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Abstract. The possibility to introduce a new relative rotation tensor in the field of nonlinear micropolar continua is discussed
in the present paper. The proposed deformation tensor is able to uncouple the classic energetic contribution, related to the
material particles translation, and the non-classic ones due to the material particles microrotation. The two main used
tool are the least action principle and Levi–Civita absolute tensor calculus which allow to derive the new Euler–Lagrange
equations. Some numerical applications are made to investigate the mathematical and mechanical implications of the
proposed theoretical model. Axial, bending and torsion numerical tests are performed on structural elements typical of
a pantographic structure. Interesting behaviours have been obtained which cannot be forecasted by classical elasticity.
In addition of predicting new phenomena, it follows that the new relative rotation tensor could help in the description
of granular materials and in the design of novel metamaterials that could be macroscopically described by means of the
proposed tensor itself.
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1. Introduction

Micropolar elasticity differs from classical elasticity in that in the first one each material particle cannot
only translate, but also independently rotate. The first ideas about the micropolar continuum were sum-
marized by the Cosserat brothers [1], and later results in the field of nonlinear micropolar continua were
obtained by Eremeyev et al. [2], Altenbach et al. [3,4], Forest [5], dell’Isola and Eremeyev [6], Eremeyev
and Pietraszkiewicz [7]. Micropolar theories are strictly related to the second gradient ones in which the
specific deformation energy is expressed as a function of the second displacement gradient; although a
complete work on this relationship has not yet been published, Bersani et al. [8] have drawn the path
to follow to link them with each other by means of the Lagrange multiplier theorem: a review on the
Lagrange multiplier theorem can be found in dell’Isola and Di Cosmo [9]. Historically, a precursor of
higher-order theories can be considered Gabrio Piola whose work has been translated in two volumes by
dell’Isola et al. [10,11], in a paper by dell’Isola et al. [12] and an analysis of its legacy can be found in
[13,14]; on the other hand, some recent theoretical and numerical studies on the topic have been made
by Auffray et al. [15], dell’Isola and Seppecher [16,17], Seppecher [18] and Andreaus et al. [19].

A careful review of the reference literature shows the presence of two distinct groups of scientists
belonging to two different schools of thought: continuum thermodynamics and analytical continuum
mechanics. They are the result of two different postulation schemes to develop models: the first starts
from the balance of forces and equilibrium equations; the second focuses on the least action principle or,
more generally, on the principle of virtual work. It is precisely the difficulty encountered in overcoming
classical elasticity that led to reflect on the fundamental aspects of mechanics. We can refer to the works
by Eugster and dell’Isola [20–22] in which an exegesis of significant historical articles can be found; to the
treatments by Germain [23], Barchiesi et al. [24], dell’Isola and Placidi [25] about the method of virtual
work in the mechanics of continuous and its potential to create new theories.

The development of new models and theories is not only theoretical speculation, but it can practically
impact in two main fields: the description of the ever-increasing number of new materials; the creation

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-022-01715-x&domain=pdf
http://orcid.org/0000-0003-0664-8740


78 Page 2 of 26 G. La Valle ZAMP

of new metamaterials that follow a fixed new theoretical model. In this regard, a paradigmatic case is
offered by pantographic structures [26–29]. Pantographic structures consist of a planar grid obtained
by superposition of two families of bars that are connected by small cylinders usually called pivots.
Their history is closely linked to two main aspects: the development of second gradient continua and
the development of the 3D printing technology (see Go�laszwski et al. [30]); both led to deep and serious
scientific remarks. A review on metamaterials can be found in Barchiesi et al. [31,32] and a review of
some relevant approaches for designing bio-metamaterials can be found in Giorgio et al. [33]; instead,
among all the numerous works about pantographic structures, we need to mention those by Alibert et
al. [34], dell’Isola et al. [35,36] and Eremeyev et al. [37]. Recently, Ciallella et al. [38] analytically and
experimentally investigate the cyclic behaviour and dissipative properties of pantographic fabrics; Giorgio
[39] generalizes the idea of a pantographic sheet to obtain a more general elastic model for nets made
up of two families of curved Kirchhoff rods. In this context, we need to mention the work by Greco [40]
where an iso-parametric conforming finite element formulation is presented for the analysis of Kirchhoff
rods in the planar 2D case.

Pantographic structures have been studied from different points of view and different kind of modelling:
in addition to a meso-model in which they are considered as an assembly of Euler–Bernoulli beams
characterized by axial, bending, and torsional stiffness constitutive parameters [41], there exists the Piola–
Hencky-type Lagrangian model in which the mechanical behaviour of the microstructure is synthetically
described as a set of extensional springs interconnected by two other families of rotational springs for
involving bending and shear effects [42–45]; both microscopic discrete models tend to 2D continuum
models depending on the second in-plane displacement gradient [46,47].

Besides the potential to create new kinds of metamaterials, continuum and discrete micropolar models
have already been applied for the analysis of granular materials by Misra et al. [48–50], Giorgio et al.
[51,52], Turco et al. [53] and for the mechanical description of fibre reinforced solids by Steigmann [54],
Shirani and Steigmann [55]. Some stochastic considerations have been taken into account by Trovalusci
et al. [56]; others should be added involving simplified Monte Carlo simulations for finite element dis-
cretized structures [57–59], random matrices [60], the probability transformation method [61–64] and
mixed probabilistic approaches [65–67].

In this paper, a new deformation measure related to the difference between micro- and macrorotation
is introduced. A complete list of the independent deformation measures used in the literature in the field
of nonlinear micropolar continua can be found in Pietraszkiewicz and Eremeyev [68,69]: relative stretch
and wryness tensors are considered. The stretch tensor is frequently supposed to be dependent on the
product between the transposed of the microrotation tensor and the gradient of the placement function;
therefore, it is commonly assumed to be a function of the macrorotation tensor and of the square root
of the Cauchy-Green tensor. The deformation energy density derived from the aforementioned tensors
makes it difficult to distinguish classic and non-classic energetic contributions and/or effects under the
hypothesis of large displacements. The previous consideration led the author to introduce a new relative
rotation tensor, which, together with the Green–Saint–Venant tensor and the usual wryness tensor, allows
to highlight three different kind of strain.

