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1. Introduction

Let 1 =10,1],Qr =1 x (0,T) for any T'> 0 and N' = {(n,m) € S? x S?| n-m = 0}, here S? is the unit
sphere in R3. In recent paper, we will consider the following compressible hydrodynamic flow of biaxial
nematic liquid crystals

Pt + (pv)r =0,
(pv)e + (PU2)E + (P(p))e = HVzz — )‘[(|nz|2)x + (|mx|2)r + (2|n - me)Z]? (1.1)
ne +vng — 2(ng - mYmg = (g + [ng?n) + (Mg - ng)m + 2|n - my|*n, '
my + vmy — 2(my - n)ng = (Mg + |me[*m) + (ng - me)n + 2|n - my|*m,
with the following initial and boundary condition:
(p7van7m)|t:() = (p(),UO,’I’LO,mQ), (n07m0) S NJ (1 2)
Vlor =0, nalyr = malyr =0,

where p : Q7 — R denotes the density, v : Q7 — R represents the velocity, n : Qr — S? andm : Q7 — S?
are orthogonal unit vector fields of the biaxial nematic liquid crystal molecules, here P(p) = rp7 : Qr — R
denotes the pressure for some constants v > 1 and r > 0. For convenient, let A\=pu=60=r=1.

The system (1.1) is a coupling between the compressible Navier-Stokes equations and a heat flow,
which is a macroscopic continuum description of the development for the biaxial nematic liquid crystals.
Based on the Landau—De Gennes @Q-tensor theory, Govers and Vertogen proposed the elastic continuum
theory of biaxial nematics in [9,10]. The Govers—Vertogen model uses a pair of orthogonal unit vector
fields (n,m) € N, to describe the orientation field of a nematic liquid crystal, and considers the elastic
energy density W(n,m, Vn,Vm) to be of the Oseen-Frank type. In this paper, we focus on the special
elastic energy density has a simple form

1 1
W(n,Vn,Vm) = =|Vn|?> + =|Vm|? + |n - Vm/|?. 1.3
2 2

 Birkhiuser
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Then, if we ignore p and v, (1.1) is a system with special elastic energy density W(n, Vn, Vm) in dimension
one. If we ignore m, (1.1) becomes the compressible uniaxial nematic liquid crystal equations [2].

Now we first recall some previous works on the existence and uniqueness of solutions to the related
systems. Ericksen [5] and Leslie [14] in the 1960s derived firstly the hydrodynamic theory of incompressible
uniaxial nematic liquid crystals. This theory simplified to the incompressible uniaxial nematic liquid
crystal equations, which has been successfully studied (see [6,7,13,17,18,20,26] and so on for the constant
density case, and [8,15,16,27] and so on for nonconstant density case for example). For the compressible
uniaxial nematic liquid crystal equations, Ding et al. [2,4] obtained the global existences of classical,
strong and weak solutions in dimension one, while authors in [24] obtained the global existence and
regularity of solutions in suitable Hilbert spaces in Lagrangian coordinates. In higher dimensions, authors
in [23] obtained the global existence of weak solution with large initial energy and without any smallness
condition on the initial density and velocity in a three-dimensional bounded domain. Lin et al. [19]
established the existence of finite energy weak solutions with the large initial data in dimensions three,
provided the initial orientational director field lies in the upper hemisphere. Wen et al. in [11,12] obtained
the local existence of strong solution and blow-up criterion compressible nematic liquid crystal flows in
dimension three. Gao et al. [8] obtained the global well-posedness of classical solution under the condition
of small perturbation of constant equilibrium state in the suitable Hilbert space. Authors in [21] derived
a global existence of classical solution with smooth initial data which is of small energy but possibly
large oscillations in R3. For more about the progress of mathematical researches on liquid crystals, the
interested readers can consult with the review articles [1,22,28].

For the hydrodynamic flows of incompressible biaxial nematics with a constant density, Lin et al. in
[18] have derived the existence of unique global weak solution in two dimensions which is smooth off at
most finitely many singular times. Authors in [3] have derived the weak compactness property of solutions
in two dimensions as the parameter tends to zero by Pohozaev argument.

Inspired by the work on the hydrodynamics of compressible uniaxial nematics with a nonconstant
density [2], we consider the global classical and strong solutions to (1.1)—(1.2). For initial density po
without vacuum states, we obtain our first result on the existence and uniqueness of global classical
solutions.

Theorem 1.1. For a € (0,1), let pg € CY(I) with C&l < po < Cy for some positive constant Cy,
vo € C?*T(I) and (ng,mo) € N with ng,mg € C?>T(I). Then, (1.1)~(1.2) has a unique global classical
solution (p,v,m,m) : I x [0,4+00) — [0,+00) x R x S% x 82, such that for any T > 0, there hold

24a

(pzspt) € C*3(Qr),Cr! < p < Cy, (v,n,m) € C*F 72 (Qr) and (n,m) €N
for a positive constant Cy depending on Cy and T.

For initial density pg with possible vacuum states, we obtain our second result on the global existence
and uniqueness of strong solutions.

Theorem 1.2. Let 0 < pg € H*(I),vg € HE(I) and (ng,mo) € N with ng,mo € H*(I). (1.1)~(1.2) has a
unique global strong solution (p,v,n,m) such that for any T > 0, there hold (n,m) € N and
p € L>(0,T; HY(I)), py € L>(0,T; L*(I)),
ve L>(0,T; H (1)) N L2(0,T; H2(I)), (pv)s € L2(0,T; L3(I)),tv, € L2(0,T; H3 (1)),
n,m € L>(0,T; H*(I)),ns, my € L>=(0,T; L*(1)) N L*(0,T; H*(I)).

Our two results extend the works in [2] to biaxial nematic liquid crystals. However, because of the
additional vector m and term |n - Vm|? in elastic energy density, there are many difficulties to overcome.
For example, to use the Schauder theory in constructing local existence in Sect. 2, we use some modi-

fications in deriving the map H. To prove the global existence of solutions, we have to overcome some
difficulties coming from some terms similar to gradient square like terms, for example, (n, - m)m, and



ZAMP Existence and uniqueness of solution Page 3 of 30 37

In - mg|%. In Sect. 4, in order to use the result of Theorem 1.1, we will construct a suitable approximate
initial n% and mf such that (nf, m§) € N. Meanwhile, one observes that the system (1.1) is strongly
coupled and the equations therein are strongly nonlinear. All of these suggest the main difficulties in the
global estimates.

Throughout this paper, we will use the following notices for simplicity.

1 leta = 1Ml g, g2 s @ € 10,105 1Mo =11+ [y, p € [0, +00].

The paper is organized as follows. In Sect. 2, the existence of local classical solutions of (1.1)—(1.2) is
proved. In Sect. 3, through deriving some a priori global estimates for classical solutions, we prove the
global existence and uniqueness of classical solutions for initial density without vacuum states. In Sect. 4,
we prove the global existence and uniqueness of strong solutions for initial density with possible vacuum
states.

