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Abstract. We introduce a dispersion approximation model for weak, entropy solutions of multidimensional scalar conservation
laws using variational kinetic representation, where equilibrium densities satisfy Gibb’s entropy minimization principle for
a piecewise linear, convex entropy. For such solutions, we show that small scale discontinuities, measured by the entropy
increments, propagate with characteristic velocities, while the large-scale, shock-type discontinuities propagate with speeds
close to the speeds of classical shock waves. In the zero-limit of the scale parameter, approximate solutions converge to a
unique, entropy solution of a scalar conservation law.
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1. Introduction

Consider the Cauchy problem for a quasilinear system{
∂tU +

∑d
i=1 ∂xi

Fi(U) = 0, (x, t) ∈ R
d+1
+ ,

U(x, 0) = U0(x), x ∈ R
d,

(1)

where U : Rd+1
+ → R

m, Fi : Rm → R
m. The main difficulty in constructing weak solutions for quasilinear

systems (1) is the lack of apriori estimates on solutions in norms that control oscillations. This limits
the application of such methods as viscosity or relaxation approximations of (1) for which pointwise
convergence of approximate solutions is hard to establish.

The difficulty is well illustrated on an example of a shock wave. For systems with a convex entropy,
weak solutions are typically restricted to verify entropy dissipation balance:

∂tη(U) + divx q(U) = r, r ≤ 0,

which provides apriori estimate on the total entropy at time t and total dissipated entropy up to time t
in terms of the entropy of the initial data. This type of control is, however, too weak. For example, for a

shock wave contained inside an interval [a, b], the total dissipated entropy
t∫
0

b∫
a

r dx is cubic in the strength

of the shock, see theorem 8.5.1 of Dafermos [4]. Thus, in a regime of increasing number of small shock
waves, the entropy does not control the oscillations as measured by the sum of all shock wave strengths.

In this paper, we explore the possibility of constructing approximate solutions of (1) for which entropy
inequality implies strong compactness, at the price of distorting certain small scale details of the original
solutions. More specifically, we will seek approximate, weak solutions of (1) such that

1. large shocks propagate with speeds close to the speeds computed from the original system (1);
2. the discontinuities, for which the change in the entropy is smaller than a certain threshold value ε,

are transported with characteristic velocities.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-022-01713-z&domain=pdf
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Thus, the approximation of this type involves small-scale dispersion effects. The present work shows how
this type of approximation can be implemented for scalar conservation laws in multi-dimensions. We
consider equation

∂tρ + divxA(ρ) = 0, (x, t) ∈ R
d+1
+ , (2)

where A : R → R
d is a smooth vector function of fluxes. The theory of unique entropy solutions for

scalar conservation laws was developed by Kruzhkov [8] using viscosity approximation. Later, different
approaches have been used to build such solutions, see [1–3,6,7,10]. Our approach is based on the kinetic
representation of entropy weak solutions of (2) developed by Brenier [1,2], Brenier and Corrias [3], Giga
and Miyakawa [6], and Lions et al. [10]. According to the theory, an admissible ρ(x, t) is represented as
a moment of an “equilibrium” kinetic density feq :

ρ(x, t) =
∫

feq(x, t, v) dv, feq(x, t, v) = I[0,ρ(x,t)](v), (3)

with feq solving a kinetic equation

∂tf + A′(v) · ∇xf = ∂vm, (4)

where m is non-negative Radon measure on R
d+2
+ . Here, for the simplicity of the presentation we assume

that ρ is non-negative. Conversely, any solution of (4) constrained by condition (3) for some ρ(x, t) defines
an admissible weak solution of conservation law in (2), see [10]. Moreover, for any strictly convex function
η, and a.e. (x, t), feq(x, t, v) is the unique minimizer of the problem

min
{∫

η′(v)f̃(v) dv : f̃(v) ∈ [0, 1],
∫

f̃ dv = ρ(x, t)
}

. (5)

Solutions of (4) can be obtained as limits of solutions of a relaxation problem

∂tf + A′(v) · ∇xf = h−1(Mf − f), (6)

where Mf is the minimizer of (5) with ρ =
∫

f dv. Strong compactness of a family of solutions with h → 0
can be obtained through the uniform L1 continuity ( [1,2,6]), or the compensated compactness method
([10]).

