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Abstract. We study the blowup time for the heat equation ut = Δu in a bounded domain Ω ⊂ R
n(n � 2) with the nonlocal

boundary condition, where the normal derivative ∂u/∂�η =
∫

Ω

updz on one part of boundary Γ1 ⊆ ∂Ω for some p > 1, while

∂u/∂�η = 0 on the rest part of the boundary. By constructing suitable auxiliary functions and analyzing the representation

formula of u, we establish the finite time blowup of the solution and get both upper and lower bounds for the blowup time
in terms of the parameter p, the initial value u0(x) and the volume of Γ1. In many other studies, they require the convexity
of the domain Ω and only deal with the case Γ1 = ∂Ω. In this article, we remove the convexity assumption and consider
the problem with Γ1 ⊆ ∂Ω.
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1. Introduction

In this paper, we consider the blowup time for the heat equation with the nonlocal boundary condition
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(x, t) = Δu(x, t), (x, t) ∈ Ω × (0, T ],

∂u(x, t)
∂�η

=
∫

Ω

up(z, t) dz, (x, t) ∈ Γ1 × (0, T ],

∂u(x, t)
∂�η

= 0, (x, t) ∈ Γ2 × (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω is a bounded open subset in R
n (n � 2) with C2 boundary ∂Ω, Γ1 and Γ2 are two disjoint

relatively open subsets of ∂Ω with Γ1 ∪ Γ2 = ∂Ω, and Γ1 ∩ Γ2 = ∂Γi ∈ C1 (i = 1, 2), �η(x) is the unit
outward normal vector at x ∈ ∂Ω and p > 1. The initial value u0(x) ∈ C1(Ω) is a nonnegative and
nontrivial function. The normal derivative on the boundary is given by

∂u(x, t)
∂�η

= limε→0+ Du(xε, t) · �η(x), (x, t) ∈ ∂Ω × (0, T ], (1.2)

where xε = x − ε�η(x). The condition ∂Ω ∈ C2 guarantees that xε ∈ Ω when ε is positive and sufficiently
small.

Various phenomena in the natural sciences and engineering lead to the nonclassical mathematical mod-
els subject to nonlocal boundary conditions, which unify the information inside of the spatial domain to
define the values on the boundary. In [1], Bicadze and Samarskii introduced and systematically investi-
gated a certain class of spatial nonlocal problems for elliptic differential equations by using the Green’s
function. Later on, a large amount of works have been carried out on the study of nonlocal boundary
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problems for different types of differential equations. To investigate the permeation pathway of single-ion
channel, Levitt [15] provided a mathematical model in which the concentration of the ion satisfies a dif-
fusion equation with a nonlocal boundary condition. In [20], McGill and Schumaker generalized Levitt’s
model to construct a nonlocal boundary condition with an extra flux for the steady-state concentration
C(x) of ion. On the other hand, parabolic equations with nonlocal boundary conditions are also discussed
in many physical applications. For example, in the study of dynamics behavior of the heat conduction
within linear thermoelasticity, by considering a slab −l � x � l which is made of homogeneous, isotropic
material and which undergoes a motion in which the displacement vector is parallel to the x-axis, Day
[4,5] deduced that the entropy per unit volume, u(x, t), satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(x, t) = αuxx(x, t), (x, t) ∈ (−l, l) × (0, T ],

u(−l, t) =

l∫

−l

f1(z)u(z, t) dz, t ∈ (0, T ],

u(l, t) =

l∫

−l

f2(z)u(z, t) dz, t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ (−l, l).

This model has been developed by Friedman [9], Deng [7] and Pao [21–23] to some more general types
of reaction–diffusion equations. Friedman [9] extended Day’s result to general parabolic equations in
n-dimensional space subject to the following nonlocal boundary condition:

u(x, t) =
∫

Ω

f(x, z)u(z, t) dz.

There he used a contraction method to establish the existence and uniqueness of solutions and derived
the monotonic decay property of u(x, t). In [7], Deng proved the comparison principle for the same kind
of problem and showed the local existence by the method of upper and lower solutions. He also discussed
the decay property of the solution. In [21–23], Pao investigated a class of reaction–diffusion equations
subject to the following boundary condition:

α0
∂u(x, t)

∂�η
+ u(x, t) =

∫

Ω

K(x, z)u(z, t) dz.

Under some assumptions on K(x, z), he proved that the solution converges to the one of the corresponding
steady-state problems.

