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Abstract. This paper deals with the quasilinear attraction–repulsion chemotaxis system

⎧
⎪⎨

⎪⎩

ut = ∇ · ((u + 1)m−1∇u − χu(u + 1)p−2∇v + ξu(u + 1)q−2∇w
)
+ f(u),

0 = Δv + αu − βv,

0 = Δw + γu − δw

in a bounded domain Ω ⊂ R
n (n ∈ N) with smooth boundary ∂Ω, where m, p, q ∈ R, χ, ξ, α, β, γ, δ > 0 are constants, and f

is a function of logistic type such as f(u) = λu − μuκ with λ, μ > 0 and κ ≥ 1, provided that the case f(u) ≡ 0 is included
in the study of boundedness, whereas κ is sufficiently close to 1 in considering blow-up in the radially symmetric setting.
In the case that ξ = 0 and f(u) ≡ 0, global existence and boundedness have already been proved under the condition

p < m + 2
n

. Also, in the case that m = 1, p = q = 2 and f is a function of logistic type, finite-time blow-up has already
been established by assuming χα − ξγ > 0. This paper classifies boundedness and blow-up into the cases p < q and p > q
without any condition for the sign of χα − ξγ and the case p = q with χα − ξγ < 0 or χα − ξγ > 0.
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1. Introduction

Background. Chemotaxis is the property of cells to move in a directional manner in response to concen-
tration gradients of chemical substances. One of the systems of partial differential equations describing
such phenomena was proposed by Keller–Segel [23] as

{
ut = ∇ · (∇u − χu∇v

)
,

vt = Δv + αu − βv,

where χ, α, β > 0 are constants, and the functions u and v idealize the cell density and the concentration
of the chemoattractant, respectively. After that, many types of chemotaxis systems have been studied
(see e.g., Osaki–Yagi [35], Bellomo et al. [2], Arumugam–Tyagi [1]). From the point of view of modeling,
it is significant to analyze quasilinear systems such as the system

{
ut = ∇ · ((u + 1)m−1∇u − χu(u + 1)p−2∇v

)
,

vt = Δv + αu − βv,

where m, p ∈ R. This system has been proposed by Painter–Hillen [36] and has been investigated in some
literatures (see e.g., Cieślak [7], Tao–Winkler [41]; cf. also [20] for the degenerate version of the system).
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In another direction, to describe the aggregation of microglial cells in Alzheimer’s disease Luca et al. [29]
proposed the attraction–repulsion chemotaxis system

⎧
⎪⎨

⎪⎩

ut = ∇ · (∇u − χu∇v + ξu∇w
)
,

vt = Δv + αu − βv,

wt = Δw + γu − δw,

where χ, ξ, α, β, γ, δ > 0 are constants. This is also a specialized system introduced in [36, Sect. 3.3] in
order to represent the quorum sensing effect that cells keep away from a repulsive chemical substance. In
this system the functions u, v and w represent the cell density, the concentration of the chemoattractant
and chemorepellent, respectively. The above attraction–repulsion chemotaxis system has also been actively
studied as detailed in later. Here we emphasize that it is meaningful to consider the system with diffusion,
attraction and repulsion terms involving nonlinearities, that is,

⎧
⎪⎨

⎪⎩

ut = ∇ · ((u + 1)m−1∇u − χu(u + 1)p−2∇v + ξu(u + 1)q−2∇w
)
,

vt = Δv + αu − βv,

wt = Δw + γu − δw.

In the present paper, in order to gain a first insight towards a mathematical analysis of this system, we
will reduce the system to the parabolic–elliptic–elliptic version. The reduction seems to be reasonable
because the diffusion of chemical substances are faster than that of cells. Thus we can approximate the
system by its parabolic–elliptic–elliptic version.
Problem. In this paper we consider the quasilinear parabolic–elliptic–elliptic attraction–repulsion chemo-
taxis system with initial and boundary conditions,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · ((u + 1)m−1∇u − χu(u + 1)p−2∇v + ξu(u + 1)q−2∇w
)

+ f(u),
0 = Δv + αu − βv,

0 = Δw + γu − δw,

∇u · ν|∂Ω = ∇v · ν|∂Ω = ∇w · ν|∂Ω = 0,

u(·, 0) = u0,

(1.1)

where Ω ⊂ R
n (n ∈ N) is a bounded domain with smooth boundary ∂Ω, m, p, q ∈ R, χ, ξ, α, β, γ, δ > 0

are constants, ν is the outward normal vector to ∂Ω,

u0 ∈ C0(Ω), u0 ≥ 0 in Ω and u0 �= 0. (1.2)

Moreover, we assume that

• m, p ∈ R, f(u) ≤ λ0u−μ0u
κ (λ0, μ0 > 0, κ ≥ 1) in the consideration of boundedness, provided that

if κ = 1, then λ0 = μ0, which covers the case f(u) ≡ 0;
• m ≥ 1, p > 1, f(u) = λ(|x|)u − μ(|x|)uκ (κ ≥ 1) in the study of blow-up, where

Ω = BR(0) ⊂ R
n (n ∈ N, n ≥ 3) with R > 0, (1.3)

λ, μ ≥ 0 and λ, μ ∈ C0([0, R]), (1.4)

μ(r) ≤ μ1r
a for all r ∈ [0, R] with some μ1 > 0 and a ≥ 0. (1.5)

Attraction vs. repulsion. As to the system (1.1) with p = q = 2, it is known that boundedness and
blow-up are classified by the sign of χα − ξγ (see e.g., Tao–Wang [40]). Here boundedness (including
global existence), which expresses that ‖u(·, t)‖L∞(Ω) ≤ C for all t > 0 with some C > 0, implies
absence of chemotactic collapse, whereas finite-time blow-up (blow-up for short), which means that
limt↗T ‖u(·, t)‖L∞(Ω) = ∞ with some T ∈ (0,∞), describes the concentration of cells. On the other
hand, to the best of our knowledge, no results are available for boundedness and blow-up in (1.1) with
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p �= 2, q �= 2. Here the powers p, q imply the strengths of the effects of attraction, which promotes blow-up,
and repulsion, which induces boundedness. Thus we can naturally guess as follows.

Boundedness and blow-up can be classified by the size of the powers p, q.

In the following we discuss this expectation. As will be explained later, in the case ξ = 0 in (1.1) it is
known that boundedness holds in the case

p < m +
2
n

, (1.6)

and blow-up occurs in the opposite case. In view of the first equation in (1.1), the condition (1.6) implies
that the effect of diffusion “plus 2

n” is stronger than the one of attraction.
In the case ξ �= 0 the system (1.1) involves the repulsion term which is expected to work in contrast
to the attraction term. Therefore the question arises whether the repulsion term is useful for deriving
boundedness, that is,

when p < q, does boundedness in (1.1)hold without assuming (1.6)? (Q1)

In the opposite case p > q that the effect of attraction is more dominant than that of repulsion, we raise
the following question.

When p > q, does blow-up in (1.1) occur? (Q2)

Furthermore, in the case p = q that the effects of attraction and repulsion are balanced, the following
question arises.

When p = q, are boundedness and blow-up in (1.1.) (Q3)
classified by conditions for the coefficients in the equations?

Overview of related works. Before giving answers to the above three questions, we summarize the previous
studies related to each case.

We first focus on the reduced system without repulsion term,
{

ut = ∇ · ((u + 1)m−1∇u − χu(u + 1)p−2∇v
)

+ f(u),
τvt = Δv + αu − βv,

(1.7)

where m, p ∈ R, χ, α, β > 0, τ ∈ {0, 1} are constants and f is a function. In the case τ = 1, boundedness
was shown in [19,41,44,53]. More precisely, Tao–Winkler [41] derived boundedness when Ω ⊂ R

n (n ∈ N)
is a convex domain, f(u) ≡ 0 and p < m + 2

n holds; after that, the convexity of Ω was removed by [19].
Conversely, when p > m+ 2

n and n ≥ 2, it is known that boundedness breaks down in some cases. Indeed,
existence of unbounded solutions was shown by Winkler [45]; finite-time blow-up was proved by Winkler
[47] in the case n ≥ 3, m = 1, p = 2, and by Cieślak–Stinner [9,10] in the case m ≥ 1 or p ≥ 2. Also,
infinite-time blow-up was shown by Cieślak–Stinner [11] under the condition p > m + 2

n , p < m
2 + n+2

2n ,
m < 1 − 2

n and p < 1; after that, Winkler [49] derived infinite-time blow-up by assuming the condition
p > m+ 2

n , m < 1− 2
n and p ≤ 1. Besides, in the critical case p = m+ 2

n , boundedness and blow-up were
classified by the condition for initial data ([4,21,25,30]). For the system in which the second equation
of (1.7) is replaced by 0 = Δv − M + u, where M := 1

|Ω|
∫

Ω

u0, the picture in this regard is much more

complete. Indeed, in the case p = 2, Cieślak–Winkler [12] showed boundedness and finite-time blow-up
under the condition 2 < m + 2