To obtain the approximate solutions with properties 1 and 2, described above, we will use the varia-
tional kinetic formulation (5) and (6), in which we introduce a scale parameter ε. For that purpose we
replace a strictly convex function η by a continuous, piecewise linear approximate entropy ηε. With the
new entropy function, the minimization problem admits multiple solutions, with indeterminacy on small
ε–scales. A particular minimizer Mf will be selected so that L1 norm of f − Mf can be estimated by the
entropy increment

∫
η′

ε(v)(f − Mf ) dv.
Our main result, Theorem 1 describes the properties kinetic functions obtained from this kinetic

relaxation approach. Such kinetic functions verify Eq. (4) where, in addition, the right-hand side is a
signed Radon measure, with the total variation controlled by the entropy:

||∂vm|| ≤ 2
ε

∫
ηε(ρ0) dx.

Furthermore, we show that moments ρ =
∫

f dv, and φ =
∫

A′(v)f dv, solve the balance equation

∂tρ + divxφ = 0,

and φ(x, t) = A(ρ(x, t))+O(ε2). In particular, if there is a co-dimension one discontinuity of ρ with values
ρ+, ρ−, (such discontinuities do develop in the solutions), such that |ρ+ − ρ−| > ε, then it propagates
with the velocity

σ =
A(ρ+) − A(ρ−)

ρ+ − ρ− + O(ε).
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The kinetic function f, as well as its moments, depends on the scale parameter ε. In Theorem 2 we show
that in the limit of ε → 0, ρ = ρε(x, t) converges to an admissible solutions of (2).

In summary, we describe a new type of approximation of scalar conservation laws with properties
distinct from the well-known viscosity approximation of Kruzhkov [8], kinetic relaxation approximation
of Brenier [1] and Giga and Miyakawa [6], or semi-linear relaxation of Katsoulakis and Tzavaras [7]. In
this approximation, large shocks propagate as sharp profiles (not smoothed) with velocities approximately
verifying Rankine–Hugoniot conditions, while the entropy balance controls small-scale oscillations.

2. Main result

Let A ∈ C2(R)d. Without loss of generality, we will assume that ρ0 is non-negative and bounded, so that
all kinetic functions are defined for the range of the kinetic variable v ∈ [0, L], for some L > 0. Unless it
is specified otherwise, in the inegrals below, the integration in v is over [0, L], in x is over R

d, and in t is
over R+. Let ε > 0. Define a piecewise constant function ηε as

ηε(v) = k, v ∈ [kε, (k + 1)ε), k = 0..�L/ε�.
ηε approximates the derivative of the quadratic entropy function. Here, for notational convenience, we
use ηε to denote the derivative of the entropy function described in the introduction.

Theorem 1. Let f0 ∈ L1(Rd × [0, L]) with values {0, 1}. For any ε > 0 there is f ∈ L1(Rd+1
+ × [0, L]) with

values in [0, 1] and m – a non-negative Radon measure on R
d+1
+ × R+ such that ∂vm is a signed Radon

measure on R
d+1
+ × [0, L] with the following properties:

i. (Kinetic equation) f and m verify (in distributional sense) equation

∂tf + A′(v) · ∇xf = ∂vm. (7)

Moreover,

||∂vm||
R

d+1
+ ×[0,L] ≤ 2

ε

∫∫
ηεf0 dxdv; (8)

ii. (Optimality) for a.e. (x, t), f is a minimizer of

min
{∫

ηε(v)f(v) dv : f(v) ∈ [0, 1],
∫

f dv = ρ(x, t)
}

; (9)

iii. (Equi-continuity) for a.e. t > 0, and any ξ ∈ R
d,∫∫

|f(x + ξ, t, v) − f(x, t, v)|dxdv ≤
∫∫

|f0(x + ξ, v) − f0(x, v)|dxdv. (10)

Remark 1. Estimate (10) was derived in [1,6]. We use it to show strong compactness of moments of a
time discerete approximation, in the proof of Theorem 1, and to verify (9). This estimate seems to be
restricted to scalar conservation laws, and does not apply to systems. However, there is an alternative
way to obtain strong compactness of moments by using only entopy estimate (8), through an kinetic
averaging lemma of Gérard, [5].

