given gi ∈ H(fi) for i = 1, 2. Let
(U(·, t;U0, V0, g1, g2), V (·, t;U0, V0, g1, g2)) be the solution of (4.2), then the followings hold.

(1) If λ(A,L) < 0, then lim
t→∞ ||U(·, t;U0, V0, g1, g2)|| = 0, lim

t→∞ ||V (·, t;U0, V0, g1, g2)|| = 0 uniformly

for gi ∈ H(fi). Further, lim
t→∞ ||U(·, s + t;U0, V0, s)|| = 0 and lim

t→∞ ||U(·, s + t;U0, V0, s)|| = 0 uniformly for
s ∈ R.

(2) If λ(A,L) > 0, there exist UL : H(f1) × H(f2) −→ C([−L,L]) and VL : H(f1) × H(f2) −→
C([−L,L]) such that UL(g1, g2) and VL(g1, g2) are continuous for gi ∈ H(fi) and U(·, t;UL, VL, g1, g2) =
UL(g1 · t, g2 · t)(·), V (·, t;UL, VL, g1, g2) = VL(g1 · t, g2 · t)(·). Meanwhile, it holds that

lim
t→∞ ||U(·, t;U0, V0, g1, g2) − U(·, t;UL(g1, g2), VL(g1, g2), g1, g2)|| = 0,

lim
t→∞ ||V (·, t;U0, V0, g1, g2) − V (·, t;UL(g1, g2), VL(g1, g2), g1, g2)|| = 0

uniformly in gi ∈ H(fi) for any (U0, V0) ∈ X+\{0}. Further, U∗
L(x, t) := UL(f1 ·t, f2 ·t)(x) and V ∗

L (x, t) :=
VL(f1 · t, f2 · t)(x) are uniformly almost periodic in t ∈ R. Moreover, for any (U0, V0) ∈ X+\{0}, it holds
that

lim
t→∞ ||U(·, s + t;U0, V0, s) − U∗

L(·, s + t)|| = 0, lim
t→∞ ||V (·, s + t;U0, V0, s) − V ∗

L (·, s + t)|| = 0

uniformly for s ∈ R, where U(·, s + t;U0, V0, s) = U(·, t;U0, V0, f1 · s, f2 · s), V (·, s + t;U0, V0, s) =
V (·, t;U0, V0, f1 · s, f2 · s).

Lemma 5.2. Assume that (H1)–(H5) hold. Take L ≥ L∗, then

inf
x∈[−L,L],x̃∈R,

gi∈H(fi)

U∗(x, 0; x̃, g1, g2, L) > 0, inf
x∈[−L,L],x̃∈R,

gi∈H(fi)

V ∗(x, 0; x̃, g1, g2, L) > 0,

for i = 1, 2. Where (U∗(x, t; x̃, g1, g2, L), V ∗(x, t; x̃, g1, g2, L)) is the unique positive almost periodic solu-
tion of the following system,

⎧
⎨

⎩

Ut = D1Uxx + g1(x + x̃, t, U, V ), −L < x < L, x̃ ∈ R, t > 0,
Vt = D2Vxx + g2(x + x̃, t, U, V ), −L < x < L, x̃ ∈ R, t > 0,
U(x, t) = V (x, t) = 0, x = −L or x = L, t > 0.

(5.1)

Indeed, we can see that (U∗(x, t; x̃, g1, g2, L), V ∗(x, t; x̃, g1, g2, L)) = (U∗(x, 0; x̃, g1 · t, g2 · t, L),
V ∗(x, 0; x̃, g1 · t, g2 · t, L)).

Proof. The proof of this lemma can refer to Lemma 4.1 in [42], it can be proved by making a minor
modification, so we omit the detailed proof. �

Considering the dependence of boundary functions g(t) and h(t) on μ, denote

hμ(t) := h(t) = h(t;U0, V0, h0) and gμ(t) := g(t) = g(t;U0, V0, h0)

with h(0) = h0, g(0) = −h0. Then the following result holds.

Lemma 5.3. For all t > 0, hμ(t) is strictly monotonically increasing in μ, and gμ(t) is strictly monoton-
ically decreasing in μ.

Proof. We will prove this lemma mainly by the comparison principle. Assume that (U1, V1; gμ1 , hμ1) and
(U2, V2; gμ2 , hμ2) are the two solutions for problem (1.6). For simplification, we only need to compare
hμ1(t) with hμ2(t), then we can similarly obtain the strict monotonicity of gμ(t).

Without loss of generality, assume that 0 < μ1 < μ2, then

h′
μ1

(t) = −μ1U1x(hμ1(t), t) < −μ2U1x(hμ1(t), t). (5.2)

By Lemma 3.2, it follows hμ1(t) ≤ hμ2(t) for all t ∈ [0,∞).
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Now it is our turn to prove that hμ1(t) < hμ2(t) in [0,∞). On the contrary, assume that positive time
T ∗ is the first time such that hμ1(t) < hμ2(t) for t ∈ (0, T ∗) and hμ1(T

∗) = hμ2(T
∗), then

h′
μ1

(T ∗) ≥ h′
μ2

(T ∗). (5.3)

Let ΣT ∗ :=
{
(x, t) ∈ R

2 | 0 ≤ x < hμ1(t), 0 < t ≤ T ∗} . Applying the strong maximum principle to U1

and U2, it follows that U1(x, t) < U2(x, t) in ΣT ∗ . Let H(x, t) = U2(x, t) − U1(x, t), then H(x, t) >
0 for (x, t) ∈ ΣT ∗ and H (hμ1 (T ∗) , T ∗) = 0. Follows, we can get that Hx (hμ1 (T ∗) , T ∗) < 0. In view
of (Ui)x (hμ1 (T ∗) , T ∗) < 0 and μ1 < μ2, then −μ1 (U1)x (hμ1 (T ∗) , T ∗) < −μ2 (U2)x (hμ2 (T ∗) , T ∗) .
Therefore, h′

μ1
(T ∗) < h′

μ2
(T ∗) , which yields a contradiction to (5.3). Thus, hμ(t) is strictly monotonically

increasing about μ for all t > 0.
Similarly, we can easily get that −gμ1(t) < −gμ2(t) for all t > 0. Therefore, our proof is completed.