After that, initial boundary value problems with nonlocal boundary conditions have been studied by
many authors, and various properties, including blowup, global solvability and qualitative behavior of
solutions near blowup time have attracted considerable interest. Yin [27] discussed a class of parabolic
equations subject to nonlocal Neumann boundary conditions and investigated under what assumptions
the solutions blow up or exist globally. The long-time behavior of solutions and convergence to a linear
problem are also derived. Marras and Vernier Piro [19] considered blowup solutions to a class of reaction–
diffusion equations under nonlocal Neumann boundary conditions and obtained upper bounds for the
blowup time. Moreover, under the hypothesis of convexity of Ω ⊂ R

3, a lower bound for the blowup time
is derived by constructing an auxiliary function and using differential inequality technique. The similar
idea is also applied in more generalized problems (see [8,18,24]). For other contributions in reaction–
diffusion equations with nonlocal boundary conditions, we refer to [2,10,11,16,17] and references therein.
Some numerical results are provided in [6,28].

Despite numerous papers in this area, there have not been many articles that deal with problem (1.1).
One distinct feature is that the normal derivative is not continuous along the boundary. As far as we
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know, the blowup time estimates, which are determined by the parameter p, the initial value u0(x) and
the volume of Γ1, have been considered rarely.

The main purpose of this paper is to study problem (1.1) in any smooth bounded domain Ω ⊂ R
n(n �

2). Our methods are mainly motivated by the ideas of [13,14,26]; meanwhile, we also employ some results
which are developed by [3,25]. First, we prove the local existence and uniqueness of solutions by the
contraction mapping principle. Next, we establish the finite time blowup of the solution and get an
explicit formula of the upper bound for the blowup time. Finally, by analyzing the representation formula
of the solution u(x, t) and utilizing the properties of Green’s function, we obtain the lower bound for the
blowup time in terms of the parameter p, the initial value u0(x) and the volume of Γ1. More specifically,
we conclude that
(1) Let u0(x) and |Γ1| be fixed. If p → 1+, then the order of the upper and lower bounds for the blowup

time is (p − 1)−1. This fact implies that the order of −1 is optimal.
(2) Let p > 1 and |Γ1| be fixed. If maxx∈Ω u0(x) → 0+, then the order of the lower bound for the blowup

time is
(
maxx∈Ω u0(x)

)1−p. This order is sharp, because the upper bound is proved to be of order
(
maxx∈Ω u0(x)

)1−p as long as u0(x) is comparable to maxx∈Ω u0(x).
(3) Let p > 1 and u0(x) be fixed. If |Γ1| > 0, then the upper bound for the blowup time is shown to be

of order |Γ1|−1. In addition, if |Γ1| → 0+, the order of the lower bound is |Γ1|−1/ ln (1 + 1/|Γ1|) for
n = 2 and |Γ1|− 1

n−1 for n � 3.

Remark 1.1. The set (Γ1 ∩ Γ2) × (0, T ] is a zero measure set. Even though there will be a discontinuity
of the first order derivatives on this set, there is no impact on the definition of a weak solution of (1.1).
By the standard parabolic regularity theory, the weak solution is actually C1 on (Ω \ Γ1 ∩ Γ2) × (0, T ].
The value of the normal derivative on the set (Γ1 ∩ Γ2) × (0, T ] is actually irrelevant. Nonetheless, one
can show that for any (x, t) ∈ (Γ1 ∩ Γ2) × (0, T ], ∂u/∂�η exists and

∂u(x, t)
∂�η

=
1
2

∫

Ω

up(z, t) dz; (1.3)

its proof is an application of the Green’s function. Since its value is irrelevant, we shall not include the
proof of (1.3) in this paper.

A weak subsolution (and a supersolution) of (1.1) is defined in the usual manner:

Definition 1.1. For any T > 0, a function u(x, t) ∈ C
(
Ω × [0, T ]

)
is called a weak solution (subsolution,

supersolution) of problem (1.1) if for any t ∈ (0, T ] and any φ ∈ C2,1
(
Ω × [0, t]

)
(with φ � 0), it satisfies

∫

Ω

(u(y, t)φ(y, t) − u0(y)φ(y, 0)) dy −
t∫

0

∫

Ω

(φs + Δφ) (y, s)u(y, s) dy ds

= (�,�)

t∫

0

∫

Γ1

φ(y, s)
∫

Ω

up(z, s) dz dSy ds −
t∫

0

∫

∂Ω

u(y, s)
∂φ(y, s)

∂�η
dSy ds.

Definition 1.2. We define

T ∗ = sup
{
T > 0 : there exists a solution of (1.1) on Ω × [0, T ]

}

to be the maximal existence time for (1.1). We say T ∗ = 0 if local in time existence is not valid.

