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Abstract. In this paper, we investigate the following Kirchhoff-type equation

−M

⎛
⎜⎝

∫

RN

|∇u|pdx

⎞
⎟⎠ Δpu = |u|p∗−2u + h(x)|u|q−2u, x ∈ R

N ,

where N ≥ 3, 1 < p < N, p∗ = Np
N−p

, 0 < h ∈ L
p∗

p∗−q (RN ) with q ∈ (1, p∗); M is a nonnegative continuous function with

some growth conditions. We show that the above problem has infinitely many solutions by using variational methods.
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1. Introduction and main results

Kirchhoff equations of the type{−(a + b
∫
Ω

|∇u|2dx)Δu = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1)

are related to the stationary analogue of the Kirchhoff equation

utt −
⎛
⎝a + b

∫

Ω

|∇u|2dx

⎞
⎠ Δu = f(x, u),

which was proposed by Kirchhoff [1] in 1883 as an extension of the classical d’Alembert’s wave equation for
free vibrations of elastic strings. After Lions [2] proposed an abstract framework to problem (1), various
kinds of Kirchhoff-type equations have been widely concerned and studied by many scholars (see [3–15]
and the references therein). Among them, the critical case has been studied in [7,11,13–15]. In particular,
Faraci and Farkas [15] dealt with the following Kirchhoff-type problem involving a critical term

{−M(
∫
Ω

|∇u|pdx)Δpu = |u|p∗−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(2)

where Ω is an open connected set of RN with smooth boundary, N ≥ 3, 1 < p < N , M ∈ C([0,+∞), [0,+∞))
and satisfies some of the following hypotheses.

(M1) M̂(t + s) ≥ M̂(t) + M̂(s), for every t, s ∈ [0,+∞);
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(M2) inf
t>0

M̂(t)

t
p∗
p

≥ cp;

(M3) inf
t>0

M(t)

t
p∗
p −1

> S
− p∗

p

N ,

where M̂ : [0,+∞) → [0,+∞) is the primitive of the function M , defined by

M̂(t) =

t∫

0

M(s)ds;

cp is a constant, defined by

cp =

⎧⎨
⎩

(2p−1 − 1)
p∗
p p

p∗ S
− p∗

p

N , p ≥ 2;

22p∗−1− p∗
p p

p∗ S
− p∗

p

N , 1 < p < 2,

SN is the best Sobolev constant of W 1,p
0 (Ω) ↪→ Lp∗

(Ω). If (M1) and (M2) hold, the authors proved that
the energy functional associated with problem (2) is sequentially weakly lower semicontinuous in W 1,p

0 (Ω).
When (M3) holds, the property of Palais–Smale (for short (PS)) for the energy functional associated with
problem (2) was got by using the second Concentration Compactness lemma of Lions [18] in W 1,p

0 (Ω).
Moreover, the authors provided an application to a Kirchhoff-type problem on exterior domains

⎧⎪⎨
⎪⎩

−M(
∫
Ω

|∇u|pdx)Δpu = λ(up∗−1 + ur−1), x ∈ Ω,

u ≥ 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(3)

where Ω = R
N \ BR(0), 2 ≤ p < r < p∗. Under (M1), (M2) and

(M4) lim
t→0

M̂(t)
t

r
p

= 0,

two nontrivial solutions of problem (3) were obtained for some λ ∈ (0, 1) by employing an abstract
well-posedness result for a class of constrained minimization problem.

Inspired by [15], we study the existence of infinitely many solutions for the following p-Laplacian
equations of Kirchhoff type via variational methods

{−M(
∫
RN

|∇u|pdx)Δpu = |u|p∗−2u + h(x)|u|q−2u, x ∈ R
N ,

u ∈ D1,p(RN ),
(4)

where N ≥ 3, 1 < p < N, p∗ = Np
N−p , q ∈ (1, p∗), D1,p(RN ) is the classic Sobolev space (the definition

is given in Sect. 2), M : [0,+∞) → [0,+∞) is a continuous function, satisfies (M3) with SN is the best
Sobolev constant of D1,p(RN ) ↪→ Lp∗

(RN ) and

(M5) lim
t→0

M̂(t)

t
q
p

= 0.

h satisfies the following assumptions.