n and 2 > m + 2
n , respectively; after that, Cieślak–Laurençot [8] studied

finite-time blow-up in the case 0 ≤ m + 2
n ≤ 2. Also, Winkler–Djie [51] derived boundedness under

the condition p < m + 2
n and m ≤ 1 and showed finite-time blow-up under the condition p > m + 2

n ,
m ≤ 1 and p > 1. Moreover, in the case f(u) ≤ λ − μuκ (λ ≥ 0, μ > 0, κ > 1), global existence of
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classical solutions was established by Zheng [53] under the condition that p < min{κ − 1,m + 2
n}, or

that p = κ if μ > 0 is sufficiently large. On the other hand, in the case τ = 0, boundedness was studied
in [27,37,43,52]. Particularly, in the case Ω = R

n (n ∈ N), Sugiyama–Kunii [37] proved boundedness
of weak solutions in the system (1.7) of a degenerate type. More precisely, in the literature the authors
dealt with the case that f(u) ≡ 0, m ≥ 1, p ≥ 2 and p < min{m + 1,m + 2

n}. Also, in the case that
τ = 0, p = 2 and f(u) ≤ λ − μuκ (λ ≥ 0, μ > 0, κ > 1), boundedness was verified by Wang et al. [43]
under the condition that m > 2 − 2

n if κ ∈ (1, 2), or μ > μ∗ if κ ≥ 2 with some μ∗ > 0. In contrast,
when τ = 0, m = 1, p = 2 and f(u) = λu − μuκ (λ ∈ R, μ > 0, κ > 1), Winkler [48] established
finite-time blow-up; after that, the result was extended to the cases p ∈ (1, 2), p = 2 and p > 1 in [39],
[3] and [38], respectively. On the other hand, in the case τ = 1 some related works for the system (1.7)
with signal-dependent sensitivity function χ(v), that is, the system in which the first equation of (1.7)
is replaced by ut = ∇ · ((u + 1)m−1∇u − u(u + 1)p−2χ(v)∇v

)
+ f(u) can be found in [13,15,17,22]. For

instance, when τ = 1, m = 1, p = 2, χ(v) = χ
v and f(u) ≡ 0, Fujie [15] showed boundedness in (1.7)

under the condition 0 < χ <
√

2
n .

We next shift our focus to the attraction–repulsion system
⎧
⎪⎨

⎪⎩

ut = ∇ · (∇u − χu∇v + ξu∇w
)

+ f(u),
0 = Δv + αu − βv,

0 = Δw + γu − δw,

(1.8)

where χ, ξ, α, β, γ, δ > 0. In the case f(u) = λu − μuκ (λ ∈ R, μ > 0, κ > 1), finite-time blow-up
was recently proved in [5] via the method in [48] when κ is sufficiently closed to 1 and χα − ξγ > 0
holds. Moreover, some related works deriving boundedness can be found in [18,31–34], whereas finite-
time blow-up was shown in [24]. Particularly, in the two-dimensional setting, Fujie–Suzuki [18] established
boundedness in the fully parabolic version of (1.8) under the condition that β = δ, χα − ξγ > 0 and
‖u0‖L1(Ω) < 4π

χα−ξγ ; note that the authors relaxed the condition for u0 in the radially symmetric setting
and removed the condition β = δ. Also, Nagai–Yamada [34] proved global existence of solutions under the
condition that α = γ = 1, χ − ξ > 0 and ‖u0‖L1(Ω) = 8π

χ−ξ in the two-dimensional setting; after that, the
authors investigated boundedness of solutions in [33]. On the other hand, in the three-dimensional and
radially symmetric settings, existence of solutions blowing up in finite time to the fully parabolic version
of (1.8) was established by Lankeit [24] under the conditions that χα − ξγ > 0 and that ‖u0‖L1(Ω) = M
with some M > 0. We can also refer to [6,26,28] for the study of (1.8) with nonlinear diffusion and
signal-dependent sensitivity.

In summary, the results on boundedness and blow-up in the system (1.1) were obtained as follows:
Boundedness was derived in the case ξ = 0 under the condition p < m + 2

n ; blow-up was proved only for
the simplified system (1.8) under the condition χα − ξγ > 0. However, in previous studies, the positive
and negative effects of repulsion have not been utilized, e.g., in the cases p < q and p > q. The purpose
of this paper is to classify boundedness and blow-up in the generalized system (1.1) by the size of the
powers p, q. It is unknown whether the analysis of such a complex model can be applied to an example
in other models, e.g., tumor invasion models of Chaplain–Anderson type [16].
Main results. Before explaining our results, we mention the expected answers to the questions (Q1)–(Q3).
As to the questions (Q1) and (Q2), we can give affirmative answers. Also, regard to the question (Q3),
we can classify boundedness and blow-up according to the sign of χα − ξγ. In the following we briefly
state the main results which give the answers to the questions. The precise statements and their proofs
will be given in Sects. 3 and 4.
(I) If p < q, then, for all initial data, the system (1.1) possesses a global bounded classical solution

which is unique (Theorem 3.1).
(II) If p = q and χα− ξγ < 0, then, for all initial data, the system (1.1) admits a unique global bounded

classical solution (Theorem 3.5).
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(III) If p > q, then there exist initial data such that the corresponding solutions blow up in finite time in
the radial framework (Theorem 4.1).

(IV) If p = q and χα− ξγ > 0, then there exist initial data such that the system (1.1) possesses solutions
blow up in finite time in the radial framework (Theorem 4.4).

Strategies for proving boundedness and blow-up. The strategy in boundedness is to establish the differ-
ential inequality

d
dt

∫

Ω

(u + 1)σ ≤ −c1

(∫

Ω

(u + 1)σ
)1+θ1

+ c2 (1.9)

with some σ > n, c1, c2, θ1 > 0. The key to the derivation of (1.9) is to take advantage of the effect of repul-
sion. More precisely, we will estimate positive terms like χα

∫

Ω

uσ+p−2 by the negative term −ξγ
∫

Ω

uσ+q−2.

On the other hand, the cornerstone of the proof of finite-time blow-up is the derivation of the differential
inequality

φ′(s0, t) ≥ c3s
−θ2
0 φ2(s0, t) − c4s

θ3
0 , (1.10)

where c3, c4, θ2, θ3 > 0 are constants. Here the moment-type functional φ is defined as φ(s0, t) :=
s0∫

0

s−b(s0−s)U(s, t) ds, where U is the mass accumulation function given by U(s, t) :=
s

1
n∫

0

ρn−1u(ρ, t) dρ for

s > 0, t > 0 and b ∈ (0, 1). To derive the inequality (1.10) we utilize the attraction term. More precisely,
the key is to handle a term derived from the repulsion term by exploiting the effect of attraction.
Plan of the paper. This paper is organized as follows. In Sect. 2 we collect some preliminary facts about
local existence in (1.1), and a lemma which asserts that an Lσ-estimate for u implies boundedness, as well
as an inequality which will be used later. Section 3 is devoted to establishing results on global existence
and boundedness. In Sect. 4 we give and prove results on finite-time blow-up.

Throughout this paper, we denote by cj generic positive constants, which will be sometimes specified
by cj(ε) depending on small parameters ε > 0.

2. Preliminaries

We first give a result on local existence in (1.1), which can be proved by standard arguments based on
the contraction mapping principle (see e.g., [12,41,42]).

Lemma 2.1. Let Ω ⊂ R
n (n ∈ N) be a bounded domain with smooth boundary and let m, p, q ∈ R,

χ, ξ, α, β, γ, δ > 0. Assume that f(u) ≤ λu − μuκ (κ ≥ 1), where λ, μ ∈ C0(Ω). Then for all u0 satisfying
the condition (1.2) there exists Tmax ∈ (0,∞] such that (1.1) admits a unique classical solution (u, v, w)
such that

{
u ∈ C0(Ω × [0, Tmax)) ∩ C2,1(Ω × (0, Tmax)),
v, w ∈ ⋂

ϑ>n C0([0, Tmax);W 1,ϑ(Ω)) ∩ C2,1(Ω × (0, Tmax)).
(2.1)

Moreover,

if Tmax < ∞, then lim
t↗Tmax

‖u(·, t)‖L∞(Ω) = ∞. (2.2)

Particularly, in the case that f(u) = λ(|x|)u − μ(|x|)uκ (κ ≥ 1) and the conditions (1.3), (1.4) hold, if
u0 is further assumed to be radially symmetric, then there exists Tmax ∈ (0,∞] such that (1.1) possesses
a unique radially symmetric classical solution (u, v, w) satisfying (2.1) and (2.2).