2. Local classical solution: existence and uniqueness

In this section, we will prove the existence and uniqueness of local classical solutions. We will assume
that

[ mieya=1. (2.1)
I

We will rewrite (1.1)—(1.2) in Lagrangian coordinate firstly. For any 7' > 0, introduce the Lagrangian
coordinate (y,7) on I x (0,7) such that

y(z,t) = /p(g,t)df, 7(z,t) = 1.
0
Then, (z,t) — (y,7) is a Cl—bijective map [2]. One also has
0 0 o 0 0

o~ oy Tor o Pay

By a coordinate transformation, (1.1)—(1.2) can be changed into the following system
pr+ pQ'Uy =0,
vr + Py = (pvy)y — (p2|ny|2)y - (p2‘my‘2)y — (2p%n - my|2)ya
nr = p(pny)y + pQ‘ny|2n + p2mmy TNy + 2p%In - my|2n + 2p2(ny S m)my,
me = plpmy)y + p*|my[>m + p*nny, - my + 2% |m - ny[*m + 2p*(my, - n)n,,

and the initial boundary conditions

{(p7v7nam)|7——0 = (pOav07nOam0)7 (n()vmo) € N7 (2 3)

Vlgr =0, nylyr = myly, = 0.

Then, we have the following result.

Theorem 2.1. For 0 < a < 1, suppose py € C'T(I) with 0 < Cy* < po(z,t) < Co and vy € C*Ho(I),
no, mo € C?*T(I) with (ng,mg) € N. Then, (1.1)~(1.2) has a unique local classical solution (p,v,n,m)
such that there exists T = T (po, vo, no, mo) > 0 such that

(pzypt) € C‘X’%(QT),C_1 < p(x,t) < C,(v,n,m) € CQ+O"2+TQ(QT) and (n,m) € N

for some constant C > 0.
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Proof. For K > 0 large and T' > 0 small determined later, define X = X (T, K) by
= {(U z U}) : QT — R x R3 X R3|(U’ Z,’U)) 02+a7 (QT) (U’?va)"r:O = (U07n07m0)7
H(u—vo,z—no,w mo)|lx < K},

where

1200l = 1l o 252 g ) + el o 25 ) H 0l o 250 -

It can be checked that X is a Banach space.
For any (u,z,w) € X, we will firstly solve the following equation

pT +p2uy = 07 (2 4)
Plr—o = ros Plar = polar-
In fact, we have

£o

ply,7) = : (2.5)
1+ Po fo uy Yy,s )d
Moreover, since (u, z,w) € X, we have ||u|]|x < K. Then if T < T} := 20 7, we have
p< Po < 20, (2.6)
1- |pofuy Y, s)ds|
and
C*l
p> po > ; . (2.7)

1+ Ipofuy Y, s)ds|

From u € C2+*5% (Qr) and py € C1+*(I), we know that p, p, € C*% (Qr) by (2.5).
Let p be given by (2.5). Define a map H : X — o (Qr) with H(u, z,w) = (v,n,m), where
(v,m,m) solves

vr + Py — puyy = pyuy — (p2|ny|2)y - (P2‘my|2)y —(2p%In - my|2)ya
— PPNy = ppyzy + P22y P2 + pPwwy - 2y + 202 |z - wy |22 + 2p% (2 - w)wy, (2.8)
My — p>Myy = ppywy + p*wy|>w + p22zy - wy + 2p%|z - wy 2w + 2p* (wy - 2)2y.

with the following initial boundary conditions

{(U,n,m)|7_=0 = (UOan07m0)7 (n07m0) € Na

(v, 1y, my)| 5, = (0,0,0). (2.9)

Now the proof of Theorem 1.2 is divided into several steps.

Step 1: To prove that H is well defined.

In fact, since p,p, € C"‘vz (Qr) and z,w € C*F**5*(Qr), we know that (2.8)—(2.9) has a unique
solution (v,n,m) in e 25 “(Qr) by the Schauder theory and the boundedness of p from (2.6) and
(2.7). Hence, H is well defined.

Step 2: To prove that the image of H is in X, if K is large enough and 7 small enough.
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Let Cy = [[pollcrte(ry + [[vollco+a(ry + lInollc2+ary + |Imollc2+e(r). Differentiating (2.5) w.r.t y, we
have
0 pOPOyfuy (y,s d5+p0 fuyy (y,s)ds
pyy,7) = — - : (2.10)
L+ po [ uy(y, s)ds (1 +Pofuy y,s)ds)?
0

Then, (2.5) and (2.10) imply that if T < T, := min {Tl, (L)== } then

max {|1pll o5 [9ll oot () | < CC). (2.11)
Applying the Schauder theory to (2.8)a, one gets that for any T' < Tb,

||TL 77,0|| o2t 4o ) +||P |Zy| ZHCQ (Qr)

on SC[1+lIops2ll0s g

Hlpww, - 2)llge s @p + 110712 0, P2ll e @y 110G 00y s o |- (212)
Since w —mg =z —ng =0 at t =0, we get that
|z = nollc@r) < KT, |[zy — noyllcor) < KT,
llw —mollcr) < KT, [[wy —moyllcqr) < KT.

By the interpolation inequality, we have that for 0 < § < 1,

T

|1z = nollo
||Z*TL0||CQ,%(QT) SC |:6+($||Z77,0||2+a SCK 5+§ 5

|12y — noyllo T
||Zy—noy||ca,g(QT)§C[yéy—|—5||z—no||2+a <K (5+5).

Similarly, we also have

T T
o= mollge s ) < CK (5+5 )y~ mnllgns g, < CK (5+ 5 ).

Then, we have
ppyzyllge g (o < 3llllallpyllallzylla < C(ClIzy = noylla + |70y lla]
< C(CDllzy = noylla + C(Ch)

<o) {K (5 + ?) + 1} . (2.13)

One also gets that
10212, 2]l g8 g
< 10?12y *2 = pol2yl2lla + 110512122 — PR Inoy[*2lla + PG 1m0y 2 — p5Inoy *nolla + 1165 In0y *n0] |
< 5[[p = pollallp + pollallzyllal2lla + 5llpol 21|12y — noyllallzy + noyllallzlla
+51pol 2oy [al1z = nolla + C(C1)
< C(C1)(llzy = noylla + [In0ylla)* (|12 = nolla + [I0]la) + C(C1)(Il2y — noylla
+ [Inoylla) (112 = nolla + lInolla) + C(C1)l|z = nolla + C(Ch)

< C(Cy) [K (5 + ?) + 1}3. (2.14)
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Similarly, we have
2
Hp wwyzyHca!%(QT)
< [|pPwwyzy — prwwyzy|lo + [|pgwwyzy — pimowy 2yl + [|pimowy 2, — pgmomayzy||a
+ |lpomomoy 2y, — pymomoynoy|la + |lpgmomoynoy|la
< 5(lp = pollallp + pollallwllallwyllall2ylla + 5llool|2 1w — mollallwyllallzy| |

+5llpollalImollallwy — moyllallzylla + 5lleol[&]1mollallmoyllallzy, — noylla + C(C1)

T 3
< C(Ch) {K (6—1— 5) + 1} (2.15)
and
2 2
10712 1wy Pl e g
<|0?]z - wyl*z = pglz - wy [P2|a + [195] 2 - wy P2 = pglno - wyl?z]]a

+lpglno - wy [z = pilno - moy*zlla + [|p§In0 - moy[*2 = p§|n0 - moy|*nolla + C(C1)
<c(cy) [K (5 + ?) + 1]5. (2.16)
Finally, we also get
162y - 0yl s )

< ||P2(Zy ) w)wy - Pg(zy ) w)waa + ||Pg(zy ) w)wy - Pg(noy ) w)waa

+ HP(Z)(nOy Sw)wy — Pg(noy -mo)wylla + HP?)(nOy M)Wy — P(Q)(noy “mg)moy|la + C(C1)