Kinetic functions from Theorem 1 give rise to the approximate solutions of the conservation law (2),
as described in the next theorem.

Theorem 2. For function f from the previous theorem, moments

ρ(x, t) =
∫

f(x, t, v) dv, φ(x, t) =
∫

A′(v)f(x, t, v) dv (11)

have the following properties.
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i. ρ, φ ∈ L∞(Rd+1
+ ) and verify (in distributional sense) conservation law

∂tρ + divxφ = 0. (12)

For any ψ ∈ C∞
0 (Rd),

∫
ρ(x, t)ψ(x) dx is continuous in t and

lim
t→0+

∫
ρ(x, t)ψ(x) dx =

∫∫
f0(x, v)ψ(x) dvdx;

ii. for any two pairs of values (ρ(x, t), φi(x, t)) and (ρ(y, τ), φi(y, τ)), such that |ρ(x, t) − ρ(y, t)| ≥ c0ε,
it holds:

φi(x, t) − φi(y, τ)
ρ(x, t) − ρ(y, τ)

=
Ai(ρ(x, t)) − Ai(ρ(y, τ))

ρ(x, t) − ρ(y, τ)
+ O(ε), i = 1..d; (13)

iii. (Limit to Kruzhkov’s solution) Considered as a function of ε, ρ = ρε, there is a sequence ε → 0 on
which ρε converges to the unique, entropy solution of the conservation law (2) in Lp

loc(R
d+1
+ ), for

any p ∈ [0,+∞).

2.1. Proof of Theorem 1

For a non-negative constant ρ ∈ [0, L] consider a minimization problem

min
{∫

ηε(v)f(v) dv : f(v) ∈ [0, 1],
∫

f dv = ρ

}
. (14)

In the next lemma IA(v) stands for a characteristic function of set A.

Lemma 1. Let n = 
ρ/ε�. The minimum in problem (14) equals{
ε
∑n−1

k=0 k + εn(ρ − nε), n ≥ 1,
0, n = 0.

It is achieved on minimizers

fmin(v) = I[0,nε](v) + f̃(v),

where f̃ is an arbitrary function verifying conditions:

f̃(v) ∈ [0, 1], ∀v ∈ [0, L]; supp f̃ ⊂ [nε, (n + 1)ε]; (15)∫
f̃ dv = ρ − nε. (16)

Proof. ηε(v) is a non-decreasing function. To minimize functional
∫

ηεf dv one needs to pick f that has

all its mass as close to v = 0 as possible, and is less than or equal 1. This shows the first statement. On
interval [nε, (n + 1)ε], a minimizer fmin can be arbitrarily re-arranged without changing the value of its
ηε moment. This leads to the second part of the lemma. �

Given a kinetic density f we select a particular minimizer of (14) with ρ =
∫

f dv in the following

way. If
L∫

(n+1)ε

f dv > nε −
nε∫
0

f dv, we set

Mf (v) = I[0,nε+v0](v) + f(v)I(nε+v0,(n+1)ε)(v), (17)

where v0 ∈ (0, ε) is determined by the relation
∫

Mf dv =
∫

f dv. It is the smallest number such that
nε+v0∫
0

1 − f dv =

L∫
(n+1)ε

f dv.
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If
L∫

(n+1)ε

f dv ≥ nε −
nε∫
0

f dv, we set

Mf (v) = I[0,nε](v) + f(v)I(nε,nε+v0)(v), (18)

where v0 ∈ (0, ε) is uniquely determined as the smallest number such that

nε∫
0

1 − f dv =

L∫
nε+v0

f dv.