This paper is organized in the following manner. In Sect. 2, we state some well-known results of Green’s
function and the representation formula of the solution u(x, t) from the potential theory, and then, we
establish the local existence and uniqueness of solutions. In Sect. 3, we establish the finite time blowup
of the solution and obtain an upper bound for the blowup time. In Sect. 4, we estimate the lower bound
for the blowup time, which is the primary contribution of this paper.
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2. Preliminaries

2.1. Green’s function

The Neumann Green’s function GN is well defined from the classical single-layer potential theory. Specif-
ically, we call a function GN (x, t, y, s) defined on {(x, t, y, s) : x, y ∈ Ω, t, s ∈ R, s < t} the Neumann
Green’s function for the heat operator

Ltx = ∂t − Δx,

if it satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tGN (x, t, y, s) = ΔxGN (x, t, y, s), x ∈ Ω, t > s,

∂GN (x, t, y, s)
∂�η

= 0, x ∈ ∂Ω, t > s,

limt→s+ GN (x, t, y, s) = δ(x − y), in distributional sense

for any fixed s ∈ R and y ∈ Ω. Here are some well-known properties from the classical single-layer
potential theory.

Lemma 2.1. Let Ω ⊂ R
n be a bounded domain with C2 boundary ∂Ω. The unique Neumann Green’s

function GN (x, t, y, s) for the heat operator has the following properties.
(1) GN (x, t, y, s) is C2 in x and y

(
x, y ∈ Ω

)
, and C1 in t and s (s < t).

(2) For any x, y ∈ Ω and s < t, G(x, t, y, s) is nonnegative and satisfies

GN (x, t, y, s) = GN (x, t − s, y, 0) and GN (x, t, y, s) = GN (y, t, x, s).

(3) For any x ∈ Ω and s < t,
∫

Ω

GN (x, t, y, s) dy = 1.

(4) For x, y ∈ Ω, 0 < t−s < 1, (here we actually only require ∂Ω to be Lipschitz), there exist C > 0, c > 0
such that [3, (1.3)],

0 < GN (x, t, y, s) � C

(t − s)n/2
exp

{

−c|x − y|2
t − s

}

. (2.1)

(5) Suppose that u0 ∈ L∞(Ω), g ∈ L∞(∂Ω × (0, T )) and is piecewise continuous. Then, the weak solution
of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu = Δxu, (x, t) ∈ Ω × (0, T ),

∂u(x, t)
∂�η

= g, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), x ∈ Ω

is given by, for x ∈ Ω, t > 0,

u(x, t) =
∫

Ω

GN (x, t, y, 0)u0(y) dy +

t∫

0

∫

∂Ω

GN (x, t, y, s)g(y, s) dSy ds. (2.2)

It satisfies u ∈ C∞(Ω × (0, T )) ∩ C(Ω × (0, T ]). At any point x∗ ∈ Ω where u0 is continuous, u(x, t) is
continuous at (x∗, 0), and at any point (x∗, t∗) ∈ ∂Ω × (0, T ) where g is Hölder continuous, u is C1 in a
neighborhood of this point.
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Applying part (2) and part (5) of this lemma to our system (1.1), assuming
∫

Ω

up(z, t) dz to be con-

tinuous (which will be established in the existence theorem), we find that, for x ∈ Ω, t > 0,

u(x, t) =
∫

Ω

GN (x, t, y, 0)u0(y) dy +

t∫

0

∫

Γ1

GN (x, t, y, s)
∫

Ω

up(z, s) dz dSy ds, (2.3)

and using T as the new initial data, for x ∈ Ω, t > 0,

u(x, T + t) =
∫

Ω

GN (x, t, y, 0)u(y, T ) dy

+

t∫

0

∫

Γ1

GN (x, t, y, s)
∫

Ω

up(z, T + s) dz dSy ds.

(2.4)

2.2. Local existence and uniqueness

We establish the local existence and uniqueness of solutions to problem (1.1). Although the argument is
more or less standard, we state it here for completeness.

Theorem 2.1. The maximal existence time T ∗ for (1.1) is positive, and there exists a unique nonnegative
solution u ∈ C2,1 (Ω × (0, T ∗)) ∩ C

(
Ω × [0, T ∗)

)
. Moreover, if T ∗ < ∞, then

‖u(·, t)‖L∞ → ∞ as t → T ∗. (2.5)

Proof. We prove the local existence via the contraction mapping principle. Take T > 0, B > 0 and
BT = C

(
Ω × [0, T ]

)
be equipped with the maximum norm: ‖v‖ = maxΩ×[0,T ]|v| for any v ∈ BT , then BT

is a Banach space and BT,B = {v ∈ BT : ‖v‖ � B} is also a Banach space. For each v ∈ BT,B , the linear
problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(x, t) = Δu(x, t), (x, t) ∈ Ω × (0, T ],

∂u(x, t)
∂�η

=
∫

Ω

(v+)p(z, t) dz � V (t), (x, t) ∈ Γ1 × (0, T ],

∂u(x, t)
∂�η

= 0, (x, t) ∈ Γ2 × (0, T ],

u(x, 0) = u0(x), x ∈ Ω

(2.6)

admits a unique solution u(x, t) ∈ C2,1 (Ω × (0, T ]) ∩ C
(
Ω × [0, T ]

)
, which is given by the single-layer

potential (2.2), for x ∈ Ω, t > 0,

u(x, t) =
∫

Ω

GN (x, t, y, 0)u0(y) dy +

t∫

0

∫

Γ1

GN (x, t, y, s)V (s) dSy ds.