3
T
< C(Cy) {K <5+ 6) + 1} . (2.17)
By there estimates from (2.13) to (2.17), we have
T 5
[|n — n0||c2+ay#(QT) <5C(Cy) {K ((5 + 5) + 1} . (2.18)
Similarly, applying the Schauder theory to (2.8)3, we also have
T 5
[|m — m0||02+a,2+Ta(QT) <5C(Ch) [K (5 + 5) + 1} . (2.19)
Taking T = §2, we have
|[n — n0||02+a‘2%(QT) + [|lm — mo||02+m%ﬂ(QT) <10C(Cy)[2KT= +1)°. (2.20)

Then, there are T3 > 0 small enough and K3 > 2 large enough, such that for 0 < T < T3 and K > K3
there holds that

o, 2ta
T (Qr)

lIn = noll jara 250, +Ilm—mol < K. (2.21)

"2 (Qr)

Now we will estimate v. Applying the Schauder theory to (2.8);, we have for 0 < T < T3 and K > K3
that

o = voll ara 252

< ClL+llpyuylla + 1%y Pylla + 10 1my *)ylla + [1(0* 1 - my )y lla]- (2.22)
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It is not hard to see that
T
oyl gy < CCIuy = oyl + llanylla] < CCCo) | (34 %) +1].

Taking § = /T firstly and then 0 < T < Ty := min{T3, K '}, we have

||Pyuy||caw%(QT) < C'(le)[-[(E + 1]

By (2.21), we have

16y Pyl

< Cllpllalloyllallngll2 + Cllolallngllallnyy|lo

< C(C1)(lIny — noylla + ||77J0y||a(1))2 + C(C1)(|Iny — noylla + lmoylla) ([7yy — noyylla + n0yylla)

< C(C)(KF +1)2
and

1
10 [my[*)yll o5 () SC(CVES + 1)
and
1
101 - my [Pyl o g 0y < CLCTES +1)%

Putting these four estimates together and taking K > Kj5 for some K5 large enough, we have

<TC(CY[K? +1) < %K (2.23)

||U_UOHC2+Q,§2'—"‘

(Qr)
Finally, (2.20) and (2.23) imply that there are 7' > 0 small enough and K > 0 large enough such that

—|—||m—m0\| 24a

0 = voll o250+ 17— 10l v 2 e ()

=7 (Qr)
Therefore, H is a map X to X.

(Qr)

Step 3: To prove that H is a contract mapping, if 7" > 0 is small enough and K > 0 is large enough.

Let (ug,zi,w;) € X and (vi,n;,m;) = H(u;, 2z,w;),4 = 1,2, Denote @ = uy — ug, Z = 21 — 29,
W= w; — Wy, V=101 — Vg, B =N71 — Ng, M =m —Ms, and p = p; — p2, where p; solves the following
equation

pir + (piui)y = 0.

p _
— = —Uy.
(Plpz)T Y

T

p = —pip2 /ﬂy(y,S)dS-
0

Then it is not hard to see that

We get

Because p; and po satisfy (2.11), we get that

0ax {17l g5 (g 1Pll o5 () b < CONT % [l gt 28 (2:24)
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We also have
Tir — piTyy
= G = p(p1 + p2)22gy + PP1y21y + P2Dy21y + P22y %y + P(P1 + p2)|21y P21
+ 032y - (21 + 229) 21 + 3|22y 122 + Bp1 + p2)wiwy - 21y + pOWLY, - 21y + PRW2D, - 21y
+ pawaway + Zy + 2p(p1 + p2)|z1 - wiy P21 4 2037 - wiy(21 - Wiy + 20 - Way) 21
+ 2p320 - Wy (21 - Wiy + 22 - Way)21 + 2p5 |20 - Way|PZ + 20(p1 + pa)(z1y - wi)wiy
+ 2p§2yw1 “wiy + 2p§z2yui Swiy + 2p322yw2 - Wy. (2.25)
Applying the Schauder theory to (2.25), we get

17l o 2g2 () < CllGll o5 g < C(COE(1Alla + 15ylla + [1Zylla + [1Z]a + [[@lla + 1@y lla]

T ) ] ]
< CCK® (5 +0) (lilasa + ellca + lollesa). (226)
where we have used (2.24) and

) 1, ) T ]

I2lla < € { 5l1Zllo +8ll2ll240 | < C{ 5 +0 ) [|2ll2+a;
i 1, ) T )

1zlla < C{ 511zl +0lIZll21a | < O 5 +6 ) [[Z]l2+a,
] 1, ) T )

lolle < C{ 5ll@llo + 0l@llo+a | < C( 5 +6 ) l|@]l2+a;

[y[lo < C(*Ilwyllo +0l[wl]24a) < 0(5 + 0)[[@24a-

Similarly, we have

_ T _ _ _
7 e 25 g < CODR® (548 (lalasa + Fllzsa + 10l (2.27)
Taking 6 = /T, we have
1l s 252 ) + 1l e 242 ) S ACCEVE T (fallasa + 1Zllara +[0ll2sa). (228)

For v, we have

||UHC2+“"2+TQ(QT)

< CC)EM|A]a + 1pylla + [1glla + [1gylla + |mylla + [IFyylla]
< O(C)KAC(CHEST? + C(C)T#(||alla4a + |2 |21a + |[©]l21a), (2:29)

where we have used (2.24) and (2.28).
Therefore, there is T' > 0 small enough and K > 0 large enough, such that

Hl_}”Cz-;—a,HT“(QT) + ||7_7'||C2+a,2+T“(Q + H T H 2+a (Q )
1
= §(||u‘|cz+a (Q ) + || HC2+a 2+a( Qr) + ||wHCz+a e (QT))’ (230)

which means that H is a contract map.

Hence by the contractive fixed point theorem, we know that exists a unique (v,n,m) € X, such that
H(v,n,m) = (v,n,m). Moreover, there is a unique p with p,,p, € C*%(Qr) for some small T > 0.
Hence, (2.2)-(2.3) has a unique local classical solution, so as (1.1)—(1.2).
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Step 4: To prove that (n-m) € N.
In fact, multiplying (1.1)3 by n, we have

L2 1 2 Lo
§(|n| — 1)+ §U(|n| — 1)z — 5(\n| = Daa — 2(mg - n)(n-m),
= (|na]® + 2/ - ma|>)(Inf> = 1) + (ng - mg)n - m. (2.31)

Multiplying (1.1)4 by m, we have

1 1 1
5(\m\2 — 1)+ §U(|m|2 — 1) — §(|m|2 = Daz — 2(ng -m)(n-m),

= (|me|® +2|n - ma|?)(jm|? = 1) + (ng - mg)n - m. (2.32)
Multiplying (1.1)s by m and (1.1)4 by n, we also have

(n-m) +v(n-m)e = (n-M)ez = (ng - m)(|m|* = 1)z = (mg - n)(Inf* — 1),
= (Inal” + Imal? + dln - ma|*)(n - m) + (g - ma)|[(|n]* = 1) + (Jm|* - 1)]. (2.33)

Denote f; = [n|?> — 1, fo = |m|?> — 1 and f3 = n - m. In order to prove that (n,m) € N, we just need to
prove that f; = fo = f3 = 0. From (2.31) to (2.33), we have

fre+vfre = fiee — 4(mg - n) fo = 2na|? + 40 - my|*) fr + 2(ng - my) f3, (2.34)

fot +0for — foza — 4(ne - m) f3o = (2\mx\2 +4fn - mx|2)f2 +2(ng - my) f3,

fat +vfs0 = fazx — (na - M) f2r — (Mg - ) f1a (2.35)
= (‘na:|2 + |mw|2 +4n - mw|2)f3 + (nz - ma)(f1 + f2)- (2.36)

