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1. Introduction

In this article, we investigate three-dimensional generalized incompressible magnetohydrodynamics
(MHD) system

⎧
⎨

⎩

∂tu + (−Δ)αu + u · ∇u + ∇P − B · ∇B = 0,

∂tB + (−Δ)βB + B · ∇u − u · ∇B = 0,
∇ · u = ∇ · B = 0,

(1.1)

where u = u(x, t), B = B(x, t) ∈ R
3, and P = P (x, t) ∈ R are the velocity, magnetic, and pressure field,

respectively. Here, α and β are the parameters of the fractional dissipations corresponding to the velocity
and magnetic field, respectively. It is clear that a special solution of (1.1) is given by the zero velocity field
and the background magnetic field B(0) = e1 = (1, 0, 0). The perturbation (u, b) around this equilibrium
with b = B − e1 obeys

⎧
⎨

⎩

∂tu + (−Δ)αu + u · ∇u + ∇P − b · ∇b − ∂1b = 0,

∂tb + (−Δ)βb + b · ∇u − u · ∇b − ∂1u = 0,
∇ · u = ∇ · b = 0.

(1.2)

When α = β = 1, the system (1.1) reduces to the classical MHD system, which describes the dynamics
of electrically conducting fluids arising from plasmas, liquid metals, salt water or some other physical
phenomena (see [2]). Due to its important physical background, rich phenomena, mathematical complexity
and challenges, MHD system has attracted lots of physicists and mathematicians attention and many
interesting results about stability problem near equilibrium have been established (see [1,7–10,12,16,
17,24–27], [30]). We only recall the global well-posedness and asymptotic decay of solutions in Lei–Lin
type spaces for our purpose. Global mild solutions in Lei–Lin space were established in [21], provided
that the norms of the initial data are bounded exactly by the minimal value of the viscosity coeffcients.
Later, Wang [20] obtained asymptotic behavior and stability of global mild solutions obtained in [21].
For a class of special large initial data with the critical norm of the initial velocity and magnetic field
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being arbitrarily large, global smooth solutions was constructed in [13]. Wang and Li [22] proved global
existence of mild solutions in Lei–Lin–Gevrey space that was introduced in [6].

For the generalized MHD system (1.1), Wang et al. [19] proved the global existence and analyticity
of mild solutions in Lei–Lin space. Ye [31] proved the global well-posedness of the generalized MHD
equations with small initial data and proved the corresponding global solution decays to zero as time
goes to infinity (see also [32]). Xiao et al. [28] obtained the temporal time-decay rate of global solution
with small initial data. Melo et al. [15] established the existence of a unique global mild solution in Lei–
Lin–Gevrey and Lei–Lin spaces, provided that the initial data are assumed to be small enough. Decay
estimate of global solutions was also established in [18]. Very recently, Xiao and Yuan [29] proved the
existence, analyticity and time-decay rate of global solutions near an equilibrium for 1/2 ≤ α = β ≤ 1.
For a class of large initial value, Liu and Wang [14] obtained a class of global large solutions.

When B = 0, α = 1, the system (1.1) reduces to the Navier–Stokes system. Lei and Lin [11] proved
global well-posedness result with small initial data in the critical space χ−1. Based on the work in [11],
Bae [3] obtained the existence and analyticity of the solution. Long time decay to the Lei–Lin solution
of 3D Navier–Stokes system was also investigated by Benameur [4]. For other related results, we refer to
[5,6].

Inspired by the works [11,19,21,29,32] for three-dimensional Navier–Stokes system and MHD system,
the main aim of this paper is to investigate global existence, analyticity and time-decay rate of small
mild solutions to (1.2) with the initial data

t = 0 : u = u0(x), b = b0(x), x ∈ R
3. (1.3)

The decay structure of (1.2) plays an important role in studying the existence, analyticity and time decay-
rate of global small solutions. But the decay structure of (1.2) is very complicated since the corresponding
linear system is a coupled system with fractional dissipation and linear terms ∂1u and ∂1b. One of the key
observations is that the coupled system is decoupled into two same linear wave equations with structural
damping by using the structure of the corresponding linear system. The pointwise estimate of solutions
to the problem (1.2), (1.3) is established by applying energy method in Fourier space to the two linear
wave equations with structural damping. Because α and β may take differential values, the pointwise
estimate of solutions in Fourier space implies that the solutions operator acts different heat kernel in low
and high frequency regions (see Lemma 2.1 and Remark 2.3 for the details), which causes difficulty in
proving global existence and analyticity of solutions. Fortunately, we would overcome the difficulty by
using Fourier splitting technology, energy method in Fourier space and continuous argument. Based on
the analyticity of global solutions, time-decay rate of global solutions follows.

The paper is organized as follows. In Sect. 2, we firstly establish pointwise estimate of solutions to the
problem (1.2), (1.3) in Fourier space by energy method in Fourier space and then prove global existence
and analyticity of mild solutions by using energy method and continuous argument. In Sect. 3, time-decay
rate of global solutions obtained in Sect. 2 is established.

In the last, we introduce some notations used in this paper. The Lei–Lin space χs is defined by

χs :=
{

f ∈ D′(R3)|
∫

R3

|ξ|s|f̂(ξ)|dξ < ∞, s ∈ R

}

and the association norm is given by

‖f‖χs =
∫

R3

|ξ|s|f̂(ξ)|dξ < ∞.

For the details, we may refer to Lei and Lin [11].
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2. Global existence and analytic

In this section, our main purpose is to prove global existence and analytic of solutions to the problem
(1.2), (1.3). To this end, we shall establish the following pointwise estimate of solutions to the problem
(1.2), (1.3) in Fourier space by energy method in Fourier space. The method has been used in global
existence and decay estimate of solutions to damped higher order wave equations (see [23]).