We next give the following lemma, which provides a strategy to prove global existence and bounded-
ness.
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Lemma 2.2. Let Ω ⊂ R
n (n ∈ N) be a bounded domain with smooth boundary and let m, p, q ∈ R,

χ, ξ, α, β, γ, δ > 0. Assume that u0 satisfies (1.2) and that f(u) ≤ λ0u − μ0u
κ (κ ≥ 1, λ0, μ0 > 0),

provided that if κ = 1, then λ0 = μ0. Denote by (u, v, w) the local classical solution of (1.1) given in
Lemma 2.1 and by Tmax ∈ (0,∞] its maximal existence time. If for some σ > n,

sup
t∈(0,Tmax)

‖u(·, t)‖Lσ(Ω) < ∞, (2.3)

then we have

sup
t∈(0,Tmax)

‖u(·, t)‖L∞(Ω) < ∞. (2.4)

Proof. Applying [46, Lemma 2.4 (ii) with θ = σ and μ = ∞] along with (2.3) with σ > n yields

‖∇v(·, t)‖L∞(Ω) ≤ c1

(
1 + sup

t∈(0,Tmax)

‖u(·, t)‖Lσ(Ω)

)
≤ c2, (2.5)

‖∇w(·, t)‖L∞(Ω) ≤ c3

(
1 + sup

t∈(0,Tmax)

‖u(·, t)‖Lσ(Ω)

)
≤ c4 (2.6)

for all t ∈ (0, Tmax). Thanks to [41, Lemma A.1], we can see from (2.3), (2.5) and (2.6) that (2.4)
holds. �

We finally state an inequality which will be used repeatedly.

Lemma 2.3. Let � > 1. Then for all ε > 0,

(x + 1)� ≤ (1 + ε)x� + Cε (x ≥ 0),

where Cε := (1 + ε)
(
(1 + ε)

1
�−1 − 1

)−(�−1).

Proof. Owing to the convexity of the function y �→ y� on [1,∞) we have

(x + 1)� =

[
1

(1 + ε)
1

�−1
· (1 + ε)

1
�−1 x +

(

1 − 1

(1 + ε)
1

�−1

)

· (1 + ε)
1

�−1

(1 + ε)
1

�−1 − 1

]�

≤ 1

(1 + ε)
1

�−1
·
[
(1 + ε)

1
�−1 x

]�

+

(

1 − 1

(1 + ε)
1

�−1

)

·
[

(1 + ε)
1

�−1

(1 + ε)
1

�−1 − 1

]�

= (1 + ε)x� +
1 + ε

(
(1 + ε)

1
�−1 − 1

)�−1
,

which leads to the desired inequality. �

3. Global existence and boundedness

In this section we assume that

(A1)

⎧
⎨

⎩

Ω ⊂ R
n(n ∈ N) is a bounded domain with smooth boundary,

m, p, q ∈ R, χ, ξ, α, β, γ, δ > 0,
f(u) ≤ λ0u − μ0u

κ(λ0, μ0 > 0, κ ≥ 1), provided that if κ = 1, then λ0 = μ0,

where the last condition covers the case f(u) ≡ 0. We will prove global existence and boundedness in
(1.1) in the two cases p < q and p = q.
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3.1. The case p < q

In this subsection we show the following theorem, which asserts global existence and boundedness in (1.1)
in the case p < q.

Theorem 3.1. Assume that (A1) is satisfied with p < q. Then for all u0 satisfying (1.2) there exists a
unique triplet (u, v, w) of nonnegative functions

{
u ∈ C0(Ω × [0,∞)) ∩ C2,1(Ω × (0,∞)),
v, w ∈ ⋂

ϑ>n C0([0,∞);W 1,ϑ(Ω)) ∩ C2,1(Ω × (0,∞)),

which solves (1.1) in the classical sense, and is bounded, that is, ‖u(·, t)‖L∞(Ω) ≤ C for all t > 0 with
some C > 0.

In the following we denote by (u, v, w) the local classical solution of (1.1) given in Lemma 2.1 and by
Tmax ∈ (0,∞] its maximal existence time. To prove Theorem 3.1 it is sufficient to derive an Lσ-estimate
for u with some σ > n, because Lemma 2.2 leads to an L∞-estimate for u which together with the
criterion (2.2) implies the conclusion.

As a first observation, we note that an upper bound for the mass of u can be derived quite immediately.

Lemma 3.2. The first component of the solution satisfies that for all t ∈ (0, Tmax),

∫

Ω

u(·, t) ≤ M∗ :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

Ω

u0 when κ = 1,

min
{∫

Ω

u0,
(λ0

μ0

) 1
κ−1 |Ω|

}
when κ > 1.

Proof. Integrating the first equation in (1.1) over Ω, we have

d
dt

∫

Ω

u ≤ λ0

∫

Ω

u − μ0

∫

Ω

uκ ≤ λ0

∫

Ω

u − μ0

|Ω|κ−1

(∫

Ω

u
)κ

,

so that the conclusion results from an ODE comparison argument. �

The following lemma plays an important role in the derivation of the Lσ-estimate.

Lemma 3.3. Let � > 1. Then the first and third components of the solution satisfy that for all ε > 0,
∫

Ω

w� ≤ ε

∫

Ω

u� + c(ε) on (0, Tmax)

with some c(ε) > 0.

Proof. Let t ∈ (0, Tmax) and put u := u(·, t), w := w(·, t). Multiplying the third equation in (1.1) by w�−1

and integrating it over Ω, we obtain

δ

∫

Ω

w� −
∫

Ω

w�−1Δw = γ

∫

Ω

uw�−1.

Since the second term on the left-hand side is rewritten as

−
∫

Ω

w�−1Δw = (� − 1)
∫

Ω

w�−2|∇w|2 =
4(� − 1)

�2

∫

Ω

∣
∣∇w

�
2
∣
∣2,
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we infer

δ

∫

Ω

w� +
4(� − 1)

�2

∫

Ω

∣
∣∇w

�
2
∣
∣2 = γ

∫

Ω

uw�−1. (3.1)

Now, integrating the third equation in (1.1) over Ω and invoking Lemma 3.2 entail that
∫

Ω

w =
γ

δ

∫

Ω

u ≤ γM∗
δ

. (3.2)

Applying the Gagliardo–Nirenberg inequality to
∥
∥w

�
2
∥
∥

L2(Ω)
and using the estimate (3.2), we see that

∥
∥w

�
2
∥
∥

L2(Ω)
≤ c1

(∥
∥∇w

�
2
∥
∥θ1

L2(Ω)

∥
∥w

�
2
∥
∥1−θ1

L
2
� (Ω)

+
∥
∥w

�
2
∥
∥

L
2
� (Ω)

)

≤ c2

(∥
∥∇w

�
2
∥
∥θ1

L2(Ω)
+ 1

)
, (3.3)

where θ1 :=
�
2− 1

2
�
2+ 1

n − 1
2

∈ (0, 1). Let ε > 0 (fixed later). Then Young’s inequality implies that

∥
∥∇w

�
2
∥
∥θ1

L2(Ω)
≤ 1

c2

√
ε

2

∥
∥∇w

�
2
∥
∥

L2(Ω)
+ c3(ε),

which together with (3.3) yields that
∥
∥w

�
2
∥
∥2

L2(Ω)
≤

(√ε

2

∥
∥∇w

�
2
∥
∥

L2(Ω)
+ c2(c3(ε) + 1)

)2

≤ ε
∥
∥∇w

�
2
∥
∥2

L2(Ω)
+ c4(ε).

This means that
∫

Ω

∣
∣∇w

�
2
∣
∣2 ≥ 1

ε

∫

Ω

w� − c5(ε). (3.4)

Combining (3.1) with (3.4) and using Young’s inequality, we derive that

δ

∫

Ω

w� +
c6

ε

∫

Ω

w� ≤ γ

∫

Ω

uw�−1 + c7(ε)

≤ γ
[1
�

∫

Ω

u� +
(
1 − 1

�

)∫

Ω

w�
]

+ c7(ε),

and thus infer
(
δ +

c6

ε
− γ +

γ

�

)∫

Ω

w� ≤ γ

�

∫

Ω

u� + c7(ε). (3.5)

We now observe that if ε ∈ (0, c6
γ ), then c6

ε − γ > 0, that is,

δ +
c6

ε
− γ +

γ

�
> 0.

Therefore, picking ε ∈ (0, c6
γ ), we obtain from (3.5) that
∫

Ω

w� ≤
γ
�

δ + c6
ε − γ + γ

�

∫

Ω

u� +
c7(ε)

δ + c6
ε − γ + γ

�

=
γ
� ε

(δ − γ + γ
� )ε + c6

∫

Ω

u� +
c7(ε)ε

(δ − γ + γ
� )ε + c6

.
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Noticing that for all ε > 0 there exists ε ∈ (0, c6
γ ) such that

γ
� ε

(δ−γ+ γ
� )ε+c6

< ε, we arrive at the
conclusion. �

We now prove an Lσ-estimate for u.

Lemma 3.4. Assume that p < q. Then for some σ > n there exists C > 0 such that

‖u(·, t)‖Lσ(Ω) ≤ C

for all t ∈ (0, Tmax).