Multiplying (2.34) with f; and then integrating by parts, we get

1d
5&/f12d1’+/|f1x\2d$
T T

=2 [ (o a2l maP) st 2 [ oo 4 f(ne wfufids 0
I I I

1
<C [ oal + e+ et o) 2o+ [ oo+ 5 [ e
I I I

Multiplying (2.35) with fo and then integrating by parts, we get

1d
§£/f22dm+/\f21|2dx
T T

1
- 2/ <4U:c + |mg|? +2Jn - m:c|2) fade + 2/(% “Mg) f2 fsdw + 4/(m ) farf2de - (2.38)
T T T

1
§C/(|vx\+|mm|2+|n.mm|2+|m~nz|2)f22dx+/|nz|2f§dx+Z/|f3x\2d:c.
I I I
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Multiplying (2.36) with f3 and then integrating by parts, we also get

M fdo + / ufode = [0 )+ e ) i) foda

I

+/ (;vx + [nel® + [me[* + dln - mz|2> fide + / (ng - ma)[(f1 + f2) fo)dw

I

(2.39)
1
<C [ uul ol I b e maf? o) S+ 5 [ (naf? 12 + o )
I I
1
45 [ Ufial + | fasf)do
I
Putting (2.37), (2.38) and (2.39) together, we have
d
G [ B [ AP+ 1faal + o
I I
<C [ (ual + ol + P + o s PY(FE + 5 + F)d (2.40)
I

By the regularity of (v,n,m), (no,mo) € N and Gronwall’s inequality, we get fi(z,t) = fa(z,t) =
f3(z,t) =0 for (x,t) € Qr. Hence (n,m) € .
Theorem 2.1 is proved. 0

3. Global classical solution: Existence and Uniqueness

In Sect. 2, we have obtained the local existence and uniqueness of classical solution. In this section, we
will derive some global estimates to get the global existence and uniqueness of solutions to (1.1)—(1.2).
Let (p,v,n,m) be the classical solutions obtained in Sect. 2.

Lemma 3.1. For any t € [0,T), there holds

2 24
/{|nz|2+|mz|2+2|n-mm2+p;+7p | (Dda

T
+ / 2Mge + Mg *m + (ng - mg)n + 2|n - my|*m + 2(my - n)ng|*dadt
Q:
+ / v, |2dadt + /2|nm + [z *n + (Mg - ng)m + 2|n - my|*n + 2(ng - m)mg|*dadt
Q1 Qt
—|—4/(nw-mgg—I—n-mm)2 = Ey, (3.1)
Qt
where
2 o
By = / {W’O + L0y gl + lmoal? + 2Jno - mo?| da

2 v—1
T
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Proof. Multiplying (1.1)2 by v and integrating over I, we have

d PU2 v 2 2 2 2
w5 Pe= vy 4+ [ nzve + [ Ima]fve + 2 [ (In - my|?)vs.
T T T T T T

Firstly, by a similar argument as in [2], we have from (1.1); that

d 2 / 5
— = Vg
dt /] v—1 P

T

I

Then, we have

Y 2
7[5 5 ] [ [t vimpstmmiy oo
I

I I

Multiplying (1.1)3 by (nee + |na*n + (mg.nz)m + 2In - me|?n + 2(n, - m)m,) and integrating over I,
we obtain

/nt -nm—i—/(mw -nm)(m-nt)—l—/vnm -nm—i—/v(mm “ng)(m - ny)
T T T 1
+2/v(mw~nw)(m-nw)+2/(m~nw)(mI-nt) :/A, (3.3)
T T T

where A = |1y + |nz|*n + (Mg - ng)m + 2|n - my|*n + 2(n, - m)mg|%
For the first term on the left of (3.3), we have

1d 5
nt~nm:—§& [ng|”.
T

T
For the second term and fourth one on the left of (3.3), we get

/(mw “ng)(m-ng) + /v(m ‘N )(myg - ng) = /(mw ‘ng)(m - ng + ong - m).
T T 1
For the third term on the left of (3.3), we have

Then, we have

—2 [ (mnp)me-ne) =2 [ w(mg o) (m-n,) = 0. (3.4)
/ /

Multiplying (1.1)4 by (mge + |ma|?>m + (ng - mae)n + 2|n - mg|?>m + 2(m, - n)n,) and integrating over I,
we get

=2 [ ma) s i) =2 [ ol ) ma) =0, (3.5)

I I
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where B = Mgy + |ma|*m + (ng - mg)n + 2|n - mg|>m + 2(my - n)ng |2
Combining (3.4) with (3.5), we have

s [ (e ey 4 5 [ el + ey + [(4+ By
I I I
- 2/[(m “ng)(my - ng) + (n-my)(ng - my)] = 0. (3.6)
I

Now we will estimate 2 [[(m - ng)(mg - ng) + (0 mg)(ng - my)).
T
In fact, we have

%/m.mxpzz/un.m,)(w-m>+<n-mx><mzt-n>l

I I

= 21/[(7195 ~m)(mg - ng) + (n-myg)(my - ng)] — 21/[(7% “Mg N Mgy ) (n-my)].

Then, we have

— 2/[(% “m)(mg - ng) + (n-mg)(me - ng)]

I

= %/|n.mm‘2+2/[(nz.mw+n.mm)(n.mt)]_ (3.7)

Hence combining (3.6) with (3.7), we get

d
G [l el 2y 4 [ a4 ) +2 [ (44 By
I I I

—|—4/[(nz Sy M Mgg)(n-my)] = 0. (3.8)
T

Multiplying (1.1)4 by n, we have
N-Mg =N+ Mygy + Ng - Mgy — VMg - N.
Then, we have

4 / (n - + 10 - Mge) (m - 1))

=14 [ G4 [ e o )]

1 1
:4/G—2/v(|n-mg,¢|2)ac
1 1

:4/G+2/v$|n~mm|2, (3.9)
T

I

where G = |ng - mg +n - mes|>
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Then from (3.8) and (3.9), we obtain

d
S el pmaf? + 24 - ma )
T
+ /(|ngc|2 FImal? 4+ 200 - ma 2o, + 2 /(A + B +2G) =0. (3.10)
T T
Combining (3.10) with (3.2), we obtain
d
& [ + +|U$|2+|n$\2+|mm|2+2|n mz|]+2/A+B+2G )=0.
T
Integrating above equality over (0,t), we get (3.1). Then, Lemma 3.1 is proved. O
Lemma 3.2. It holds that for any T > 0,
T T
il + [ fmeslp <. .11
0 0

Proof. Firstly, we have

INaa + [P0+ (Mg - ng)m + 2|0 - my|®n + 2(ng - m)my|?
= [Naal® = et + 2(n0 - M) (M- ng) + 4(ng - M) N0y - M) — Alng [P0 - my |

+ 1 - mg|* + dlmg 2 |n - ma|* — 4n - mg |t
Similarly, we have

Mg + Mg *m 4 (Mg - ng)n + 2/m - ng|*m + 2(my - n)ng|?
= [Mae|? = [ma|* + 2(ng - ma) (0 - mae) + 4(my - n) (g - Mae) = 4me[?lm - ng |

+ [N -mw|2 —|—4|nw|2|m . ngc|2 —4jm - nw\‘l.