Lemma 2.1. The solution to the problem (1.2), (1.3) in Fourier space satisfies

|û(ξ, t)| + |b̂(ξ, t)| ≤ Ce
−c |ξ|2(α+β)

|ξ|2α+|ξ|2β t(|û0(ξ)| + |b̂0(ξ)|)

+ C

t∫

0

e
−c |ξ|2(α+β)

|ξ|2α+|ξ|2β (t−τ)(|F̂1| + |F̂2|)(ξ, τ)dτ,
(2.1)

where F1 = (I − (−Δ)−1∇∇·)(−u · ∇u + b · ∇b) and F2 = −b · ∇u + u · ∇b.

Remark 2.2. Lemma 2.1 implies that the decay property of the solutions operator to the problem in this
paper (1.2), (1.3) is different from that in [29]. More precisely, the decay property is characterized by

|Ĝ(ξ, t)| ≤ Ce
−c |ξ|2(α+β)

|ξ|2α+|ξ|2β t
.

When α = β, the above decay property reduces to

|Ĝ(ξ, t)| ≤ Ce−c|ξ|2αt,

which is exactly the decay property of the solutions operator in [29]. Moreover, it seems that the proof
methods used in [29] is not effective to our problem and hence we have to resort to energy method in
Fourier space.

Remark 2.3. For any R ∈ (0, 1), there exists a positive constant c1 such that

|ξ|2(α+β)

|ξ|2α + |ξ|2β
≥

{
c1|ξ|2α, |ξ| ≤ R,α ≥ β
c1|ξ|2β , |ξ| ≥ R,α ≥ β

(2.2)

Proof. We consider the corresponding linear system of (1.2)
{

∂tu + (−Δ)αu − ∂1b = 0,

∂tb + (−Δ)βb − ∂1u = 0.
(2.3)

Applying Fourier transform to (2.3) yields
{

∂tû + |ξ|2αû + iξ1b̂ = 0,

∂tb̂ + |ξ|2β b̂ + iξ1û = 0.
(2.4)

It follows from (2.4) that

∂2
t û + (|ξ|2α + |ξ|2β)ût + |ξ|2(α+β)û + |ξ1|2û = 0. (2.5)

By using (1.3) and (2.4), the initial value becomes

t = 0 : û = û0(ξ), ût = −|ξ|2αû0(ξ) − iξ1b̂0(ξ). (2.6)

The characteristic equation of (2.5) is given by

λ2 + (|ξ|2α + |ξ|2β)λ + |ξ|2(α+β) + |ξ1|2 = 0. (2.7)
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From (2.7), we infer that

λ±(ξ) =
−(|ξ|2α + |ξ|2β) ±

√
(|ξ|2α + |ξ|2β)2 − 4(|ξ|2(α+β) + |ξ1|2)

2

=
−(|ξ|2α + |ξ|2β) ±

√
(|ξ|2α − |ξ|2β)2 − 4|ξ1|2
2

.

It is not difficult to find that the solution (û, b̂) to the problem (2.5), (2.6) is given by

û(ξ, t) =
−(λ− + |ξ|2α)eλ+t + (λ+ + |ξ|2α)eλ−t

λ+ − λ−
û0(ξ)

− iξ1
eλ+t − eλ−t

λ+ − λ−
b̂0(ξ).

(2.8)

The same procedure leads to

b̂(ξ, t) =
−(λ− + |ξ|2β)eλ+t + (λ+ + |ξ|2β)eλ−t

λ+ − λ−
b̂0(ξ)

− iξ1
eλ+t − eλ−t

λ+ − λ−
û0(ξ).

(2.9)

Then the solution to the problem (1.2), (1.3) in Fourier space may be expressed as

(
û

b̂

)

=
(

Ĝ11 Ĝ12

Ĝ21 Ĝ22

)(
û0

b̂0

)

+

t∫

0

(
Ĝ11 Ĝ12

Ĝ21 Ĝ22

)

(t − τ)
(

F̂1

F̂2

)

dτ, (2.10)

where

Ĝ11 =
−(λ− + |ξ|2α)eλ+t + (λ+ + |ξ|2α)eλ−t

λ+ − λ−
,

Ĝ12 = − iξ1
eλ+t − eλ−t

λ+ − λ−
,

Ĝ21 = − iξ1
eλ+t − eλ−t

λ+ − λ−
,

Ĝ22 =
−(λ− + |ξ|2β)eλ+t + (λ+ + |ξ|2β)eλ−t

λ+ − λ−
.

Next, multiplying (2.5) by ût and taking the real part, it yields

1
2

d
dt

{
|ût|2 + |ξ|2(α+β)|û|2 + |ξ1|2|û|2

}
+ (|ξ|2α + |β|2β)|ût|2 = 0. (2.11)

We multiply (2.5) by û and take the real part and obtain

d
dt

{
Re(ût · û) +

1
2
(|ξ|2α + |ξ|2β)|û|2

}
+ |ξ|2(α+β)|û|2 + |ξ1|2|û|2 − |ût|2 = 0. (2.12)

Multiplying (2.12) by (|ξ|2α + |ξ|2β) and then combining (2.11), we have

d
dt

{
|ût|2 + |ξ|2(α+β)|û|2 + |ξ1|2|û|2 +

1
2
(|ξ|2α + |ξ|2β)2|û|2

+ (|ξ|2α + |ξ|2β)Re(ût · û)
}

+ |ξ|2(α+β)(|ξ|2α + |ξ|2β)|û|2

+ |ξ1|2(|ξ|2α + |ξ|2β)|û|2 + (|ξ|2α + |ξ|2β)|ût|2 = 0.