�

In the rest of this section, for any given (U0, V0) satisfying (1.7), let (U(x, t;U0, V0, h0), V (x, t;U0,
V0, h0)) denote the solution of system (1.6) with U(x, 0;U0, V0, h0) = U0, V (x, 0;U0, V0, h0) = V0, h(0) =
h0, g(0) = −h0.

Theorem 5.4. If h∞ − g∞ < ∞, then lim
t→∞ h′(t, U0, V0, h0) = 0, lim

t→∞ g′(t, U0, V0, h0) = 0.

Proof. Now we only necessarily prove the case of h′(t, U0, V0, h0). On the contrary, assume that there
exists a positive sequence {tn} with lim

n→∞ tn = ∞ such that

lim
n→∞ h′(tn, U0, V0, h0) > 0. (5.4)

Let hn(t) = h(t + tn, U0, V0, h0), for t ≥ 0, then lim
n→∞ hn(t) = h∞ uniformly for t ≥ 0. According to

Lemma 3.3, we can get that {h′
n(t)} is uniformly bounded and equicontinuous on [0,∞). By Arzela–Ascoli

theorem, there exists h∗(t) such that lim
n→∞ h′

n(t) = h∗(t) uniformly in any bounded sets of [0,∞). Since

lim
n→∞ hn(t) = h∞ < ∞, then h∗(t) ≡ 0, which implies that lim

n→∞ h′(tn, U0, V0, h0) = 0. It is a contradiction

to (5.4). Thus, lim
t→∞ h′(t, U0, V0, h0) = 0. Similarly, we can prove lim

t→∞ g′(t, U0, V0, h0) = 0. �

Theorem 5.5. Assume that (H1)–(H5) hold. If h∞ − g∞ < ∞, then

lim
t→+∞ U(x, t;U0, V0, h0) = 0 and lim

t→+∞ V (x, t;U0, V0, h0) = 0

uniformly in x ∈ [g∞, h∞]. That is, the disease will vanish.

Proof. Let fi be defined as in (2.3) for i = 1, 2. then f1 and f2 satisfy (H1 )–(H4 ) and A(x, t) defined
by (2.4) satisfies (H5 ).

If h∞ − g∞ < ∞, it is easy to obtain that h∞ < ∞ and g∞ > −∞.
According to regularity and the prior estimates about parabolic equations ([37]), considering the

system (1.6), for any given sequence {tn} satisfying tn → ∞ as n → ∞, there exist a subsequence {tnk
}

satisfying tnk
→ ∞ as k → ∞, (Û∗(x, t), V̂ ∗(x, t)) ∈ (C([g∞, h∞] × R))2 and g∗

i ∈ H(fi) for i = 1, 2 such
that fi · tnk

→ g∗
i ,

lim
k→∞

||U(·, t + tnk
;U0, V0, h0) − Û∗(·, t)||C1([g(t+tnk

,h(t+tnk
)]) = 0 (5.5)

and
lim

k→∞
||V (·, t + tnk

;U0, V0, h0) − V̂ ∗(·, t)||C1([g(t+tnk
,h(t+tnk

)]) = 0, (5.6)

where (Û∗(x, t), V̂ ∗(x, t)) is the entire solution for the following system,
⎧
⎨

⎩

Ut = D1Uxx + g∗
1(x, t, U, V ), g∞ < x < h∞,

Vt = D2Vxx + g∗
2(x, t, U, V ), g∞ < x < h∞,

U(x, t) = V (x, t) = 0, x = g∞ or x = h∞.
(5.7)
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Next, we accomplish the proof of this theorem in two steps.
Step 1 To show h∞ − g∞ ≤ 2L∗ following from h∞ − g∞ < ∞.
On the contrary, assume that h∞ − g∞ ∈ (2L∗,∞), then there exist t∗ > 0 and ε > 0 such that

h(t)− g(t) > h∞ − g∞ − 2ε > 2L∗ for t ≥ t∗, thus, by (H5 ) and Theorem 4.2, λ(t) > 0. For the following
system ⎧

⎨

⎩

Ut = D1Uxx + f1(x, t, U, V ), g∞ + ε < x < h∞ − ε, t > 0,
Vt = D2Vxx + f2(x, t, U, V ), g∞ + ε < x < h∞ − ε, t > 0,
U(x, t) = V (x, t) = 0, x = g∞ + ε or x = h∞ − ε, t > 0,

(5.8)

by comparison principle, we can get that

U(·, t + t∗;U0, U0, h0) ≥ Ũ(·, t + t∗;U(·, t∗;U0, U0, h0), V (·, t∗;U0, U0, h0), t∗),

V (·, t + t∗;U0, U0, h0) ≥ Ṽ (·, t + t∗;U(·, t∗;U0, U0, h0), V (·, t∗;U0, U0, h0), t∗).
(5.9)

where (Ũ(·, t + t∗;U(·, t∗;U0, U0, h0), V (·, t∗;U0, U0, h0), t∗), Ṽ (·, t + t∗;U(·, t∗;U0, U0, h0), V (·, t∗;U0, U0,
h0), t∗)) is the solution of (5.8) with

Ũ(·, t∗;U(·, t∗;U0, U0, h0), V (·, t∗;U0, U0, h0), t∗) = U(·, t∗;U0, U0, h0),

Ṽ (·, t∗;U(·, t∗;U0, U0, h0), V (·, t∗;U0, U0, h0), t∗) = V (·, t∗;U0, U0, h0).