Proof. Let σ > max{n,−m + 1,−p + 2,−q + 4}. Then we verify that the asserted estimate holds on
(0, Tmax). We first have from the first equation in (1.1) integration by parts that

1
σ

d
dt

∫

Ω

(u + 1)σ

=
∫

Ω

(u + 1)σ−1∇ · ((u + 1)m−1∇u
) − χ

∫

Ω

(u + 1)σ−1∇ · (u(u + 1)p−2∇v
)

+ ξ

∫

Ω

(u + 1)σ−1∇ · (u(u + 1)q−2∇w
)

+
∫

Ω

(u + 1)σ−1f(u)

≤ −(σ − 1)
∫

Ω

(u + 1)σ+m−3|∇u|2 + χ(σ − 1)
∫

Ω

u(u + 1)σ+p−4∇u · ∇v

− ξ(σ − 1)
∫

Ω

u(u + 1)σ+q−4∇u · ∇w +
∫

Ω

(u + 1)σ−1(λ0u − μ0u
κ)

=: I1 + I2 + I3 + I4. (3.6)

We estimate the terms I1, I2, I3. As to the first term I1, we rewrite it as

I1 = − 4(σ − 1)
(σ + m − 1)2

∫

Ω

∣
∣∇(u + 1)

σ+m−1
2

∣
∣2. (3.7)

We next deal with the second term I2 and third term I3. As to the former, integration by parts and the
second equation in (1.1) lead to

I2 = χ(σ − 1)
∫

Ω

∇
[ u∫

0

s(s + 1)σ+p−4 ds
]

· ∇v

= χ(σ − 1)
∫

Ω

[ u∫

0

s(s + 1)σ+p−4 ds
]

· (−Δv)

= χ(σ − 1)
∫

Ω

[ u∫

0

s(s + 1)σ+p−4 ds
]

· (αu − βv)

≤ χα(σ − 1)
∫

Ω

[ u∫

0

s(s + 1)σ+p−4 ds
]
u. (3.8)
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Here, since σ satisfies σ > −p + 2, we infer that

[ u∫

0

s(s + 1)σ+p−4 ds
]
u ≤

[ u∫

0

(s + 1)σ+p−3 ds
]
u

≤ 1
σ + p − 2

(u + 1)σ+p−2u

≤ 1
σ + p − 2

(u + 1)σ+p−1.

Combining the above estimate with (3.8) and using Lemma 2.3 with ε = 1 and σ > −p + 2, we establish

I2 ≤ χα(σ − 1)
σ + p − 2

(
2
∫

Ω

uσ+p−1 + c1

)
. (3.9)

Similarly, we have

I3 = ξ(σ − 1)
∫

Ω

[ u∫

0

s(s + 1)σ+q−4 ds
]

· Δw

= ξ(σ − 1)
∫

Ω

[ u∫

0

s(s + 1)σ+q−4 ds
]

· (δw − γu). (3.10)

Here, noting that sσ+q−3 ≤ s(s + 1)σ+q−4 ≤ (s + 1)σ+q−3 because σ ≥ −q + 4, we see that

1
σ + q − 2

uσ+q−2 ≤
u∫

0

s(s + 1)σ+q−4 ds ≤ 1
σ + q − 2

(u + 1)σ+q−2, (3.11)

where we neglected the term − 1
σ+q−2 on the most right-hand side. Due to Lemma 2.3 with ε = 1 we

obtain that

[ u∫

0

s(s + 1)σ+q−4 ds
]
w ≤ 1

σ + q − 2
(u + 1)σ+q−2w

≤ 1
σ + q − 2

(
2uσ+q−2w + c2w

)
. (3.12)

Therefore a combination of the above estimates (3.10)–(3.12) yields that

I3 ≤ ξ(σ − 1)
σ + q − 2

(
2δ

∫

Ω

uσ+q−2w + δc2

∫

Ω

w − γ

∫

Ω

uσ+q−1
)
. (3.13)

Collecting (3.7), (3.9) and (3.13) in (3.6), we derive

1
σ

d
dt

∫

Ω

(u + 1)σ ≤ − 4(σ − 1)
(σ + m − 1)2

∫

Ω

∣
∣∇(u + 1)

σ+m−1
2

∣
∣2

+
χα(σ − 1)
σ + p − 2

(
2
∫

Ω

uσ+p−1 + c1

)

+
ξ(σ − 1)
σ + q − 2

(
2δ

∫

Ω

uσ+q−2w + δc2

∫

Ω

w − γ

∫

Ω

uσ+q−1
)

+ I4. (3.14)
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Moreover, taking ε1 > 0 which will be fixed later and applying Young’s inequality to uσ+p−1, we observe
that uσ+p−1 ≤ ε1u

σ+q−1 + c3(ε1). Additionally, again by the estimate (3.2) we deduce that

1
σ

d
dt

∫

Ω

(u + 1)σ +
4(σ − 1)

(σ + m − 1)2

∫

Ω

∣
∣∇(u + 1)

σ+m−1
2

∣
∣2

≤ χα(σ − 1)
σ + p − 2

[
2
(
ε1

∫

Ω

uσ+q−1 + c3(ε1)
)

+ c1

]

+
ξ(σ − 1)
σ + q − 2

(
2δ

∫

Ω

uσ+q−2w + c4 − γ

∫

Ω

uσ+q−1
)

+ I4. (3.15)

We next estimate the term
∫

Ω

uσ+q−2w. Due to Hölder’s inequality, we infer

∫

Ω

uσ+q−2w ≤
(∫

Ω

uσ+q−1
)σ+q−2

σ+q−1
(∫

Ω

wσ+q−1
) 1

σ+q−1
.

We now take ε2 > 0 which will be fixed later. Firstly applying Lemma 3.3 with � = σ + q − 1 and
ε = ( ε2

2 )σ+q−1 to
∫

Ω

wσ+q−1 and secondly using the fact (A + B)
1

σ+q−1 ≤ A
1

σ+q−1 + B
1

σ+q−1 for A,B > 0

and thirdly employing Young’s inequality, we establish
∫

Ω

uσ+q−2w ≤
(∫

Ω

uσ+q−1
)σ+q−2

σ+q−1
[(ε2

2

)σ+q−1
∫

Ω

uσ+q−1 + c5(ε2)
] 1

σ+q−1

≤ ε2

2

∫

Ω

uσ+q−1 + c5(ε2)
1

σ+q−1

(∫

Ω

uσ+q−1
)σ+q−2

σ+q−1

≤ ε2

2

∫

Ω

uσ+q−1 + c5(ε2)
1

σ+q−1

( ε2

2c5(ε2)
1

σ+q−1

∫

Ω

uσ+q−1 + c6(ε2)
)

= ε2

∫

Ω

uσ+q−1 + c7(ε2), (3.16)

which in conjunction with (3.15) implies

1
σ

d
dt

∫

Ω

(u + 1)σ +
4(σ − 1)

(σ + m − 1)2

∫

Ω

∣
∣∇(u + 1)

σ+m−1
2

∣
∣2

≤ c8ε1

∫

Ω

uσ+q−1 + c9

[
2δ

(
ε2

∫

Ω

uσ+q−1 + c7(ε2)
)

− γ

∫

Ω

uσ+q−1
]

+ c10(ε1)

= c8ε1

∫

Ω

uσ+q−1 + c9(2δε2 − γ)
∫

Ω

uσ+q−1 + c11(ε1, ε2) + I4. (3.17)

Here we choose ε2 > 0 satisfying ε2 < γ
2δ , that is, 2δε2 − γ < 0. Then we have from (3.17) that

1
σ

d
dt

∫

Ω

(u + 1)σ +
4(σ − 1)

(σ + m − 1)2

∫

Ω

∣
∣∇(u + 1)

σ+m−1
2

∣
∣2

≤ (
c8ε1 − c9(γ − 2δε2)

)
∫

Ω

uσ+q−1 + c11(ε1) + I4, (3.18)
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and we thereby let

ε1 :=
c9(γ − 2δε2)

c8
> 0.

Then it follows from (3.18) that

1
σ

d
dt

∫

Ω

(u + 1)σ +
4(σ − 1)

(σ + m − 1)2

∫

Ω

∣
∣∇(u + 1)

σ+m−1
2

∣
∣2 ≤ c11 + I4, (3.19)

where due to Young’s inequality, I4 appearing in (3.6) can be estimated independently of the other terms
as

I4 = λ0

∫

Ω

u(u + 1)σ−1 − μ0

∫

Ω

uκ(u + 1)σ−1

≤ λ0

∫

Ω

(u + 1)σ − μ0

∫

Ω

uσ+κ−1

≤ 2σ−1λ0

∫

Ω

uσ − μ0

∫

Ω

uσ+κ−1 + 2σ−1λ0|Ω|

≤ c0.