(2.13)
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Let

E = |ût|2 + |ξ|2(α+β)|û|2 + |ξ1|2|û|2 +
1
2
(|ξ|2α + |ξ|2β)2|û|2

+ (|ξ|2α + |ξ|2β)Re(ût · û)

and

F = |ξ|2(α+β)(|ξ|2α + |ξ|2β)|û|2 + |ξ1|2(|ξ|2α + |ξ|2β)|û|2
+ (|ξ|2α + |ξ|2β)|ût|2,

then we obtain from (2.13)

dE

dt
+ F = 0. (2.14)

Let

Ẽ = |ût|2 + |ξ1|2|û|2 + (|ξ|2α + |ξ|2β)2|û|2,
then we have

C1Ẽ ≤ E ≤ C2Ẽ (2.15)

and

F = (|ξ|2α + |ξ|2β)
{

|ût|2 + |ξ1|2|û|2 + |ξ|2(α+β)|û|2
}

≥ c
|ξ|2(α+β)

|ξ|2α + |ξ|2β
Ẽ

≥ c
|ξ|2(α+β)

|ξ|2α + |ξ|2β
E.

(2.16)

From (2.14) and (2.16), we obtain

dE

dt
+ cω(ξ)E ≤ 0, (2.17)

where

ω(ξ) =
|ξ|2(α+β)

|ξ|2α + |ξ|2β
.

(2.17) entails that

E ≤ E(ξ, 0)e−cω(ξ)t. (2.18)

Combining (2.15) and (2.18), we obtain

|ût|2 + |ξ1|2|û|2 + (|ξ|2α + |ξ|2β)2|û|2
≤ (|ût(0)|2 + |ξ1|2|û0|2 + (|ξ|2α + |ξ|2β)2|û0|2)e−cω(ξ)t.

(2.19)

It follows from (2.19) and (2.6) that

|ξ1|2|Ĝ11û0 + Ĝ12b̂0|2 + (|ξ|2α + |ξ|2β)2|Ĝ11û0 + Ĝ12b̂0|2

≤ C(|ξ|4α|û0|2 + |ξ1|2|b̂0|2 + |ξ1|2|û0|2 + (|ξ|2α + |ξ|2β)2|û0|2)e−cω(ξ)t.
(2.20)

First, we put û0(ξ) = 0. Then we have

|ξ1|2|Ĝ12b̂0|2 + (|ξ|2α + |ξ|2β)2|Ĝ12b̂0|2 ≤ C|ξ1|2|b̂0|2e−cω(ξ)t. (2.21)
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From (2.21), we derive that

|Ĝ12|2 ≤ C|ξ1|2
|ξ1|2 + (|ξ|2α + |ξ|2β)

e−cω(ξ)t. (2.22)

Using (2.20) with |b̂0(ξ)| = 0, it follows that

|ξ1|2|û0|2 + (|ξ|2α + |ξ|2β)2|Ĝ11û0|2

≤ C
(
|ξ|2α + |ξ1|2 + (|ξ|2α + |ξ|2β)2

)
|û0|2e−cω(ξ)t.

(2.23)

From (2.23), we have

|Ĝ11|2 ≤
C
(
|ξ|4α + |ξ1|2 + (|ξ|2α + |ξ|2β)2

)

(|ξ|2α + |ξ|2β)2 + |ξ1|2 e−cω(ξ)t. (2.24)

Then, we obtain

|Ĝ12| ≤ Ce−cω(ξ)t

and

|Ĝ11| ≤ Ce−cω(ξ)t.

The same procedure applies to the equations for b, we arrive at

|Ĝ21| ≤ Ce−cω(ξ)t

and

|Ĝ22| ≤ Ce−cω(ξ)t.

It follows from the above four inequalities and (2.10) that (2.1) holds. We complete the proof of Lemma
2.1. �

To prove global existence and analytic of solutions to the problem (1.2), (1.3), we also need the
following Lemma.

Lemma 2.4. (see [31]) Assume that 1
2 ≤ γ ≤ 1, then the following inequality

|ξ|2(1−γ) ≤ 21−2γ(|ξ − η|1−2γ |η| + |ξ − η||η|1−2γ)

holds for any ξ, η ∈ R
n.

With these preparations of Lemmas 2.1 and 2.4, we can establish the global well-posedness and analytic
of solutions to the problem (1.2), (1.3) in the critical space χ1−2α

⋂
χ1−2β with 1

2 ≤ α, β ≤ 1. The result
can be stated as follows:

Theorem 2.5. Let 1
2 ≤ β ≤ α ≤ 1. There exists a small constant ε1 > 0 such that for the initial data

(u0, b0) ∈ χ1−2α
⋂

χ1−2β satisfies ‖(u0, b0)‖χ1−2α + ‖(u0, b0)‖χ1−2β < ε1, then the problem (1.2), (1.3)
admits a unique global mild solution

(u, b) ∈ C
(
R

+;χ1−2α
⋂

χ1−2β
)⋂

L1
(
R

+;χ1
)

such that

‖(u, b)(t)‖χ1−2α + ‖(u, b)(t)‖χ1−2β +

t∫

0

‖(u, b)(τ)‖χ1dτ

≤ C(‖(u0, b0)‖χ1−2α + ‖(u0, b0)‖χ1−2β ).

(2.25)
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Furthermore, the solution is analytic in the sense that

‖ec|D|γ√
t(u, b)(t)‖χ1−2α + ‖ec|D|γ√

t(u, b)(t)‖χ1−2β +

t∫

0

‖ec|D|γ√
t(u, b)(τ)‖χ1dτ

≤ C(‖(u0, b0)‖χ1−2α + ‖(u0, b0)‖χ1−2β ),

(2.26)

where ec|D|γ√
t is a Fourier multiplier whose symbol is given by ec|ξ|γ√

t and c is a positive constant. γ is
given by

γ =
{

α, |ξ| ≤ R0

β, |ξ| ≥ R0

Remark 2.6. Compared with [32], the difficulty to obtain a priori estimate (2.25) and the analyticity
(2.26) for our problem is the presence of linear terms ∂1u and ∂1b.

Remark 2.7. When α = β, the result in Theorem 2.5 reduces to that in Xiao and Yuan [29]. In proving
analyticity and decay estimate of global solutions (see Theorem 3.2), we need to overcome the difficulty
that caused by α, β taking different values.

Remark 2.8. When 1
2 ≤ α ≤ β ≤ 1, similar result could be established.