Some numerical applications are performed to analyse the main features of the proposed model.
Rectangular and cylindrical beams typical of a pantographic sheet are studied by means of a deformation
energy density derived under the hypotheses of large displacements and isotropic materials. Since only
two of the three considered deformation tensors are independent, the chosen energy can be seen as
a particular form of constitutive equations of a classic micropolar model where only two independent
deformation measures appear. The relationship between the introduced constitutive parameters and the
classic micropolar ones is shown. Some peculiar effects are obtained. As the constitutive parameter linked
to the skewsymmetric part of the new relative rotation tensor increases, we can underline a significant
reduction in the portion of the beams characterized by transversal displacements different from zero if an
axial displacement is imposed; an inversion of compressed and stretched fibres after a bending caused by
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Fig. 1. Physical significance of χ, H, h and Q

transversal displacements; a reduction in the area of the sample affected by transversal displacements if
torsional displacements are imposed. We can conclude that the deformation measure introduced in this
work could help with modelling of complex materials.

2. Kinematics of the micropolar continuum

Let V and V∗ be two vector spaces. Hereafter, the symbol Lin (V,V∗) represents the set of linear applica-
tions which arrange an element of V to an element of V∗; the symbols Ort (V,V∗) and Sym (V,V∗) stand
for the sets of linear orthogonal and symmetric applications from V to V∗, respectively. The Levi–Civita
absolute tensor calculus have been used; upper case letters to indicate components in the Lagrangian
space and lower case letters to indicate components in the Eulerian space have been chosen. The deter-
minant of a linear application has been denoted det [·]; finally, the symbol δ denotes the Kronecker delta:
δM
N , δMN and δM

N are equal to 1 if M = N ; equal to zero, otherwise.
Let L be the initial (or Lagrangian) configuration and let E be the current (or Eulerian) configuration.

According to Cosserat and Cosserat [1], each material particle is characterized by six degrees of freedom.
Then, in the reference placement, the state of each particle is described by a position vector X ∈ L and
by a local reference system defined by three vectors

E′
A′ (X) = H (X) EA (1)

where EA ∈ L are orthonormal base vectors of L and the application H ∈ Ort (L,L) is such that

H−1 = HT ; det[H] = 1 (2)

In the current configuration, each particle is identified by means of:
• the field χ : L → E , x = χ(X, t) which denotes the placement field between L and E ;
• the application Q ∈ Ort (L, E) which describes the difference between the initial and the current

orientation of the local reference system able to fix the orientation of each particle:

e′
i′(X, t) = Q(X, t)E′

B′(X)δB′
i′ (3)

where e′
i′ (X) = h (X) ei; ei are orthonormal base vectors of E ; h ∈ Ort (E , E) and det[h] = 1; the

application Q is assumed to have the properties

Q−1 = QT ; det[Q] = 1 (4)

The field χ and the tensor Q are supposed to be independents. In Fig. 1, the physical significance of χ,
H, h, and Q has been clarified.



78 Page 4 of 26 G. La Valle ZAMP

2.1. Deformation measures

In this section, the Green–Saint–Venant tensor and the common wryness tensor are briefly recalled;
moreover, a new deformation measure is introduced which is able to discouple classic and non-classic
mechanical effects. All the deformation measures have to be the same in two configurations that differ
only for a rigid act of motion. In other words, they need to be objective in a sense that is shown in
Sect. 2.2.

2.1.1. Green–Saint–Venant tensor. Let be F = ∇Xχ the placement gradient which belongs to Lin(L, E) .
The polar decomposition theorem ensures the existence of only one couple of linear applications (R,U) ∈
Ort(L, E) × Sym(L,L) such that

F = RU ⇒ F i
A = Ri

BUB
A (5)

and

UB
A =

(
R−1

)B

i
F i

A =
(
RT

)B

i
F i

A (6)

The tensors R and U are named macrorotation tensor and strain tensor, respectively. The difference
between the Cauchy-Green tensor C = FT F and the identity matrix I gives the first deformation measure
E = 1

2 (FT F − I). It is usually called Green–Saint–Venant tensor (or nonlinear macro-strain), and in
components, it has the expression

EMN =
1
2
(CMN − δMN ) =

1
2

[
GNA

(
FT

)A

b
F b

M − δMN

]
=

1
2
(gabF

a
NF b

M − δMN ) (7)

where
(
FT

)A

b
= GACF a

Cgab (8)

The symbols G and g denote the Lagrangian and Eulerian metric tensor, respectively. Since EA and ei

are orthonormal bases of the Lagrangian and Eulerian spaces, both are assumed equal to the Kronecker
delta δ from now on.

2.1.2. Relative rotation tensor. The present paper aims to find a way to easily highlight the effect of
micro/macro-relative rotations of a micropolar Cosserat continuum. The term microrotation refers to
the particle rotation. Instead, we call macrorotation the rigid rotation of the infinitesimal portion of
the continuum in the neighbourhoods of the considered particles. To this purpose, a new deformation
tensor is identified. In the field of the Cosserat theory, many authors (see [68,69]) prefer to define the
stretch tensor Ē equal (except for constants) to (C − I), Ē = C − I, where C = QT RU = QT F includes
all the main physical quantities related to a Cosserat continuum: the tensors F , R and Q. Then, they
usually introduce a deformation energy density as a function of the stretch tensor Ē and of the wryness
tensor Γ (see Eq. (17)), W def(Ē , Γ ). Albeit Ē and Γ are enough to completely describe the kinematic
behaviours of a micropolar continuum, this kind of procedure leads to a deformation energy density which
does not clearly separate classic and non-classic energetic contributions. On the contrary, to consider the
deformation energy density, W def(E,R, Γ ), as a function of the Green–Saint–Venant tensor E (see Eq.
(7)), the relative rotation tensor R, (that we are going to introduce) and the wryness tensor Γ allow
to emphasize the effects due to the stretch, the micro/macro-relative rotation and the spatial variability
of the microrotations. The author’s subsequent proposal is the result of several attempts which will be
summarized below.