This entails that
1
σ

d
dt

∫

Ω

(u + 1)σ +
4(σ − 1)

(σ + m − 1)2

∫

Ω

∣
∣∇(u + 1)

σ+m−1
2

∣
∣2 ≤ c̃11. (3.20)

We finally estimate the second term on the left-hand side of this inequality to derive a differential
inequality for

∫

Ω

(u + 1)σ. Again using the Gagliardo–Nirenberg inequality and Lemma 3.2, we see that

‖u(·, t) + 1‖Lσ(Ω)

=
∥
∥(u(·, t) + 1)

σ+m−1
2

∥
∥

2
σ+m−1

L
2σ

σ+m−1 (Ω)

≤ c12

(∥
∥∇(u(·, t) + 1)

σ+m−1
2

∥
∥θ2

L2(Ω)

∥
∥(u(·, t) + 1)

σ+m−1
2

∥
∥1−θ2

L
2

σ+m−1 (Ω)

+
∥
∥(u(·, t) + 1)

σ+m−1
2

∥
∥

L
2

σ+m−1 (Ω)

) 2
σ+m−1

≤ c12

(∥
∥∇(u(·, t) + 1)

σ+m−1
2

∥
∥

2
σ+m−1 θ2

L2(Ω) ‖u(·, t) + 1‖1−θ2
L1(Ω) + ‖u(·, t) + 1‖L1(Ω)

)

≤ c13

(∥
∥∇(u(·, t) + 1)

σ+m−1
2

∥
∥

2
σ+m−1 θ2

L2(Ω) + 1
)

with θ2 :=
σ+m−1

2 − σ+m−1
2σ

σ+m−1
2 + 1

n − 1
2

∈ (0, 1), which implies

∥
∥∇(u(·, t) + 1)

σ+m−1
2

∥
∥2

L2(Ω)
≥

( 1
c13

‖u(·, t) + 1‖Lσ(Ω) − 1
)σ+m−1

θ2

≥ c14‖u(·, t) + 1‖
σ+m−1

θ2
Lσ(Ω) − 1. (3.21)

A combination of (3.20) and (3.21) yields that

1
σ

d
dt

∫

Ω

(u + 1)σ + c15

(∫

Ω

(u + 1)σ
)σ+m−1

σθ2 ≤ c16,
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where σ+m−1
σθ2

> 0, because σ > −m + 1. Upon an ODE comparison argument this inequality warrants
that

∫

Ω

(u + 1)σ ≤ max
{(c16

c15

) σθ2
σ+m−1

,

∫

Ω

(u0 + 1)σ
}

for all t ∈ (0, Tmax). This proves the conclusion. �

We are now in a position to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. A combination of Lemmas 3.6 and 2.2 along with the criterion (2.2) leads to the
conclusion of Theorem 3.1. �

3.2. The case p = q

In this subsection we prove the following theorem, which guarantees global existence and boundedness in
(1.1) in the case p = q.

Theorem 3.5. Assume that (A1) is satisfied with p = q and χα − ξγ < 0. Then for all u0 satisfying (1.2)
there exists a unique triplet (u, v, w) of nonnegative functions

{
u ∈ C0(Ω × [0,∞)) ∩ C2,1(Ω × (0,∞)),
v, w ∈ ⋂

ϑ>n C0([0,∞);W 1,ϑ(Ω)) ∩ C2,1(Ω × (0,∞)),

which solves (1.1) in the classical sense, and is bounded, that is, ‖u(·, t)‖L∞(Ω) ≤ C for all t > 0 with
some C > 0.

As in the previous subsection, we denote by (u, v, w) the local classical solution of (1.1) given in
Lemma 2.1 and by Tmax ∈ (0,∞] its maximal existence time. The proof of Theorem 3.5 relies also on an
Lσ-estimate for u.

Lemma 3.6. Suppose that p = q. Then for some σ > n there exists C > 0 such that

‖u(·, t)‖Lσ(Ω) ≤ C

for all t ∈ (0, Tmax).

Proof. Let σ > max{n,−m + 1, −p + 4}. Then we prove that the asserted estimate holds on (0, Tmax).
Let ε1 > 0 which will be fixed later. Proceeding similarly in the proof of Lemma 3.6, we see that (3.14)
with p = q holds, that is,

1
σ

d
dt

∫

Ω

(u + 1)σ ≤ − 4(σ − 1)
(σ + m − 1)2

∫

Ω

∣
∣∇(u + 1)

σ+m−1
2

∣
∣2

+
χα(σ − 1)
σ + p − 2

(
(1 + ε1)

∫

Ω

uσ+p−1 + c1(ε1)
)

+
ξ(σ − 1)
σ + p − 2

(
2δ

∫

Ω

uσ+p−2w + δc2

∫

Ω

w − γ

∫

Ω

uσ+p−1
)

+ I4,
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where I4 is the term appearing in (3.6). Also, recalling the estimate (3.2), we have

1
σ

d
dt

∫

Ω

(u + 1)σ +
4(σ − 1)

(σ + m − 1)2

∫

Ω

∣
∣∇(u + 1)

σ+m−1
2

∣
∣2

≤ χαc3

(
(1 + ε1)

∫

Ω

uσ+p−1 + c1(ε1)
)

+ ξc3

(
2δ

∫

Ω

uσ+p−2w + c4 − γ

∫

Ω

uσ+p−1
)

+ I4. (3.22)

We now take ε2 > 0 which will be fixed later. Then, an argument similar to that in the derivation of
(3.16) implies

∫

Ω

uσ+p−2w ≤ ε2

2ξδ

∫

Ω

uσ+p−1 + c5(ε2).

Thus we obtain

1
σ

d
dt

∫

Ω

(u + 1)σ +
4(σ − 1)

(σ + m − 1)2

∫

Ω

∣
∣∇(u + 1)

σ+m−1
2

∣
∣2

≤ χαc3

(
(1 + ε1)

∫

Ω

uσ+p−1 + c1(ε1)
)

+ ξc3

(
2δ

∫

Ω

uσ+p−2w + c4 − γ

∫

Ω

uσ+p−1
)

≤ c3

[
χα(1 + ε1)

∫

Ω

uσ+p−1 + 2ξδ
( ε2

2ξδ

∫

Ω

uσ+p−1 + c5(ε2)
)

− ξγ

∫

Ω

uσ+p−1
]

+ c6(ε1)

= c3

[(
χα(1 + ε1) − ξγ

)
+ ε2

] ∫

Ω

uσ+p−1 + c7(ε1, ε2) + I4. (3.23)

Here since χα − ξγ < 0 by assumption, we can pick ε1 > 0 satisfying χα(1 + ε1) − ξγ < 0. Then, taking

ε2 := ξγ − χα(1 + ε1) > 0,

we have from (3.22) and (3.23) that

1
σ

d
dt

∫

Ω

(u + 1)σ +
4(σ − 1)

(σ + m − 1)2

∫

Ω

∣
∣∇(u + 1)

σ+m−1
2

∣
∣2 ≤ c7 + I4,

which corresponds to (3.19). Therefore the conclusion results from an argument similar to that in the
proof of Lemma 3.6. �

Employing Lemma 3.4, we can prove Theorem 3.5.

Proof of Theorem 3.5. In view of Lemmas 3.4 and 2.2 along with the criterion (2.2) we immediately arrive
at the conclusion of Theorem 3.5. �
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4. Finite-time blow-up

In the following we suppose that

(A2)

⎧
⎪⎪⎨

⎪⎪⎩

Ω = BR(0) ⊂ R
n(n ∈ N, n ≥ 3) with R > 0,

m ≥ 1, p > 1, q ∈ R, χ, ξ, α, β, γ, δ > 0,
f(u) = λ(|x|)u − μ(|x|)uκ(κ ≥ 1), where λ, μ satisfy (1.4) and (1.5),
u0 is radially symmetric and fulfills (1.2).

Then we denote by (u, v, w) = (u(r, t), v(r, t), w(r, t)) the local classical solution of (1.1) given in
Lemma 2.1 and by Tmax ∈ (0,∞] its maximal existence time.

In order to state the main theorems we give the conditions (C1)–(C3) as follows:

(C1)

⎧
⎪⎪⎨

⎪⎪⎩

n ∈ {3, 4}; p <
2

n + 1
m +

2(n2 + 1)
n(n + 1)

,

p < − 1
n − 2

m +
2(n2 − n − 1)

n(n − 2)
, m − p < − 2

n
;

(C2)

⎧
⎪⎪⎨

⎪⎪⎩

n ≥ 5; − 2
n − 3

m +
2(n2 − 2n − 1)

n(n − 3)
< p <

2
n + 1

m +
2(n2 + 1)
n(n + 1)

,

p < −n + 2
n − 4

m +
3n2 − 5n − 4

n(n − 4)
, p ≤ n + 2

3
m − n2 − 3n − 4

3n
;

(C3)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n ≥ 5; − 2
n − 3

m +
2(n2 − 2n − 1)

n(n − 3)
< p <

2
n + 1

m +
2(n2 + 1)
n(n + 1)

,

−n + 2
n − 4

m +
3n2 − 5n − 4

n(n − 4)
≤ p < − 1

n − 2
m +

2(n2 − n − 1)
n(n − 2)

,

m − p < − 2
n

.