Proof. We shall prove Theorem 2.5 by energy method in Fourier space and continuous argument. To this
end, let

X(t) = sup
0≤τ≤t

(‖(u, b)(τ)‖χ1−2α + ‖(u, b)(τ)‖χ1−2β ) (2.27)

and

Y (t) =

t∫

0

‖(u, b)(τ)‖χ1dτ. (2.28)

In what follows, we would build a closed inequality for X(t) and Y (t), i.e.,

X(t) + Y (t) ≤ C
(
‖(u0, b0)‖χ1−2α + ‖(u0, b0)‖χ1−2β

)

+ CX(t)Y (t).
(2.29)

then global mild solutions follow from standard continuous argument. In fact, if (2.29) holds, it is not
difficult to prove

X(t) + Y (t) ≤Cδ (2.30)

by standard continuous argument, provided that

δ = ‖(u0, b0)‖χ1−2α + ‖(u0, b0)‖χ1−2β

is suitably small. Then the problem (1.2), (1.3) admits a unique global mild solution (u, b), which satisfies
(2.25).

Next, we shall complete the proof of (2.29) by dividing it into two steps.
Step 1. The estimate for X(t)
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Multiplying (2.1) by |ξ|1−2α and integrating the resulting equation over R
3 with respect to ξ, we

obtain
∫

R3

|ξ|1−2α|û(t, ξ)|dξ +
∫

R3

|ξ|1−2α|b̂(t, ξ)|dξ

≤ C

∫

R3

e
−c |ξ|2(α+β)

|ξ|2α+|ξ|2β t|ξ|1−2α(|û0(ξ)| + |b̂0(ξ)|)dξ

+ C

t∫

0

∫

R3

[
e

−c |ξ|2(α+β)

|ξ|2α+|ξ|2β (t−τ)|ξ|2−2α

× (|û ⊗ u| + |b̂ ⊗ b| + |û ⊗ b| + |b̂ ⊗ u|)(τ, ξ)dξ
]
dτ.

By Lemma 2.4 and Young inequality, it yields
t∫

0

∫

R3

[
e

−c |ξ|2(α+β)

|ξ|2α+|ξ|2β (t−τ)|ξ|2−2α|û ⊗ u|(τ, ξ)dξ
]
dτ

≤ C

t∫

0

⎧
⎨

⎩

∫

R3

[
(|η|1−2α|ξ − η| + |η||ξ − η|1−2α)

∫

R3

|û(η) ⊗ û(ξ − η)|dη
]
dξ

⎫
⎬

⎭
dτ

≤ C

t∫

0

⎡

⎣

∫

R3

|η|1−2α|û(η)|dη

∫

R3

|ξ − η||û(ξ − η)|dξ

⎤

⎦dτ

+, C

t∫

0

⎡

⎣

∫

R3

|ξ − η|1−2α|û(ξ − η)|dξ

∫

R3

|η||û(η)|dη

⎤

⎦dτ

≤ C

t∫

0

‖u(t)‖χ1−2α‖u(t)‖χ1dτ.

Similarly, it holds that
t∫

0

∫

R3

[

e
−c |ξ|2(α+β)

|ξ|2α+|ξ|2β (t−τ)|ξ|2−2α(|b̂ ⊗ b| + |û ⊗ b| + |b̂ ⊗ u|)(τ, ξ)dξ

]

dτ

≤ C

t∫

0

(‖b(t)‖χ1−2α‖b(t)‖χ1 + ‖u(t)‖χ1−2α‖b(t)‖χ1 + ‖b(t)‖χ1−2α‖u(t)‖χ1)dτ.

Combining the above three inequalities yields

‖(u, b)‖χ1−2α ≤ C

(

‖(u0, b0)‖χ1−2α +

t∫

0

‖(u, b)‖χ1−2α‖(u, b)‖χ1dτ

)

. (2.31)

The same procedure leads to

‖(u, b)‖χ1−2β ≤ C

(

‖(u0, b0)‖χ1−2β +

t∫

0

‖(u, b)‖χ1−2β ‖(u, b)‖χ1dτ

)

. (2.32)
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Combining (2.31), (2.32) yields

X(t) ≤ C

(

‖(u0, b0)‖χ1−2α + ‖(u0, b0)‖χ1−2β

)

+ CX(t)Y (t). (2.33)

Step 2. The estimate for Y (t)
Multiplying (2.1) by |ξ| and then integrating the resulting equation over R

3 × (0, t) about ξ and τ , we
arrive at

t∫

0

∫

R3

|ξ||û(τ, ξ)|dξdτ +

t∫

0

∫

R3

|ξ||b̂(τ, ξ)|dξdτ

≤ C

t∫

0

∫

R3

e
−c |ξ|2(α+β)

|ξ|2α+|ξ|2β τ |ξ|(|û0(ξ) + |b̂0(ξ)|)dξdτ

+ C

t∫

0

s∫

0

∫

R3

[
e

−c |ξ|2(α+β)

|ξ|2α+|ξ|2β τ |ξ|2

× (|û ⊗ u| + |b̂ ⊗ b| + |û ⊗ b| + |b̂ ⊗ u|)(τ, ξ)dξ
]
dτds

≤ C

t∫

0

|ξ|2αe−c|ξ|2ατdτ

∫

|ξ|≤R0

|ξ|1−2α(|û0(ξ) + |b̂0(ξ)|)dξ

+ C

t∫

τ

|ξ|2αe−c|ξ|2α(s−τ)ds

t∫

0

∫

|ξ|≤R0

|ξ|2−2α

× (|û ⊗ u| + |b̂ ⊗ b| + |û ⊗ b| + |b̂ ⊗ u|)(τ, ξ)dξ
]
dτ

+ C

t∫

0

|ξ|2βe−c|ξ|2βτdτ

∫

|ξ|≥R0

|ξ|1−2β(|û0(ξ) + |b̂0(ξ)|)dξ

+ C

t∫

τ

|ξ|2βe−c|ξ|2β(s−τ)ds

t∫

0

∫

|ξ|≥R0

|ξ|2−2β

× (|û ⊗ u| + |b̂ ⊗ b| + |û ⊗ b| + |b̂ ⊗ u|)(τ, ξ)dξ
]
dτ

≤ C

∫

R3

(|ξ|1−2α + |ξ|1−2β)(|û0(ξ)| + |b̂0(ξ)|)dξ

+ C

t∫

0

∫

R3

(|ξ|2−2α + |ξ|2−2β)(|û ⊗ u| + |b̂ ⊗ b| + |û ⊗ b| + |b̂ ⊗ u|)(τ, ξ)dξdτ.