(h1) h is positive almost everywhere;

(h2) h ∈ L
p∗

p∗−q (RN ).

The main result of this paper is the following theorem.

Theorem 1.1. Assume that assumptions (M3), (M5), (h1) and (h2) hold. Then, there are infinitely many
solutions to problem (4).
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Remark. Assumption (M3) indicates that the growth rate of M̂ at infinity is no less than p∗

p ; at the

same time, the decay rate of M̂ at zero is no more than p∗

p . It ensures that the functional associated with

problem (4) is coercive in D1,p(RN ). Assumption (M5) indicates that the decay rate of M̂ at zero is no
less than q

p . This assumption is mainly used to ensure the functional associated with problem (4) can
take a value less than near zero. Assumption (M3) is a global constraint; we think it may be extended to
some growth assumptions at zero and infinity. There are a lot of functions satisfy the assumptions (M3)
and (M5). A class of example is

M(t) =
{

atα, t ∈ [0, 1];
atβ , t ∈ (1,∞),

where a > S
− p∗

p

N ,

{
q
p − 1 < α ≤ p∗

p − 1, q > p;
0 ≤ α ≤ p∗

p − 1, 1 < q < p,
β ≥ p∗

p − 1. Here we can define M(0) = a if α = 0.

The rest of the paper is organized as follows. In Sect. 2, we give the variational structure of problem
(4). In Sect. 3, the main result is proved by using the second Concentration Compactness lemma of Loins
and a variant of Clark’s theorem.

The following conventions and notations are used in this paper:
• C,C1, C2, . . . denote positive (possible different) constants.
• We denote weak and strong convergence by un ⇀ u and un → u, respectively.
• on(1) is an infinitely small quantity of 1.

2. Preliminaries

In this section, we give some preliminary results which will be used to prove our main result.
As usual, the Sobolev space D1,p(RN ) is defined by

{u ∈ Lp∗
(RN ) : |∇u| ∈ Lp(RN )}

equipped with the norm

‖u‖ =

⎛
⎝

∫

RN

|∇u|pdx

⎞
⎠

1
p

.

The classical Lebesgue spaces Lq(RN )(1 ≤ q ≤ p∗) are equipped with the norms

‖u‖q =

⎛
⎝

∫

RN

|u|qdx

⎞
⎠

1
q

.

SN is the best Sobolev constant of D1,p(RN ) ↪→ Lp∗
(RN ), i.e.,

SN = inf
u∈D1,p(RN )\{0}

‖u‖p

‖u‖p
p∗

.

As it is well known, Lp∗
(RN ) is a uniformly convex Banach space.

Under our assumptions, problem (4) has a variational structure. We denote by J : D1,p(RN ) → R,
the energy functional associated with problem (4), which is given by

J(u) =
1
p
M̂(‖u‖p) − 1

p∗ ‖u‖p∗
p∗ − 1

q

∫

RN

h(x)|u|qdx.
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Obviously, J ∈ C1(D1,p(RN ),R) with derivative at u ∈ D1,p(RN ) given by

J ′(u)(v) = M(‖u‖p)
∫

RN

|∇u|p−2∇u∇vdx −
∫

RN

|u|p∗−2uvdx −
∫

RN

h(x)|u|q−2uvdx, v ∈ D1,p(RN ).

Consequently, the critical points of J are weak solutions for problem (4).
In order to prove our main result, we need the following lemma which is a variant of a result of

Clark [16] and is given in [17].

Lemma 2.1. Assume X is a Banach space, I ∈ C1(X,R) satisfying Palais–Smale condition is bounded
from below and even, I(0) = 0. If for any k ∈ N, there exist k-dimensional subspaces Xk and ρk > 0 such
that

sup
Xk∩Sρk

I < 0,

where Sρk
= {u ∈ X| ‖u‖ = ρk}; then, I has a sequence of critical values ck < 0 satisfying ck → 0 as

k → ∞.

3. Proof of Theorem 1.1

Under the assumptions of Theorem 1.1, we will show the existence of infinitely many solutions for problem
(4).