This minimizer can be thought of as a rearrangement of mass f obtained by shifting its pieces to the
locations with smaller values of ηε(v).

The key properties of the minimizer fmin are listed in the next lemma.

Lemma 2. Let f be any function with values in [0, 1] and supported on [0, L]. For Mf , defined above∫
|f − Mf |dv ≤ 2

ε

∫
ηε(v)(f − Mf ) dv. (19)

For any non-decreasing function η, ∫
η(v)(f(v) − Mf (v)) dv ≥ 0. (20)

For any two functions f1, f2 with values in {0, 1} and supported on [0, L],∫
|Mf1 − Mf2 |dv ≤

∫
|f1 − f2|dv, (21)

where Mf1 ,Mf2 are the corresponding minimizers.

Proof. Let n be as in the previous lemma. Consider case (17).

∫
|f − Mf |dv =

nε+v0∫
0

1 − f dv +

L∫
(n+1)ε

f dv = 2

L∫
(n+1)ε

f dv ≤ 2
ε

∫
ηε(v)(f − Mf ) dv, (22)

where the last inequality holds since all mass of f on interval [(n + 1)ε, L] has been removed from that
interval. Similarly, in case (18)

∫
|f − Mf |dv =

nε∫
0

1 − f dv +

L∫
nε+v0

f dv = 2

L∫
nε+v0

f dv ≤ 2
ε

∫
ηε(v)(f − Mf ) dv. (23)

For a non-decreasing function η, (20) follows from the definition of Mf .
To prove (21) it suffices to show that∫

f1f2 dv ≤
∫

Mf1Mf2 dv, (24)

since functions take only values 0 or 1. Let n1, v1,0 and n2, v2,0 be the corresponding values of n and v0
from (17), (18) for functions f1 and f2.

Consider the case n1 > n2 first. Here

∫
Mf1Mf2 dv =

(n2+1)ε∫
0

Mf2 dv =
∫

f2 dv ≥
∫

f1f2 dv.
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Next, consider the case n1 = n2 (= n). Suppose that representation (17) applies to both functions f1, f2,
and assume v1,0 ≥ v2,0. Then,

∫
Mf1Mf2 dv ≥

(n+1)ε∫
nε+v1,0

f1f2 dv +

nε+v1,0∫
0

f2 dv +

L∫
(n+1)ε

f2 dv ≥
∫

f1f2 dv.

Suppose that representation (18) applies to both functions f1, f2, and assume v1,0 ≥ v2,0. Then,

∫
Mf1Mf2 dv ≥

nε∫
0

f2 dv +

L∫
nε+v2,0

f2 dv +

nε+v2,0∫
nε

f1f2 dv ≥
∫

f1f2 dv.

Suppose that (18) applies to function f1 and (17) to f2. If v1,0 ≥ v2,0 then

∫
Mf1Mf2 dv ≥

nε+v2,0∫
0

f1 dv +

L∫
nε+v1,0

f1 dv +

nε+v1,0∫
nε+v2,0

f1f2 dv ≥
∫

f1f2 dv.

If v1,0 < v2,0 then

∫
Mf1Mf2 dv ≥

L∫
0

f1 dv ≥
∫

f1f2 dv.

The contraction property (21) is proved now. �
Now we consider a discrete-time approximation, with time step h > 0 and tn = nh, n = 0, 1, 2... Given

fn−1(x, v) the next period kinetic function

fn(x, v) = Mf̂n
, f̂n(x, v) = fn−1(x − A′(v)h),

with f0 being the initial data. A continuous time approximate is defined as

fh(x, v, t) =
{

fn−1(x − A′(v)(t − nh)), t ∈ [(n − 1)h, nh),
fn(x, v), t = nh.