Along the same line of Step 1, we could obtain
t∫

0

∫

R3

(|ξ|2−2α + |ξ|2−2β)(|û ⊗ u| + |b̂ ⊗ b| + |û ⊗ b| + |b̂ ⊗ u|)(τ, ξ)dξ
]
dτ
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≤ C

t∫

0

(‖u(τ)‖χ1−2α + ‖u(τ)‖χ1−2β )‖u(τ)‖χ1dτ

+C

t∫

0

(‖b(τ)‖χ1−2α + ‖b(τ)‖χ1−2β )‖b(τ)‖χ1dτ

+C

t∫

0

(‖u(τ)‖χ1−2α + ‖u(τ)‖χ1−2β )‖b(τ)‖χ1dτ

+C

t∫

0

(‖b(τ)‖χ1−2α + ‖b(τ)‖χ1−2β )‖u(τ)‖χ1dτ

≤ C

t∫

0

(‖(u, b)‖χ1−2α + ‖(u, b)‖χ1−2β )‖(u, b)‖χ1dτ.

We combine the above two inequalities to obtain

t∫

0

‖(u, b)(τ)‖χ1dτ ≤ C
(
‖(u0, b0)‖χ1−2α + ‖(u0, b0)‖χ1−2β

+

t∫

0

(‖(u, b)‖χ1−2α + ‖(u, b)‖χ1−2β )‖(u, b)‖χ1dτ
)
.

(2.34)

(2.34) entails that

Y (t) ≤ C
(
‖(u0, b0)‖χ1−2α + ‖(u0, b0)‖χ1−2β

)
+ CX(t)Y (t). (2.35)

(2.29) immediately follows from (2.33) and (2.35).
In what follows, we prove (2.26). Let

Û1(t, ξ) = ec|ξ|γ√
tû(t), B̂1(t, ξ) = ec|ξ|γ√

tb̂(t).

Firstly, we estimate ‖(U1, B1)‖χ1−2α and ‖(U1, B1)‖χ1−2β . Multiplying (2.1) by ec|ξ|γ√
t, it holds that

ec|ξ|γ√
t|û(t, ξ)| + ec|ξ|γ√

t|b̂(t, ξ)|
≤ Ce−c|ξ|2γt+c|ξ|γ√

t(|û0(ξ)| + |b̂0(ξ)|)

+C

t∫

0

e−c|ξ|2γ(t−τ)+c|ξ|γ√
t|ξ|

× (|û ⊗ u| + |b̂ ⊗ b| + |û ⊗ b| + |b̂ ⊗ u)dτ

≤ Cec|ξ|γ√
t− c

2 |ξ|2γte− c
2 |ξ|2γt(|û0(ξ)| + |b̂0(ξ)|)

+C

t∫

0

ec|ξ|γ(√t−√
τ)− c

2 |ξ|2γ(t−τ)e− c
2 |ξ|2γ(t−τ)ec|ξ|γ√

τ |ξ|

× (|û ⊗ u| + |b̂ ⊗ b| + |û ⊗ b| + |b̂ ⊗ u)dτ (2.36)
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Noting that ec|ξ|γ√
t− c

2 |ξ|2γt, and ec|ξ|γ(√t−√
τ)− c

2 |ξ|2γ(t−τ) are uniformly bounded in time and using |ξ|γ ≤
|ξ − η|γ + |η|γ , then we have

|Û1(t, ξ)| + |B̂1(t, ξ)|
≤ Ce− c

2 |ξ|2γt(|û0(ξ)| + |b̂0(ξ)|)

+ C

t∫

0

e− c
2 |ξ|2γ(t−τ)|ξ|

⎡

⎣

∫

R3

ec|ξ−η|γ√
τ |û(ξ − η)|ec|η|γ√

τ |û(η)|dη

+ C

∫

R3

ec|ξ−η|γ√
τ |b̂(ξ − η)|ec|η|γ√

τ |b̂(η)|dη

+ C

∫

R3

ec|ξ−η|γ√
τ |û(ξ − η)|ec|η|γ√

τ |b̂(η)|dη

+C

∫

R3

ec|ξ−η|γ√
τ |b̂(ξ − η)|ec|η|γ√

τ |û(η)|dη

⎤

⎦dτ

≤ Ce− c
2 |ξ|2γt(|û0(ξ)| + |b̂0(ξ)|) + C

t∫

0

e− c
2 |ξ|2γ(t−τ)|ξ|

× (| ̂U1 ⊗ U1| + | ̂B1 ⊗ B1| + | ̂U1 ⊗ B1| + |B̂1 ⊗ U1)dτ.

(2.37)

Multiplying (2.37) by |ξ|1−2α and |ξ|1−2β , respectively, and then integrating the resulting equation
over R

3 with respect to ξ and using Lemma 2.4, we arrive at

‖(U1, B1)‖χ1−2α ≤ C‖(u0, b0)‖χ1−2α + C

( t∫

0

‖U1‖χ1−2α‖U1‖χ1dτ

+

t∫

0

‖B1‖χ1−2α‖B1‖χ1dτ +

t∫

0

‖U1‖χ1−2α‖B1‖χ1dτ

+

t∫

0

‖B1‖χ1−2α‖U1‖χ1dτ

)

(2.38)

and

‖(U1, B1)‖χ1−2β ≤ C‖(u0, b0)‖χ1−2β + C

( t∫

0

‖U1‖χ1−2β ‖U1‖χ1dτ

+

t∫

0

‖B1‖χ1−2β ‖B1‖χ1dτ +

t∫

0

‖U1‖χ1−2β ‖B1‖χ1dτ

+

t∫

0

‖B1‖χ1−2β ‖U1‖χ1dτ

)

.