Firstly, the tensor QT R − I has been studied: it is objective (in the sense clarified in Sect. 2.2); it
depends entirely on R and Q and, as a consequence, it would seem the perfect choice to take into account
the micro/macro-relative rotation. Nevertheless, it is complicated to implement in a finite element code
due to the structure of R, given by

R = FU−1 = F
(
FT F

)− 1
2 (9)
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Equation (9) shows that R is a function of a square root of a matrix which is not easy to determine
in a symbolic way. The author also tried to run numerical simulations where a positive definite defor-
mation energy density was considered dependent on QT R − I. The software COMSOL Multiphysics R©

has been used, and convergence difficulties have been noted. The latter are related to the structure of
R, whose analytical expression as a function of displacements is not known a priori, and whose compu-
tation requires finding eigenvalues and eigenvectors of the matrix FT F . Interesting studies on the topic
by Zubov and Rudev [70] and Bouby et al. [71] try to evaluate directly the square root of a matrix and
the macrorotation matrix R; however, they do not seem very comfortable for numerical evaluations by
means of a commercial finite element software. This paper aims to find a relative rotation tensor that
results immediately applicable and symbolically defined.

Secondly, the difference Q − R would seem another suitable choice. It is common in 2D problems
the definition of the difference between the two representative angles of the macro- and microrotation.
Unfortunately, the aforementioned tensor is clearly non-objective.

In light of all the above remarks, the author chooses to overcome all the listed problems and to
introduce the new relative rotation tensor R as

R =
1
2

[(
QT F

)2 − (
RT F

)2]
=

1
2

[(
QT F

)2 − C
]

(10)

which in components becomes

RMN =
1
2

[
GAN

(
QT

)A

i
F i

L

(
QT

)L

j
F j

M − CMN

]
(11)

The tensor R is objective (see Sect. 2.2); it is equal to zero if R is equal to Q; it does not need the
computation of square roots of matrices and it is immediately implementable in a finite element software
without all the computational difficulties related to the structure of R (see Eq. (9)). The Green–Saint–
Venant tensor E and the relative rotation tensor R are not independent. It is not difficult to verify
that C =

(Ē + I
)T (Ē + I

)
, E = 1/2

[ĒT Ē + ĒT + Ē]
, and R = 1/2[

(Ē + I
)2 − (Ē + I

)T (Ē + I
)
]. If an

approximately linear constitutive relationship is supposed with respect to both Ē and R, the tensors E
and R are reduced to the symmetric and the skewsymmetric part of Ē , respectively: E ≈ S Ē , R ≈ AĒ ,
where S Ē = 1/2

(Ē + ĒT
)

and AĒ = 1/2
(Ē − ĒT

)
. The previous statement can be easily justified thanks

to the definition of R. The Green–Saint–Venant tensor E and the relative rotation tensor R represent two
different kinds of deformation measures. The first measures how much the distance between body particles
changes after the motion, and the second measures the difference between micro- and macrorotations. If
a continuum body is subjected to a rigid motion, the displacement gradient F is given by an orthogonal
matrix O, F = O and OT O = I is an identity matrix, then, E = 0 and R = 0. Otherwise, if the body
motion implies equals micro- and macrorotations, Q = R, then E = 1/2(FT F − I) and R = 0, where
R = F

(
FT F

)−1/2 = Q. Finally, if F is equal to an orthogonal matrix O, such that F = O, but the motion
is not rigid with respect to both translation and rotation, Q �= O, then, E = 0, R = 1/2[

(
QT O

)2 − I].
In the field of the linearized theory, the tensors F , Q and R can be written as F ≈ I +η∇ũ = I +ηH̃,

where ∇ũ = H̃ (see Bichara and dell’Isola [72]), Q ≈ I+ηQ̃ and R ≈ I+ηR̃ by neglecting each term of the
order of O

(
η2

)
. If the last expressions are replaced into Eqs. (10, 11), we obtain that R ≈ ηQ̃T − ηR̃T ≈

QT − RT . Since in the field of the linearized theory, the tensors R and Q are skewsymmetric, we have
R ≈ I + AR and Q ≈ I + AQ, where AR = ηR̃ and AQ = ηQ̃. Then, the relative rotation tensor R
becomes approximately equal to the difference between AR and AQ: R ≈ AR − AQ ≈ A∇u − AQ, where
A∇u is the skewsymmetric part of the matrix ∇u.

It could be interesting to notice that a link between the relative rotation here exposed and the one
introduced by Misra et al. [73] is conceivable. Misra et al. [73] define, in the field of the macromorphic
theory, the relative micro/macro-Green–Saint–Venant tensor Υ equal to 1/2

(
I − PT F−T

)
, in which

F = ∇Xχ, χ is the placement function of the grain of each sub-body, P = ∇Xχ′, χ′ is the placement
function of each other point of the sub-body. If the relative rotation R (see Eq. (10)) is assumed to
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be equal to Υ , then, the tensor P becomes equal to F
(−RT + I

)
. In this way, a possible relationship

between P, Q and F is derived, and a link between the micropolar and micromorphic theories is created.
Of course, this is not the only possible alternative.

2.1.3. Wryness tensor. The last deformation measure linked to the gradient of Q is recalled. Let us
consider the orthogonal structure of Q which implies the equality

(
QT

)B

i
Qi

A = δB
A (12)

The derivation of each member of Eq. (12) with respect to XC allows to prove the skewsymmetric
structure of the application ∇QT Q, which in components can be expressed as

(
QT

)B

i,C
Qi

A = − (
QT

)B

i
Qi

A,C (13)

Although the tensor ∇QT Q is objective and it could be taken as the wryness tensor, it is a third-order
tensor that is difficult to manipulate.

The skewsymmetric structure of ∇QT Q expressed by Eq. (13) implies, however chosen the index C ,
the existence of an axial vector. Then, the known wryness tensor Γ can be defined by

(
QT

)A

i,C
Qi

M = − (
QT

)A

i
Qi

M,C = ε A
BM ΓB

C (14)

where ε A
BM is the Levi–Civita indicator. If the indicator εLM

A is defined such that

ε A
BM εLM

A = 2δL
B (15)

and if each member of Eq. (14) is multiplied by the indicator εLM
A, we arrive to

1
2
εLM

A

(
QT

)A

i,C
Qi

M = −1
2
εLM

A

(
QT

)A

i
Qi

M,C = δL
BΓB

C = ΓL
C (16)

Throughout the whole paper, the tensor Γ is supposed to be a covariant tensor:

ΓMN =
1
2
GLM εLC

A

(
QT

)A

i,N
Qi

C (17)

The choice of Γ was motivated by [68]; moreover, the author chose to consider it as a covariant tensor in
analogy with the Cauchy-Green and relative rotation tensors.