From the fundamental estimate (2.1) on Green’s function for Lipschitz domains, we have, for any B > 0,
0 < T0 � 1 and 0 < T � T0,

|u(x, t)| � C + CBpT
1
2
0 , (x, t) ∈ Ω × [0, T ].

If we choose B and T0 � 1 such that

B = 4C and T0 < B−2p,
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then we get ‖u‖ � B. This shows that the mapping M T

M T (v) = u

maps BT,B into itself.
To prove that M T is a contraction on BT,B , we take v1, v2 ∈ BT,B and define by u1, u2 the corre-

sponding solutions. Then, for any (x, t) ∈ Ω × [0, T ], we have

|u1(x, t) − u2(x, t)| � CT
1
2 ‖V1 − V2‖L∞[0,T ] � CpBp−1T

1
2 ‖v1 − v2‖,

which implies that M T is a contraction if T is sufficiently small. Thus, M T has a unique fixed point in
BT,B . Now, if u(x, t) is the unique fixed point of BT,B , then the standard regularity theory of parabolic
PDE implies that u(x, t) ∈ C2,1 (Ω × (0, T ]) ∩ C

(
Ω × [0, T ]

)
, and by maximum principle u(x, t) > 0 for

all x ∈ Ω and t > 0. It is therefore
∫

Ω

(u+)p(z, t) dz =
∫

Ω

up(z, t) dz, and thus, u is also a nonnegative

classical solution of problem (1.1).
Since the solution is obtained by the contraction mapping principle, it is unique in BT,B . Suppose u is

a solution obtained by the contraction mapping principle, then by our argument ‖u‖ � 1
2B. Suppose v ∈

C2,1 (Ω × (0, T ])∩C
(
Ω × [0, T ]

)
is another solution. Since ‖v(·, 0)‖L∞ � 1

2B, by continuity, ‖v‖C(Ω) � B

for 0 � t � T1 for some T1 ∈ (0, T ]. Repeating the above arguments, we find that u(x, t) ≡ v(x, t) for
x ∈ Ω, 0 � t � T1. But then ‖v(·, T1)‖L∞ = ‖u(·, T1)‖L∞ � 1

2B, and the uniqueness interval can further
be extended. It follows that if the maximal uniqueness interval is [0, T1), then it must coincide with [0, T ).

If lim sup
t→T ∗−

‖u(·, t)‖L∞ < ∞, then by De Giorgi–Nash–Moser estimates [12, Section 3.4], lim
t→T ∗

u(x, t) =

u(x, T ∗) exists and is Hölder continuous on Ω. Thus, we can extend the existence time T ∗ to some T ′ > T ∗

using the argument above, which contradicts the definition of T ∗. Therefore, (2.5) holds. �

Remark 2.1. From Theorem 2.1, we conclude that if the solution is bounded all the time, it exists globally.
Thus, the estimate of T ∗ is reduced to calculating the blowup time for the L∞ norm of the solution.

3. Upper bound for the blowup time

In this section, we get the finite time blowup of the solution and give an upper bound for the blowup
time. Our main result of this section reads as follows.

Theorem 3.1. Let u(x, t) be the solution of (1.1) and T ∗ be the maximal existence time, then

T ∗ � |Ω|p−1

(p − 1)|Γ1|

⎛

⎝
∫

Ω

u0(z) dz

⎞

⎠

1−p

. (3.1)

Proof. The function h(t) �
∫

Ω

u(z, t) dz is continuous in t, and the Hölder’s inequality implies that

∫

Ω

up(z, t) dz � |Ω|1−php(t).

Using this estimate and taking the test function φ ≡ 1 in the definition of the weak solution, we obtain

h(t) � h(0) + |Γ1||Ω|1−p

t∫

0

hp(s) ds � H(t), 0 < t < T ∗.
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It follows that H ′(t) � |Γ1||Ω|1−pHp(t) and H(0) = h(0). Integrating over [0, T ] (T < T ∗), we get

0 � H1−p(T ) � H1−p(0) − (p − 1)T |Γ1||Ω|1−p.

Hence,

T � |Ω|p−1

(p − 1)|Γ1|H
1−p(0) =

|Ω|p−1

(p − 1)|Γ1|h
1−p(0).