Lemma 3.1. Under assumptions (M3), (h1) and (h2), the functional J is coercive bounded from below in
D1,p(RN ) and satisfies Palais–Smale condition.

Proof. From assumption (M3), it follows that there exists a positive constant k such that k > S
− p∗

p

N and

M(t) ≥ kt
p∗
p −1 for every t ≥ 0. Then, M̂(t) ≥ p

p∗ kt
p∗
p for every t ≥ 0. Since h ∈ L

p∗
p∗−q (RN ), we have

J(u) ≥ 1
p∗ k‖u‖p∗ − 1

p∗ S
− p∗

p

N ‖u‖p∗ − 1
q
‖h‖ p∗

p∗−q
‖u‖q

p∗

=
1
p∗

(
k − S

− p∗
p

N

)
‖u‖p∗ − 1

q
S

− q
p

N ‖h‖ p∗
p∗−q

‖u‖q.

Due to q < p∗, we obtain that J is coercive and bounded from below in D1,p(RN ).
Let {un} be a Palais–Smale sequence for J , that is,

{J(un)} is bounded, J ′(un) → 0, as n → ∞.

Obviously, since J is coercive, {un} is bounded in D1,p(RN ). Then, there exists u ∈ D1,p(RN ) such
that up to a subsequence

un ⇀ u in D1,p(RN ),

un → u in Lr
loc(R

N ), r ∈ [1, p∗),

un → u a.e. in R
N ,

|∇un|p ⇀ η, |un|p∗
⇀ ν, in the sense of measures,

where η, ν are nonnegative and bounded measures on R
N . By the second Concentration Compactness

lemma of Lions [18] and the Concentration compactness principle at infinity of Chabrowski [19], there exist
an at most countable index set Λ, a set of points {xj}j∈Λ ⊂ R

N and two families of positive numbers
{ηj}j∈Λ, {νj}j∈Λ such that

η ≥ |∇u|pdx +
∑
j∈Λ

ηjδxj
, ν = |u|p∗

dx +
∑
j∈Λ

νjδxj
,
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and

SNν
p

p∗
j ≤ ηj for every j ∈ Λ, in particular,

∑
j∈Λ

ν
p

p∗
j < ∞,

where δxj
is the Dirac mass concentrated at xj ;

lim sup
n→∞

∫

RN

|∇un|pdx =
∫

RN

dη + η∞, lim sup
n→∞

∫

RN

|un|p∗
dx =

∫

RN

dν + ν∞,

where

η∞ = lim
R→∞

lim sup
n→∞

∫

Bc
R(0)

|∇un|pdx, ν∞ = lim
R→∞

lim sup
n→∞

∫

Bc
R(0)

|un|p∗
dx,

satisfying SNν
p

p∗
∞ ≤ η∞.

Next, we will prove that the index set Λ is empty. Arguing by contradiction, we may assume that
there exists a j0 such that νj0 
= 0. Consider now, for ε > 0 a nonnegative cut-off function φε such that

φε = 1 on B(xj0 , ε), φε = 0 on R
N \ B(xj0 , 2ε), |∇φε| ≤ 2

ε
.

It is easy to see that the sequence {unφε}n is bounded in D1,p(RN ). Then,

lim
n→∞ J ′(un)(unφε) = 0.

That is to say,

on(1) =M(‖un‖p)
∫

RN

|∇un|p−2∇un∇(unφε)dx −
∫

RN

|un|p∗
φεdx −

∫

RN

h(x)|un|qφεdx

=M(‖un‖p)

⎛
⎝

∫

RN

|∇un|pφεdx +
∫

RN

un|∇un|p−2∇un∇φεdx

⎞
⎠ −

∫

RN

|un|p∗
φεdx

−
∫

RN

h(x)|un|qφεdx.