2.1.4. Microrotation test function. In addition to introduce a new relative rotation tensor and to provide
a micropolar theory by means of the Levi–Civita notation, the present paper aims to derive the Euler–
Lagrange equations without considering Euler angles or by applying the Lagrange multiplier theorem. To
this purpose, let us consider the equality

(
QT

)B

i
Qi

A = δB
A (18)

If the variation of each member of Eq. (18) is evaluated, it is obtained

δ
(
QT

)B

i
Qi

A = − (
QT

)B

i
δQi

A (19)

Since Eq. (19) implies the skewsymmetric structure of δQT Q, it is allowed to define the vector function
δω such that

δ
(
QT

)A

i
Qi

M = − (
QT

)A

i
δQi

M = ε A
jM δωj (20)

We choose to name δω “microrotation test function” and to derive the other two useful relations

δ
(
QT

)A

i
=

(
QT

)M

i
ε A
jM δωj (21)

δQi
M = −Q i

Aε A
jM δωj (22)

Equations (21) and (22) are particularly comfortable to perform the subsequent analytical steps and to
couple the equilibrium equations.
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2.2. Objectivity of deformation tensors

Let us call objectivity the property of invariance under the change of an observer in the Eulerian configura-
tion (see [15]). It is an abuse of nomenclature since, more strictly, we should call objective a mathematical
object that verifies the so-called principle of frame indifference (or principle of objectivity) (see [68,74]).
The last principle collects three independent postulates: the principle of invariance under Euclidean
transformations, the principle of invariance under superposed rigid-body motions, and the principle of
frame-invariance of the constitutive equations under change of observer. The property of invariance under
a rigid motion in the current configuration is a necessary condition so that a tensor could represent an
adequate measure of deformation. Let us consider the placement field in the infinitesimal neighbourhood
of a fixed point X0, which can be written as

χi
t (X) − χi

t (X0) =
∂χi

t

∂XA

∣
∣
∣
∣
X0

(
XA − XA

0

)
= F i

A

∣
∣
X0

(
XA − XA

0

)
(23)

Equation (23) implies the study of only local deformations (which is enough since the Principle of Local
Action is implicitly postulated throughout the article) and it does not add any hypothesis about the
displacement amplitude. Let us fix another instant t∗ in which the images of the placement field differ
from the ones in the instant t due to a rigid act of motion. Then, we have

χj
t∗ (X) − χj

t∗ (X0) = Oj
i

[
χi

t (X) − χi
t (X0)

]
(24)

where O ∈ Ort(E , E). Since it is true the following equality

χj
t∗ (X) − χj

t∗ (X0) =
∂χj

t∗

∂XA

∣
∣
∣
∣
∣
X0

(
XA − XA

0

)
= (F ∗)j

A

∣
∣
∣
X0

(
XA − XA

0

)
(25)

the link between the placement gradient in the instant t, F , and t∗, F ∗ is

(F ∗)j
A = Oj

i F
i
A (26)

that in matrix form becomes

F ∗ = OF (27)

Equation (26) shows the potential of the Levi–Civita notation: the presence of small letters as indices
of O confirms that the rigid motion is fixed inside the Eulerian space. A similar reasoning is applied for
deriving the relationship between the microrotation tensor in the instant t, Q, and t∗, Q∗. We get

(e′)∗
j′ = Q∗E′

B′δB′
j′ = Oe′

j′ = OQE′
B′δB′

j′ (28)

then

Q∗ = OQ (29)

Finally, the polar decomposition theorem is taken into account with the aim of deriving the useful
relationship between R (in the instant t) and R∗ (in the instant t∗) which can be expressed as

R∗ = F ∗ [
(F ∗)T F ∗]−1/2

= OF
(
FT OT OF

)−1/2
= OR (30)

If the configurations in t∗ and t differ only because of a rigid motion, the deformation energies of the
system in t∗ and t need to be equal. We say that the deformation tensors must be objective, i.e. invariant
in t and t∗. The Green–Saint–Venant tensor E, the new relative rotation tensor R presented here and
the wryness tensor Γ satisfy the previous property as proved below. We have

E∗ =
1
2
(C∗ − I) =

1
2

[
(F ∗)T F ∗ − I

]
=

1
2
(FT OT OF − I) =

1
2
(FT F − I) = E (31)

2R∗ = (Q∗)T (F ∗) (Q∗)T (F ∗) − (C∗) = QT OT OFQT OT OF − C =
(
QT F

)2 − C = 2R (32)
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and
1
2
GLM εLC

A

(
(Q∗)T

)A

i,N
(Q∗)i

C =
1
2
GLM εLC

A

(
QT

)A

j,N

(
OT

)j

i
Oi

k (Q)k
C =

1
2
GLM εLC

A

(
QT

)A

i,N
(Q)i

C

(33)

which implies Γ ∗ = Γ.

3. Action functional

In this section, the same arguments developed by Auffrey et al. [15], for founding second gradient con-
tinuum mechanics, are exploited to found nonlinear micropolar continuum mechanics. The Levi–Civita
absolute tensor calculus is extensively used.

Let us introduce the following action functional

A =

t1∫

t0

∫

L

[
1
2
ρ0v · v +

1
2
I0Θ · Θ − W (χ,Q,E,R, Γ,X)

]
dV dt +

t1∫

t0

∫

∂L
[−WS (χ,Q,X)] dAdt (34)

where
• the field χ denotes the placement field between L and E

χ : L → E (35)

• the fields ρ0 (X) and I0 (X) refer to the Lagrangian time-independent mass density and to the
Lagrangian time-independent proper spin of material points;

• the symbols E, R and Γ represent the Green–Saint–Venant tensor, the relative rotation tensor and
the wryness tensor, respectively (see Eqs. (7-11-17));

• v = ∂χ
∂t and Θ = ∂Q

∂t are the Lagrangian translational and rotational velocities;
• the product v · v and Θ · Θ are equal to vbv

b = gabv
avb and Θi

AΘA
i = gikΘk

BΘi
AGBA;

• the potential W (χ,Q,E,R, Γ,X) is relative to the volumic density of action inside the volume L;
• the potential WS (χ,Q,X) is relative to the actions externally applied at the boundary ∂L.

