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Existence of positive solutions for fractional Kirchhoff equation

Ke Wu and Guangze Gu

Abstract. We study the following Kirchhoff equation involving fractional Laplacian in R
N

(
a + b

∫

RN×RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy
)
(−Δ)su + µu = g(u), (K)

where N ≥ 2, a ≥ 0, b, µ > 0, 0 < s < 1, and (−Δ)s is the fractional Laplacian with order s. By reducing (K) to an
equivalent system, we obtain the existence of a positive solution of (K) with general nonlinearities. The positive solution is

unique if g(u) = |u|p−1u, 1 < p < N+2s
N−2s

. Moreover, if the function g is odd, the existence of infinitely many (sign-changing)

solutions is concluded. As we shall see, for the case where 0 < s ≤ N
4

, a necessary condition of existence of nontrivial

solutions of (K) is that b is small. Our method works well for the so-called degenerate case a = 0.

Mathematics Subject Classification. 74G30, 35B09, 47G20.
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1. Introduction and main results

In this paper we are concerned with the following nonlinear nonlocal problem in R
N

(
a + b

∫

RN×RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy
)
(−Δ)su + μu = g(u) , (1.1)

where N ≥ 2, a ≥ 0, b, μ > 0, 0 < s < 1, (−Δ)s is the fractional Laplacian and g is a continuous
function. (1.1) could be derived as a nonlocal model for the vibrating string with a fractional length in
which the tension of string is related to nonlocal measurements of the modification of the string from its
rest position [10].

Nonlocal problems like (1.1) have been widely studied in recent years (see, e.g., [2,3,6,8,13,14,16,17,
19–21,23]). Compared to the semilinear fractional Laplacian where b = 0 in (1.1), looking for solutions
for (1.1) is more challenging due to the presence of the Kirchhoff term

(
b

∫

RN×RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy
)
(−Δ)su.

We would like to mention that the existing results on the existence or multiplicity of solutions for Kirchhoff
type problems are almost concluded by the variational methods. As far as applications of variational
methods to the Kirchhoff type problems are concerned, it generally could be a complicated process, even
for the case where the nonlinearity g satisfies the A-R condition (see, e.g., [12,18]). This, at the same
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time, also makes Kirchhoff type problems more attractive. In the past decade, many authors had used
the direct variational methods such as the mountain pass theorem and the Nehari manifold to conclude
the existence or multiplicity of solutions to the Kirchhoff type problems. However, it seems that these
methods do not work for the case 0 < s ≤ N

4 < 1. There is rare study about (1.1) with 0 < s ≤ N
4 . We

also mention that there are very few results about the fractional Kirchhoff type problem with sub-cubic
nonlinearities which do not satisfy the A-R condition g(t)t ≥ 4

∫ t

0
g(s)ds.

In this paper, we introduce a new technique to study Kirchhoff type problems and obtain the existence
of positive solutions and infinitely many (sign-changing) solutions to (1.1). Our arguments are quite
different from the direct variational methods and do not depend on the A-R type condition. We do not
need to restrict s on the range N

4 < s < 1, either. Based on our simple but powerful method, we can
conclude the uniqueness of positive solutions of (1.1) with power nonlinearities and deal with the so-called
degenerate case a = 0 which has been rarely studied. To be more precise, we try to solve problem (1.1)
by transforming it into the following system with respect to (u, T ) ∈ Hs(RN ) × R

+:
⎧
⎨
⎩

(−Δ)su + μu = g(u),

T = a + bT
N−2s

2s
∫

RN×RN

|u(x)−u(y)|2
|x−y|N+2s dxdy.

Consider the problem (1.1) with the function g satisfying the following conditions:
(g1) g ∈ C1(R,R) and g(t) = o(t) as t → 0+;
(g2) there exists a constant β ∈ (0, μ) such that −∞ < lim inf

t→0+

g(t)
t < lim sup

t→0+

g(t)
t ≤ β;

(g3) −∞ ≤ lim sup
t→+∞

g(t)

t2
∗
s−1 ≤ 0, where 2∗

s = 2N
N−2s is the Sobolev critical exponent for the fractional

Laplacian;
(g4) there exists a ξ > 0 such that 2G(ξ) > μξ2, where G(ξ) =

∫ ξ

0
g(t)dt.

Except for developing a new technique to study the Kirchhoff type equations like (1.1), our results
are new and improve significantly the result from [1] where b = (1 − s)q and q depending the number
of solutions is required to be small enough. The authors in [1] did not give any results about the cases
neither where a = 0 nor where q is not infinitely small.

Our first result is the following theorem.