4.1. The case p > q

In this subsection we establish finite-time blow-up in (1.1) in the case p > q.

Theorem 4.1. Assume that (A2) is satisfied with p > q. Also, suppose that m,κ fulfill the following
conditions:

(i) In the case (C1),

κ < 1 +
(n − 2)

(
(m − p + 1)n + 1

)

n(n − 1)
+

a
(
(m − p + 1)n + 1

)

n(n − 1)
− (m − 1) − (2 − p)+;

(ii) In the case (C2),

κ < 1 +
(n − 2)

(
(m − p + 1)n + 1

)

n(n − 1)
+

a
(
(m − p + 1)n + 1

)

n(n − 1)
− (m − 1) − (2 − p)+;

(iii) In the case (C3),

κ < 1 +
(m − p + 1)n + 1

2(n − 1)
+

a
(
(m − p + 1)n + 1

)

n(n − 1)
− (2 − p)+

2
,

where a ≥ 0 is given in (1.5) and y+ := max{0, y}. Then for all M0 > 0, M1 ∈ (0,M0) and L > 0,
one can find ε0 > 0 and r1 ∈ (0, R) with the following property : If u0 satisfies u0(x) ≤ L|x|−σ, where
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σ = n(n−1)
(m−p+1)n+1 + ε0 as well as

∫

Ω

u0 = M0 and
∫

Br1 (0)

u0 ≥ M1, then the solution (u, v, w) to (1.1) blows

up at t = T ∗ ∈ (0,∞) in the sense that

lim
t↗T ∗

‖u(·, t)‖L∞(Ω) = ∞.

We first show the following lemma giving the profile of u, in which we include the case p = q toward
the next subsection. For the proof we rely on [14, Theorem 1.1], which is useful because it generalizes a
precedent for the case of linear diffusion in [50, Theorem 1.1] and covers the case of nonlinear diffusion.

Lemma 4.2. Assume that p ≥ q. Also, suppose that m, p fulfill

m ≥ 1, m − p ∈
(

− 1 − 1
n

, − 2
n

]
.

Let M0 > 0, L > 0 and take any finite time T such that T ∈ (0, Tmax). Let ε > 0 and set σ :=
n(n−1)

(m−p+1)n+1 + ε. Then there exists C = C(M0, L, T ) > 0 such that the following property holds: If u0

satisfies
∫

Ω

u0 = M0 and

u0(x) ≤ L|x|−σ

for all x ∈ Ω, then u has the estimate

u(x, t) ≤ C|x|−σ (4.1)

for all x ∈ Ω and all t ∈ (0, T ).

Proof. In view of the condition for the function λ (see (1.4)) we can find λ1 > 0 such that λ(|x|) ≤ λ1

for all x ∈ Ω. We next set

ũ(x, t) := e−λ1tu(x, t), D(x, t, ρ) := (eλ1tρ + 1)m−1,

S1(x, t, ρ) := −χ(eλ1tρ + 1)p−2ρ, S2(x, t, ρ) := ξ(eλ1tρ + 1)q−2ρ

for x ∈ Ω, t ∈ (0, T ) and ρ > 0. Since S1(·, ·, ·) < 0 on Ω × (0, T ) × (0,∞), we have

S1(x, t, ρ)∇v(x, t) + S2(x, t, ρ)∇w(x, t) = S1(x, t, ρ)
[
∇v(x, t) +

S2(x, t, ρ)
S1(x, t, ρ)

∇w(x, t)
]

for all x ∈ Ω, t ∈ (0, T ) and all ρ > 0. Putting

f(x, t) := ∇v(x, t) +
S2(x, t, ρ)
S1(x, t, ρ)

∇w(x, t),

we obtain from (1.1) that
⎧
⎪⎨

⎪⎩

ũt ≤ ∇ · (D(x, t, ũ)∇ũ + S1(x, t, ũ) f(x, t)) in Ω × (0, T ),
(D(x, t, ũ)∇ũ + S1(x, t, ũ) f(x, t)) · ν = 0 on ∂Ω × (0, T ),
ũ(·, 0) = u0 in Ω.

(4.2)

Also, it can be checked that for all x ∈ Ω, t ∈ (0, T ) and all ρ > 0,

D(x, t, ρ) ≥ ρm−1,

D(x, t, ρ) ≤ (eλ1T ρ + 1)m−1 ≤ (eλ1T + 1)m−1 max{ρ, 1}m−1,

|S1(x, t, ρ)| ≤ χ(eλ1T + 1)p−1 max{ρ, 1}p−1.

Moreover, the initial condition in (4.2) implies that
∫

Ω

ũ(·, 0) =
∫

Ω

u0 = M0. We now choose θ > n satisfying

m − p ∈
(1

θ
− 1 − 1

n
,

1
θ

− 2
n

]
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and

σ =
n(n − 1)

(m − p + 1)n + 1
+ ε

>
n(n − 1)

(m − p + 1)n + 1 − n
θ

=
n − 1

(m − p) + 1 + 1
n − 1

θ

.

Since p ≥ q and

∣
∣
∣
S2(x, t, ρ)
S1(x, t, ρ)

∣
∣
∣ =

ξ(eλ1tρ + 1)q−2ρ

χ(eλ1tρ + 1)p−2ρ
=

ξ

χ
(eλ1tρ + 1)q−p ≤ ξ

χ
,

for all x ∈ Ω, t ∈ (0, T ) and all ρ > 0, following the steps in the proof of [3, Lemma 5.2], we establish

∫

Ω

|x|(n−1)θ|f(x, t)|θ dx ≤ c1

(α

β
+

ξ

χ
· γ

δ

)θ(2eλ1T M0

ωn−1

)θ

|Ω|

for all t ∈ (0, T ) with some c1 > 0, where ωn−1 denotes the (n − 2)-dimensional surface area of the unit
sphere in R

n−1. Thanks to [14, Theorem 1.1], we derive that there exists c2 > 0 such that ũ(x, t) ≤ c2|x|−σ

for all x ∈ Ω and all t ∈ (0, T ), which leads to the end of the proof. �

We now introduce the mass accumulation functions U = U(s, t), V = V (s, t) and W = W (s, t) as

U(s, t) :=

s
1
n∫

0

ρn−1u(ρ, t) dρ, (4.3)

V (s, t) :=

s
1
n∫

0

ρn−1v(ρ, t) dρ (4.4)

and

W (s, t) :=

s
1
n∫

0

ρn−1w(ρ, t) dρ, (4.5)

where s := rn for r ∈ [0, R] and t ∈ [0, Tmax). We next define the moment-type functional

φ(s0, t) :=

s0∫

0

s−b(s0 − s)U(s, t) ds (4.6)

for s0 ∈ (0, Rn), t ∈ [0, Tmax) and b ∈ (0, 1).
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Lemma 4.3. Assume that p > q. Let μ1 > 0, κ ≥ 1 and a ≥ 0. Then there exist C1, C2 > 0 such that for
any b ∈ (0, 1) and s0 ∈ (0, Rn), the function φ(s0, ·) belongs to C0([0, Tmax)) ∩ C1((0, Tmax)) and satisfies

φ′(s0, t) ≥
⎡

⎣C1

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)p−2U(s, t)Us(s, t) ds − C2φ(s0, t)

⎤

⎦

+ n2

s0∫

0

s2− 2
n −b(s0 − s)(nUs(s, t) + 1)m−1Uss(s, t) ds

− χβn

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)p−2V (s, t)Us(s, t) ds

− nκ−1μ1

s0∫

0

s−b(s0 − s)
[

s0∫

0

η
a
n Uκ

s (η, t) dη
]
ds

=: J1(s0, t) + J2(s0, t) + J3(s0, t) + J4(s0, t) (4.7)

for all t ∈ (0, Tmax).

Proof. We first note that φ(s0, ·) ∈ C0([0, Tmax)) ∩ C1((0, Tmax)) for all b ∈ (0, 1) and s0 ∈ (0, Rn) by
the proof of [48, Lemma 4.1]. The first equation in (1.1) implies that u = u(r, t), v = v(r, t), w = w(r, t)
satisfy

ut =
1

rn−1

(
(u + 1)m−1rn−1ur

)

r
− χ

1
rn−1

(
u(u + 1)p−2rn−1vr

)

r

+ ξ
1

rn−1

(
u(u + 1)q−2rn−1wr

)

r
+ λu − μuκ. (4.8)

Moreover, the second and third equations in (1.1) yield that

rn−1vr(r, t) = βV (rn, t) − αU(rn, t)

and

rn−1wr(r, t) = δW (rn, t) − γU(rn, t).