The internal energy W can be split into two addends: the objective deformation energy density W def (see
Eqs. (31–33)) and an external conservative action of a bulk load Uext

W (χ,Q,E,R, Γ,X) = W def (E,R, Γ,X) + Uext (χ,Q,X) (36)

The first variation of the part of the action functional related to the deformation energy can be written
as the sum of three terms

δAdef = δAdef
E + δAdef

R + δAdef
Γ (37)

In detail, we have:

δAdef
E = −

t1∫

t0

∫

L

∂W def

∂EMN
δEMNdV dt (38)

δAdef
R = −

t1∫

t0

∫

L

∂W def

∂RMN
δRMNdV dt (39)

δAdef
Γ = −

t1∫

t0

∫

L

∂W def

∂ΓMN
δΓMNdV dt (40)
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3.1. Piola stress tensor

To introduce the Piola stress tensor, we need to compute the first variation δAdef
E (38). Definition (7) of

the Green–Saint–Venant tensor allows to write

δEMN =
1
2
δCMN =

1
2
(gabδF

a
NF b

M + gabF
a
NδF b

M ) (41)

If Eq. (41) is replaced into Eq. (38), by taking into account the symmetry of E and integrating one time
by parts, we get

δAdef
E = −

t1∫

t0

∫

∂L

(
∂W def

∂EMN
F a

Ngab

)
NMδχbdAdt +

t1∫

t0

∫

L

∂

∂XM

(
∂W def

∂EMN
F a

Ngab

)
δχbdV dt. (42)

Since the Piola stress tensor can be defined by

P
M
b =

∂W def

∂EMN
F a

Ngab = 2
∂W def

∂CMN
F a

Ngab, (43)

the expression (42) becomes

δAdef
E = −

t1∫

t0

∫

∂L
P

M
b NMδχbdAdt +

t1∫

t0

∫

L

∂

∂XM

(
P

M
b

)
δχbdV dt (44)

3.2. Piola-type micropolar stress tensor

The present subsection aims to evaluate the first variation δAdef
R (39). Definition (11) of the relative

rotation tensor allows to write

δRMN =
1
2

[
GNAδ

(
QT F

)A

L

(
QT F

)L

M
+ GNA

(
QT F

)A

L
δ
(
QT F

)L

M
− δCMN

]
(45)

If Eqs. (21) and (7) are taken into account, Eq. (45) allows to achieve

∂W def

∂RMN
δRMN = V

(I)
j δωj +

[
F

M(I)
b + F

M(II)
b

]
δF b

M (46)

where

F
M(I)
b =

1
2

[
∂W def

∂RMN

(
QT

)A

i

(
QT

)B

b
+

∂W def

∂RBN

(
QT

)A

b

(
QT

)M

i

]
GANF i

B (47)

F
M(II)
b = −1

2

(
∂W def

∂RMN
+

∂W def

∂RNM

)
gabF

a
N (48)

V
(I)
j =

1
2

∂W def

∂RMN
ε B
jD

[
GBNF k

AF i
M + GANF i

BF k
M

] (
QT

)A

i

(
QT

)D

k
(49)

If Eqs. (46–49) are replaced into Eq. (39) and if the latter is integrated one time by parts, the first
variation δAdef

R becomes

δAdef
R = −

t1∫

t0

∫

L
V

(I)
j δωjdV dt −

t1∫

t0

∫

∂L
F

M
b NMδχbdAdt +

t1∫

t0

∫

L

∂

∂XM

(
F

M
b

)
δχbdV dt (50)

where the new tensor F is named “Piola-type micropolar stress tensor” by the author and it is defined
as F = F

(I) + F
(II); the new vector V

(I) is called “first Lagrangian stress vector”. Both have been derived
here for the first time.
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3.3. Piola-type couple stress tensor

To introduce such tensor, it is necessary to compute the first variation δAdef
Γ (37). Definition (17) of the

wryness tensor allows to write

δΓMN =
1
2
GLM εLC

Aδ
(
QT

)A

i,N
Qi

C +
1
2
GLM εLC

A

(
QT

)A

i,N
δQi

C (51)

Equation (21) leads to

δ
(
QT

)A

i,N
=

(
QT

)D

i,N
ε A
jD δωj+

(
QT

)D

i
ε A
jD δωj

,N (52)

If Eqs. (52-22) are replaced into Eq. (51), then

δΓMN =
1
2
GLM

(
εLC

Aε A
jD − εLA

Dε C
jA

) (
QT

)D

i,N
Qi

Cδωj + GLMδL
j δωj

,N (53)

If Eq. (53) is replaced into Eq. (40), we arrive to

δAdef
Γ = −

t1∫

t0

∫

L

[
1
2

∂W def

∂ΓMN
GLM

(
εLC

Aε A
jD − εLA

Dε C
jA

) (
QT

)D

i,N
Qi

Cδωj + GLM
∂W def

∂ΓMN
δL
j δωj

,N

]
dV dt

(54)

The tensor M and the vector V(II) that the author chooses to name “Piola-type couple stress tensor” and
“second Lagrangian stress vector” are defined as

M
N
j = GLM

∂W def

∂ΓMN
δL
j = GjM

∂W def

∂ΓMN
(55)

V
(II)
j =

1
2

∂W def

∂ΓMN
GLM

(
εLC

Aε A
jD − εLA

Dε C
jA

) (
QT

)D

i,N
Qi

C (56)

Finally, positions (55), (56) and one integration by parts lead to

δAdef
Γ = −

t1∫

t0

∫

L
V

(II)
j δωjdV dt −

t1∫

t0

∫

∂L
M

N
j NNδωjdAdt +

t1∫

t0

∫

L

∂

∂XN

(
M

N
j

)
δωjdV dt (57)

Although the tensor M and the vector V
(II) have been derived within well-known kinematic hypotheses

and they appear in the literature in different forms, the expressions proposed in Eq. (55) and (56) cannot
be found according to the author’s knowledge.

3.4. Euler–Lagrange equations

The first variation linked to the external volume actions, δAext, gives

δAext =

t1∫

t0

∫

L
Tbδχ

bdV dt +

t1∫

t0

∫

L
Cjδω

jdV dt (58)

where the functions Tb and Cj are fixed equal to

Tb = −∂Uext

∂χb
(59)

Cj =
∂Uext

∂Qi
M

Qi
Aε A

jM (60)
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On the other hand, the first variation linked to the surface actions, δAS , gives

δAS =

t1∫

t0

∫

∂L
tbδχ

bdV dt +

t1∫

t0

∫

∂L
cjδω

jdV dt (61)

in which the functions tb and cj are defined by

tb = −∂WS

∂χb
(62)

cj =
∂WS

∂Qi
M

Qi
Aε A

jM (63)

About the kinetic energy, it is interesting to show that its first variation, δAkin, can be written in the
form

δAkin =
∫

L

[
ρ0vbδχ

b + I0ϑjδω
j
]t1

t0
dV −

t1∫

t0

∫

L

[
ρ0

∂vb

∂t
δχb + I0

(
∂ϑj

∂t
+ ψj

)
δωj

]
dV dt (64)

where ϑj and ψj are fixed equal to

ϑj = −gikGBMΘk
BQi

Aε A
jM (65)

ψj = gikGBMΘk
BΘi

Aε A
jM (66)

Since ψj gives zero if gik = δik and GBM = δBM , the residual part ∂ϑj/∂t needs to be the material
inertial acceleration.