Theorem 1.1. Assume that g satisfies conditions (g1) − (g4), then we have

(i) if N
4 < s < 1 and a ≥ 0, (1.1) has a positive solution for any b > 0;

(ii) if s = N
4 and a > 0, there exist constants b∗, b∗∗ > 0 such that (1.1) has a positive solution for any

0 < b < b∗, and no positive solutions for any b ≥ b∗∗.
(iii) if s = N

4 and a = 0, there exists a positive radial function u ∈ Hs(RN ) such that for any T > 0,
u(T ·) is a solution of (1.1) for b = b∗, and (1.1) has no positive solutions for any b > b∗∗, where b∗

and b∗∗ are the constants given in (ii).
(iv) if 0 < s < N

4 and a > 0, there exist positive constant b̃∗, b̃∗∗ > 0 such that (1.1) has two positive
solutions u1 and u2 for any 0 < b < b̃∗, satisfying u1(x) = u2(Tx) for some T �= 1 and T > 0, one
positive solution for b = b̃∗, and no positive solutions for any b > b̃∗∗.

(v) if 0 < s < N
4 and a = 0, (1.1) has one positive solution for any b > 0.

Moreover, each solution u obtained in (i), (ii), (iv) and (v) is radial and satisfies

0 < u(x) ≤ C

1 + |x|N+2s
, ∀ x ∈ R

N , (1.2)

for some positive constant C depending on a, b, s and N .
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A typical function satisfying (g1)− (g4) is g(t) = |t|p−1t, 1 < p < 2∗
s − 1 = N+2s

N−2s . In this case, one may
rewrite (1.1) as

(
a + b

∫

RN×RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy
)
(−Δ)su + μu = |u|p−1u , in R

N , (1.3)

where N ≥ 2, a ≥ 0, b, μ > 0 and 1 < p < 2∗
s − 1. For problem (1.3), we have the following (uniqueness)

result of positive solutions.

Theorem 1.2. (i) if N
4 < s < 1 and a ≥ 0, (1.3) has a positive solution for any b > 0, which is unique

up to translation;
(ii) if s = N

4 and a > 0, there exists constant b∗ > 0 such that (1.3) has a positive solution for any
0 < b < b∗, which is unique up to translation, and no positive solutions for any b ≥ b∗.

(iii) if s = N
4 and a = 0, there exists a positive radial function u ∈ Hs(RN ) such that for any T > 0,

u(T ·) is a solution of (1.3) for b = b∗, and (1.3) has no positive solutions for any b �= b∗, where b∗

is the constant given in (ii).
(iv) if 0 < s < N

4 and a > 0, there exists a positive constant b̃∗ such that (1.3) has exactly two positive
solutions u1 and u2 for any 0 < b < b̃∗, satisfying u1(x) = u2(Tx) for some T �= 1 and T > 0,
one positive solution for b = b̃∗, which is unique up to translation, and no positive solutions for any
b > b̃∗.

(v) if 0 < s < N
4 and a = 0, (1.3) has one positive solution for any b > 0, which is unique up to

translation.
Moreover, each solution u obtained in (i), (ii), (iv) and (v) is radial, u ∈ C∞(RN ) ∩ H2s+1(RN ) and

satisfies
c1

1 + |x|N+2s
≤ u(x) ≤ c2

1 + |x|N+2s
, ∀ x ∈ R

N ,

for some positive constants c1, c2 depending on a, b, s and N .

Remark 1.1. From the arguments in the next section, if u is a positive solution of (1.3), then there exists
a T > 0 such that u(x) = U(Tx), where U is a positive solution of (−Δ)su + μu = |u|p−1u. We refer
reader to [11] for the existence of U .

Remark 1.2. In view of Theorem 1.2, if {uk} is a sequence of solutions of (1.1), then uk may be sign-
changing for every integer k ≥ 2. Moreover, for 0 < s ≤ N

4 , we know from Theorem 1.1 that, unless a = 0,
(1.3) has no nontrivial solutions if b > 0 is large.

It is well known that the symmetry of nonlinearities may imply the multiplicity of solutions to a
differential equation. For problem (1.1), we have the following results on multiplicity of solutions. For
simplicity, we are just going to give the results for the case a > 0.

Theorem 1.3. Assume that g is odd and satisfies conditions (g1) − (g4), then we have

(i) if N
4 < s < 1 and a > 0, (1.1) possesses an infinite sequence of radial solutions {uk} for any b > 0.