Then, we have

/wmﬁ+mmm
I

/“B +/|"z|4+Imzl4+8ln-mx\4+2|nm-mm|2)

~

< f@+B)+ 7 [(neal + mm|+c/mﬁ mal?). (3.12)

I I



37 Page 14 of 30 L. Zhu and J. Lin ZAMP

Meanwhile, we have

[ttt + )

I
< Cllng|3lInell2 + Cllme|[3]Imel|2

< O|Inal3l1n2]loo 4+ Cllmeal[3][me|loo
1 1 1 1

< Cllnllz + Clina| 3| nesll2 + Cllmallz + Cllma| 3]s ]l2

1
< 7 [ (naal? o fnasf?) 4 CLf (o a2 (313)
1 1
Combing (3.12) with (3.13), we get (3.11). Lemma 3.2 is proved. O
Lemma 3.3. There holds that for any T > 0,
T
sup (|10 (-, )3 + [[ma (-, ¢ +/ (Inael5 + [lmaells + [nzwl3 + [[Maza|[3)
0<t<T )
< C(Eo, |[noll a2, [Imol| a2, T). (3.14)

Proof. Differentiating (1.1)5 with respect to z, multiplying by n,: and integrating over I x (0,¢), we have

t
1 1
/H%t\l% + 5 lnaal[3(6) = 5 lnoss 12
2 2
t
0/

+

t
UMy " Nyt — VNge 'na:t) + // Ny - n;cac Tl nact) + ‘na:| (nac nﬂct)]
0

~\

I

+

S | O~
~—

[4(n-mg)(ng - mg)(n - nge) +4(n - mg) (0 M) (- Nar) + 20 - me|? (g - ngt)]

+2

S—_ .

I

For the first term of the right of (3.15), we have

t t
// — VMg * Mgt — VMg * Nt S26//\n$t|2+C//(vi|nm|2—|—v2|nm\2).
0 07

For the second term of the right of (3.15), we have

t t t
// N - ) (10 - Tiat) + 1002 - 10t)] S26//|nxt|2+C//(‘nz|2|nwm|2+|nx‘6)'
0 0 I 0 I
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For the third term of the right of (3.15), we have
t
0

< 3e

S—

/an| +<7/:/|nuw|vuﬁ-+vnm|vuxﬁ-+vnu|nu
I

For the fourth term of the right of (3.15), we have

// n-mg)(Ng - me) (- nge) + 40 - mg)(n - M) (- Nat) + 2|1 - mg]® (g - ngr)]
0T

<&//Wmﬁ+c//wawP+mmmmmy
0 I (U

For the fifth term of the right of (3.15), we have

Q/t/[(nm~m)(mm-nzt)+(nm'mm)(mm'nmt)+(nm'm)(mm'nm)]

0 I

t t
&//m#+q[ﬂmmmm+mmmﬁ+mﬁmm%
0 I 0 I

Then by taking 0 < € < we have

307

t
1 1
[l Sl B - 3o
0
t t
1
<5 [l 4 [ 2l 4 Plnsal? + o Plaaaf? + o
0 0 I

+c//wMﬂmP+mmmm%Hmﬁwﬁ+mm%mm

2

t t 2
1
Sg/Wmﬁ+C/‘ /ﬁ /mmF +‘/mm2 +(/mmﬁ e (3.16)
0 0 I I I I

where we have used ||v||2Loo(1) < O(||v)|3 + Jvzl2) < C||v.||3 from the Poincare’s inequality and

12120 (1) < Cllnall? + Inaall3)-
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Similarly, differentiating (1.1)4 with respect to z, multiplying m,; and integrating over I x (0,t), we also
have

t
1 1
[l + Sl1maas 30) = 5 lmosel
0

t t 2 2
1
<5 [lmalgre [\ [ ) fimal )+ | [l | | [ ) |+ @
0 0 I I 1 1

Combining (3.16) with (3.17), we get

t
/(II%II% +lmaell3) + (Inaell3 + Imell3)(t)

0
t 2 t 2 t
gc/ /\mm|2 +o/ /|nm|2 +c/ /vg / |nm|2+/|mm\2 el
0 I 0 I 0 I I I
From

(lvall3 + ez 3 + lImaelI2)(t) € L(0,T)

and the Gronwall’s inequality, we have
T

OiltlgT(Hang + |lmae13) () + /(||nxt||§ + [mall3) < C(Eo, [Inol| a2, [Imol| 2, T). (3.18)
- 0
Differentiating (1.1)3 and (1.1)4 with respect to x, we have

Nawe = Nat + Valg + VNgy — 2(ng - Mg )1 — [ng Py — (Mg - M) m — (Mg - Mgy )M
— (Mg - ng)my —4(n-my)(ng - My + 0 Myz)n — 2|0 - mm|2nz — 2(ngy - m)Mmy,
—2(ng - mg )My — 2(Ng - MMy,

Maze = Mat + VeMe + VMg — 2(My - Maa) — M| * My — (Naw - Ma)n — (ng - Mgg)n
— (N - Mg — 4(n - my)(Ng - My + 1 Mgr)m — 21 - my|*my — 2(Mey - n)0y
—2(myg - ng)ng — 2(My - N)Ngy.

Then, (3.18) implies that

T T
/||nm||%+/||mm||§ < C(Bo, ol 2. |Jmol| =, T).
0 0

Hence, Lemma 3.3 is proved. 0

Now we will improve the estimates of both lower and upper bounds of p by a similar argument as in
[2].
Lemma 3.4. There are two positive constants Cy and Cy depending on Co,~y, Eqo and ||pol| g1 (1) such that
2
+//p”’3pi <Cy, (3.19)

1
sup /P'()
0<t<T P
I 0 I

(Co)™t < plx,t) < Co, (x,t) € T x(0,T). (3.20)

T
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Proof. From (1.1); and Lemma 3.4 in [2], we have
IKTE 2_/ D) () e= ]
1 1 1 1
On the other hand, we have

/ (i) :/ (i)ﬂ”“”*<“x|2>w+<lmxl2>z+<2n-mm2>m+(fﬂ>z+<pv>t1

-G

(;Lvm. (3.21)

\n1| )a + (|m1|2)x + (2[n - mx|2)x] - 7/fo’yigpi
I

) oo
o).

Putting (3.22) into (3.21), we have

il 4<>
_ () + (Ina|?)e + (Ima])e + 2In - mu[?)s *I/”” <;)

1 1
I r I r
¢ [ ]() (el +||mx\|2>+0||f||oo/<\nm|2+|mm| +/
1 I 1
2

< C+C/ ’( ) /(\nml2 Ml )+|Ivm\|z+c/ ‘( >x

where we have used

1
pv(—;)x +7/p” ez
I

I /\

: (3.23)

(3.24)

from (3.11) in [2] and

103 < CllInal3 + lInzll2lineel2), Imall3s < C(llmall3 + [Imell2|lmasl|2)-
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Integrating (3.23) over (0,t), we have

AR [
<3 [m (pl)_/p (pl)+/p (;)rw/t/unmﬁﬂmzzﬁ)
e[

(|nzz|2 + |mm|2)

t t
1
s fiwgre [ [a(3) P
Ly 0 0T z
- t 1 2
ccicliv sw <||nm||2+|mm||2><t>}//pK)
L osusT p).