In view of Lemma 5.1, the system (5.8) admits a positive almost time periodic solution (Uε(x, t),
Vε(x, t)). Moreover, for any (U0, V0) ∈ X++, it holds that

lim
t→∞ ||Ũ(·, t + t∗;U0, V0, t

∗) − Uε(·, t + t∗)|| = 0 (5.10)

and
lim

t→∞ ||Ṽ (·, t + t∗;U0, V0, t
∗) − Vε(·, t + t∗)|| = 0. (5.11)

By comparison principle, combining (5.10) and (5.11), we get

Û∗(x, t) > 0, V̂ ∗(x, t) > 0, x ∈ (g∞, h∞), t ∈ R,

which implies Û∗
x(h∞, t) < 0, V̂ ∗

x (h∞, t) < 0. Therefore, lim sup
t→∞

Ux(h(t), t;U0, V0, h0) < 0, it implies

lim inf
t→∞ h′(t) = lim inf

t→∞ −μUx(h(t), t;U0, V0, h0) > 0, which contradicts to Theorem 5.4. Thus, we can
obtain that h∞ − g∞ < ∞ gives h∞ − g∞ ≤ 2L∗.

Step 2 To show that if h∞ − g∞ < ∞, then

lim
t→∞ ‖U (·, t;U0, V0, h0)‖C([g(t),h(t)]) = 0, lim

t→∞ ‖V (·, t;U0, V0, h0)‖C([g(t),h(t)]) = 0. (5.12)

Let

ũ0(x) =
{

U0(x), for − h0 ≤ x ≤ h0,
0, for |x| > h0.

ṽ0(x) =
{

V0(x), for − h0 ≤ x ≤ h0,
0, for |x| > h0.

Assume that (ū(x, t), v̄(x, t)) is the solution of the problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ūt = D1ūxx + f1(x, t, ū, v̄), g∞ < x < h∞, t > 0,
v̄t = D2v̄xx + f2(x, t, ū, v̄), g∞ < x < h∞, t > 0,
ū(g∞, t) = ū (h∞, t) = 0, t > 0,
v̄(g∞, t) = v̄ (h∞, t) = 0, t > 0,
ū(x, 0) = ũ0(x), v̄(x, 0) = ṽ0(x), g∞ ≤ x ≤ h∞.

Applying Lemma 3.2, we can get that ū(x, t) ≥ U (x, t;U0, V0, h0) ≥ 0, v̄(x, t) ≥ V (x, t;U0, V0, h0) ≥ 0
for x ∈ [g(t), h(t)], t > 0. If h∞ − g∞ < 2L∗, assuming (H5 ), then λ

(
A, h∞−g∞

2

)
< 0. By Lemma 5.1,

lim
t→∞(ū, v̄) = (0, 0) uniformly for x ∈ [g∞, h∞]. Hence,

lim
t→∞ ‖U (·, t;U0, V0, h0)‖C([g(t),h(t)]) = 0, lim

t→∞ ‖V (·, t;U0, V0, h0)‖C([g(t),h(t)]) = 0.
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If h∞ − g∞ = 2L∗, without loss of generality, assume that lim
t→∞ ‖U (·, t;U0, V0, h0)‖C([g(t),h(t)]) �= 0,

then there exist a sequence {s̆n} with s̆n −→ ∞ as n → ∞, (Ŭ∗(x), V̆ ∗(x)) with Ŭ∗, V̆ ∗ ≥, �≡ 0 and
ğ∗

i ∈ H(fi) such that lim
n→∞ fi · s̆n = ğ∗

i , i = 1, 2 and lim
n→∞

∥
∥
∥U (·, s̆n;U0, V0, h0) − Ŭ∗(·)

∥
∥
∥

C([g(s̆n),h(s̆n)])
=

0, lim
n→∞

∥
∥
∥V (·, s̆n;U0, V0, h0) − V̆ ∗(·)

∥
∥
∥

C([g(s̆n),h(s̆n)])
= 0. It follows that

(
U

(
·, t; Ŭ∗, V̆ ∗, ğ∗

1 , ğ∗
2

)
,

V
(
·, t; Ŭ∗, V̆ ∗, ğ∗

1 , ğ∗
2

))
is the entire solution for the following equation,

⎧
⎪⎪⎨

⎪⎪⎩

ut = D1uxx + ğ∗
1(x, t, u, v), g∞ < x < h∞,

vt = D2vxx + ğ∗
2(x, t, u, v), g∞ < x < h∞,

u(g∞, t) = u(h∞, t) = 0,
v(g∞, t) = v(h∞, t) = 0.

(5.13)

Applying Hopf lemma to U(h∞, t; Ŭ∗, V̆ ∗, ğ∗
1 , ğ∗

2) and U(g∞, t; Ŭ∗, V̆ ∗, ğ∗
1 , ğ∗

2), we can get that

Ux

(
h∞, t; Ŭ∗, V̆ ∗, ğ∗

1 , ğ∗
2

)
< 0, Ux

(
g∞, t; Ŭ∗, V̆ ∗, ğ∗

1 , ğ∗
2

)
> 0,

which implies

lim
n→∞ h′ (s̆n)=− lim

n→∞ μUx (h (s̆n) , s̆n;U0, V0, h0)>0, lim
n→∞ g′ (s̆n)=− lim

n→∞ μUx (g (s̆n) , s̆n;U0, V0, h0) < 0.

This is a contradiction to Theorem 5.4. Thus, our proof is completed. �

Remark 5.1. From the proof of the above theorem, we can obtain that the densities of infected populations
will decay to 0 and the eventually infected domain is no more than the critical size 2L∗ when the disease
vanishes.

The following theorem gives the long-time asymptotic behavior as the spreading happens, which is
the sharp distinction for our spatial heterogeneous and time almost periodic WNv model.

Theorem 5.6. Assume that (H1)–(H5) hold. For any given h0 and (U0, V0) satisfying (1.7), let

(U(x, t;U0, V0, h0), V (x, t;U0, V0, h0))

be the solution for (1.6). If h∞ − g∞ = ∞, then

lim
t→+∞(U(x, t;U0, V0, h0) − U∗(x, t)) = 0, lim

t→+∞(V (x, t;U0, V0, h0) − V ∗(x, t)) = 0 (5.14)

locally uniformly for x ∈ R, where (U∗(x, t), V ∗(x, t)) is the unique positive almost periodic solution of
the system (2.5). That is, the disease will spread.