(ii) if s = N
4 and a > 0, there exist a constant r0 > 0 and a sequence {bk} ⊂ R

+ with bk ↓ 0+ and
bk ≤ r0 such that, for any integer k ≥ 1, (1.1) possesses a radial solution uk for any 0 < b < bk, no
nontrivial solutions for any b ≥ r0.

(iii) if 0 < s < N
4 and a > 0, there exist a constant r̃0 > 0 and a sequence {b̃k} ⊂ R

+ with b̃k ↓ 0+

and b̃k ≤ r̃0 such that, for any integer k ≥ 1, (1.1) possesses two radial solutions u1
k and u2

k for any
0 < b < b̃k, satisfying u1

k(x) = u2
k(Tkx) for some Tk �= 1 and Tk > 0, one solution uk for b = b̃k,

and no nontrivial solutions for any b > r̃0.
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Moreover, for any integer k ≥ 1, there exists a constant Ck > 0 such that

|uk(x)| ≤ Ck

1 + |x|N+2s
, ∀ x ∈ R

N , (1.4)

where {uk} stands for sequences of solutions obtained in (i), (ii) and (iii).

The paper is organized as follows. In Sect. 2 we prove the main results above. In Sect. 3 we give some
basic facts which are used in Sect. 2.

2. Proofs of the main results

Let Hs(RN ), 0 < s < 1, be the normal fractional Sobolev space and Hs
r (RN ) =

{
u ∈ Hs(RN ) : u(x) =

u(|x|)}. It is known that the embedding Hs
r (RN ) ↪→ Lp(RN ), 2 < p < 2∗

s , is compact. Define two
functionals on Hs(RN ):

P (u) =
∫

RN

G(u) − μ

2

∫

RN

u2

and

Q(u) =
∫

RN×RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy.

Recall that the homogeneous fractional Sobolev space D = Ds,2(RN ) is the closure of C∞
c (RN ) with

the Gagliardo seminorm
√

Q(u).

Proposition 2.1. Problem (1.1) admits a nontrivial solution u ∈ Hs(RN ) if and only if the following
system

⎧
⎨
⎩

(−Δ)su + μu = g(u),

T = a + bT
N−2s

2s
∫

RN×RN

|u(x)−u(y)|2
|x−y|N+2s dxdy, in R

N × R
+. (2.1)

possesses a solution (v, t) ∈ Hs(RN ) × R
+ satisfying (v, T ) �= (0, a).

Proof. On the one hand, u �= 0 is a solution of (1.1). Let

T = a + b

∫

RN×RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy and v(x) = u
(
T

1
2s x

)
.

Then (u, T ) is a solution of (2.1).
On the other hand, if (v, T ) �= (0, a) is a solution of (2.1), then u(·) = v(T− 1

2s ·) is a solution of (1.1)
and u �= 0. �

Remark 2.1. In view of Proposition 2.1, problem (1.1) can be solved completely by studying system (2.1).
Notice that the second equation in (2.1) is defined on the real line, problem (1.1) is almost equivalent to
the following semilinear equation

(−Δ)su + μu = g(u) in R
N . (2.2)

Moreover, as we shall see, if u is a solution of (1.1), then exist a solution U of (2.2) and a positive constant
T such that u(x) = U(Tx).
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Remark 2.2. A relation between problems (1.1) and (2.2) is given in the proof of Proposition 2.1. This
fact could be applied to investigate behaviors of solutions of (1.1). For instance, one may obtain the
Pohozaev identity associated with problem (1.1), that is, if g ∈ C1(R,R) satisfies conditions (g2) and
(g3), then any solution u ∈ Hs(RN ) of (1.1) satisfies the identity

(N − 2s)
[
aQ(u) + bQ2(u)

]
= 2NP (u). (2.3)

Indeed, if u ∈ Hs(RN ) is a solution of (1.1), then v = u(T
1
2s ·) is a solution of (2.2), where T = a+ bQ(u).

Recall that g satisfies conditions (g2) and (g3). As the argument in [7] or [24], one has

(N − 2s)Q(v) = 2NP (v). (2.4)

Then (2.3) follows from the inequality (2.4).

Remark 2.3. The equivalent system (2.1) to (1.1) is not unique. A general one to be equivalent to the
problem (1.1) is the following

⎧
⎨
⎩

Tm(−Δ)su + μu = g(u),

Tm+1 = a + bT
N−2s

2s
∫

RN×RN

|u(x)−u(y)|2
|x−y|N+2s dxdy, in R

N × R
+.

where m �= −1 is a parameter.

We state two results on the existence and multiplicity of solutions of (2.2) before we give the proofs
of the main results.