Equations (44-50-57) allow to evaluate the first variation linked to the deformation energy, δAdef .
Now, the first variation of the full action functional, δA, can be fixed equal to zero so as to derive the
minimum of the action functional itself, which means to impose the equality

δA = δAkin + δAdef + δAext + δAS = 0 (67)

Equation (67) leads to the Euler–Lagrangian equations for the nonlinear micropolar continuum:
• on the volume L

−ρ0
∂vb

∂t
+

∂

∂XM

(
L

M
b

)
+ Tb = 0 (68)

−I0
∂ϑj

∂t
+

∂

∂XN

(
M

N
j

) − Vj + Cj = 0 (69)

where the new vector V = V
(I) +V

(II) (see Eqs. (49-56)) and the new tensor L=P+F (see Eqs. (43-
47-48)) are named by the author “Lagrangian stress vector” and “Piola-type micropolar complete
stress tensor”; M is the Piola-type couple stress tensor (see Eq. (55));

• on the boundary ∂L
−L

M
b NM + tb = 0 (70)

−M
N
j NN + cj = 0 (71)

All the derived expressions are functions of the microrotation tensor Q. The microrotation test function
δω is mainly defined to couple the equilibrium equations and to avoid the application of the Lagrange
multiplier theorem. Equations (70) and (71) describe how the sub-bodies of a given continuous body
interact with each other in the field of the micropolar model here introduced: the sub-bodies shall exchange
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Fig. 2. Applied mesh for a axial and bending b torsion numerical tests

forces per unite area, LM
b , and couples per unite area, MN

j ; moreover, in each infinitesimal volume of the
continuum, couples of forces per unite area, Vj , act (see Eq. (69)).

4. Numerical applications

In this section, several numerical applications are performed (without any kind of kinematic linearization)
to investigate the effect of the new relative rotation tensor R (see Eqs. (10-11)) in the analysis of small
elements and the ability of R to describe non-classic mechanical behaviours in the nonlinear field. The
typical elements of a pantographic sheet are studied by means of axial, bending and torsion numerical
tests. The choice to analyse the substructures of a pantographic sheet is motivated by two main reasons:
the growing importance of pantographic structures within the scientific panorama; the dimensions of
their substructures, beams and pivots, which result significantly small with respect to the media usually
described by classical models. It is precisely the description of small samples together with granular and
metamaterials that justifies the development of micropolar and second gradient theories. The numerical
analyses are based on standard energy minimization techniques through the application of the standard
finite element method (FEM) packages in COMSOL Multiphysics R©. The geometrical characteristics and
the boundary conditions will be specified individually for each case. Regarding the accuracy of the analy-
ses, a free tetrahedral mesh with 33072 domain elements, 2944 boundary elements, and 196 edge elements
is chosen for the axial and bending numerical tests (see Fig. 2a); 30947 domain elements, 2206 boundary
elements, and 140 edge elements is chosen for the torsion numerical tests (see Fig. 2b). In both cases,
quadratic Lagrange interpolating polynomials have been considered for all the kinematic unknowns of
the differential problem.



ZAMP A new deformation measure Page 13 of 26 78

4.1. Deformation energy density

An isotropic deformation energy density, denoted by W def , quadratic with respect to E, R, Γ is imposed.
The tensors E, R, Γ have been defined in Sect. 2.1. We are naturally leaded to

W def =
λE

2
Tr [E]2 + μE ‖SE‖2 +

λR
2

Tr [R]2 + μR ‖SR‖2 + ξR ‖AR‖2

+
λΓ

2
Tr [Γ ]2 +

(
μΓ + ξΓ

2

)
‖SΓ‖2 +

(
μΓ − ξΓ

2

)
‖AΓ‖2

(72)

in which, the symbols Tr (·) and ‖·‖ stand for the trace and Euclidean norm of a considered tensor,
respectively. If a linear constitutive behaviour with respect to Ē = QT F − I (see Subsubsection 2.1.2) is
also supposed, Eq. (72) can be further simplified. In this case, E and R are reduced to the symmetric
and skewsymmetric parts of Ē : E ≈ S Ē and R ≈ AĒ ; Eq. (72) becomes

W def ≈ W̄ def =
λE

2
Tr

[
S Ē]2 + μE

∥
∥

S Ē∥
∥2 + ξR

∥
∥

AĒ∥
∥2 +

λΓ

2
Tr [Γ ]2

+
(

μΓ + ξΓ

2

)
‖SΓ‖2 +

(
μΓ − ξΓ

2

)
‖AΓ‖2 (73)

Therefore, the definition of R implies that the skewsymmetric part of Ē , AĒ , can be also chosen as a
measure of the micro/macro-relative rotation under appropriate constitutive assumptions. Hereafter, it
will be shown that both Eqs. (72) and (73) can be seen as the nonlinearized expressions of the linearized
micropolar strain energy widely used in the literature. In the field of the linearized theory, the tensors
F , R and Q can be approximated up by first degree polynomials in η, neglecting every term of the order
O

(
η2

)
: F ≈ I +η∇ũ; R ≈ I +ηR̃ = I +AR; Q ≈ I +ηQ̃ = I +AQ (see Subsection 2.1.2). Introducing the

tensor ε̄, defined as the difference between the displacement gradient ∇u and the skewsymmetric part of
the microrotation tensor Q in the linearized case, ε̄ = ∇u − AQ, the linearized forms of the deformation
tensors (7), (11) and (17) can be achieved. We have