(25)

Remark 2. It can be easily seen that in dimension one, if initial data f0 is such that f0(x, v) = 1, for
0 ≤ v ≤ kε and f0(x, v) = 0 for v > ((k + 1)ε, then fn is evolved by simple translation with kinetic
velocities v, leading to dispersion effect. On the other hand if initial data, for example, has a form

f0(x, v) =
{
I[0,v1](v), x < 0,
I[0,v2](v), x > 0,

with v1 − v2 > ε and A(v) = v (corresponding to Burger’s equation) then fn evolves as a classical shock
wave in a discrete-time approximation.

The following properties of fh follow from its definition and properties established in Lemma 2.

Lemma 3. It holds:
i. for any (x, v, t), fh ∈ {0, 1};
ii. for any (x, t), suppfh ⊂ [0, L];
iii. for any t > 0, ∫∫

fh(x, v, t) dvdx ≤ f0(x, v) dvdx; (26)∫∫
ηε(v)fh(x, v, t) dvdx ≤ ηε(v)f0(x, v) dvdx; (27)
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iv. fh is a weak solution of the equation

∂tf
h + A′(v) · ∇xfh = Rh, (28)

where

Rh =
∞∑

n=1

δ(t − nh)(fn(x, v) − fn−1(x − A′(v)h)); (29)

v. for any t > 0 and any ξ ∈ R
d,∫∫

|fh(x + ξ, t, v) − fh(x, t)|dxdv ≤
∫∫

|f0(x + ξ, v) − f0(x, v)|dxdv.

Next, we estimate the interaction term Rh in Eq. (28)

Lemma 4. For any t > 0,∫∫
Rh dvdx ≤

∞∑
n=1

δ(t − nh)
∫∫

|(fn(x, v) − fn−1(x − A′(v)h))|dxdv;

and
∞∫
0

∫∫
|Rh|dvdxdt ≤ 2

ε

∫∫
ηε(v)f0(x, v) dvdx.

Proof. The first inequality is obvious. Using Eq. (28) we find that
∞∑

n=1

∫∫
ηε(v)(fn(x, v) − fn−1(x − A′(v)h, v)) dxdv ≤

∫∫
ηε(v)f0(x, v) dxdv.

Since fn = Mfn−1(x−A′(v)h,v), using inequality (19) we get
∞∑

n=1

∫∫
|fn(x, v) − fn−1(x − A′(v)h, v))|,dxdv ≤ 2

ε

∫∫
ηε(v)f0(x, v) dxdv,

from which the second inequality of the lemma follows. �

With the information from the last two lemma, we consider compactness properties of fh as h → 0.
There is f with a.e. values in [0, 1] and a signed Radon measure m̃ such that on a suitable subsequence
hk → 0,

fhk → f *-weakly in L∞(Rd+1
+ × [0, L]),

Rhk → m̃ *-weakly in Mloc(Rd+1
+ × [0, L]),

for a.e. t > 0, ∫∫
f(x, v, t) dvdx ≤

∫∫
f0(x, v) dvdx,∫∫

ηε(v)f(x, v, t) dvdx ≤
∫∫

ηε(v)f0(x, v) dvdx,

and inequalities (8) and (10) hold.
Inequality (20) implies that 〈m̃, η(v)ψ(x, t)〉 ≤ 0 for any continuously non-decreasing function η, and

any non-negative ψ ∈ C∞
0 (Rd+1

+ ). Thus, m̃ = ∂vm for a non-negative Radon measure.
Now we show that v–moments of fh are compact in Lp norms.
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Lemma 5. Let ω(v) be a measurable, bounded function on [0, L]. Then, the set of moments{∫
ω(v)fh(x, v, t) dv

}
is pre-compact in Lp

loc(R
d+1
+ ), p ∈ [0,+∞).