(2.39)
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Finally, we estimate

t∫

0

‖(U1, B1)‖χ1dτ . We multiply (2.37) by |ξ| and integrating the resulting equation

over R
3 with respect to ξ, useing Lemma 2.4 to obtain

t∫

0

‖(U1, B1)‖χ1dτ ≤ C

t∫

0

|ξ|2αe−c|ξ|2ατdτ

∫

|ξ|≤R0

|ξ|1−2α(|û0(ξ) + |b̂0(ξ)|)dξ

+C

t∫

τ

|ξ|2αe−c|ξ|2α(s−τ)ds

t∫

0

∫

|ξ|≤R0

|ξ|2−2α

×(|Û1 ⊗ U1| + | ̂B1 ⊗ B1| + | ̂U1 ⊗ B1| + |B̂1 ⊗ U1|)(τ, ξ)dξ
]
dτ

+C

t∫

0

|ξ|2βe−c|ξ|2βτdτ

∫

|ξ|≥R0

|ξ|1−2β(|û0(ξ) + |b̂0(ξ)|)dξ

+C

t∫

τ

|ξ|2βe−c|ξ|2β(s−τ)ds

t∫

0

∫

|ξ|≥R0

|ξ|2−2β

×(|Û1 ⊗ U1| + | ̂B1 ⊗ B1| + | ̂U1 ⊗ B1| + |B̂1 ⊗ U1|)(τ, ξ)dξ
]
dτ

≤ C

∫

R3

(|ξ|1−2α + |ξ|1−2β)(|û0(ξ)| + |b̂0(ξ)|)dξ

+C

t∫

0

∫

R3

(|ξ|2−2α + |ξ|2−2β)(|Û1 ⊗ U1| + | ̂B1 ⊗ B1|

+ | ̂U1 ⊗ B1| + |B̂1 ⊗ U1|)(τ, ξ)dξdτ

≤ C(‖(u0, b0)‖χ1−2α + ‖(u0, b0)‖χ1−2β )

+C

t∫

0

(‖(U1, B1)‖χ1−2α + ‖(U1, B1)‖χ1−2β )‖(U1, B1)‖χ1dτ. (2.40)

Therefore, collecting (2.38), (2.39) and (2.40), we arrive at

‖(U1, B1)‖χ1−2α + ‖(U1, B1)‖χ1−2β +

t∫

0

‖(U1, B1)‖χ1dτ

≤ C(‖(u0, b0)‖χ1−2α + ‖(u0, b0)‖χ1−2β )

+ C

t∫

0

(‖(U1, B1)‖χ1−2α + ‖(U1, B1)‖χ1−2β )‖(U1, B1)‖χ1dτ.

(2.41)
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As the proof of (2.25), then we can deduce by the standard continuous argument

‖ec|D|γ√
t(u, b)(t)‖χ1−2α + ‖ec|D|γ√

t(u, b)(t)‖χ1−2β +

t∫

0

‖ec|D|γ√
τ (u, b)(τ)‖χ1dτ

≤ C(‖(u0, b0)‖χ1−2α + ‖(u0, b0)‖χ1−2β ).

We immediately complete the proof of Theorem 2.5 eventually. �

3. Time-decay rate

In this section, our main purpose is to obtain the time-decay rate of global solutions established in
Theorem 2.5. To do this, we need the following Lemma.

Lemma 3.1. (see [5]) Let T > 0 and f : [0, T ] → R
+ be a continuous function such that

f(t) ≤ M0 + θ1f(θ2t); ∀0 ≤ t ≤ T. (3.1)

with M0 ≥ 0 and θ1, θ2 ∈ (0, 1). Then

f(t) ≤ M0

1 − θ1
; ∀0 ≤ t ≤ T.

We state the time-decay rate of global solutions as follows:

Theorem 3.2. Assume that the condition of Theorem 2.5 hold. Furthermore, we assume u0, b0 ∈ L2. Then
the solution (u, b) to the problem (1.2), (1.3) satisfies

‖(u, b)(t)‖χ1−2α + ‖(u, b)(t)‖χ1−2β ≤ C(1 + t)−( 5
4α −1). (3.2)

Remark 3.3. If the condition 1
2 ≤ β ≤ α ≤ 1 in Theorem 3.2 is replaced by 1

2 ≤ α ≤ β ≤ 1, then we have

‖(u, b)(t)‖χ1−2α + ‖(u, b)(t)‖χ1−2β ≤ C(1 + t)−( 5
4β −1). (3.3)

Remark 3.4. [32] obtained global solutions and proved the solution decay to 0 in the Lei–Lin space as
t → ∞. In this paper, we not only prove analyticity of global solutions, but also obtain the accurate
time-decay rate of global solutions.

Proof. To prove (3.2), it is suffice to prove that (3.2) holds when time is sufficiently large. Owing to the
definition of Lei–Lin spaces, we obtain

‖(u, b)(t)‖χ1−2α =
∫

|ξ|≤ε

|ξ|1−2α|(û, b̂)(ξ, t)|dξ +
∫

|ξ|>ε

|ξ|1−2α|(û, b̂)(ξ, t)|dξ

= I1 + I2

(3.4)

and

‖(u, b)(t)‖χ1−2β =
∫

|ξ|≤ε

|ξ|1−2β |(û, b̂)(ξ, t)|dξ +
∫

|ξ|>ε

|ξ|1−2β |(û, b̂)(ξ, t)|dξ.

= J1 + J2.