Letting T → T ∗−, we complete the proof. �

4. Lower bound for the blowup time

The primary contribution of this paper is to derive the lower bound for the blowup time T ∗ which is
based on representation formulas (2.3) and (2.4). In order to obtain a lower bound for T ∗, we study how
fast the solution u can grow. For this purpose, we define

M0 = max
x∈Ω

u0(x) and M(t) = sup
(y,s)∈Ω×[0,t]

u(y, s). (4.1)

The first result of the lower bound for the blowup time T ∗ is presented below.

Theorem 4.1. Let T ∗ be the maximal existence time for (1.1). Then for any α ∈ (0, 1/(n − 1)), there
exists a constant C = C(n, α,Ω) such that

T ∗ �

⎧
⎪⎪⎨

⎪⎪⎩

C

p − 1

(
(2M0)

p−1 |Γ1|α
)− 2

1+(1−n)α

, if (2M0)
p−1 |Γ1|α � 1,

C

p − 1
ln

(

1 +
(
(2M0)

p−1 |Γ1|α
)− 2

1+(1−n)α

)

, if (2M0)
p−1 |Γ1|α < 1.

(4.2)

Remark 4.1. From Theorems 3.1 and 4.1 , we have the relationship between p and T ∗ when u0(x) and
|Γ1| are fixed as p → 1+; namely, we deduce from (3.1) and (4.2) that

C1(p − 1)−1 � T ∗ � C2(p − 1)−1,

which implies that this order of −1 is optimal.

Remark 4.2. Note that
(
(2M0)

p−1 |Γ1|α
)− 2

1+(1−n)α � ln
(

1 +
(
(2M0)

p−1 |Γ1|α
)− 2

1+(1−n)α

)

,

thus, in both cases, we always have

T ∗ � C

p − 1
ln

(

1 +
(
(2M0)

p−1 |Γ1|α
)− 2

1+(1−n)α

)

. (4.3)

Proof of Theorem 4.1. For any j ∈ N, we choose Mj = 2jM0. Define Tj to be the first time that M(t)
arrives at Mj and tj = Tj − Tj−1. Since u(x, t) ∈ C2,1 (Ω × (0, T ∗)) ∩ C

(
Ω × [0, T ∗)

)
, we find

Tj = min {t � 0 : M(t) = Mj} .
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Applying the representation formula (2.4), we derive

u(x, Tj) =
∫

Ω

GN (x, tj , y, 0)u(y, Tj−1) dy

+

tj∫

0

∫

Γ1

GN (x, tj , y, s)
∫

Ω

up(z, Tj−1 + s) dz dSy ds

�Mj−1

∫

Ω

GN (x, tj , y, 0) dy + |Ω|Mp
j

tj∫

0

∫

Γ1

GN (x, tj , y, s) dSy ds

=Mj−1 + |Ω|Mp
j

tj∫

0

∫

Γ1

GN (x, tj , y, s) dSy ds,

(4.4)

where the last equality is obtained by Lemma 2.1. Assume that tj < 1. By virtue of the fundamental
estimate (2.1) and the Hölder’s inequality, for any α ∈ (0, 1/(n − 1)), we find

tj∫

0

∫

Γ1

GN (x, tj , y, s) dSy ds

�C

tj∫

0

∫

Γ1

(tj − s)− n
2 exp

{

−c|x − y|2
tj − s

}

dSy ds

=C

tj∫

0

s− n
2

∫

Γ1

exp
{

−c|x − y|2
s

}

dSy ds

�C|Γ1|α
tj∫

0

s− n
2

⎛

⎝
∫

Γ1

exp
{

−|x − y|2
s

· c

1 − α

}

dSy

⎞

⎠

1−α

ds

�C|Γ1|α
tj∫

0

s− n
2

⎛

⎝
∫

∂Ω

exp
{

−|x − y|2
s

· c

1 − α

}

dSy

⎞

⎠

1−α

ds

�C|Γ1|α
tj∫

0

s− n
2

(
Cs

n−1
2

)1−α

ds

�Ct
1+(1−n)α

2
j |Γ1|α.

(4.5)

Combining this with (4.4), we obtain

u(x, Tj) � Mj−1 + CMp
j t

1+(1−n)α
2

j |Γ1|α,

which implies

Mj � Mj−1 + CMp
j t

1+(1−n)α
2

j |Γ1|α,
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i.e., (recalling that Mj = 2jM0),

tj � C
(
2j(p−1)Mp−1

0 |Γ1|α
)− 2

1+(1−n)α

.

Consequently, for any j ∈ N, we have

tj � min
{

1, C
(
2j(p−1)Mp−1

0 |Γ1|α
)− 2

1+(1−n)α

}

.