0 I
Using Lemma 3.3 and the Gronwall’s inequality, we get (3.19). It is easy to get (3.20) by a similar
argument as [2]. We omit the details. Hence, Lemma 3.4 is proved. O
Lemma 3.5. There holds that
T
S, vz - )H5+/(|Ivt\|§+|\vm||§) <C. (3.25)
0

Proof. From (1.1); and (1.1)2, we have
pv + povg + (p7)z = Vaw — (Inw|2>w - (|mx|2)z - (2In- mw‘Q)w (3.26)
Multiplying (3.26) by v; and integrating over I, we have

/v+13/v2
P 2dt x

1

=~ [ o= [~ [(aPrve— [QmaPro =2 [(nema)o
I

I I I I

1 1
<5 [P C [ Sl 4 2 Pl + ol ) + /p 2 c/ 21732
I I
1 2
<5 [+ O [Pl + 2Pl + oY) 4 e+ 0 [o](3) [ m
7 T 7 ¥
Combining (3.19) with (3.20) and using the Gronwall’s inequality, we get
sup [+ 3 < €. (329
0<t<T )

From (3.26), it is easy to get that

T
//\UMF <C. (3.29)
0 I

Therefore Lemma 3.5 is proved. 0
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Lemma 3.6. There holds that
sup ([|ve]|3 + [[va|l3) /”Uzt”z <C. (3.30)
0<t<T

Proof. Differentiating (3.26) with respect to ¢, multiplying v; and integrating over I, we have

1d
s [ oo+ ol
I

=2 /[nx MgVt + Mg - MapVgr + 2(0 - Mg ) (g - Mg )V + 2(0 - Mg ) (M- Mgt ) Vg
I
+ / [(pv) 07 + (pv) vV — pUive — 77~ H(PV) Vst
I

1
< Sllvarlls + C/(\MFIMI2 + M mae* + [ma | ne|* + p*0*0} + p*vtol)

+C/ =292 p2 +p27vi)—|—0/ (pv?ul + pvto? )+C(1+“'U:c||oo)/pvt2' (3.31)
7 T

Hence, one gets

d
3 [ Pt a3 < CllinallZe + lImallZe + ImallSe) (Inaell3 + llmaell3 + )

I

C1+ oalle + lollclvl) [ 002

T
CllpI2 + llplZllvlls + ||P|\oo||v||<2>o\|vx|\§o)/vi
T
+Clllelolle [ o2+ AR el [ 7752
T T
< O/pvf +C,

1

where we have used the following estimate,
[olloc + 1Vlloe + [[Vzlloo + T2 [lo0 + [IMzllec < C,
which comes from Lemma 3.1 to Lemma 3.5.
Hence, we get (3.30) from the Gronwall’s inequality. Therefore, Lemma 3.6 is proved. O

Lemma 3.7. [2] Suppose that

sup |v(z,t1) —v(x,ta)| < 01|ty — ta]¥, Vir,ta € [0,T]
0<t<T

and

sup |vz(x1,t) — vy(22,t)] < o]y —l’2|ﬁ,V$17$2 el
0<t<T
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then
sup |vg(z,t1) — v (2, t2)| < 0|ty — ta|®, Vi1, ts € [0,T),
0<t<T
where 6 = and 6 depends only on «, 3,0, 05.

1+ﬁ’
Proof of Theorem 1.1. We will use a proof of contradiction to prove this theorem, which is similar as in
[2].

Suppose there exists a maximal finite time interval 7% > 0, such that there is a unique classical
solution (p,v,n,m) : I x [0,T%] — Ry x R x S? x 5% to (1.1)~(1.2), but at least one of the following
properties fails:

(i) (parpr) € C*5(Qr-);
(i) 0 < Oyt < p(w, t) < Cy < +00, V(z,t) € Qr~;
(iii) (v,n,m) € C2H 5% (Qp).
It is easy to see that (ii) holds from (3.20) in Lemma 3.4. Hence, either (i) or (iii) fails.
From Lemma 3.1 to Lemma 3.6, we have

sup ([[v(-, )3 + [[vz (-, B)]13 + [[vaa (-, 1)]]3) < C
0<t<T™
S (IIn( 0I5 + [1na (113 + [nea (-, 1)][3) < C

sup ([[m(-,1)[[5 + |lma (- O[5 + [[maa (- D)]5) < C.
0<t<T*

By the Sobolev embedding theorem, we have

mas {ollcn.5 gy Ml 3 ey 1Ml e § <+
Using Lemma 3.7 for o = %, = % and § = %, we have

Using the Schauder theory to (1.1)3 and (1.1)4, we have

[Inl| < oo, |jml] < +oo.

5 Q) O3S (Qre)

Hence,

4 (@pey S0 lIMallgay g,y < Fo0

Using the Schauder theory to (1.1)5 and (1.1)4 again, we also get

|||

HnH02+a 1+5 (Qr=) < 400, ||m||c2+a 1+4 (Qr+) < +o00.

For p and v, denote G(z,t) = —(|ng|? + |m|* + 2|n - m;|?),. Then, HGHC%%(QT*) < +o0.
In Lagrangian coordinate, (1.1); and (1.1)2 are changed to
pr+ PPy =0, (3.32)
vr £ (p7)y = (pvy)y + G
From Lemma 3.4 to Lemma 3.6 in the Lagrangian coordinate, we have
0<Cy <p<Cy < oo, (3.33)
sup |lpy (-, 1)[3 < C < +oo, (3.34)
0<t<T*
sup ([|oy (O3 + [[ogy (- DII3) < C < +o0. (3.35)

0<t<T
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By a similar argument as in [2], we get that
maX{HU”Cr“'*O‘*HTQ(QT*)’ ||py||C”'%(QT*)7 HpTHCU‘v%(QT*)} < +o00.

Hence, both (i) and (ii) are right if 7* is finite. This is a contradiction. Then, T* is infinite.
Theorem 1.1 is proved. O

4. Global strong solution: Existence and uniqueness

In this section, we will establish global existence and uniqueness of strong solution for initial density with
possible vacuum states. In order to use the result of Theorem 1.1, we will construct approximate solutions
firstly. For any large k > 0, define a family of approximate initial datas

1 X0 mk

K k k Mk 0 k 0

pO:nk*pO'i_*a vO:T/k*U07 nOZ andmO: ~
k 5 * mol [mg

where mf = mf — (mk - nk)nk and m& = ny, * mo. Then, we have pf > k=1 nk . mb =0 and

kETOO{HPg — poll sz (1) + ||U§ — ol () + ||n’§ —no|l g2y + ||ml§ —mollg2ny} = 0.

Let (p*,v*,n¥, m*) be the unique global classical solution to (1.1) with initial data (pf,v&, n& m§)

and boundary condition (v¥,n¥ mk) = (0,0,0) constructed by Theorem 1.1.

In order to prove Theorem 1.2, we will establish several new estimates for (p*,v*, n*, m*) that are
independent of k. We will omit the superscripts of (p*, v¥, n*, m*) for simplicity.
By a same argument in Lemma 3.1, Lemma 3.2 and Lemma 3.3, we have the following lemma.

Lemma 4.1. For any T > 0, there is a constant C > 0 independent of k, such that

sup /(pvz +p' + |n:,3|§ + |mm|g + |nzfc|§ + |mrz‘§)
0<t<T )

T
+/(Hv 113 + 1wl I3 + [l 3 + l1nee| 3 + [1masel[3) < C (4.1)
x|l2 xt||2 xt||2 xxx||2 xxx||2) = . .
0

Lemma 4.2. For any T > 0, there is a positive constant C independent of k, such that
ol Lo (rx0,1)) < C. (4.2)
Proof. Let

t x
fmw=/%—mﬁ—mm%mwmﬁ—m%ww+/wm»
0 0

Then, we have
fo = vz — |nw|2 - |ma:|2 - 2|n : mz‘z - pU2 - pfy and f, = pv.