(3.5)
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It follows from Hölder inequality and the basic energy equality that

I1 ≤

⎛

⎜
⎝

∫

|ξ|≤ε

|ξ|2(1−2α)dξ

⎞

⎟
⎠

1
2
⎛

⎜
⎝

∫

|ξ|≤ε

|(û, b̂)(ξ, t)|2dξ

⎞

⎟
⎠

1
2

≤ Cε
5−4α

2 ‖(u, b)(t)‖L2

≤ Cε
5−4α

2 ‖(u0, b0)‖L2

(3.6)

and

J1 ≤

⎛

⎜
⎝

∫

|ξ|≤ε

|ξ|2(1−2β)dξ

⎞

⎟
⎠

1
2
⎛

⎜
⎝

∫

|ξ|≤ε

|(û, b̂)(ξ, t)|2dξ

⎞

⎟
⎠

1
2

≤ Cε
5−4β

2 ‖(u, b)(t)‖L2

≤ Cε
5−4β

2 ‖(u0, b0)‖L2 .

(3.7)

By direct computation, we have

I2 ≤
∫

|ξ|>ε

e−c
√

t
2 |ξ|β ec

√
t
2 |ξ|β |ξ|1−2α|(û, b̂)(ξ, t)|dξ

≤ Ce−c
√

t
2 εβ

∫

|ξ|>ε

ec
√

t
2 |ξ|β |ξ|1−2α|(û, b̂)(ξ, t)|dξ

(3.8)

and

J2 ≤
∫

|ξ|>ε

e−c
√

t
2 |ξ|β ec

√
t
2 |ξ|β |ξ|1−2β |(û, b̂)(ξ, t)|dξ

≤ Ce−c
√

t
2 εβ

∫

|ξ|>ε

ec
√

t
2 |ξ|β |ξ|1−2β |(û, b̂)(ξ, t)|dξ.

(3.9)

For fixed time t > 0, setting U(z, x) = u(z + t
2 , x), H(z, x) = b(z + t

2 , x) and Q(z, x) = P (z + t
2 , x). Let

ε > 0 such that ε < ε1, according to the assumption of Theorem 2.5, if

‖(U,H)(x, 0)‖χ1−2α + ‖(U,H)(x, 0)‖χ1−2β ≤ ε.

Without loss of generality, (U,H) is the unique global solution to the following initial value problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂zU + (−Δ)αU + U · ∇U + ∇Q − H · ∇H − ∂1H = 0,

∂zH + (−Δ)βH + U · ∇H − H · ∇U − ∂1U = 0,
∇ · U = ∇ · H = 0,

U(0, x) = u

(
t

2
, x

)

,H(0, x) = b

(
t

2
, x

)

.

(3.10)

By (2.26), we obtain
∫

|ξ|≤ε

ec
√

s|ξ|α |ξ|1−2α|Û(ξ, s)|dξ +
∫

|ξ|≤ε

ec
√

s|ξ|α |ξ|1−2α|Ĥ(ξ, s)|dξ

+
∫

|ξ|≥ε

ec
√

s|ξ|β |ξ|1−2α|Û(ξ, s)|dξ +
∫

|ξ|≥ε

ec
√

s|ξ|β |ξ|1−2α|Ĥ(ξ, s)|dξ
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+
∫

|ξ|≤ε

ec
√

s|ξ|α |ξ|1−2β |Û(ξ, s)|dξ +
∫

|ξ|≤ε

ec
√

s|ξ|α |ξ|1−2β |Ĥ(ξ, s)|dξ

+
∫

|ξ|≥ε

ec
√

s|ξ|β |ξ|1−2β |Û(ξ, s)|dξ +
∫

|ξ|≥ε

ec
√

s|ξ|β |ξ|1−2β |Ĥ(ξ, s)|dξ

≤ C

(∥
∥
∥
∥(u, b)

(
t

2

)∥
∥
∥
∥

χ1−2α

+
∥
∥
∥
∥(u, b)

(
t

2

)∥
∥
∥
∥

χ1−2β

)

, (3.11)

which gives
∫

|ξ|≤ε

ec
√

s|ξ|α |ξ|1−2α

∣
∣
∣
∣û

(

ξ, s +
t

2

)∣
∣
∣
∣ dξ +

∫

|ξ|≤ε

ec
√

s|ξ|α |ξ|1−2α

∣
∣
∣
∣b̂

(

ξ, s +
t

2

)∣
∣
∣
∣ dξ

+
∫

|ξ|≥ε

ec
√

s|ξ|β |ξ|1−2α

∣
∣
∣
∣û

(

ξ, s +
t

2

)∣
∣
∣
∣ dξ +

∫

|ξ|≥ε

ec
√

s|ξ|β |ξ|1−2α

∣
∣
∣
∣b̂

(

ξ, s +
t

2

)∣
∣
∣
∣dξ

+
∫

|ξ|≤ε

ec
√

s|ξ|α |ξ|1−2β

∣
∣
∣
∣û

(

ξ, s +
t

2

)∣
∣
∣
∣dξ +

∫

|ξ|≤ε

ec
√

s|ξ|α |ξ|1−2β

∣
∣
∣
∣b̂

(

ξ, s +
t

2

)∣
∣
∣
∣ dξ

+
∫

|ξ|≥ε

ec
√

s|ξ|β |ξ|1−2β

∣
∣
∣
∣û

(

ξ, s +
t

2

)∣
∣
∣
∣dξ +

∫

|ξ|≥ε

ec
√

s|ξ|β |ξ|1−2β

∣
∣
∣
∣b̂

(

ξ, s +
t

2

)∣
∣
∣
∣ dξ

≤ C

(∥
∥
∥
∥(u, b)

(
t

2

)∥
∥
∥
∥

χ1−2α

+
∥
∥
∥
∥(u, b)

(
t

2

)∥
∥
∥
∥

χ1−2β

)

.