Thus,

T ∗ =
∞∑

j=1

tj � C

∞∑

j=1

min
{

1, 2− 2j(p−1)
1+(1−n)α

(
Mp−1

0 |Γ1|α
)− 2

1+(1−n)α

}

. (4.6)

The remaining task is to provide a lower bound for the right-hand side of (4.6). If

2− 2(p−1)
1+(1−n)α

(
Mp−1

0 |Γ1|α
)− 2

1+(1−n)α � 1, (4.7)

then
∞∑

j=1

min
{

1, 2− 2j(p−1)
1+(1−n)α

(
Mp−1

0 |Γ1|α
)− 2

1+(1−n)α

}

=
∞∑

j=1

2− 2j(p−1)
1+(1−n)α

(
Mp−1

0 |Γ1|α
)− 2

1+(1−n)α

=
2− 2(p−1)

1+(1−n)α

1 − 2− 2(p−1)
1+(1−n)α

(
Mp−1

0 |Γ1|α
)− 2

1+(1−n)α

� 2− 2(p−1)
1+(1−n)α

ln
(
2

2(p−1)
1+(1−n)α

)
(
Mp−1

0 |Γ1|α
)− 2

1+(1−n)α

=
1 + (1 − n)α
2(p − 1) ln 2

(
(2M0)

p−1 |Γ1|α
)− 2

1+(1−n)α

.

(4.8)

Otherwise, if (4.7) is not true, then for any β ∈ (0, 1/2], there exists Jβ � 1 such that

2− 2Jβ(p−1)
1+(1−n)α

(
Mp−1

0 |Γ1|α
)− 2

1+(1−n)α

> β and 2− 2(Jβ+1)(p−1)

1+(1−n)α

(
Mp−1

0 |Γ1|α
)− 2

1+(1−n)α � β.

Thus, we get

Jβ � 1 + (1 − n)α
2(p − 1) ln 2

ln
(

β−1
(
(2M0)

p−1 |Γ1|α
)− 2

1+(1−n)α

)

.

Notice β−1 ∈ [2,∞) and

2− 2(p−1)
1+(1−n)α

(
Mp−1

0 |Γ1|α
)− 2

1+(1−n)α

> 1,

we have

Jβ � 1 + (1 − n)α
2(p − 1) ln 2

ln
(

1 +
(
(2M0)

p−1 |Γ1|α
)− 2

1+(1−n)α

)

.



60 Page 10 of 15 H. Lu, B. Hu and Z. Zhang ZAMP

It follows that
∞∑

j=1

min
{

1, 2− 2j(p−1)
1+(1−n)α

(
Mp−1

0 |Γ1|α
)− 2

1+(1−n)α

}

>

Jβ∑

j=1

min
{

1, 2− 2j(p−1)
1+(1−n)α

(
Mp−1

0 |Γ1|α
)− 2

1+(1−n)α

}

> Jβ · β

� C

p − 1
ln

(

1 +
(
(2M0)

p−1 |Γ1|α
)− 2

1+(1−n)α

)

.

(4.9)

Substituting (4.8), (4.9) into (4.6), respectively, we get (4.2). �

Comparing (3.1) and (4.2), we notice that T ∗ shrinks to zero when M0 is sufficiently large, which
complies intuitively with the reality.

We next investigate the asymptotic behavior of T ∗ when M0 → 0+ or |Γ1| → 0+. We begin with an
elementary calculus result.

Lemma 4.1. Fix any p > 1 and s0 > 0, set cp = (p − 1)p−1/pp and define a function q : [s0,∞) → R by
q(s) = (s − s0) /sp (s � s0), then

(1) For any q0 ∈ [0, cps
1−p
0 ], there exists a unique s ∈ [s0, ps0/(p − 1)] such that q(s) = q0.

(2) For any q0 > cps
1−p
0 , there does not exist s > s0 such that q(s) = q0.

Proof. A straightforward computation shows that

q′(s) =
(1 − p)s + ps0

sp+1
.

It follows that q(s) is strictly increasing on the interval [s0, ps0/(p − 1)] and strictly decreasing on the
interval [ps0/(p−1),∞). In addition, maxs�s0q(s) = q(s)|s=ps0/(p−1) = cps

1−p
0 ; therefore, conclusions (1)

and (2) hold. �

The following estimate of Neumann Green’s function will play an important role in establishing the
lower bound for the blowup time when M0 → 0+ or |Γ1| → 0+.