Then

)

nmmgqﬂm+mmsa
I

here we have used Lemma 4.1.
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Let x(z,t) solve

x(z,7) = z, 0<z<L1

{dféj b = y(x(z,t),t), O0<t<r,

Let g = ef. Then, we have

 (pa(a(=,1).1) = (o + pev)o + pol s +vf2)
= [l 4 lmaf? + 2l - e f?)
Then,

pg(z,7) = pg(x(z,7),7) < pg(x(2,0),0) < C.

Hence, we get (4.2) from the definition of g.
Lemma 4.2 is proved.

_ p’Y+1]g <0.

Lemma 4.3. For any T > 0, there is a positive constant C independent on of k, such that

sup x|+ [ <C.

0<t<T
QT

Proof. As Lemma 3.5, multiplying (3.26) by v; and integrating over I, we have

d
[+ a0

I

SQt/wf+W%ﬂﬂé/¢?+/pvm+/ﬂ%ﬁ+h@?+%ﬂﬂ%ﬂ%t

I I I I
2

<C /vz Jr/p“’vzt+/(|ngc\2+|m$|2+2|n~mm|2) Vot | s
T

I I

ZAMP

(4.3)

(4.4)

where we have used Lemma 4.2 and ||v[|2, < C||v||3. For the second term on the right of (4.4), we have

d _
/p’Y'U:ct = a/p"*vz —1—/7/)7 Lpv) v,
T T
d
=3 P v + 2VVg + Y
T

I

Q.

= et (y—1)
“w /7

plv

- /p”v(Q\n ’ mm|2)z

I

&~
RS
o)
<
RS
)
4
R
&
+
S
<
<
8
+
<
N—
8
_|_
—

N\ ~
N\ N\
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ZAMP
d 1
< &/pvvz+§//ﬂ)f +C(1 / /U?EJFC/ (Ine|? + |ma|?) + (|nee|* + |Maz?))]
T T T
d 2
Sa )T pw+0< v2)?+C,
I I

where we have used (4.1) in the last inequality.
For the third term on the right of (4.4), we have

/(|n1|2 + |mr|2 +2|n - mz|2)vmt
I
d d
= 72/711 c NtV + pn / ‘nm|2yz — 2/mac cMgptVy + X / |mz|21}z
I I I I

d
—4/(n-mx)(nt~mx—|—n~mxt)vx+&/2|n-mm|2vx

I I

d
<C/U +C/ |’I’Lmt|2+|mwt|2+|nt| ) dt

where we have used ||ng||co < C||ngzll2 < C and ||myllco < C|lmgzll2 < C by Lemma 4.1 and Poincare’s

/(lnw|2 + |mw|2 +2|n m1|2)vw,

inequality.
Putting above two estimates into (4.4), we have

d
/pvt dt/|v1|2

I
2 (45)

/ P10+ e [Pvp + [ma|*ve + 2ln - mal?v2) + Cllnad[3 + Cllmae[5.
I

&\CL

C(1+ llvall2)

Then integrating (4.5) over (0,t) and using Lemma 4.1, we have

/w?ﬂm%@

Q:

t
1
< [llalig+ lloal O + Clnalit + ) + €
t
1
sO/M%%+gmmaw+cw%@wm@+wM@mwm@+c

<c/wmu sl B + €.

Then, we have

t
/mﬂw%%msc+c/mm3
0

Q1
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From |[v||3(t) € L'(0,T) and the Gronwall’s inequality, we obtain (4.3).
Hence, Lemma 4.3 is proved. O

Lemma 4.4. For any T > 0, there has a positive constant C' independent of k, such that
T

sup [1ps( D)2 + / losl 2 + [[osall2) < C. (4.6)
0<t<T ,

Proof. From (1.1); and (1.1)2, we have
loall3e < 2[ve = p7 = |1 = Ima|? = 2In - ma*[[5, + 21107 + [ * + [ma|? + 2|0 - ma*[[5,
< COlllve = 97 = Inal® = [mal? = 2l ma P[5 + [lvee — (07)e = (Inal® + Imal® + 2|n - mg[*)s]|3]
+ Cl|naell + Cllmaellz + Cllo 1%
< C+ Ollng |3 |Ina |3 + Clima |3 [me 3 + Cllpve + povs |l
< O+ |vallz + a3l a0] 3 + [lma| 3]masl3) + Cllpvg |11
< O+ ClInas|3 + lImasll3 + [lpvZ]]1).
Lemmas 4.1 and 4.3 imply that

T
[l <c. (4.7)
0

Next we are going to estimate p,.

d _
I P2 = /2pwpwt = —2(pv),pa|22h + 2/(pv)zpm
I I I

= _2pvxpw‘£j) + 2//’36”/)3632 + Q/vapxw

1 1
— z=l 2 z=l 2
= —2pVspzli=o — /vam + 2p0px|—0 — 2/vaa7 - Q/Pmpvzfc
1 1 1
= _3/pivz _2/ppivzz
1 1
< Cllealle [ 22 =2 [ ppalpoet pus + (s + (aha + (a2 + (2 -, 2),)
1 1

<o+ ||vm||oo>/pi +c/pvf+0<||vx|\3+ asll2 + a0 2)

I I
gc+c/pi+c/pvf. (4.8)
1 1
From Lemma 4.3 and Gronwall’s inequality, we get
sup [|pa(-,1)|13 < C.
0<t<T

Finally, we estimate [|vz,|/12(q,)- In fact, (3.26) implies that
Ve = Ui+ povg + (p7)a + (Ina]? + [ma|* + 2ln - ma [*),.
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Then, it is easy to get

T
0

Hence, Lemma 4.4 is proved. O
By a similar argument as in [2], we also have an important estimate as follows.

Lemma 4.5. For any T > 0, there is a positive constant C, independent of k, such that

T

[ ot <.

0

Proof. Differentiating (3.26) w.r.t. ¢, multiplying v; and integrating over I, it is not hard to get that

/ i / o

< ClInaell3 + llmaelf3 + lv2ll3 + lvaell?) + C(1+ Hvxllﬁo)/pvf +C. (4.10)
I

Multiplying (4.10) by ¢ > 0, one has

d
e [z ]+ [ oar

< /pv? + Ct(l\an% + [Imael 3 + |[0a] |2 + lvaall3) + C(1+ IIUwHio)t/pvf +C. (4.11)
I I

By Lemma 4.3, we have

tlvimoti/pvf(x,ti)dx = 0. (4.12)
T

Integrating (4.11) from ¢; to ¢t and using (4.12), we obtain the result of Lemma 4.5 according to Lemma
4.1, Lemma 4.3 and Lemma 4.4.
Therefore Lemma, 4.5 is proved. U

The following Aubin—Lions’s lemma is needed in proving Theorem 1.2.

Lemma 4.6. [25] Assume X C E CY are Banach spaces and X —<— E. Then, the following embedding
1S compact:

() {00 90,70, 57 € L0.T5Y) | o LOTS). i g € [, 0]

[

) {<p tp € L™(0,T; X), 5 € L"(0,T; Y)} —— C([0,T]; E), if r € (1, +0o0].