(3.1)

Since {un} is bounded in D1,p(RN ), by Hölder inequality, one has
∣∣∣∣∣∣

∫

RN

un|∇un|p−2∇un∇φεdx

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∫

B(xj0 ,2ε)

un|∇un|p−2∇un∇φεdx

∣∣∣∣∣∣∣

≤

⎛
⎜⎝

∫

B(xj0 ,2ε)

|∇un|pdx

⎞
⎟⎠

p−1
p

⎛
⎜⎝

∫

B(xj0 ,2ε)

|un∇φε|pdx

⎞
⎟⎠

1
p

≤ C

⎛
⎜⎝

∫

B(xj0 ,2ε)

|un∇φε|pdx

⎞
⎟⎠

1
p

.

Since

lim
n→∞

∫

B(xj0 ,2ε)

|un∇φε|pdx =
∫

B(xj0 ,2ε)

|u∇φε|pdx,
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⎛
⎜⎝

∫

B(xj0 ,2ε)

|u∇φε|pdx

⎞
⎟⎠

1
p

≤

⎛
⎜⎝

∫

B(xj0 ,2ε)

|u|p∗
dx

⎞
⎟⎠

1
p∗ ⎛

⎜⎝
∫

B(xj0 ,2ε)

|∇φε|Ndx

⎞
⎟⎠

1
N

≤ C

⎛
⎜⎝

∫

B(xj0 ,2ε)

|u|p∗
dx

⎞
⎟⎠

1
p∗

→ 0, as ε → 0,

and the sequence {M(‖un‖p)} is bounded in R, we can get that

lim
ε→0

lim sup
n→∞

M(‖un‖p)

∣∣∣∣∣∣

∫

RN

un|∇un|p−2∇un∇φεdx

∣∣∣∣∣∣
= 0. (3.2)

Moreover, as 0 ≤ φε ≤ 1,

lim inf
n→∞ M(‖un‖p)

∫

RN

|∇un|pφεdx ≥ k lim
n→∞

⎛
⎜⎝

∫

B(xj0 ,2ε)

|∇un|pφεdx

⎞
⎟⎠

p∗
p

≥ k

⎛
⎜⎝

∫

B(xj0 ,2ε)

|∇u|pφεdx + ηj0

⎞
⎟⎠

p∗
p

.

Together with
∫

B(xj0 ,2ε)

|∇u|pφεdx → 0 as ε → 0, thus

lim inf
ε→0

lim inf
n→∞ M(‖un‖p)

∫

RN

|∇un|pφεdx ≥ kη
p∗
p

j0
. (3.3)

In addition,

lim
ε→0

lim
n→∞

∫

RN

|un|p∗
φεdx = lim

ε→0

⎛
⎜⎝

∫

B(xj0 ,2ε)

|u|p∗
φεdx + 〈

∑
j∈J

νjδxj
, φε〉

⎞
⎟⎠ = νj0 . (3.4)

By assumptions (h1) and (h2),

lim
n→∞

∫

RN

h(x)|un|qφεdx = lim
n→∞

∫

B(xj0 ,2ε)

h(x)|un|qφεdx

=
∫

B(xj0 ,2ε)

h(x)|u|qφεdx,
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and

∫

B(xj0 ,2ε)

h(x)|u|qφεdx ≤

⎛
⎜⎝

∫

B(xj0 ,2ε)

|h(x)| p∗
p∗−q dx

⎞
⎟⎠

p∗−q
p∗ ⎛

⎜⎝
∫

B(xj0 ,2ε)

|u|p∗
dx

⎞
⎟⎠

q
p∗

≤ C

⎛
⎜⎝

∫

B(xj0 ,2ε)

|u|p∗
dx

⎞
⎟⎠

q
p∗

.

Thus,

lim
ε→0

lim
n→∞

∫

RN

h(x)|un|qφεdx = 0. (3.5)

From (3.1),∫

RN

|un|p∗
φεdx =M(‖un‖p)

∫

RN

|∇un|pφεdx + M(‖un‖p)
∫

RN

un|∇un|p−2∇un∇φεdx

−
∫

RN

h(x)|un|qφεdx + on(1)

≥M(‖un‖p)
∫

RN

|∇un|pφεdx −
∣∣∣∣∣∣
M(‖un‖p)

∫

RN

un|∇un|p−2∇un∇φεdx

∣∣∣∣∣∣

−
∫

RN

h(x)|un|qφεdx + on(1).