Lemma 4.2. There exists C = C(n,Ω) such that for any x ∈ Ω and t ∈ (0, 1],
t∫

0

∫

Γ1

GN (x, t, y, s) dSy ds �
{

C |Γ1|
1

n−1 , if n � 3,

C |Γ1| ln (1 + 1/ |Γ1|) , if n = 2.
(4.10)

Proof. This is a result of the fundamental estimate (2.1) on Green’s function, and the detailed proof can
be carried out by a similar way as in the proof of [25, Lemmas 2.7 and 2.10], so we omit it. �

Now, we are in a position to establish the lower bound for the blowup time when M0 → 0+ or
|Γ1| → 0+.

Theorem 4.2. Let u(x, t) be the solution of (1.1). Suppose T ∗ is the maximal existence time and define

Q =

{
Mp−1

0 |Γ1|
1

n−1 , if n � 3,

Mp−1
0 |Γ1| ln (1 + 1/ |Γ1|) , if n = 2.

(4.11)

Then, there exist constants Q0 = Q0(n,Ω) and C = C(n,Ω) such that if Q � Q0/p, then

T ∗ � C

(p − 1)Q
. (4.12)
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Remark 4.3. According to Theorems 3.1 and 4.2, we draw two conclusions.
(1) The relationship between M0 and T ∗: let p > 1 and |Γ1| be fixed, if M0 → 0+, then we deduce from

(4.12) that

T ∗ � C1M
1−p
0 .

This order is sharp because (3.1) implies T ∗ � C2M
1−p
0 provided the initial value satisfies, for

example, cM0 � u0(x) � M0 for some c > 0.
(2) The relationship between |Γ1| and T ∗: let p > 1 and u0(x) be fixed, if |Γ1| → 0+, then it follows

from (3.1) that

T ∗ � C3|Γ1|−1.

In addition, (4.12) implies that T ∗ is at least of order |Γ1|−1/ ln (1 + 1/|Γ1|) for n = 2 and |Γ1|− 1
n−1

for n � 3.

Proof of Theorem 4.2. We shall prove Theorem 4.2 in three steps below. Step 1. We claim that for any
T ∈ [0, T ∗) and 0 � t < min{1, T ∗ − T}, there exists a fixed constant C∗ = C∗(n,Ω) such that

M(T + t) − M(T )
Mp(T + t)

� γ �
{

C∗ |Γ1|
1

n−1 , if n � 3,

C∗ |Γ1| ln (1 + 1/ |Γ1|) , if n = 2.
(4.13)

Indeed, by virtue of the representation formula (2.4), for any T ∈ [0, T ∗) and 0 � t < min{1, T ∗ −T}, we
have

u(x, T + t) =
∫

Ω

GN (x, t, y, 0)u(y, T ) dy

+

t∫

0

∫

Γ1

GN (x, t, y, s)
∫

Ω

up(z, T + s) dz dSy ds

�M(T )
∫

Ω

GN (x, t, y, 0) dy + |Ω|Mp(T + t)

t∫

0

∫

Γ1

GN (x, t, y, s) dSy ds

=M(T ) + |Ω|Mp(T + t)

t∫

0

∫

Γ1

GN (x, t, y, s) dSy ds,

where the last equality is derived by Lemma 2.1. Combining the above inequality with Lemma 4.2, we
get (4.13).
Step 2. Based on Lemma 4.1, we construct a strictly increasing sequence {Mj}∞

j=0.


 Define M0 as in (4.1). Given that pcp > 1/e for all p > 1 (see (4.16)), we first assume

Q � cp

2C∗ , (4.14)

i.e., 2Mp−1
0 γ � cp, then we construct a sequence by induction. Suppose Mj−1 has been constructed

for some j � 1.

 If 2Mp−1

j−1 γ � cp, then we define Mj ∈ (Mj−1, pMj−1/(p− 1)] to be the unique solution such that

Mj − Mj−1

Mp
j

= 2γ.


 If 2Mp−1
j−1 γ > cp, we stop this construction and denote the term to be ML, namely, ML represents

the first term with 2Mp−1
L γ > cp.
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 Define

Mj =
(

p

p − 1

)j−L

ML, ∀ j � L + 1.

For any j ∈ N, we define Tj = min{t � 0 : M(t) = Mj} and denote tj = Tj − Tj−1 to be the time spent
in the jth step. In particular, T0 = 0. In light of (4.14), we have L � 1. We next show

tj � 1, ∀ 1 � j � L. (4.15)

In fact, for any 1 � j � L, if tj < 1, using (4.13) with T = Tj−1 and t = tj , we have

Mj − Mj−1

Mp
j

� γ,

which contradicts to the choice of Mj (1 � j � L). Thus, (4.15) holds.
Step 3. We first show that the integer L is finite. From the above construction, {Mj}L

j=0 is a strictly
increasing sequence and

Mj = Mj−1 + 2Mp
j γ � Mj−1(1 + 2Mp−1

0 γ) � M0(1 + 2Mp−1
0 γ)j → ∞ as j → ∞,

which implies 2Mp−1
j γ > cp when j is sufficiently large. Therefore, the integer L is finite.