(3.12)

(3.12) with s = t
2 implies that

∫

|ξ|≤ε

ec
√

t
2 |ξ|α |ξ|1−2α|û(ξ, t)|dξ +

∫

|ξ|≤ε

ec
√

t
2 |ξ|α |ξ|1−2α|b̂(ξ, t)|dξ

+
∫

|ξ|≥ε

ec
√

t
2 |ξ|β |ξ|1−2α|û(ξ, t)|dξ +

∫

|ξ|≥ε

ec
√

t
2 |ξ|β |ξ|1−2α|b̂(ξ, t)|dξ

+
∫

|ξ|≤ε

ec
√

t
2 |ξ|α |ξ|1−2β |û(ξ, t)|dξ +

∫

|ξ|≤ε

ec
√

t
2 |ξ|α |ξ|1−2β |b̂(ξ, t)|dξ

+
∫

|ξ|≥ε

ec
√

t
2 |ξ|β |ξ|1−2β |û(ξ, t)|dξ +

∫

|ξ|≥ε

ec
√

t
2 |ξ|β |ξ|1−2β |b̂(ξ, t)|dξ

≤ C

(∥
∥
∥
∥(u, b)

(
t

2

)∥
∥
∥
∥

χ1−2α

+
∥
∥
∥
∥(u, b)

(
t

2

)∥
∥
∥
∥

χ1−2β

)

.

(3.13)

Then combining (3.8), (3.9) and (3.13) yields

I2 ≤ Ce−c
√

t
2 εβ

(∥
∥
∥(u, b)

( t

2

)∥
∥
∥

χ1−2α
+
∥
∥
∥(u, b)

( t

2

)∥
∥
∥

χ1−2β

)
(3.14)

and

J2 ≤ Ce−c
√

t
2 εβ

(∥
∥
∥(u, b)

( t

2

)∥
∥
∥

χ1−2α
+
∥
∥
∥(u, b)

( t

2

)∣
∣
∣
χ1−2β

)
. (3.15)



73 Page 16 of 18 C. Lu, W. Li and Y. Wang ZAMP

Inserting (3.6), (3.14) and (3.7), (3.15) into (3.4) and (3.5) yields, respectively

‖(u, b)(t)‖χ1−2α ≤ Cε
5−4α

2 ‖(u0, b0)‖L2 + Ce−c
√

t
2 εβ

(∥
∥
∥(u, b)

( t

2

)∥
∥
∥

χ1−2α

+
∥
∥
∥(u, b)

( t

2

)∥
∥
∥

χ1−2β

) (3.16)

and

‖(u, b)(t)‖χ1−2β ≤ Cε
5−4β

2 ‖(u0, b0)‖L2 + Ce−c
√

t
2 εβ

(∥
∥
∥(u, b)

( t

2

)∥
∥
∥

χ1−2α

+
∥
∥
∥(u, b)

( t

2

)∥
∥
∥

χ1−2β

)
.

(3.17)

Adding up (3.16) and (3.17), we obtain

‖(u, b)(t)‖χ1−2α + ‖(u, b)(t)‖χ1−2β

≤ C(ε
5−4α

2 + ε
5−4β

2 )‖(u0, b0)‖L2

+ Ce−c
√

t
2 εβ

(∥
∥
∥(u, b)

( t

2

)∥
∥
∥

χ1−2α
+
∥
∥
∥(u, b)

( t

2

)∥
∥
∥

χ1−2β

)
.

(3.18)

Let ε = ε(t) satisfy 0 < ε � 1 when time goes to infinity, then (3.18) can be write as

‖(u, b)(t)‖χ1−2α + ‖(u, b)(t)‖χ1−2β

≤ Cε
5−4α

2 ‖(u0, b0)‖L2

+ Ce−
√

t
2 εα

(∥
∥
∥(u, b)

( t

2

)∥
∥
∥

χ1−2α
+
∥
∥
∥(u, b)

( t

2

)∥
∥
∥

χ1−2β

)
.

(3.19)

Multiplying (3.19) by t
5
4α −1, it holds that

t
5
4α −1(‖(u, b)(t)‖χ1−2α + ‖(u, b)(t)‖χ1−2β )

≤ Cε
5−4α

2 t
5
4α −1‖(u0, b0)‖L2

+ Ce−c
√

t
2 εα

t
5
4α −1

(∥
∥
∥(u, b)

( t

2

)∥
∥
∥

χ1−2α
+
∥
∥
∥(u, b)

( t

2

)∥
∥
∥

χ1−2β

)

= Cε
5−4α

2 t
5
4α −1‖(u0, b0)‖L2

+ C2
5
4α −1e−c

√
t
2 εα

( t

2

) 5
4α −1(∥∥

∥(u, b)
( t

2

)∥
∥
∥

χ1−2α
+
∥
∥
∥(u, b)

( t

2

)∥
∥
∥

χ1−2β

)
.

(3.20)

Taking ε =
(

5
√
2 log 2

4α
√

t

) 1
α

, then

t
5
4α −1

(‖(u, b)(t)‖χ1−2α + ‖(u, b)(t)‖χ1−2β

)

≤ C
(5

√
2 log 2
4α

) 5−4α
2α ‖(u0, b0)‖L2

+
1
2

( t

2

) 5
4α −1(∥∥

∥(u, b)
( t

2

)∥
∥
∥

χ1−2α
+
∥
∥
∥(u, b)

( t

2

)∥
∥
∥

χ1−2β

)
.

(3.21)

Let

K0 = C
(5

√
2 log 2
4α

) 5−4α
2α ‖(u0, b0)‖L2 (3.22)

and

f(t) = t
5
4α −1

(
‖(u, b)(t)‖χ1−2α + ‖(u, b)(t)‖χ1−2β

)
, (3.23)
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then (3.21) becomes

f(t) ≤ K0 +
1
2
f
( t

2

)
(3.24)

with θ1 = θ2 = 1
2 . It follows from Lemma 3.1 that

f(t) ≤ K0

1 − θ1
= 2K0.

Then (3.2) follows. Thus we complete the proof of Theorem 3.2. �
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