Proposition 2.2. Assume that g satisfies conditions (g1) − (g4), then problem (2.2) possesses a positive
radial solution u ∈ Hs(RN ) such that

u(x) ≤ C

1 + |x|N+2s
, ∀ x ∈ R

N , (2.5)

for some constant C > 0.

Proposition 2.3. Assume that g is odd and satisfies conditions (g1) − (g4), then problem (2.2) possesses
an infinite sequence of radial solutions {uk} such that

(i) for each positive integer k, there exists constant Ck such that

|uk(x)| ≤ Ck

1 + |x|N+2s
, ∀ x ∈ R

N . (2.6)

(ii) Q(uk) ≥ Q(uk−1) for any k ≥ 1, Q(uk) → +∞ and 1
2Q(uk) − P (uk) → +∞ as k → +∞.

Proofs of propositions 2.2 and 2.3 will be given in the next section. We are turning to proofs of the
main results now.

Proof. (Proof of Theorem 1.1). For a fixed w ∈ Hs(RN ), w �= 0, define a function fw : R+ → R given
by fw(T ) = T − a − bT

N−2s
2s Q(w). It follows from Proposition 2.2 that problem (2.2) possesses a positive

radial solution u ∈ Hs(RN ) such that (2.5) holds. By Proposition 2.1, it is sufficient to discuss whether
the equation fu(T ) = 0 is solvable.

(i) N
4 < s < 1 and a ≥ 0. In this case, we have 0 < N−2s

2s < 1. Thus it is easy to see, for any b > 0,
that fu(T ) = 0 has a unique solution T ∈ R

+.
(ii) s = N

4 and a > 0. In this case, we have fw(T ) = [1 − bQ(w)]T − a for all (w, T ) ∈ Hs(RN ) × R
+.

Let b∗ := Q−1(u). Then for any 0 < b < b∗, T = a[1 − bQ(u)]−1 > a is a solution of fu(T ) = 0.
We now check the existence of b∗∗. Let M be the set of positive solutions of (2.2) and

Q0 := inf
v∈M

Q(v).
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We claim that Q0 > 0. Indeed, since g is continuous and satisfies (g1) and (g3), there exists a positive
constant C > 0 such that

g(t) ≤ μt + Ct2
∗
s−1, ∀t ≥ 0. (2.7)

By the Pohozaev identity (2.4), we have, for any v ∈ M,

N − 2s

2N
Q(v) +

μ

2

∫

RN

v2 =
∫

RN

G(v) ≤ μ

2

∫

RN

v2 + C

∫

RN

v2∗
s ,

which implies that Q(v) ≤ C‖v‖2∗
s

L2∗
s
. By the Sobolev embedding theorem, Q(v) ≤ C(Q(v))

N
N−2s . Since

Q(v) > 0, there is a positive constant q0 independent of v such that Q(v) > q0 for all v ∈ M. Thus
Q0 > 0.

Let b∗∗ = Q−1
0 . Then b∗∗ ≥ b∗. Moreover, for any T ∈ R

+ and b ≥ b∗∗,

sup
v∈M

fv(T ) ≤ (1 − bQ0)T − a < 0.

As a consequence, for all v ∈ M, fv(T ) = 0 has no solutions on R
+.

(iii) s = N
4 and a = 0. It is easy to conclude the conclusion by an argument as in (ii). We omit the

details here.
(iv) 0 < s < N

4 and a > 0. In this case, for any w ∈ Hs(RN ), the function fw has a unique maximum
point

Tw =
(

2s

(N − 2s)bQ(w)

) 2s
N−4s

> 0.

Thus,

max
T∈R+

fu(T ) = fu(Tu) =
(

N − 4s

N − 2s

)(
2s

(N − 2s)bQ(w)

) 2s
N−4s

− a.

Let

b̃∗ = 2sa
4s−N

2s (N − 2s)
2s−N

2s (N − 4s)
N−4s

2s Q−1(u).

Then fu(Tu) > 0 if 0 < b < b̃∗ and fu(Tu) = 0 if b = b̃∗. This implies that fu(T ) = 0 possesses two
solutions T1 and T2 satisfying T1 �= T2 if 0 < b < b̃∗, and a solution Tu if b = b̃∗.