Integrating (4.8) combined with these relations with respect to r over [0, s
1
n ], we see from the nonnegativity

of λ and (1.5) that

Ut ≥ n2s2− 2
n (nUs + 1)m−1Uss + χnUs(nUs + 1)p−2(αU − βV )

− ξnUs(nUs + 1)q−2(γU − δW ) − nκ−1μ1

s∫

0

η
a
n Uκ

s (η, t) dη

= χnUs(nUs + 1)p−2 · αU − ξnUs(nUs + 1)q−2 · γU

+n2s2− 2
n (nUs + 1)m−1Uss

−χnUs(nUs + 1)p−2 · βV + ξnUs(nUs + 1)q−2 · δW

−nκ−1μ1

s∫

0

η
a
n Uκ

s (η, t) dη,
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which together with (4.6) entails

φ′(s0, t) ≥ χαn

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)p−2U(s, t)Us(s, t) ds

− ξγn

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)q−2U(s, t)Us(s, t) ds

+ n2

s0∫

0

s2− 2
n −b(s0 − s)(nUs(s, t) + 1)m−1Uss(s, t) ds

− χβn

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)p−2V (s, t)Us(s, t) ds

+ ξδn

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)q−2W (s, t)Us(s, t) ds

− nκ−1μ1

s0∫

0

s−b(s0 − s)
[

s0∫

0

η
a
n Uκ

s (η, t) dη
]
ds

=: J̃1(s0, t) + E1(s0, t) + J̃2(s0, t) + J̃3(s0, t) + E2(s0, t) + J̃4(s0, t) (4.9)

for all s0 ∈ (0, Rn) and all t ∈ (0, Tmax). Here we estimate the term E1(s0, t). We first consider the case
q > 1. In this case, using Young’s inequality, we see that for all ε1 > 0,

(nUs(s, t) + 1)q−2Us(s, t) ≤ ε1

[
(nUs(s, t) + 1)(q−1)−1Us(s, t)

] p−1
q−1

+ c1(ε1)

= ε1(nUs(s, t) + 1)p−1− p−1
q−1 U

p−1
q−1

s (s, t) + c1(ε1). (4.10)

Here we notice from the relation p−1
q−1 > 1 by p > q > 1 that

U
p−1
q−1

s (s, t) = U
p−1
q−1 −1

s (s, t)Us(s, t) ≤ (nUs(s, t) + 1)
p−1
q−1 −1Us(s, t). (4.11)

A combination of (4.10) and (4.11) implies that

(nUs(s, t) + 1)q−2Us(s, t) ≤ ε1(nUs(s, t) + 1)p−2Us(s, t) + c1(ε1). (4.12)

In the case q ≤ 1, noting that

(nUs(s, t) + 1)q−2Us(s, t) ≤ (nUs(s, t) + 1)−1Us(s, t) ≤ n−1,
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we can choose ε1 = 0 and c1(ε1) = n−1 in the estimate (4.12). In view of (4.12) we obtain

E1(s0, t) = −ξγn

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)q−2U(s, t)Us(s, t) ds

≥ −ε1ξγn

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)p−2U(s, t)Us(s, t) ds

− c1(ε1)

s0∫

0

s−b(s0 − s)U(s, t) ds

= −ε1ξγn

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)p−2U(s, t)Us(s, t) ds + c1(ε1)φ(s0, t). (4.13)

Combining (4.13) with (4.9) and noting that E2(s0, t) ≥ 0, we establish

φ′(s0, t) ≥ (χα − ε1ξγ)n

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)p−2U(s, t)Us(s, t) ds

− c1(ε1)φ(s0, t)

+ n2

s0∫

0

s2− 2
n −b(s0 − s)(nUs(s, t) + 1)m−1Uss(s, t) ds

− χβn

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)p−2V (s, t)Us(s, t) ds

− nκ−1μ1

s0∫

0

s−b(s0 − s)
[

s0∫

0

η
a
n Uκ

s (η, t) dη
]
ds.

Here, choosing ε1 := χα
2ξγ when q > 1 and recalling that ε1 = 0 when q ≤ 1, we see that χα − ε1ξγ > 0,

which means that the desired inequality (4.7) holds. �

Proof of Theorem 4.1. In order to prove the assertion, assume on the contrary that the conclusion does
not hold, that is, suppose that there exist M0 > 0, M1 ∈ (0,M0) and L > 0 such that given T > 0,
ε > 0 and r1 ∈ (0, R) one can take u0 fulfilling u0(x) ≤ L|x|−σ for all x ∈ Ω, where σ := n(n−1)

(m−p+1)n+1 + ε,
∫

Ω

u0 = M0 and
∫

Br1 (0)

u0 ≥ M1, and the corresponding solution u of (1.1) does not blow up at T , that is,

T < Tmax. Then it follows from (4.1) that u(x, t) ≤ K|x|−σ for all x ∈ Ω and all t ∈ (0, T ) with some
K = K(M0, L, T ) > 0, which is rewritten as

nUs(s, t) ≤ Ks− σ
n for all s ∈ (0, Rn] and all t ∈ (0, T ). (4.14)

As in the proofs of [38, Lemmas 3.3 and 3.9], in the case p > 2, this estimate provides (nUs + 1)p−2 ≤
(Ks− σ

n + 1)p−2 ≤ (K + Rσ)p−2s− σ
n (p−2), whereas in the case p ∈ (1, 2], we have (nUs + 1)p−2 ≤ 1, which

can be unified such that

(nUs + 1)p−2 ≤ c1s
− σ

n (p−2)+ (4.15)
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for all s ∈ (0, Rn] and all t ∈ (0, T ), where c1 depends on T when p > 2. Let s0 ∈ (0, Rn). Invoking (4.15)
with t fixed in (0, T ), we see that J1(s0, t) is estimated as

J1(s0, t) = C1

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)p−2U(s, t)Us(s, t) ds − C2φ(s0, t)

≥ c1C1ψp(s0, t) − C2φ(s0, t),

where

ψp(s0, t) :=

s0∫

0

s−b+ σ
n (2−p)+(s0 − s)U(s, t)Us(s, t) ds.

Using (4.15) again, we deduce from integration by parts that

J3(s0, t) ≥ −χβnc1

(
b +

σ

n
(p − 2) + 1

)
s0

s0∫

0

s−b−1− σ
n (p−2)V (s, t)U(s, t) ds,

which can be further estimated as

J3(s0, t) ≥ −c2s
2
n + 1−b

2 − σ
2n [(2−p)++2(p−2)+]

0

√

ψp(s0, t) − c2s
2
n − σ

n [(2−p)++(p−2)+]
0 ψp(s0, t)

in light of

V (s, t) ≤ c3

n
s

2
n −1
0 s + c4s

− 1
2+ b−b̃

2
0 s

2
n + b̃

2

√

ψp(s0, t)

with some b̃ > 0, where c2 depends on T when p > 2 (for details, see the proof of [38, Lemma 3.9]). Next,
as in the proof of [3, Lemma 3.6 (i)], integration by parts yields

J2(s0, t) =
n

m

s0∫

0

s2− 2
n −b(s0 − s)((nUs(s, t) + 1)m)s ds

≥ − n

m

(
2 − 2

n
− b

)
s0∫

0

s1− 2
n −b(s0 − s)(nUs(s, t) + 1)m ds

and hence, applying

(nUs + 1)m ≤ c5s
− σ

n (m−1)Us + c5

for all s ∈ (0, Rn] and all t ∈ (0, T ), where c5 := max{n, 2m−1, 2m−1nKm−1}, we can see from integration
by parts and an estimate for U in [3, Lemma 3.4] that

J2(s0, t) ≥ −c6s
3−b
2 − 2

n − σ
2n [2(m−1)+(2−p)+]

0

√

ψp(s0, t) − c6s
3− 2

n −b
0 .

Also, from an argument similar to that in the proof of [3, Lemma 3.5] it follows that

J4(s0, t) ≥ −nκ−1μ1

1 − b
s1−b
0

s0∫

0

s
a
n (s0 − s)Uκ

s (s, t) ds

and by (4.14),
s0∫

0

s
a
n (s0 − s)Uκ

s (s, t) ds ≤ c7s0

s0∫

0

s
a
n − σ

n (κ−1)−1U(s, t) ds,
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where c7 := Kκ−1

nκ−1

[
(σ

n (κ − 1) − a
n )+ + 1

]
. Again by using an estimate for U , we have

J4(s0, t) ≥ −c8s
3−b
2 + a

n − σ
2n [2(κ−1)+(2−p)+]

0

√

ψp(s0, t).