Then,

lim inf
n→∞

∫

RN

|un|p∗
φεdx ≥ lim inf

n→∞ [M(‖un‖p)
∫

RN

|∇un|pφεdx −
∣∣∣∣∣∣
M(‖un‖p)

∫

RN

un|∇un|p−2∇un∇φεdx

∣∣∣∣∣∣

−
∫

RN

h(x)|un|qφεdx + on(1)]

≥ lim inf
n→∞ M(‖un‖p)

∫

RN

|∇un|pφεdx

+ lim inf
n→∞

⎛
⎝−

∣∣∣∣∣∣
M(‖un‖p)

∫

RN

un|∇un|p−2∇un∇φεdx

∣∣∣∣∣∣

⎞
⎠

+ lim inf
n→∞

⎛
⎝−

∫

RN

h(x)|un|qφεdx

⎞
⎠

= lim inf
n→∞ M(‖un‖p)

∫

RN

|∇un|pφεdx
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− lim sup
n→∞

∣∣∣∣∣∣
M(‖un‖p)

∫

RN

un|∇un|p−2∇un∇φεdx

∣∣∣∣∣∣

− lim sup
n→∞

∫

RN

h(x)|un|qφεdx.

Passing to the lim inf as ε → 0 in both sides of the above inequality, it follows from (3.2)-(3.5) that

νj0 ≥ kη
p∗
p

j0
.

From SNν
p

p∗
j ≤ ηj for every j ∈ Λ, we obtain

kS
p∗
p

N νj0 ≤ kη
p∗
p

j0
≤ νj0 .

This is a contradiction with the fact that k > S
− p∗

p

N . Such a conclusion implies that Λ is empty.
Then, in order to get that

lim
n→∞

∫

RN

|un|p∗
dx =

∫

RN

|u|p∗
dx,

it suffices to show that ν∞ = 0. Indeed, let ψR ∈ C∞(RN , [0, 1]) be a cut-off function such that

ψR(x) = 0, |x| < R, ψR(x) = 1, |x| > 2R, and |∇ψR| ≤ 2
R

.

It is also easy to see that {unψR}n is bounded in D1,p(RN ). Then,

on(1) =M(‖un‖p)

⎛
⎝

∫

RN

|∇un|pψRdx +
∫

RN

un|∇un|p−2∇un∇ψRdx

⎞
⎠

−
∫

RN

|un|p∗
ψRdx −

∫

RN

h(x)|un|qψRdx.

(3.6)

By Hölder inequality, one has
∣∣∣∣∣∣

∫

RN

un|∇un|p−2∇un∇ψRdx

∣∣∣∣∣∣
≤

∫

{R≤|x|≤2R}

|un∇ψR||∇un|p−1dx

≤

⎛
⎜⎝

∫

{R≤|x|≤2R}

|∇un|pdx

⎞
⎟⎠

p−1
p

⎛
⎜⎝

∫

{R≤|x|≤2R}

|un∇ψR|pdx

⎞
⎟⎠

1
p

≤ C

⎛
⎜⎝

∫

{R≤|x|≤2R}

|un∇ψR|pdx

⎞
⎟⎠

1
p

.

Since

lim
n→∞

∫

{R≤|x|≤2R}

|un∇ψR|pdx =
∫

{R≤|x|≤2R}

|u∇ψR|pdx,
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⎛
⎜⎝

∫

{R≤|x|≤2R}

|u∇ψR|pdx

⎞
⎟⎠

1
p

≤

⎛
⎜⎝

∫

{R≤|x|≤2R}

|u|p∗
dx

⎞
⎟⎠

1
p∗ ⎛

⎜⎝
∫

{R≤|x|≤2R}

|∇ψR|Ndx

⎞
⎟⎠

1
N

≤ C

⎛
⎜⎝

∫

{R≤|x|≤2R}

|u|p∗
dx

⎞
⎟⎠

1
p∗

→ 0,

as R → ∞, and the sequence {M(‖un‖p)}n is bounded, we can get that

lim
R→∞

lim sup
n→∞

M(‖un‖p)

∣∣∣∣∣∣

∫

RN

un|∇un|p−2∇un∇ψRdx

∣∣∣∣∣∣
= 0. (3.7)

Moreover, by assumption (M3) again,
⎛
⎝M(‖un‖p)

∫

RN

|∇un|pψRdx

⎞
⎠

p
p∗

≥ k
p

p∗
∫

BC
2R(0)

|∇un|pdx.