Now we are going to prove Theorem 1.2.
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Proof of Theorem 1.2. Let (p*, v, n¥ mF) be the unique global classical solution to (1.1) with the initial
data (pf, vk, nk mk) and boundary condition (v*,n*, m*) = (0,0,0) constructed by Theorem 1.1. From
Lemma 4.1 to Lemma 4.5, we get that

OEEET(HPICHHWI) +1pEl2 + 10" ey + [In* a2y + [ ll2 + m® |2y + [lmg]]2)(2)

T
+/[t||v’£t||2 H{1(00*)el 3+ [ l3 + Inf |y + [l | ) < €,
0
where the positive constant C' is independent of k.

Then, there is a subsequences of (p*,v¥,n* m*) (still denoted by (p*,v¥,n* m*)) and (p,v,n,m),
such that

(pk,pﬁa pfavkvvlzc) - (pv Pz Pt U, vx) Weakly star in LOO(O,Tv Lz(I))a

P VP ) = (g, VUL weakly in L?(0,T; L*(I)),
rx rx

k k k k k k k k
(n 7nxantanzxam amw’mt7mzw)

— (Ny Ny Nty Mg, My Mgy Mg, M) weakly star in L°(0, T L3(I)),
(n’;t,nﬁwx,m’;t,mizgc) = (Ngts Mgz, Mat, Meez) weakly in LQ(O,T; LQ(I))
and
(P*0%)r = (pv)e weakly in L*(0, T; L*()).

Moreover, because p* is bounded in L>(0,7; H'(I)) and pf bounded in L>°(0,T; L*(I)), we have from
Lemma 4.6 that

pF—p strongly in C(Qr).
Similarly, because p*v* and (p*v¥); are bounded in L'(0,T; H*(I)) and L?(0,T; L?(I)), respectively, we
know that
pFoF — pu strongly in C(Qr)
by Lemma 4.6.
It is easy to see that
(W) =pu?, [pF (%)= (pv?)e and ((p%))e—(p"), weakly star in L>(0,T; L*(I)),
since [p*(v*)?], is bounded in L>(0,T; L?(I)).
Lemma 4.6 also implies
(n", (n*)2)—=(n,nz), (m*, (m*);)—(m,m,) strongly in C(Qr).
Therefore, we get

(|n |2 k |m |2mk)—>(|ngc|2 |mx| m) strongly in C(Qr),

) (
(In* - my*n kv [n® - mg [Pm*)—(In - mg*n, jn - mg|*m) strongly in C(Qr),
((ng - m®)mg, (mg - n*)ng)—((ng - m)my, (m, - n)n,) (

((mE - nmymk, (nk - mF)yn®) = ((my - ng)m, (ny - me)n) strongly in C(Qr),
vPnE—ong,, (InF-mk %), —(n - me|?). weakly star in L>(0,T; L*(I)).
Therefore, we know that (p,v,m,m) is a strong solution to (1.1)—(1.2).
Finally, we will prove the uniqueness of the global strong solutions.

strongly in C'(Qr),
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Denote p = p1 — p2, D = v1 — V9, L = Ny — nNg, M = my — meg, where (p;,v;,n;,m;)(i = 1,2) are two
strong solutions to (1.1)—(1.2). Hence, (p, 0,7, m) solves

Pt + (ﬁvl)fc + (P2ﬁ)x =0,
P10t — Ugy = —PU2 — PU2V2z — P10V2z — P1U1Tz — (P] = P3)a — 2Nz * g
=20y Noge — 2Mig - Meg — 2My - Mage — 40 - Mag) (N1 - M) — 4(ng - M) (N1e - Mia)
—4(ng - Moy ) (Mg - M1z) — 4(ng - Mag)(Nag - My) — 4(7 - Mag) (N1 - Miga)
—4(ng - Mg ) (N1 - Mige) — 4(N2 - Moy ) (M- Mige) — 4(Ng - Moy ) (N2 - My ),
Nt + V17 + Doy = gy + [N12]?7 + Ny - (N1g + N2g)N2 + My - N1emy + Moy - Ngmy
+May - Nagm + 2|7 - Mig|®ny + 2|ng - Mg|?n1 + 2|ng - mag|*n
+2(7g - M1)Mig + 2(Nog - M)Mig + 2(N2g - M2) My,
My + V1M 4 0Mag = Mg + Mg [*M + My - (Mg + Mag)Ma + M - Magny + Ny - My

+77,2I . ’ITLQIT_I —+ 2‘7_1 . m1m|2m1 —+ 2|n2 . mm|2m1 —+ 2|n2 . m2r|27’7l

+2(mz : nl)nlz + 2(m2x : ﬁ)nlx + 2(m2x : n2)ﬁxv

(4.13)
with the following initial and boundary conditions
(ﬁ,l_l,ﬁ,m”t:o = (0’05070)7 (414)
(7_)» Ny, mm)|8[ = (07 0, 0)

Multiplying (4.13)1 by p and integrating over I, we get

N | =
Q—“Q.

; / p* = — / (PPrv1 + PV12 + PP2aT + Ppaty)
I

I
1 [ S
=-3 1p]"v1e — [ (P22 + p2tz)p
I

I

IN

;mmm/mﬁwmuwmmmu+wmammwm
I
1 12 B N B B
s5mmmm/m\+mmmmm+mmammwm
I
scmmmm/ﬁﬁ+a@mwm

1
< Cloallny +1) [ 167 +C [ foaP,
1 1

where we have used the regularities of p; and v; for i = 1,2. The Gronwall’s inequality implies that for
te0,17,

wumhsm/wm. (4.15)
Q¢
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Multiplying (4.13)s by 7, integrating over I and using the Cauchy’s inequality, we get

1d _ _
sa [ erlo + Nl
I
< C|lpll3 5+Cllpll3 +C o|? + Clng |3 + Cllma|[3 + C||7]|3 4.16
< CllplBlloacl3 + ClAB + Cllvaelloe [ prlol? + Cllncl3 + Climal3 + Cllall3.— (4.16)
I

(4.15) and (4.16) imply that

d
S| oo+ [1mp
Qt

1

SCtllvztlli(t)/lﬁx\z+Ct/|@xl2+C||v2x|\oo(t)/pll17|2+C(|Iﬁx||§+IImx\|§+HﬁH§)-

Q1 Qt I
Multiplying (4.13)3 by 71, (4.13)4 by m and integrating over I, we get
1d ~ _ _ _
q% (1 + [m?) + ([ + |lme]3
1

< Cllngll2|lls + Cllve]l2l[nll2 + Cllme|lo]|nll2 + Climall2|lml2 + |0z |2][m] ]2
[ _ _ _ _
< S 1Rall3 + 1ma3) + el[7:115 + CCIRIIE + [lml]3),

where we have used the Cauchy’s inequality and e is small enough to be chosen later.
Hence, we get

3 [ (AP 1)+ [17a]l3 + llmal I3 < 2213 + C(IIll3 + [n]3). (4.17)
I

Then by taking € = g, we get from (4.16) and (4.17) that

d B B B 1 B _ _
5 |t 4 20+ 2ctmP) + 5 [l |+ [l + pmap)
I Q¢ 1
< Ctlloul} [ 102+t [ foal 4 Cllvaallc [ mrlof +C [l + mP)
Q¢ Q¢ 1 I
From the initial data of (p, 7,72, m) and the Gronwall’s inequality, we have

p=0,0=0,n=0,m=0.
Therefore, the uniqueness of global strong solutions is proved.
Theorem 1.2 is proved. U
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