Proof. Denote by ρh
ω =

∫
ω(v)fh(x, v, t) dv. ρh

ω is bounded in L∞(Rd+1
+ ). It follows from part v. of

Lemma 3 that for any ξ ∈ R
d, and any T > 0, and p ∈ [1,+∞),

‖ρh
ω(x + ξ, t) − ρh

ω(x, t)‖L∞((0,T );Lp(Rd)) → 0, |ξ| → 0,

uniformly in h. It follows from Eq. (28) that for any T > 0 and p ∈ [0,+∞),{
∂tρ

h
ω

}
is bounded in M((0, T );Lp(Rd)) + L∞((0, T );W−1,p

loc (Rd)).

Under these conditions, compactness lemma 5.1 of Lions [9] ensures that on a suitable sequence of values
of h → 0, (ρh

ω)2 → (ρω)2 in distributional sense, where ρω is a limiting point of ρh
ω in *-weak topology of

L∞(Rd+1
+ ). This implies the statement of the lemma. �

A little bit more can be said about moments ρh =
∫

fh(x, v, t) dv. Indeed,

{∂tρ
h} is bounded in L∞((0, T );W−1,p

loc (Rd)), p ∈ [1,∞).

Thus, ρh converges for a limiting point ρ, in C([0, T ];W−1,p
loc (Rd)). This shows, in particular, that ρ(x, 0) =∫

f0(x, v) dv.

We consider the moments of fh from the set ω ∈ {1, ηε(v), A1(v), .., Ad(v)} and select a sequence
h = hk → 0 on which fh and ρh

ω converge in the topologies described above to their limiting values.
To finish the proof of Theorem 1 it remains to establish (9). Let ρ̂h =

∫
f̂h dv. For each (x, t), f̂h(x, t, v)

is a minimizer of the problem (9) with ρ = ρ̂h(x, t). Since this problem depends continuously on the value
of the constraint ρ̂h and the latter converges a.e. (x, t) to ρ(x, t), then the limit of the minimizers f̃h is a
minimizer corresponding to ρ.

2.2. Proof of Theorem 2

Part i. of the Theorem 2 was established in proving Theorem 1. Part ii. follows from from (9) and
Lemma 1. Indeed, let ρ, and φ be given by (11), and (x, t) is such that f(x, t, ·) is the minimizer of (9).
Let n and f̃ be as in Lemma 1. We can write for any i = 1..d,

φi(x, t) =
∫

A′
i(v)f(x, t, v) dv = Ai(ρ(x, t)) +

(n+1)ε∫
nε

A′
i(v)

(
f̃ − I[0,ρ](v)

)
dv

= Ai(ρ(x, t)) +

(n+1)ε∫
nε

(A′
i(v) − A′

i(nε))
(
f̃ − I[0,ρ](v)

)
dv

= Ai(ρ(x, t)) + O(ε2),

which establishes (13).
To show part iii of the theorem, we consider the sequence of kinetic functions fε and their moments

ρε =
∫

fε dv, φε
i =

∫
A′

i(v)fε dv from Theorem 1 in the limit ε → 0.
Given the uniform bounds on the sequence fε, continuity estimate (10) and Eq. (7), one can repeat the

arguments of the proof of Theorem 1 to establish that v–moments of fε are pre-compact in Lp
loc(R

d+1
+ ).

In particular, (1, A1(v), .., Ad(v)) moments of fε converge (on a subsequence) to a pair (ρ, φ) – a solution
of (12). fε itself converges weakly to a function that f that verifies the kinetic equation (7), Moreover,
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a.e. (x, t), f is a minimizer of problem (9) with function η(v) = v, in place of ηε. This means that f has
a structure of an equilibrium density f(x, ·, t) = Iρ(x,t)(·) and, thus, φ(x, t) = A(ρ(x, t) a.e. (x, t).

This new problem

min
{∫

η(v)f(v) dv : f(v) ∈ [0, 1],
∫

f dv = ρ(x, t)
}

has a unique minimizer in the form f(x, v, t) = I[0,ρ(x,t)](v). Thus, φ(x, t) = A(ρ(x, t)) a.e. (x, t) and ρ
is a unique entropy solution of the conservation law (2). The uniqueness implies that the sequence ρε

converges to ρ in the limit of ε → 0.
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