Then,

lim sup
R→∞

⎛
⎝lim sup

n→∞
M(‖un‖p)

∫

RN

|∇un|pψRdx

⎞
⎠

p
p∗

≥ lim sup
R→∞

lim sup
n→∞

⎛
⎝M(‖un‖p)

∫

RN

|∇un|pψRdx

⎞
⎠

p
p∗

≥ k
p

p∗ lim
R→∞

lim sup
n→∞

∫

BC
2R(0)

|∇un|pdx

= k
p

p∗ η∞.

Thus,

lim sup
R→∞

lim sup
n→∞

M(‖un‖p)
∫

RN

|∇un|pψRdx ≥ kη
p∗
p∞ . (3.8)

In addition,

lim
R→∞

lim sup
n→∞

∫

RN

|un|p∗
ψRdx = lim

R→∞
lim sup

n→∞

∫

BC
R (0)

|un|p∗
dx = ν∞. (3.9)

Since assumptions (h1) and (h2) imply that
∫

RN

h(x)|un|qψRdx ≤
∫

BC
R (0)

h(x)|un|qdx

and

lim
n→∞

∫

BC
R (0)

h(x)|un|qdx =
∫

BC
R (0)

h(x)|u|qdx,

then

lim sup
n→∞

∫

RN

h(x)|un|qψRdx ≤
∫

BC
R (0)

h(x)|u|qdx.
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Together with

lim
R→∞

∫

BC
R (0)

h(x)|u|qdx = 0,

we can get

lim
R→∞

lim sup
n→∞

∫

RN

h(x)|un|qψRdx = 0. (3.10)

From (3.6),
∫

RN

|un|p∗
ψRdx =M(‖un‖p)

⎛
⎝

∫

RN

|∇un|pψRdx +
∫

RN

un|∇un|p−2∇un∇ψRdx

⎞
⎠

−
∫

RN

h(x)|un|qψRdx + on(1)

≥M(‖un‖p)
∫

RN

|∇un|pψRdx −
∣∣∣∣∣∣
M(‖un‖p)

∫

RN

un|∇un|p−2∇un∇ψRdx

∣∣∣∣∣∣

−
∫

RN

h(x)|un|qψRdx + on(1);

then,

lim sup
n→∞

∫

RN

|un|p∗
ψRdx ≥ lim sup

n→∞
[M(‖un‖p)

∫

RN

|∇un|pψRdx

−
∣∣∣∣∣∣
M(‖un‖p)

∫

RN

un|∇un|p−2∇un∇ψRdx

∣∣∣∣∣∣
−

∫

RN

h(x)|un|qψRdx + on(1)]

≥ lim sup
n→∞

M(‖un‖p)
∫

RN

|∇un|pψRdx

− lim sup
n→∞

∣∣∣∣∣∣
M(‖un‖p)

∫

RN

un|∇un|p−2∇un∇ψRdx

∣∣∣∣∣∣

− lim sup
n→∞

∫

RN

h(x)|un|qψRdx.

Taking the lim sup as R → ∞ in both sides of the above inequality, it follows from (3.7)-(3.10) that

ν∞ ≥ kη
p∗
p∞ .

From SNν
p

p∗
∞ ≤ η∞, we obtain

kS
p∗
p

N ν∞ ≤ kη
p∗
p∞ ≤ ν∞.

If ν∞ 
= 0, it also leads to a contradiction with the fact that k > S
− p∗

p

N . Therefore, ν∞ = 0.
The uniform convexity of Lp∗

(RN ) implies that

un → u in Lp∗
(RN ).
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Since {un} is bounded in D1,p(RN ),

lim
n→∞ J ′(un)(un − u) = lim

n→∞[M(‖un‖p)
∫

RN

|∇un|p−2∇un∇(un − u)dx

−
∫

RN

|un|p∗−2un(un − u)dx −
∫

RN

h(x)|un|q−2un(un − u)dx]

= 0.