Proof. Now we complete the proof of this theorem in three steps.
Step 1: To show that h∞ = ∞ and g∞ = −∞ when h∞ − g∞ = ∞.
We give a proof by contradiction for this argument. Without loss of generality, assume that g∞ = −∞

and h∞ < ∞. According to Theorem 5.4, we have lim
t→∞ h′(t) = 0. Choose t∗0 > 0 large enough such that

h (t∗0) − g (t∗0) > 2L∗. Given (H5 ) and Lemma 5.2, it follows

inf
t>t∗

0 ,x∈[g(t∗
0),h(t∗

0)]
U (t, x;U0, V0, h0) > 0,

inf
t>t∗

0 ,x∈[g(t∗
0),h(t∗

0)]
V (t, x;U0, V0, h0) > 0.

Take tn → ∞ such that f (x, t + tn, U, V ) → f∗(x, t, U, V ) and

U (x, t + tn;U0, V0, h0) → U∗(x, t), V (x, t + tn;U0, V0, h0) → V ∗(x, t).
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We thereby obtain that (U∗(x, t), V ∗(x, t) is the solution of
⎧
⎨

⎩

ut = D1uxx + f∗(x, t, u, v), −∞ < x < h∞,
vt = D2vxx + f∗(x, t, u, v), −∞ < x < h∞,
u (h∞, t) = 0, v (h∞, t) = 0,

and inf
t∈R,x∈[g(t∗

0),h(t∗
0)]

U∗(x, t) > 0, inf
t∈R,x∈[g(t∗

0),h(t∗
0)]

V ∗(x, t) > 0. Apply Hopf lemma to get that

U∗
x (h∞, t) < 0, which implies that

h′ (t + tn) → −μU∗
x (h∞, t) > 0.

It is contradict to the fact that lim
t→∞ h′(t) = 0. Therefore, g∞ = −∞ and h∞ = ∞.

Step 2: To prove the existence and uniqueness of the positive time almost periodic solution for (2.5).
Let U0 := N1, V0 := N2, then by comparison principle, U(x, t;N1, N2, f1 ·(−t), f2 ·(−t)) and V (x, t;N1,

N2, f1 · (−t), f2 · (−t)) decrease in t ∈ R. Take

U∗(f1, f2)(x) := lim
t→∞ U(x, t;N1, N2, f1 · (−t), f2 · (−t)),

V ∗(f1, f2)(x) := lim
t→∞ V (x, t;N1, N2, f1 · (−t), f2 · (−t))

for x ∈ R. Then it follows

U(·, t;U∗(f1, f2)(x), V ∗(f1, f2)(x), f1, f2) = U∗(f1 · t, f2 · t)(·),
V (·, t;U∗(f1, f2)(x), V ∗(f1, f2)(x), f1, f2) = V ∗(f1 · t, f2 · t)(·),

where (U(x, t;N1, N2, f1, f2), V (x, t;N1, N2, f1, f2)) is the solution for (4.2) for U0 = N1, V0 = N2 and
L = ∞. Applying the similar methods in proving Proposition 6.1 of [42], we can show that (U∗(f1 · t, f2 ·
t)(x), V ∗(f1 · t, f2 · t)(x)) is the unique solution for (2.5). Moreover, by Lemma 5.2, it follows

inf
x∈R,t∈R+

U∗(f1 · t, f2 · t)(x) > 0, inf
x∈R,t∈R+

V ∗(f1 · t, f2 · t)(x) > 0. (5.15)

Now it is only necessary to prove that U∗(f1 · t, f2 · t)(x) and V ∗(f1 · t, f2 · t)(x) are uniformly almost
periodic in t ∈ R with x in bounded subsets of R. Since fi(x, t, U, V ) is uniformly almost periodic in
t with x ∈ R and (U, V ) in bounded subsets of R

2 for i = 1, 2, according to Theorems 1.17 and 2.10
([43]), for any sequences {an} ⊂ R and {bn} ⊂ R, there exist {tn} ⊂ {an} and {sn} ⊂ {bn} such that
lim

n→∞ fi(x, t + tn + sn, U, V ) = lim
n→∞ lim

m→∞ fi(x, t + tn + sm, U, V ) for (x, t, U, V ) ∈ R
4, i = 1, 2. Assume

that

lim
n→∞ fi(x, t + tn + sn, U, V ) = f∗

i (x, t, U, V ), lim
m→∞ fi(x, t + sm, U, V ) = f∗∗

i (x, t, U, V ).

Then we can get that

lim
m→∞ U(x, t + sm, U∗(f1, f2), V ∗(f1, f2), f1, f2) = U∗(f∗∗

1 · t, f∗∗
2 · t)(x),

lim
m→∞ V (x, t + sm, U∗(f1, f2), V ∗(f1, f2), f1, f2) = V ∗(f∗∗

1 · t, f∗∗
2 · t)(x)

uniformly for x in bounded sets of R. Further, it follows that

lim
n→∞ lim

m→∞ U(x, t + tn + sm, U∗(f1, f2), V ∗(f1, f2), f1, f2)

= lim
n→∞ U(x, tn, U∗(f∗∗

1 · t, f∗∗
2 · t), V ∗(f∗∗

1 · t, f∗∗
2 · t), f∗∗

1 · t, f∗∗
2 · t)

= lim
n→∞ U(x, t, U∗(f∗∗

1 · tn, f∗∗
2 · tn), V ∗(f∗∗

1 · tn, f∗∗
2 · tn), f∗∗

1 · tn, f∗∗
2 · tn)

= U∗(f∗
1 · t, f∗

2 · t)(x), (5.16)
lim

n→∞ lim
m→∞ V (x, t + tn + sm, U∗(f1, f2), V ∗(f1, f2), f1, f2)

= lim
n→∞ V (x, tn, U∗(f∗∗

1 · t, f∗∗
2 · t), V ∗(f∗∗

1 · t, f∗∗
2 · t), f∗∗

1 · t, f∗∗
2 · t)
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= lim
n→∞ V (x, t, U∗(f∗∗

1 · tn, f∗∗
2 · tn), V ∗(f∗∗

1 · tn, f∗∗
2 · tn), f∗∗

1 · tn, f∗∗
2 · tn)