E ≈ S Ē ≈ S ε̄ R ≈ AĒ ≈ Aε̄ Γ ≈ 1
2
ε : ∇QT =

1
2
ε : ∇AQT = k̄ (74)

where S ε̄ denotes the symmetric part of ε̄; Aε̄ the skewsymmetric part of ε̄; the micro-rotation tensor Q
is skewsymmetric. If Eq. (74) is replaced into Eq. (72) or into Eq. (73), we get

W def ≈ wdef =
λE

2
Tr [S ε̄]2 + μE ‖S ε̄‖2 + ξR ‖Aε̄‖2 +

λΓ

2
Tr

[
k̄
]2 +

(
μΓ + ξΓ

2

)∥
∥

S k̄
∥
∥2

+
(

μΓ − ξΓ

2

)∥
∥

Ak̄
∥
∥2 (75)

In the literature, the linearized micropolar strain energy function, that we denote by wdef
mp, is often written

as (see [75])

wdef
mp =

λ

2
Tr [S ε̄]2 + μ ‖S ε̄‖2 + μc ‖Aε̄‖2 +

α

2
Tr

[
k̄
]2 +

(
γ + β

2

) ∥
∥

S k̄
∥
∥2 +

(
γ − β

2

) ∥
∥

Ak̄
∥
∥2 (76)

A comparison between Eqs. (72), (75) and (76) allows to state that five of the parameters appearing in
the present paper are exactly the same of the classic micropolar ones. In detail, it is derived

λE = λ μE = μ ξR = μc λΓ = α μΓ = γ ξΓ = β (77)

The mathematical expression of Eq. (72) implies the following: it is necessary and sufficient condition for
the nonlinearized deformation energy density W def to be nonnegative definite that

μE � 0 3λE + 2μE � 0 3λR + 2μR � 0 μR � 0 ξR � 0

μΓ + ξΓ � 0 μΓ − ξΓ � 0 3λΓ + (μΓ + ξΓ ) � 0
(78)
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Table 1. Material parameters supposed in the numerical tests

λE(MPa) μE(MPa) λR(MPa) μR(MPa) ξR(MPa) λΓ (MN) μΓ (MN) ξΓ (MN)

Type 1 2 · 104 5.6 · 10−1 1 1 0 2 · 1011 5 · 1011 3 · 1011

Type 2 2 · 104 5.6 · 10−1 1 1 5 · 10−1 2 · 1011 5 · 1011 3 · 1011

Type 3 2 · 104 5.6 · 10−1 1 1 5 · 104 2 · 1011 5 · 1011 3 · 1011

Type 4 2 · 104 5.6 · 10−1 1 1 5 · 107 2 · 1011 5 · 1011 3 · 1011

In the numerical application, the author considered the nonlinearized energetic model (72), W def , whose
nonnegativity is given by positions (78). The material constants λE and μE are the Lamé parameters.
Indeed, different constitutive hypotheses could be made and internal energies of a bigger order could be
considered: from a practical point of view, it is better to limit the number of constitutive moduli since the
considerable difficulties related to their identification. The material parameters chosen for the numerical
tests are listed in Table 1: since ξR leads to the most exotic results, four different values of ξR are fixed to
understand its effect on the mechanical response of the samples. All the numerical applications have been
performed without caring about the amplitude of displacements. This is possible thanks to the general
definition of the deformation tensors (7), (11) and (17). On the contrary, Eqs. (75), (76) hold just for
small displacements and rotations.

4.2. Axial test

Firstly, a simple rectangular beam of base b = 0.9mm, height h = 1.6mm and length l = 4.8 mm is
analysed. In the clamped section, both displacements and rotations are blocked. The boundary conditions
are detailed below:

u1
(
X1,X2, 0

)
= u2

(
X1,X2, 0

)
= u3

(
X1,X2, 0

)
= 0 (79)

Q1
1

(
X1,X2, 0

)
= Q2

2

(
X1,X2, 0

)
= 1 Q1

2

(
X1,X2, 0

)
= Q2

1

(
X1,X2, 0

)
= 0 (80)

u3

(
X1,X2, l

)
= 1 · 10−3 m (81)

Albeit Eq. (80) expresses the boundary conditions in terms of the entrances of the microrotation tensor
Q, an alternative description is possible. The microrotation tensor Q can be directly defined in terms of
three angles r1, r2 and r3 , commonly known as Euler angles, which describe the rotations around the
axes whose directions are defined by E1, E2 and E3. A microrotation of r1 radians around E1 is given
by

QE1 =

⎡

⎣
1 0 0
0 cosr1 −sinr1

0 sinr1 cosr1

⎤

⎦ (82)

In the same way, a microrotation of r2 radians around E2 is described by

QE2 =

⎡

⎣
cosr2 0 sinr2

0 1 0
−sinr2 0 cosr2

⎤

⎦ (83)

Finally, a microrotation of r3 radians around E3 is modelled by

QE3 =

⎡

⎣
cosr3 −sinr3 0
sinr3 cosr3 0

0 0 1

⎤

⎦ (84)
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Fig. 3. Axial test: transversal displacement u1 for material parameters of a Type 1 b Type 2

The general microrotation matrix Q can be expressed as the product between QE3 , QE2 and QE1 so as
to obtain

Q = QE3QE2QE1 (85)

that, in an explicit form, is equal to

Q =

⎡

⎣
cosr2cosr3 sinr1sinr2cosr3 − cosr1sinr3 cosr1sinr2cosr3 + sinr1sinr3

cosr2sinr3 sinr1sinr2sinr3 + cosr1cosr3 cosr1sinr2sinr3 − sinr1cosr3

−sinr2 sinr1cosr2 cosr1cosr2

⎤

⎦ (86)

In view of this, Eq. (80) can be rewritten as

r1
(
X1,X2, 0

)
= r2

(
X1,X2, 0

)
= r3

(
X1,X2, 0

)
= 0 (87)

In summary, two procedures can be followed:

1 to define the microrotation tensor Q by adding the six constraints QT Q = I and det [Q] = 1;
2 to define Q by means of the angles r1, r2 and r3.

The second listed is preferred in this paper since it results advantageous from a computational point of
view if statistical problems are faced and small microrotations appear; if not, there are some difficulties
related to the periodic structures of the entrances of Q in Eq. (85). Another questionable aspect is the
existence of different angles and rotation matrices able to describe the same 3D rigid rotation.