Moreover, set

b̃∗∗ = 2sa
4s−N

2s (N − 2s)
2s−N

2s (N − 4s)
N−4s

2s Q−1
0 ,

where Q0 is defined as in (ii). Then b̃∗∗ ≥ b̃∗ and supw∈M fw(T ) < 0 for any T ∈ R
+ and b ≥ b̃∗∗. This

implies that fu(T ) = 0 has no solutions if b > b̃∗∗.
(v) 0 < s < N

4 and a = 0. It is easy to check, for any b > 0, that fu(T ) = 0 has a unique solution
T ∈ R

+. �

Proof. (Proof of Theorem 1.2). According to [11], the following problem

(−Δ)su + μu = |u|p−1u (2.8)

has a unique positive solution U up to translations such that U ∈ C∞(RN ) ∩ H2s+1(RN ) is radial and
strictly decreasing in r = |x|. Moreover, there are positive constants c1 and c2 depending on s and N
such that

c1

1 + |x|N+2s
≤ U(x) ≤ c2

1 + |x|N+2s
, ∀x ∈ R

N .
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Since positive solutions of (2.8) are unique up to translations, for any positive solution u of (2.8), we have
Q(u) = Q(U). The rest arguments are similar to that in the proof of Theorem 1.1. We omit the details
here. �

Proof. (Proof of Theorem 1.3).
It follows from Proposition 2.3 that equation (2.2) possesses a sequence of solutions {uk} satisfying

Q(uk) ≥ Q(uk−1), k ≥ 2, and Q(uk) → +∞.
Let M̃ be the set of nontrivial solutions of (2.2) and Q̃0 = infv∈M̃ Q(v). Since g is odd, we conclude

by (2.7) that Q̃0 > 0. Now, for each integer k ≥ 1, by replacing Q(u), b∗, Q0 and b̃∗ with Q(uk), bk, Q̃0

and b̃k, respectively, one may obtain the conclusions of Theorem 1.3. �

3. Existence and multiplicity of solutions

In this section, we devote to conclude the results of Propositions 2.2 and 2.3.

3.1. Positive solutions of (2.2)
Let

V = {Hs(RN ) : Q(u) = 1}.

We will derive the existence and multiplicity of solutions of (2.2) by looking for critical points of the
constrained functional P |V . The hypothesis (g4) implies that

∫ ξ

0
(g(t) − μt)dt > 0. Motivated by [4], we

modify the function g as follows. If g(t) ≥ μt for t ≥ ξ, then g̃ = g; if there exists a t0 > ξ such that
g(t0) ≥ μt0, let g̃(t) = g(t) for 0 ≤ t ≤ t0 and g̃(t) = g(t0) for t > t0; g̃ is defined by g̃(t) = −g̃(−t) for
t ≤ 0. Clearly, g̃ satisfies the conditions (g2) and (g3). Moreover, one has g̃(0) = 0 and

lim
t→∞

g̃(t)
|t|2∗

s−1
= 0. (3.1.1)

By the maximum principle, a solution of (2.2) with g̃ is also a solution of (2.2) with g. We henceforth
will always identify g as g̃ throughout this paper.

For t ≥ 0, let g1(t) = (g(t) − βt)+ and g2(t) = g1(t) − g(t) + μt and extend both g1 and g2 as odd
functions for t ≤ 0. Then g = g1 − g2 − μ,

g1(t) ≥ 0, g2(t) ≥ (μ − β)t, ∀t ≥ 0, (3.1.2)

and g̃(t) = o(|t|2∗
s−1) as t → ∞. Moreover, Gi(t) =

∫ t

0
gi(s)ds ≥ 0, i = 1, 2, for any t ∈ R.

Lemma 3.1. If un ⇀ u in Hs(RN ), then limn→∞
∫
RN

[Gi(un) − Gi(wn)] =
∫
RN

Gi(u), i=1,2, where wn =

un − u.

Proof. By (g2) and (3.1.1), there exists a constant C > 0 such that

|gi(t)| ≤ C(|t| + |t|2∗
s−1), i = 1, 2, (3.1.3)

for all t ∈ R. We then conclude by the Young’s inequality that, for any ε > 0, there exists Cε > 0 such
that

|Gi(un) − Gi(wn)| = |
1∫

0

gi(wn + tu)udt|

≤ C(|wn||u| + |u|2 + |wn|2∗
s−1|u| + |u|2∗

s )

≤ ε(|wn|2 + |wn|2∗
s ) + Cε(|u|2 + |u|2∗

s ), i = 1, 2.
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Let

fn
i,ε =

(|Gi(un) − Gi(wn) − Gi(u)| − ε(|wn|2 + |wn|2∗
s )

)+
, i = 1, 2.

Then we see that fn
i,ε → 0 a.e. x ∈ R

N , 0 ≤ fn
i,ε + Cε(|u|2 + |u|2∗

s ) and

|Gi(un) − Gi(wn) − Gi(u)| ≤ fn
i,ε + ε(|wn|2 + |wn|2∗

s ).