= V ∗(f∗
1 · t, f∗

2 · t)(x) (5.17)

uniformly for x in bounded sets of R. Moreover,

lim
n→∞ U(x, t + tn + sn, U∗(f1, f2), V ∗(f1, f2), f1, f2) = U∗(f∗

1 · t, f∗
2 · t)(x)

lim
n→∞ V (x, t + tn + sn, U∗(f1, f2), V ∗(f1, f2), f1, f2) = V ∗(f∗

1 · t, f∗
2 · t)(x)

uniformly for x in bounded sets of R. Thus,

lim
n→∞ lim

m→∞ U(x, t + tn + sm, U∗(f1, f2), V ∗(f1, f2), f1, f2)

= lim
n→∞ U(x, t + tn + sn, U∗(f1, f2), V ∗(f1, f2), f1, f2),

lim
n→∞ lim

m→∞ V (x, t + tn + sm, U∗(f1, f2), V ∗(f1, f2), f1, f2)

= lim
n→∞ V (x, t + tn + sn, U∗(f1, f2), V ∗(f1, f2), f1, f2).

According to the regularity and prior estimates for parabolic differential equations,

U(x, t, U∗(f1, f2), V ∗(f1, f2), f1, f2) and V (x, t, U∗(f1, f2), V ∗(f1, f2), f1, f2)

are uniformly continuous for (x, t) ∈ R
2, applying Theorems 1.17 and 2.10 ([43]), it follows that U∗(f1 ·

t, f2 · t)(x) and V ∗(f1 · t, f2 · t)(x) are almost periodic in t ∈ R uniformly with x in bounded sets of R.
Step 3: To prove the convergence result (5.14).
Let UL(f1, f2)(x) and VL(f1, f2)(x) be in Lemma 5.1, then for any fixed x,UL(f1, f2)(x) and

VL(f1, f2)(x) are increasing in L. Applying the Comparison Principle and Lemma 5.2, we can obtain
that

lim
L→∞

UL(f1, f2)(x) = U∗(f1, f2)(x), lim
L→∞

VL(f1, f2)(x) = V ∗(f1, f2)(x) (5.18)

locally uniformly for x ∈ R.
For any T > 0 satisfying h(T ) − g(T ) > 2L∗, denote U (·, T ;U0, V0, h0) := U(·, T ) and V (·, T ;U0,

V0, h0) := V (·, T ), we can get

U (x, t + T ;U0, V0, h0) ≥ UL (x, t;U (·, T ) , V (·, T ) , f1 · T, f2 · T ) for t ≥ 0,

V (x, t + T ;U0, V0, h0) ≥ VL (x, t;U(·, T ), V (·, T ) , f1 · T, f2 · T ) for t ≥ 0,

where (UL (x, t;U (·, T ) , V (·, T ) , f1 · T, f2 · T ) , VL (x, t;U (·, T ) , V (·, T ) , f1 · T, f2 · T )) is the solution of
following system

⎧
⎨

⎩

Ut = D1Uxx + f1 · T (x, t, U, V ), g (T ;U0, V0, h0) < x < h (T ;U0, V0, h0) , t > 0,
Vt = D2Vxx + f2 · T (x, t, U, V ), g (T ;U0, V0, h0) < x < h (T ;U0, V0, h0) , t > 0,
U(x, t) = V (x, t) = 0, x = g (T ;U0, V0, h0) or h (T ;U0, V0, h0) , t > 0

(5.19)

with L =
h (T ;U0, V0, h0) − g (T ;U0, V0, h0)

2
,

UL (x, 0;U (·, T ) , V (·, T ) , f1 · T, f2 · T ) = U (x, T ;U0, V0, h0)

and

VL (x, 0;U (·, T ) , V (·, T ) , f1 · T, f2 · T ) = V (x, T ;U0, V0, h0) .

According to Lemma 5.1,

lim
t→∞ (UL (x, t;U (·, T ) , V (·, T ) , f1 · T, f2 · T ) − UL(f1 · (t + T ), f2 · (t + T ))) (x) = 0,

lim
t→∞ (VL (x, t;U (·, T ) , V (·, T ) , f1 · T, f2 · T ) − VL(f1 · (t + T ), f2 · (t + T ))) (x) = 0
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uniformly for x in [g (T ;U0, V0, h0) , h (T ;U0, V0, h0)]. In view of (5.18)

lim
L→∞

(UL(f1 · (t + T ), f2 · (t + T )) − U∗(f1 · (t + T ), f2 · (t + T ))) (x) = 0,

lim
L→∞

(VL(f1 · (t + T ), f2 · (t + T )) − V ∗(f1 · (t + T ), f2 · (t + T ))) (x) = 0

uniformly for x in any bounded sets of R. By Comparison Principle,

(U(x, t;U0, V0, h0), V (x, t;U0, V0, h0)) ≥ (UL(x, t;U0, V0, h0), VL(x, t;U0, V0, h0))

uniformly for (x, t) ∈ [g(t), h(t)] × [0,∞). Then we can get

lim
t→∞(U (x, t;U0, V0, h0) − U∗(f1 · t, f2 · t)(x)) = 0, lim

t→∞(V (x, t;U0, V0, h0) − V ∗(f1 · t, f2 · t)(x)) = 0

locally uniformly for x ∈ R. Take U∗(x, t) = U∗(f1 · t, f2 · t)(x), V ∗(x, t) = V ∗(f1 · t, f2 · t)(x). Therefore,
our proof is completed. �

Combining Theorem 5.5 with Theorem 5.6, we can give the following proof.