The displacements u1, u2 and u3 that are obtained under the hypotheses of material parameters of
Type 1, Type 2, Type 3 and Type 4 (see Table 1) are shown in Figs. 3, 4, 5, 6 and 7, 8. The presented
set of figures show that the growth of the constitutive parameter ξR related to skewsymmetric part of
the relative rotation tensor R progressively reduces the transversal displacements. Although the same
axial displacements can be predicted also by classical elasticity, the possibility to predict transversal
displacements progressively equal to zero is a peculiar aspect of the introduced model.
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Fig. 4. Axial test: transversal displacement u1 for material parameters of a Type 3 b Type 4

Fig. 5. Axial test: transversal displacement u2 for material parameters of a Type 1 b Type 2

4.3. Bending test

The same beam as before is studied. The boundary conditions are listed below in detail:

u1
(
X1,X2, 0

)
= u2

(
X1,X2, 0

)
= u3

(
X1,X2, 0

)
= 0 (88)
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Fig. 6. Axial test: transversal displacement u2 for material parameters of a Type 3 b Type 4

Fig. 7. Axial test: axial displacement u3 for material parameters of a Type 1 b Type 2

r1
(
X1,X2, 0

)
= r2

(
X1,X2, 0

)
= r3

(
X1,X2, 0

)
= 0 (89)

u1

(
X1,X2, l

)
= 1 · 10−3 m (90)

The base b is fixed equal to 0.9mm, the height h equal to 1.6mm and the length l equal to 4.8 mm.
It goes without saying that the description by means of the Euler angles is preferred (see Eq. (85)). In
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Fig. 8. Axial test: axial displacement u3 for material parameters of a Type 3 b Type 4

Fig. 9. Bending test: transversal displacement u1 for material parameters of a Type 1 b Type 2

Figs. 9, 10, 11, 12 and 13, 14, the spatial distributions of the displacements u1, u2 and u3 are analysed
for the material parameters of Type 1, Type 2, Type 3 and Type 4 (see Table 1). The presence of
the relative rotation tensor R acts on two main aspects. As the parameter ξR increases, the sign of
the axial displacements u3 change along the transversal sections with a consequent inversion of the
stretched and compressed fibres. Where classical elasticity predicts traction, the presented model can
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Fig. 10. Bending test: transversal displacement u1 for material parameters of a Type 3 b Type 4

Fig. 11. Bending test: transversal displacement u2 for material parameters of a Type 1 b Type 2

predict compression, and the extreme free section rotates counterclockwise instead of clockwise. Moreover,
the portion of the beam affected by curvature decreases at the same time. The spatial distributions of
u1, u2 and u3, which are shown in Figure 9, 10, 11, 12, 13, 14, are closely related to the skewsymmetric
part of the tensor R.
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Fig. 12. Bending test: transversal displacement u2 for material parameters of a Type 3 b Type 4

Fig. 13. Bending test: axial displacement u3 for material parameters of a Type 1 b Type 2

4.4. Torsion test

In this section, a cylinder of radius r = 4 · 10−4 m and length l = 10−3 m is studied. This kind of element
can be thought as a pivot of a pantographic structure which is more subjected to torsional than to bending
or axial deformations. Also in this case, a description of the microrotation tensor Q by means of angles
(see Eq. (85)) is preferred. Below is a detailed list of the imposed boundary conditions:

u1
(
0,X2,X3

)
= u2

(
0,X2,X3

)
= u3

(
0,X2,X3

)
= 0 (91)



ZAMP A new deformation measure Page 21 of 26 78

Fig. 14. Bending test: axial displacement u3 for material parameters of a Type 3 b Type 4

Fig. 15. Torsion test: transversal displacement u2 for material parameters of (a) Type 1 (b) Type 2

r1
(
0,X2,X3

)
= r2

(
0,X2,X3

)
= r3

(
0,X2,X3

)
= 0 (92)

u1

(
l,X2,X3

)
= 0 (93)

u2

(
l,X2,X3

)
= X2cos (θ − 1) − X3sin (θ) (94)

u3

(
l,X2,X3

)
= X3cos (θ − 1) + X2sin (θ) (95)

A rotated reference system with respect to the previous numerical tests has been preferred by the
author just for convenience. In Figs. 15, 16, the displacements u2 and u3 are evaluated for the material
parameters of Type 1, Type 2 (see Table 1). The reported figures show that the presence of the deformation
tensor R allows to reduce the part of the sample interested by values of u2 and u3 different from zero.
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Fig. 16. Torsion test: axial displacement u3 for material parameters of (a) Type 1 (b) Type 2

Conclusions

In this paper, a new deformation measure R for the nonlinear micropolar continuum is introduced. It
takes into account the difference between micro- and macrorotations and it allows to clearly distinguish
classic and non-classic energetic contributions. In addition to the new kinematic definition, the Euler–
Lagrange equations are also derived by means of the least action principle and Levi–Civita absolute tensor
calculus.

Some numerical applications are performed to analyse the mechanical implications of the proposed
theoretical model. Typical substructures of pantographic sheets are studied by means of axial, bend-
ing and torsion numerical tests. The obtained results show some interesting effects as the constitutive
parameter linked to the skewsymmetric part of the relative rotation tensor R increases: the transversal
displacements of a rectangular beam subjected to a fixed axial displacement become progressively equal to
zero; the position of the stretched and compressed fibres in a rectangular beam subjected to a transversal
displacement becomes opposite to the ones provided by classical elasticity; the portion of a cylindrical
beam characterized by transversal displacements equal to zero increases if a torsion is imposed; the por-
tion of a rectangular beam characterized by curvature decreases if a transversal displacement is imposed.
It is noteworthy, the relative rotation tensor R and the deformation energy density W def proposed by the
author (quadratic with respect to the Green–Saint–Venant tensor E, R, the wryness tensor Γ and mod-
elling an isotropic material) do not involve any kind of kinematic linearization; then, it holds whatever
the amplitude of the imposed external loads, displacements and rotations. On the contrary, Eqs. (75–76)
can be used only in the case of small displacements and rotations. The presented numerical applications
seek to highlight the ability of the introduced model to derive large displacements and rotations solutions.
Moreover, the proposed relative rotation tensor implies the possibility to assume the skewsymmetric part
of the stretch tensor, denoted by AĒ , as a measure of the micro/macro-relative rotation. The author
believes that in the present paper, he has presented enough arguments to conclude that the new relative
rotation tensor R is the most appropriate to describe the micro/macro-relative rotation effects in the field
of nonlinear micropolar continua. Possible applications concern granular and compositebreak materials.
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