By the Lebesgue dominated convergence theorem, one has limn→∞
∫
RN

fn
i,ε = 0 and hence

lim
n→∞

∫

RN

|Gi(un) − Gi(wn) − Gi(u)| = 0, i = 1, 2,

and

lim
n→∞

∫

RN

[Gi(un) − Gi(wn)] =
∫

RN

Gi(u), i = 1, 2.

�

Lemma 3.2. The functional P is weakly sequentially upper semicontinuous in the Ds,2(RN )-topology on
M =

{
u ∈ Hs

r (RN ) : P (u) ≥ 0, Q(u) = 1
}
.

Proof. Let {un} ⊂ M be a sequence such that un ⇀ u in Ds,2(RN ). It follows from Q(un) = 1 that {un}
is bounded in L2∗

s (RN ).
The conditions (g2) and (g3) imply that, for any ε > 0, there exists a Cε > 0 such that

0 ≤ G1(t) ≤ εt2 + Cε|t|2∗
s , ∀t ∈ R. (3.1.4)

Thus, one has

0 ≤ P (un) ≤
∫

RN

G1(un) − μ

2

∫

RN

u2
n ≤ C

∫

RN

|un|2∗
s − μ

4

∫

RN

u2
n,

which implies that {un} is bounded in L2(RN ) and hence {un} is bounded in Hs
r (RN ). We may assume

that un ⇀ u in Hs
r (RN ).

For a fixed p ∈ (2, 2∗
s), it follows from (g3) and the definition of g1, for any ε > 0, that there exists

Cε > 0 such that

0 ≤ G1(t) ≤ ε|t|2∗
s + Cε|t|p, ∀t ∈ R. (3.1.5)

Thus,

0 ≤
∫

RN

G1(un − u) ≤ εC + Cε

∫

RN

|un − u|p = εC + o(1).

Since the embedding Hs
r (RN ) ↪→ Lp(RN ) is compact, we conclude from Lemma 3.1 that∫

RN

G1(un) →
∫

RN

G1(u).

Now by Fatou Lemma,

lim inf
n→∞

∫

RN

(
G2(un) +

μ

2
u2

n

) ≥
∫

RN

(
G2(u) +

μ

2
u2

)
.

Therefore, P (u) ≥ lim supn→∞ P (un). �

We turn to the proof of Proposition 2.2.
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Proof. (Proof of Proposition 2.2).
Let

α = sup
u∈V

P (u).

As in the proof of Lemma 3.2, one has α < +∞. Let {un} ⊂ V be a sequence such that P (un) → α. For
every n, let vn = u∗

n denote the Schwarz spherically symmetric-decreasing rearrangement of |un|. Then
one has vn ≥ 0, vn ∈ Hs

r (RN ), Q(vn) = 1 and α ≥ P (vn) ≥ P (un). Thus P (vn) → α. It follows from
(g4) that there exists w ∈ Hs

r (RN ) such that P (w) > 0 (see, e.g., Lemma 5.2 in [22]). Then α > 0 and
{vn} ⊂ M, where M is defined in Lemma 3.2.

Since Q(vn) = 1, we may assume that vn ⇀ v in Ds,2(RN ). Thus Q(v) ≤ lim infn→∞ Q(vn). We
claim that Q(v) = 1. Indeed, assume that by contradiction that Q(v) < 1. By Lemma 3.2, we have
P (v) ≥ lim supn→∞ P (vn) = α > 0. Let vt = v(t·) for t > 0. Then Q(vt) = t−N+2sQ(v). Recalling that
N > 2s, there exists a t0 ∈ (0, 1) such that Q(vt0) = 1. Then we have

α ≥ P (vt0) = t−N
0 P (v) > P (v) ≥ lim sup

n→∞
P (vn) = α,

which is absurd. Thus, Q(v) = 1. By Lemma 3.2, α is attained by the nonnegative function v. As a result,
there is a Lagrange multiplier θ such that 1

2Q′(v) = θP ′(u). This shows that v solves equation

(−Δ)sv = θ(g(v) − μv).

By Pohozaev identity (2.4), one has

N − 2s

2
P (v) = θNQ(v) = θN > 0.

Thus θ > 0. Let u = v(θ− 1
2s ·). Then u ≥ 0 is a radial solution of (2.2). Moreover, the maximum principle

implies that u > 0.
Now we check decay property of u. Let ω(x, t) be the s-harmonic extension of u(x), then ω is a solution

of problem {
−div(y1−2s∇ω) = 0, in R

N+1
+ ,

−ks
∂ω
∂ν = g(ω), on R

N × {0},

where ∂ω
∂ν = limy→0+ y1−2s ∂ω

∂y (x, y) = − 1
ks

(−Δ)su(x). By applying the Moser iterative argument (see,
e.g., [15]), we obtain u(x) = ω(x, 0) ∈ L∞(RN ).