Proof of Theorem 2.2. Assume that (H1 )–(H5 ) hold. For any given g(0), h(0) and initial
functions (U0, V0) satisfying (1.7). Let (U(x, t, U0, V0, g, h), V (x, t, U0, V0, g, h)) be the solution of sys-
tem (1.6), It is easy to see that either h∞ − g∞ < ∞ or h∞ − g∞ = ∞ holds. According to Theorem 5.5,
if h∞ − g∞ < ∞, then h∞ − g∞ ≤ 2L∗. And lim

t→∞(U(x, t;U0, V0, h0), V (x, t;U0, V0, h0)) = 0 uniformly for

x ∈ [g∞, h∞]. According to Theorem 5.6, if h∞ − g∞ = ∞, then lim
t→+∞(U(x, t;U0, V0, h0) − U∗(x, t)) =

0, lim
t→+∞(V (x, t;U0, V0, h0) − V ∗(x, t)) = 0 locally uniformly for x in R. Thus, the spreading–vanishing

dichotomy for system (1.6) with (1.7) holds. �

Then we can get the sufficient conditions for spreading and vanishing of the disease.

Corollary 5.2. According to the above theorems, assume that (H1)–(H5) hold, it is natural to obtain
that if λ(t) < 0 for any t > 0, then the disease will vanish and the trivial equilibrium (0, 0) is globally
asymptotically stable. If λ(T ) > 0 for some T > 0, then h(T ) − g(T ) ≥ 2L∗. Taking T as the initial time,
we can get that the disease will spread and the trivial equilibrium (0, 0) is unstable.

Corollary 5.3. According to the above arguments and the positivity of (U∗(x, t), V ∗(x, t)) in (5.15), by the
persistence theory in Section 3 in Smith and Zhao [44] or the upper and lower solution method, we can get
that when the spreading happens, there is a ρ > 0 such that lim

t→∞ U(x, t;U0, V0, h0) ≥ ρ, lim
t→∞ V (x, t;U0, V0,

h0) ≥ ρ locally uniformly for x ∈ R.

Finally, we turn to prove Theorem 2.3.

Proof of Theorem 2.3. (1) Assume that (H5 ) holds, considering that h(t) is increasing and g(t) is de-
creasing, if λ(0) > 0, then h(0) − g(0) ≥ 2L∗, and

h∞ − g∞ > h(0) − g(0) ≥ 2L∗. (5.20)

Further, we can get that λ
(
A, h∞−g∞

2

)
> 0. According to Theorem 2.2, we can obtain that h∞−g∞ = ∞.

Therefore, the disease is spreading.
(2) Assume that h(0) − g(0) < 2L∗. Denote hμ(∞) := lim

t→∞ hμ(t), gμ(∞) := lim
t→∞ gμ(t), hμ(∞) −

gμ(∞) := lim
t→∞(hμ(t) − gμ(t)). Let

Λ := {μ | hμ(∞) − gμ(∞) < ∞} , ν := sup Λ. (5.21)

If Λ is an empty set, then hμ(∞)−gμ(∞) = ∞ for all μ > 0. In this case, μ∗ = 0 satisfies the conditions.
If Λ is a nonempty set, we first prove that ν ∈ Λ. On the contrary, assume that hν(∞) − gν(∞) = ∞.
Then there exists a T > 0 such that hν(T ) − gν(T ) > 2L∗. In view of the continuous dependence of hμ
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and gμ on μ, there is a ε > 0 small enough such that hμ(T ) − gμ(T ) > 2L∗ for any μ ∈ [ν − ε, ν + ε].
Therefore, we have

hμ(∞) − gμ(∞) = lim
t→∞(hμ(t) − gμ(t)) > hμ(T ) − gμ(T ) > 2L∗, μ ∈ [ν − ε, ν + ε] .

According to (5.20), we obtain that hμ(∞) − gμ(∞) = ∞, which implies that Λ ∩ [ν − ε, ν + ε] is an
empty set. It contradicts to (5.21). Thus, we have proved that hν(∞) − gν(∞) < ∞.

When μ > ν, we claim that hμ(∞)− gμ(∞) = ∞. On the contrary, assume that hμ(∞)− gμ(∞) < ∞,
then μ ≤ ν, which is a contradiction. Therefore, by Theorem 2.2, the spreading happens.

When μ ≤ ν, by Lemma 5.3, we can obtain hμ(t)−gμ(t) ≤ hν(t)−gν(t) for all t ∈ (0,+∞). Moreover,
hμ(∞) − gμ(∞) ≤ hν(∞) − gν(∞) < ∞, thus, by Theorem 2.2, the vanishing happens. In this case, we
can take μ∗ = ν. Therefore, our proof is completed. �

Remark 5.4. When the initial infected domain is smaller than 2L∗, for any given initial functions (U0, V0),
the spreading or vanishing of the epidemic disease mainly depends on the front expanding rate μ.

6. Asymptotic spreading speeds

Spreading speed is a significant index to describe the propagation scale of the epidemic disease. In this
section, we will give the lower and the upper bound estimates about the asymptotic spreading speeds of
the left front and the right front when the disease is spreading.

Proof of Theorem 2.4. We will prove the case of asymptotic spreading speed for the rightward front, the
case for the leftward front can be similarly estimated.

According to (1.5), let (u, v; g, h) be the solution of the following problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ut = D1Uxx + â1 (N1 − U)V − d̃1U, g(t) < x < h(t), t > 0,

Vt = D2Vxx + â2 (N2 − V ) U − d̃2V, g(t) < x < h(t), t > 0,
U(x, t) = V (x, t) = 0, x = h(t) or x = g(t), t > 0,
h(0) = h0, h′(t) = −μUx(h(t), t), t > 0,
g(0) = −h0, g′(t) = −μUx(g(t), t), t > 0,
U(x, 0) = U0(x), V (x, 0) = V0(x), −h0 ≤ x ≤ h0.

(6.1)

By comparison principle, we can obtain

g(t) ≤ g, h ≤ h, for t > 0.

Apply Theorem 3.15 in [45] to (6.1), there exists a c∗(μ) > 0 such that

lim
t→∞

−g(t)
t

= lim
t→∞

h(t)
t

= c∗(μ).

Thus, we have proved lim inf
t→∞

h(t)
t ≥ c∗(μ).