Collecting the estimates for J1(s0, t), J2(s0, t), J3(s0, t), J4(s0, t), we infer

φ′(s0, t) ≥ c9ψp(s0, t) − c10φ(s0, t)

− c11s
3−b
2 − 2

n − σ
2n [2(m−1)+(2−p)+]

0

√

ψp(s0, t) − c11s
3− 2

n −b
0

− c11s
2
n + 1−b

2 − σ
2n [(2−p)++2(p−2)+]

0

√

ψp(s0, t) − c11s
2
n − σ

n [(2−p)++(p−2)+]
0 ψp(s0, t)

− c11s
3−b
2 + a

n − σ
2n [2(κ−1)+(2−p)+]

0

√

ψp(s0, t),

where c9, c11 depend on T when p > 2 or m > 1 or κ > 1. Let ε1 > 0 which will be fixed later. Using
Young’s inequality, we can see that

φ′(s0, t) ≥ c9ψp(s0, t) − ε1ψp(s0, t) − c11s
2
n − σ

n [(2−p)++(p−2)+]
0 ψp(s0, t)

− c12(ε1)
(
s
3−b− 4

n − σ
n [2(m−1)+(2−p)+]

0 + s
2− 2

n −b
0

+ s
4
n +1−b− σ

n [(2−p)++2(p−2)+]
0 + s

3−b+ 2a
n − σ

n [2(κ−1)+(2−p)+]
0

)

− c10φ(s0, t) (4.16)

for all s0 ∈ (0, Rn) and all t ∈ (0, T ). We now choose s1 = s1(T ) small enough such that s1 ∈ (0, Rn) and

c11s
2
n − σ

n [(2−p)++(p−2)+]
0 ψp(s0, t) ≤ 1

4
c9ψp(s0, t)

for all s0 ∈ (0, s1) and all t ∈ (0, T ). From now to the end of this proof, we suppose that s1, s0, t are in
these regions. Setting ε1 := c9

4 , we have from (4.16) that

φ′(s0, t) ≥ 1
2
c9ψp(s0, t)

− c12

(
s
3−b− 4

n − σ
n [2(m−1)+(2−p)+]

0 + s
2− 2

n −b
0

+ s
4
n +1−b− σ

n [(2−p)++2(p−2)+]
0 + s

3−b+ 2a
n − σ

n [2(κ−1)+(2−p)+]
0

)

− c10φ(s0, t).

By an argument similar to that in the proof of [38, Lemma 4.3], due to the conditions (C1)–(C3), we can
pick ε0 > 0 and then for σ = n(n−1)

(m−p+1)n+1 + ε0 there exists θ ∈ (0, 2 − σ
n (2 − p)+) such that

φ′(s0, t) ≥ 1
2
c9ψp(s0, t) − c13s

3−b−θ
0 − c14φ(s0, t). (4.17)

Applying the estimate
√

ψp(s0, t) ≥ c15s
b−3
2 + σ

2n (2−p)+
0 φ(s0, t) (see [38, Lemma 3.10]) to the first term on

the right-hand side of (4.17), we have

φ′(s0, t) ≥ c15s
b−3+ σ

n (2−p)+
0 φ2(s0, t) − c13s

3−b−θ
0 − c14φ(s0, t). (4.18)

Again by Young’s inequality, we derive that

c14φ(s0, t) ≤ 1
2
c15s

b−3+ σ
n (2−p)+

0 φ2(s0, t) + c16s
3−b− σ

n (2−p)+
0 ,
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which along with (4.18) yields

φ′(s0, t) ≥ 1
2
c15s

b−3+ σ
n (2−p)+

0 φ2(s0, t) − c13s
3−b−θ
0 − c16s

3−b− σ
n (2−p)+

0

≥ 1
2
c15s

b−3+ σ
n (2−p)+

0 φ2(s0, t) − c17s
θ̃
0 (4.19)

with θ̃ = min{3 − b − θ, 3 − b − σ
n (2 − p)+}. Here, in view of the conditions (C1)–(C3) we can take

b ∈ (0, 1) satisfying

b < 2 − 4
n

− σ

n
[2(m − 1) + (2 − p)+]

(see [38, Lemma 4.1]). This entails that

b − 3 +
σ

n
(2 − p)+ <

{
2 − 4

n
− σ

n
[2(m − 1) + (2 − p)+]

}
− 3 +

σ

n
(2 − p)+ = −1 − 4

n
− 2σ

n
(m − 1) < 0

and moreover, recalling the choice that θ ∈ (0, 2 − σ
n (2 − p)+), we have

3 − b − θ > 3 − b −
[
2 − σ

n
(2 − p)+

]

= 1 − b +
σ

n
(2 − p)+ > 0,

which lead to θ̃ > 0. We now set k1 = k1(s0) := 1
2c15s

b−3+ σ
n (2−p)+

0 , k2 = k2(s0) := c17s
θ̃
0. Then (4.19) is

rewritten as

φ′(s0, t) ≥ k1φ
2(s0, t) − k2.

As in the proof of [3, Theorem 1.1], we appropriately select φ(s0, 0) later and employ the solution

y(t) =
√

k1

k2
·
1 +

√
k1
k2

y0−1
√

k1
k2

y0+1
e2

√
k1k2t

1 −
√

k1
k2

y0−1
√

k1
k2

y0+1
e2

√
k1k2t

of

{
y′ = k1y

2 − k2,

y(0) = y0,

where y0 > 0 and we pick s0 ∈ (0, s1) further small such that
√

k1
k2

y0 > 1. The solution y(t) blows up at

t = T0 with e2
√

k1k2T0 =

√
k1
k2

y0+1
√

k1
k2

y0−1
. Here we note that if

√
k1
k2

y0 > 2, then

√
k1
k2

y0+1
√

k1
k2

y0−1
<

√
k1
k2

y0+
1
2

√
k1
k2

y0
√

k1
k2

y0− 1
2

√
k1
k2

y0

= 3,

which means T0 < 1
2
√

k1k2
log 3. Thus, again taking s0 ∈ (0, s1) sufficiently small such that 1

2
√

k1k2
log 3 <

T ,
√

k1
k2

y0 > 2 and φ(s0, 0) ≥ y0 (use [3, Lemma 4.1]), we obtain from an ODE comparison argument
that φ(s0, t) ≥ y(t) for all t ∈ (0, T0), which implies a contradiction, because φ(s0, ·) is bounded on
(0, T0) (⊂ (0, T )), whereas y(t) blows up at t = T0. Therefore we arrive at the desired conclusion. �

4.2. The case p = q

In this subsection we show the following theorem, which guarantees finite-time blow-up in (1.1) in the
case p = q.

Theorem 4.4. Assume that (A2) is satisfied with p = q and χα − ξγ > 0. Moreover, suppose that m, p
and κ fulfill the same conditions as in Theorem 4.1. Then the conclusion of Theorem 4.1 holds.

In order to prove the above theorem we show the following lemma giving the pointwise lower estimate
for φ′, where U, V,W and φ are defined as in (4.3)–(4.5) and (4.6), respectively.
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Lemma 4.5. Suppose that p = q. Let μ1 > 0, κ ≥ 1 and a ≥ 0. Then for any b ∈ (0, 1) and s0 ∈ (0, Rn),
the function φ(s0, ·) belongs to C0([0, Tmax)) ∩ C1((0, Tmax)) and satisfies

φ′(s0, t) ≥ (χα − ξγ)n

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)p−2U(s, t)Us(s, t) ds

+ n2

s0∫

0

s2− 2
n −b(s0 − s)(nUs(s, t) + 1)m−1Uss(s, t) ds

− χβn

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)p−2V (s, t)Us(s, t) ds

− nκ−1μ1

s0∫

0

s−b(s0 − s)
[

s0∫

0

η
a
n Uκ

s (η, t) dη
]
ds

for all t ∈ (0, Tmax).

Proof. Arguing as in Lemma 4.3, we see that φ(s0, ·) ∈ C0([0, Tmax))∩C1((0, Tmax)) for all b ∈ (0, 1) and
s0 ∈ (0, Rn), and have (4.9) with q = p. We then rearrange it as

φ′(s0, t) ≥ (χα − ξγ)n

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)p−2U(s, t)Us(s, t) ds

+ n2

s0∫

0

s2− 2
n −b(s0 − s)(nUs(s, t) + 1)m−1Uss(s, t) ds

− χβn

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)p−2V (s, t)Us(s, t) ds

+ ξδn

s0∫

0

s−b(s0 − s)(nUs(s, t) + 1)p−2W (s, t)Us(s, t) ds

− nκ−1μ1

s0∫

0

s−b(s0 − s)
[

s0∫

0

η
a
n Uκ

s (η, t) dη
]
ds.

Here, compared with (4.9), the terms corresponding to E1(s0, t) and J̃1(s0, t) are arranged into the first
term on the right-hand side of the above inequality, and the other terms are the same as those in (4.9),
provided that the fourth term is equal to E2(s0, t) with q = p, which is nonnegative. In light of this
observation, we obtain the desired inequality. �

Proof of Theorem 4.4. Let T ∈ (0, Tmax). In view of Lemma 4.5, proceeding as in the proof of Theo-
rem 4.1 and taking σ properly, we can find c1, c2 > 0 and θ ∈ (0, 2 − σ

n (2 − p)+) such that

φ′(s0, t) ≥ c1s
b−3+ σ

n (2−p)+
0 φ2(s0, t) − c2s

3−b−θ
0

for all s0 ∈ (0, s1) and all t ∈ (0, T ) for some small s1 > 0. This inequality corresponds to (4.19) and
proves Theorem 4.4. �
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