By Hölder inequality,
∣∣∣∣∣∣

∫

RN

|un|p∗−2un(un − u)dx

∣∣∣∣∣∣
≤

⎛
⎝

∫

RN

|un|p∗
dx

⎞
⎠

Np−N+p
Np

⎛
⎝

∫

RN

|un − u|p∗
dx

⎞
⎠

1
p∗

.

We know from the definition of weak convergence and assumption (h2) that

lim
n→∞

∫

RN

h(x)|un|q−2un(un − u)dx = 0.

So we deduce that

lim
n→∞ M(‖un‖p)

∣∣∣∣∣∣

∫

RN

|∇un|p−2∇un∇(un − u)dx

∣∣∣∣∣∣
= 0.

We claim that

lim
n→∞

∫

RN

|∇un|p−2∇un∇(un − u)dx = 0. (3.11)

In fact, if lim sup
n→∞

M(‖un‖p) > 0, then, (3.11) follows at once( in the sense of subsequence). If lim
n→∞ M(‖un‖p)

= 0, then, by assumption (M3) and Hölder inequality, we obtain that un → 0 in D1,p(RN ) and (3.11)
holds true also in this case.

It follows from the definition of weak convergence that

lim
n→∞

∫

RN

|∇u|p−2∇u∇(un − u)dx = 0.

Then,

lim
n→∞

∫

RN

(|∇un|p−2∇un − |∇u|p−2∇u)∇(un − u)dx = 0.

By the boundedness of {un} in D1,p(RN ) and the well-known Simon inequalities

|ξ − η|p ≤
{

cp(|ξ|p−2ξ − |η|p−2η) · (ξ − η), p ≥ 2;
Cp[(|ξ|p−2ξ − |η|p−2η) · (ξ − η)]

p
2 × (|ξ|p + |η|p) 2−p

2 , 1 < p < 2,

for all ξ, η ∈ R
N , where cp and Cp are positive constants depending only on p, we can obtain

‖un − u‖p =
∫

RN

|∇un − ∇u|pdx → 0, n → ∞.

Therefore, un → u in D1,p(RN ). �
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Lemma 3.2. For any m ∈ N, there exists a m-dimensional subspace Xm of D1,p(RN ) and ρm > 0 such
that sup

u∈Xm∩Sρm

J(u) < 0, where Sρm
:= {u ∈ D1,p(RN ) : ‖u‖ = ρm}.

Proof. For any m ∈ N, we can find m functions e1, e2, . . . , em ∈ C∞
0 (RN ) of linearly independent. The m-

dimensional subspace Xm is defined by Xm = span{e1, e2, . . . , em} equipped with the norm of D1,p(RN ).

While ‖u‖q,h :=

( ∫
RN

h(x)|u|qdx

) 1
q

is also a norm of Xm. Because all norms are equivalent in Xm, there

exists Cm > 0 such that

‖u‖ ≤ Cm‖u‖q,h, u ∈ Xm.

We know from (M5) that for some C0 ∈ (0, p
qCq

m
), there exists δ > 0 such that

M̂(t) ≤ C0t
q
p , |t| ≤ δ.

Let ρm ∈ (0, δ
1
p ) be small sufficiently, we have that

J(u) =
1
p
M̂(‖u‖p) − 1

p∗ ‖u‖p∗
p∗ − 1

q

∫

RN

h(x)|u|qdx

≤ 1
p
C0‖u‖q − 1

qCq
m

‖u‖q

=
(

1
p
C0 − 1

qCq
m

)
‖u‖q

< 0,

when u ∈ Xm ∩ Sρm
. The proof of Lemma 3.2 is completed. �

Proof of Theorem 1.1. Assumption (M5) implies that M̂(0) = 0. By the definition of J , we can get
that J(0) = 0 and J ∈ C1(D1,p(RN ),R) is even. According to Lemma 3.1 and Lemma 3.2, J satisfies all
the conditions of Lemma 2.1. Therefore, there are infinitely many solutions to problem (4).
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