Now, we proceed to derive a lower bound for L. The above construction in Step 2 implies,

2Mp−1
L−1γ � cp and 2Mp−1

L γ > cp.

In addition, for any 1 � j � L, we have

Mj−1 = Mj − 2Mp
j γ = Mj

(
1 − 2Mp−1

j γ
)

,

which implies

2Mp−1
j−1 γ = 2Mp−1

j γ
(
1 − 2Mp−1

j γ
)p−1

.

The function pcp is decreasing for p > 1 and thus
1
e

= lim
p→∞ pcp < pcp < lim

p→1+
pcp = 1, 1 < p < ∞. (4.16)

Moreover, the function (p − 1)cp is increasing for p > 1, then

0 = lim
p→1+

(p − 1)cp < (p − 1)cp < lim
p→∞(p − 1)cp =

1
e
, 1 < p < ∞.

Therefore, if we set β = min {1/2, cp}, and assume that 2Mp−1
0 γ � 1/2, namely,

Q � 1
4C∗ , (4.17)

then there exists 1 � L0 � L such that

2Mp−1
L0−1γ � β and 2Mp−1

L0
γ > β.

Moreover, for any 0 � j � L0, we define xj = 2Mp−1
L0−jγ, then

x0 = 2Mp−1
L0

γ > β and x1 = 2Mp−1
L0−1γ � β,

and

xj = xj−1 (1 − xj−1)
p−1

, ∀ 1 � j � L0.

Notice that {xj}L0
j=1 is a decreasing positive sequence and xj � β � 1/2 (1 � j � L0), then

xj = xj−1 (1 − xj−1)
p−1 � xj−1 [1 − 2(p − 1)xj−1] , ∀ 2 � j � L0.
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Notice that

1 − 2(p − 1)xj−1 � 1 − 2(p − 1)β � 1 − 2(p − 1)cp > 1 − 2
e

>
1
4
,

we derive
1
xj

� 1
xj−1 [1 − 2(p − 1)xj−1]

=
1

xj−1
+

2(p − 1)
1 − 2(p − 1)xj−1

� 1
xj−1

+ 8(p − 1) (4.18)

for any 2 � j � L0. Therefore,
1

xL0

� 1
x1

+ 8(p − 1) (L0 − 1) . (4.19)

Since (noticing that e ≈ 2.718 < 3)

1
3p

< β < x0 =
(

ML0

ML0−1

)p−1

x1 �
(

p

p − 1

)p−1

β �
(

p

p − 1

)p−1

cp =
1
p
,

we deduce

x1 = x0 (1 − x0)
p−1 � 1

3p

(

1 − 1
p

)p−1

=
cp

3
.

Substituting the above inequality and xL0 = 2Mp−1
0 γ into (4.19), we get

1
2Mp−1

0 γ
� 3

cp
+ 8(p − 1) (L0 − 1) < 9p + 8(p − 1) (L0 − 1) ,

i.e.,

L0 � 1
8(p − 1)

(
1

2Mp−1
0 γ

− 9p

)

+ 1.

It follows from (4.15) and L � L0 that

T ∗ =
∞∑

j=1

tj >
L∑

j=1

tj � L � 1
8(p − 1)

(
1

2Mp−1
0 γ

− 9p

)

+ 1.

By virtue of the definition of Q and γ, we have Mp−1
0 γ = C∗Q. If we choose

Q � 1
36C∗p

, (4.20)

then

T ∗ � 1
8(p − 1)

(
1

2C∗Q
− 1

4C∗Q

)

+ 1 =
1

32C∗Q(p − 1)
+ 1 � C

Q(p − 1)
. (4.21)

Therefore, in view of (4.14), (4.17), (4.20), taking

Q0 = min
{

cp

2C∗ ,
1

4C∗ ,
1

36C∗p

}

· p =
1

36C∗ ,

we complete the proof of Theorem 4.2. �

The heat equation in a bounded domain with a nonlocal boundary condition is considered in this
paper. As an immediate consequence of the potential theory and the contraction mapping principle, the
local existence and uniqueness of the solution are established. The primary results of this paper are on the
blowup behavior of the system. Based on the representation formula of the solution and the properties
of the Neumann Green’s function, both upper and lower bounds for the blowup time T ∗ (also called the
maximal existence time) are obtained. Some interesting asymptotic behavior of the blowup time T ∗ is



60 Page 14 of 15 H. Lu, B. Hu and Z. Zhang ZAMP

characterized as p → 1+, maxx∈Ω u0(x) → 0+ or |Γ1| → 0+. In contrast to some results in this area in the
literature, our lower bound estimate for the blowup time does not require the convexity of the domain.
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