For the following system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ut = D1Uxx + ã1 (N1 − U)V − d̂1U, g(t) < x < h(t), t > 0,

Vt = D2Vxx + ã2 (N2 − V ) U − d̂2V, g(t) < x < h(t), t > 0,
U(x, t) = V (x, t) = 0, x = h(t) or x = g(t), t > 0,
h(0) = h0, h′(t) = −μUx(h(t), t), t > 0,
g(0) = −h0, g′(t) = −μUx(g(t), t), t > 0,
U(x, 0) = U0(x), V (x, 0) = V0(x), −h0 ≤ x ≤ h0.

(6.2)

Let (u, v; g, h) be the solution of (6.2), applying the similar arguments, we can get

g(t) ≤ g, h ≤ h, for t > 0.
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And there exists a c∗(μ) > 0 such that

lim
t→∞

−g(t)
t

= lim
t→∞

h(t)
t

= c∗(μ).

Thus, we have proved lim sup
t→∞

h(t)
t ≤ c∗(μ). �

Remark 6.1. Due to our limited knowledge, we may not give more explicit estimates about the as-
ymptotic spreading speeds for the double free boundaries of (1.6). However, according to the argu-
ments in Li et al. [46], we could make a reasonable conjecture: assume that (H1 )–(H5 ) hold and
ai(x, t) ≡ a∗

i (t), di(x, t) ≡ d∗
i (t) for i = 1, 2 are almost periodic in t ∈ [0,∞). For any given (U0, V0)

satisfying (1.7), let (U, V ; g, h) be the solution for problem (1.6), there exists a cμ > 0 such that
lim

t→∞
−g(t)

t = lim
t→∞

h(t)
t = cμ as the spreading occurs. Here, cμ is called the asymptotic spreading speed of

system(1.6).

7. Discussion

In this paper, unlike the previous ordinary differential equations and constant coefficient periodic reaction–
diffusion equations, we mainly propose a new reaction–diffusion WNv model (1.6) with moving infected
domains (g(t), h(t)) in the spatial heterogeneous and time almost periodic environment and explore the
long-time asymptotic dynamical behaviors of the solution for this model.

First, considering the spatial heterogeneity and time almost periodicity, we prove the global existence,
uniqueness and get the regularity estimates of solution for (1.6), which is not trivial to obtain. Next,
we define the principal Lyapunov exponent λ(A,L) and λ(t) concerning time t and get some analytic
properties of it. Moreover, we give the initial infected domain critical size L∗ using the principal Lyapunov
exponent. In this paper, under the assumption of λ(A,L) > 0 for L ≥ L∗, we obtain the following results:
if λ(t0) > 0 for some t0 ≥ 0, that is h(t0)−g(t0) ≥ 2L∗, then h∞ −g∞ = ∞ and the disease will spread no
matter how big the diffusion rates and the initial data are; if h(0) − g(0) < 2L∗, there exists a threshold
value μ∗ ≥ 0 which represents the infected region expanding capacity. When μ > μ∗, the disease will
spread and the disease will vanish when μ ≤ μ∗. What is most important, assuming (H1 )–(H5 ), we
obtain the long-time dynamical behaviors of WNv model by giving the spreading–vanishing dichotomy
regimes of (1.6). When the disease is vanishing, the densities (U(x, t, g, h), V (x, t, g, h)) of infected birds
and mosquitoes will asymptotically converge to 0 uniformly for x ∈ [g∞, h∞] and the eventually infected
domain is no more than 2L∗. When the disease is spreading, the densities (U(x, t, g, h), V (x, t, g, h)) of
infected birds and mosquitoes will converge to a positive almost periodic solution (U∗(x, t), V ∗(x, t)) of
(2.5) uniformly for x in any compact subsets of R. When the spreading occurs, the asymptotic behavior
of the solution is largely different from the other homogeneous WNv models. This result indicates that if
we only consider the long-time behavior of WNv in a homogeneous environment, the spreading dynamics
will be misjudged. What is more, it is well known that spreading speed is an important standard to
predict the propagation rate of the epidemic disease. We give the following simple estimates about the
lower and the upper bound of the asymptotic spreading speeds for the leftward and rightward fronts for
(1.6):

c∗(μ) ≤ lim inf
t→∞

−g(t)
t

≤ lim sup
t→∞

−g(t)
t

≤ c∗(μ),

c∗(μ) ≤ lim inf
t→∞

h(t)
t

≤ lim sup
t→∞

h(t)
t

≤ c∗(μ).
(7.1)

Moreover, our techniques in studying almost periodic systems different from other homogeneous and
periodic systems can be applied in other almost periodic equations. Our methods using the principal
Lyapunov exponent can also be applied to investigate other epidemic models. In order to better analyze
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the spreading dynamics of the epidemic model, we will try to give sharp calculation results about the
asymptotic spreading speeds of the double free fronts for cooperative and competition systems in the
next work. These are interesting and valuable researches.

Acknowledgements

The authors are supported by the NSF of China (Nos. 11671382, 12031020), CAS Key Project of Frontier
Sciences (No. QYZDJ-SSW-JSC003), the Key Lab. of Random Complex Structures and Data Sciences
CAS and National Center for Mathematics and Interdisciplinary Sciences CAS.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

[1] Wonham, M.J., De-Camino-Beck, T., Lewis, M.A.: An epidemiological model for West Nile virus: invasion analysis and
control applications. Proc. R. Soc. B Biol. Sci. 271(1538), 501–507 (2004)

[2] Cruz-Pacheco, G., Esteva, L., Monta-Hirose, J.A., Vargas, C.: Modelling the dynamics of West Nile Virus. Bull. Math.
Biol. 67(6), 1157–1172 (2005)

[3] Bowman, C., Gumel, A.B., Driessche, P.v.d, Wu, J., Zhu, H.: A mathematical model for assessing control strategies
against West Nile virus. Bull. Math. Biol. 67(5), 1107–1133 (2005)

[4] Abdelrazec, A., Lenhart, S., Zhu, H.: Transmission dynamics of West Nile virus in mosquitoes and corvids and non-
corvids. J. Math. Biol. 68(6), 1553–1582 (2014)

[5] Chen, J., Huang, J., Beier, J., Cantrell, R., Cosner, C., Fuller, D., Zhang, G., Ruan, S.: Modeling and control of local
outbreaks of West Nile virus in the United States. Discrete Contin. Dyn. Syst. 21(8), 2423–2449 (2016)

[6] Lewis, M., Renc�lawowicz, J., Driessche, P.V.D.: Traveling waves and spread rates for a West Nile virus model. Bull.
Math. Biol. 68(1), 3–23 (2006)

[7] Maidana, N.A., Yang, H.M.: Spatial spreading of West Nile Virus described by traveling waves. J. Theor. Biol. 258(3),
403–417 (2009)

[8] Chen, X., Friedman, A.: A free boundary problem for an elliptic–hyperbolic system: an application to tumor growth.
SIAM J. Math. Anal. 35(4), 974–986 (2003)

[9] Lin, Z.: A free boundary problem for a predator–prey model. Nonlinearity 20(8), 1883–1892 (2007)
[10] Du, Y., Lin, Z.: Spreading–vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math.