As in Lemma 4.2 in [9], there exist an R1 > 0 and a function w satisfying

0 < w(x) ≤ C

1 + |x|N+2s
, ∀x ∈ R

N , (3.1.6)

and

(−Δ)sw + (μ − β)w ≥ 0, in R
N\BR1(0), (3.1.7)

where β appears in the condition (g2). Notice that u ∈ L2(RN ) is spherically symmetric and decreasing
with respect to r = |x|, there exists a constant C > 0 such that |u(x)| ≤ C|x|− N

2 . By the definition of g1,
there exists an R2 > 0 such that

(−Δ)su + (μ − β)u ≤ (−Δ)su + g2(u) = g1(u) = 0, in R
N\BR2(0). (3.1.8)

Taking R = max{R1, R2}, γ = infBR(0) w and W = (‖u‖L∞ +1)w−γu, we see that γ > 0 and W ≥ w > 0
in BR(0). Furthermore, (3.1.7) and (3.1.8) imply that

(−Δ)sW + (μ − β)W ≥ 0, in R
N\BR(0). (3.1.9)
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We claim that W ≥ 0 in R
N . Indeed, assume by contradiction that there exists an x0 ∈ R

N such
that W (x0) < 0. Note that lim|x|→∞ W (x) = 0. We assume without loss of generality that W (x0) =
infRN W < 0. Then one has

(−Δ)sW (x0) =
1
2
Cs

∫

RN

2W (x0) − W (x0 + y) − W (x0 − y)
|y|N+2s

dy ≤ 0,

and therefore (−Δ)sW (x0)+(μ−β)W (x0) < 0. It follows from (3.1.9) that x0 ∈ BR(0), which contradicts
W > 0 in BR(0). Thus W ≥ 0 in R

N and we conclude from (3.1.6) that

u(x) ≤ C

1 + |x|N+2s
, ∀x ∈ R

N .

�

3.2. Infinitely many solutions of (2.2)

In this part, we shall seek infinitely many solutions of (2.2) which are spherically symmetric.
Define a set of V

Vr = {u ∈ V : u(x) = u(|x|)}.

Let Σ(V) denote the set of compact and symmetric subsets of V. Recall that the genus γ(A) of a set
A ∈ Σ(V) is the least integer n ≥ 1 such that there exists an odd continuous mapping ϕ : A → Sn−1 =
{z ∈ R

N : |z| = 1}. We set γ(A) = +∞ is such an integer does not exist.
For any integer k ≥ 1, let

ck = sup
A∈Γk

inf
u∈A

P (u),

where Γk = {A ∈ Σ(Vr) : γ(A) ≥ 1}. To obtain Proposition 2.3, we are going to show each ck is a positive
critical value of P |Vr

for any k ≥ 1.

Lemma 3.3. ck > 0 for any positive integer k.

Proof. Consider the k-dimensional polyhedron

V k−1 = {r = (r1, r2, · · · , rk) ∈ R
k : Σk

i=1|ri| = 1}, k ≥ 1.

By the argument as Theorem 10 in [5], for any k ≥ 1, there exists a constant R = R(k) > 0 and an odd
continuous mapping τ : V k−1 → Hs

0(BR) such that
(i) τ(r) is a radial function for all r ∈ V k−1 and 0 /∈ τ(V k−1);
(ii) There exist constants d1, d2 > 0 such that d1 ≤ ‖(−Δ)

s
2
(
τ(r)

)‖L2(BR) ≤ d2;
(iii)

∫
BR

(
G(τ(r) − μ

2 τ2(r))
)
dr ≥ 1 for any r ∈ V k−1.

Let W k−1 = τ(V k−1). For ahy u ∈ W k−1, by (ii), there exists a unique constant t = t(u) > 0 such
that u(t·) ∈ Vr and supu∈Wk−1 t(u) < ∞. Thus we may define a mapping π : W k−1 → Vr satisfying
π(u) = u(t·) for any u ∈ W k−1. From (iii), we then have

P (π(u)) = t−N

∫

RN

(
G(u) − μ

2
u2

)
≥ t−N ≥

(
sup

u∈Wk−1
t(u)

)−N

> 0.