Anal. 42(1), 377–405 (2010)
[11] Wang, M.: On some free boundary problems of the prey–predator model. J. Differ. Equ. 256(10), 3365–3394 (2014)
[12] Wang, Y., Guo, S.: A SIS reaction–diffusion model with a free boundary condition and nonhomogeneous coefficients.

Discrete Contin. Dyn. Syst. B 24(4), 1627–1652 (2019)
[13] Liu, S., Huang, H., Wang, M.: A free boundary problem for a prey–predator model with degenerate diffusion and

predator-stage structure. Discrete Contin. Dyn. Syst. B 25(5), 1649–1670 (2020)
[14] Lin, Z., Zhu, H.: Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary.

J. Math. Biol. 75(6–7), 1381–1409 (2017)
[15] Tarboush, A.K., Lin, Z., Zhang, M.: Spreading and vanishing in a West Nile virus model with expanding fronts. Sci.

China Math. 60(5), 841–860 (2017)
[16] Cheng, C., Zheng, Z.: Dynamics and spreading speed of a reaction–diffusion system with advection modeling West Nile

virus. J. Math. Anal. Appl. 493(1), 124507 (2021)
[17] Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction–

diffusion model. Discrete Contin. Dyn. Syst. 21(1), 1–20 (2008)
[18] Zhou, P., Xiao, D.: The diffusive logistic model with a free boundary in heterogeneous environment. J. Differ. Equ.

256(6), 1927–1954 (2014)
[19] Zhao, J., Wang, M.: A free boundary problem of a predator–prey model with higher dimension and heterogeneous

environment. Nonlinear Anal. Real World Appl. 16, 250–263 (2014)
[20] Wang, M.: The diffusive logistic equation with a free boundary and sign-changing coefficient. J. Differ. Equ. 258(4),

1252–1266 (2015)
[21] Ge, J., Lei, C., Lin, Z.: Reproduction numbers and the expanding fronts for a diffusion–advection SIS model in hetero-

geneous time-periodic environment. Nonlinear Anal. Real World Appl. 33, 100–120 (2017)



84 Page 26 of 27 C. Cheng and Z. Zheng ZAMP

[22] Ding, W., Peng, R., Wei, L.: The diffusive logistic model with a free boundary in a heterogeneous time-periodic
environment. J. Differ. Equ. 263(5), 2736–2779 (2017)

[23] Zhang, M., Lin, Z.: A reaction–diffusion–advection model for Aedes aegypti mosquitoes in a time-periodic environment.
Nonlinear Anal. Real World Appl. 46, 219–237 (2019)

[24] Peng, R., Zhao, X.Q.: A reaction–diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25(5),
1451–1471 (2012)

[25] Zhang, L., Wang, Z.C.: A time-periodic reaction–diffusion epidemic model with infection period. Zeitschrift Für Ange-
wandte Mathematik Und Physik 67, 117 (2016)

[26] Shan, C., Fan, G., Zhu, H.: Periodic phenomena and driving mechanisms in transmission of West Nile virus with
maturation time. J. Dyn. Differ. Equ. 32(2), 1003–1026 (2020)

[27] Shen, W., Yi, Y.: Convergence in almost periodic fisher and Kolmogorov models. J. Math. Biol. 37(1), 84–102 (1998)
[28] Huang, J., Shen, W.: Speeds of spread and propagation for KPP models in time almost and space periodic media.

SIAM J. Appl. Dyn. Syst. 8(3), 790–821 (2009)
[29] Wang, B.G., Zhao, X.Q.: Basic reproduction ratios for almost periodic compartmental epidemic models. J. Dyn. Differ.

Equ. 25(2), 535–562 (2013)
[30] Wang, B.G., Li, W.T., Wang, Z.C.: A reaction–diffusion SIS epidemic model in an almost periodic environment.

Zeitschrift Für Angewandte Mathematik Und Physik Zamp 66(6), 3085–3108 (2016)
[31] Qiang, L., Wang, B.G., Wang, Z.C.: A reaction–diffusion epidemic model with incubation period in almost periodic

environments. Eur. J. Appl. Math. 66, 1–24 (2020)
[32] Zhao, X.Q.: Global attractivity in monotone and subhomogeneous almost periodic systems. J. Differ. Equ. 187(2),

494–509 (2003)
[33] Wang, M.: Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete

Contin. Dyn. Syst. B 24(2), 415–421 (2019)
[34] Ladyzhenskaia, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasi-linear Equations of Parabolic Type, vol. 23.

American Mathematical Society (1968)
[35] Wang, M.: Nonlinear Second Order Parabolic Equations, vol. 1. CRC Press, Boca Raton (2021)
[36] Wang, M.: Sobolev Spaces. High Education Press, Beijing (2013).. ((in Chinese))
[37] Dan, H.: Geometric Theory of Semilinear Parabolic Equations, vol. 840. Springer, Berlin (1981)
[38] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44. Springer, Berlin

(2012)
[39] Shen, W., Yi, Y.: Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflow. Memorirs of the

American Mathematical Society (1998)
[40] Hutson, V., Shen, W., Vickers, G.T.: Estimates for the principal spectrum point for certain time-dependent parabolic

operators. Proc. Am. Math. Soc. 129(6), 1669–1679 (2001)
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