Set Ak = π(W k−1). Then Ak ∈ Σ(Vr) and γ(Ak) ≥ k. Hence Ak ∈ Γk and infu∈Ak
P (u) > 0. This

implies that ck > 0. �

Lemma 3.4. For any c > 0, the functional P |Vr
satisfies the (PS)c condition, that is, any sequence

{un} ⊂ Vr satisfying P (un) → c > 0 and P ′|Vr
(un) → 0 has a convergent subsequence.
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Proof. Let c > 0 and {un} ⊂ Vr be a a (PS) sequence of P |Vr
. Then P (un) → c and P ′|Vr

(un) → 0 → 0.
Without loss of generality, we assume that P (un) > 0 for all n. As in the proof of Lemma 3.2, {un} is
bounded in Hs

r (RN ). Thus we have P ′(un) − 〈P ′(un), un〉un → 0 in H−s
r (RN ). This implies that

dn(−Δ)sun − g(un) + μun → 0 in D−s,2(RN ), (3.2.1)

where dn = 〈P ′(un), un〉 =
∫
RN

(
g(un) − μun

)
un. From (3.1.3) and the embedding theorem, {dn} is

bounded. We may suppose that dn → d. By the boundedness of {un}, un ⇀ u up to a subsequence.
Applying Theorem A.1 in [4], for any bounded Borel set B ⊂ R

N , we have∫

B

|g(un) − μun − g(u) + μu| → 0.

Thus g(un)−μun → g(u)−μu in L1
loc(R

N ) and g(un)−μun → g(u)−μu in D′(RN ). Therefore, we know
that from (3.2.1) that

d(−Δ)su + μu = g(u), u ∈ Hs
r (RN ). (3.2.2)

Moreover, by Pohozaev identity and Lemma 3.2, we have

dQ(u) =
2N

N − 2s
P (u) ≥ 2N

N − 2s
lim sup

n→∞
P (un) =

2Nc

N − 2s
> 0.

Thus d > 0 and Q(u) > 0. Using the argument in Lemma 3.2, it is easy to check that∫

RN

g1(un)un →
∫

RN

g1(u)u (3.2.3)

and

d = lim sup
n→∞

∫

RN

(
g(un)un − μu2

n

) ≤
∫

RN

(
g(u)u − μu2

)

It then follows from (3.2.2) that dQ(u) =
∫
RN

(
g(u)u − μu2

) ≥ d. Thus Q(u) ≥ 1 and

∫

RN

(
g(un)un − μu2

n

) →
∫

RN

(
g(u)u − μu2

)
. (3.2.4)

Note that Q is weakly lower semicontinuous. We have Q(u) = 1 and un → u in Ds,2(RN ). Since
g2 = g1 − g + μ, we conclude from (3.2.3) and (3.2.4) that∫

RN

g2(un)un →
∫

RN

g2(u)u.

Let g2(t) = g′
2(t) + 1

2 (μ − β)t. Then g′
2(t)t ≥ 1

2 (μ − β)t2 for any t ∈ R. By Fatou Lemma, we have

lim inf
n→∞

∫

RN

g′
2(un)un ≥

∫

RN

g′
2(u)u, lim inf

n→∞

∫

RN

u2
n ≥

∫

RN

u2.

Consequently, we get un → u in L2(RN ) and un → u in Hs
r (RN ). �

Proof. (Proof of Proposition 2.3.) In view of Lemmas 3.3 and 3.4, a standard argument shows that ck is
a positive critical value of P |Vr

for any integer k ≥ 1. In particular, there exist θk ∈ R and vk ∈ Vr such
that Q(vk) = 1, P (vk) = ck and

(−Δ)svk = θk

(
g(vk) − μvk

)
.



45 Page 12 of 13 K. Wu and G. Gu ZAMP

It follows from Pohozaev identity that
N − 2s

2N
Q(vk) = θkP (vk) = θkck,

which implies θk > 0. Let uk = vk(θ− 1
2s

k ·). Then uk is a solution of (2.2) for any integer k ≥ 1. Moreover,
by Theorem 9 in [5], one has ck → 0+. Thus, we have

1
2
Q(uk) − P (uk) =

1
2
θ

N−2s
2s

k Q(vk) − θ
N
2s
k P (vk) =

[
1
2

(
N − 2s

2s

)N−2s
2s

−
(

N − 2s

2s

) N
2s

]
c

2s−N
2s

k → +∞.

By the definition of ck, it is easy to check that ck−1 ≥ ck for k ≥ 2. This shows Q(uk) ≥ Q(uk−1) and
Q(uk) → +∞. Finally, as in the proof of Lemma 2.2, we may obtain the decay inequality (2.6). �
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