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Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum
at infinity
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Abstract. In this paper, we consider the Cauchy problem of the full compressible magnetohydrodynamic equations in R3.
When ||po|| ;1 +||Ho|| 2 is suitably small, we establish the global existence of the strong solution, where po and Hg represent
the initial density and magnetic field respectively. Our result shows that the strong solution may have large oscillations and
can contain vacuum states.
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1. Introduction

The equations of the three-dimensional compressible, viscous and heat-conducting magnetohydrodynamic
flows can be written as ([20])

pt + div(pu) = 0,

(pu)s + div(pu @ u) — pAu — (p + A\)Vdive + VP = (curl H) x H,

y [(p0)¢ + div(pubd)] — kAG + Pdivu = 2pu|D(u)|* + A(divu)? + v|curl H|?,
H; —curl (ux H)=vAH, divH =0.

Here ®(u) is the deformation tensor given by
1
O(u) = § (Vu+ (Vu)).

p = /)(Jf,t), u = U,(l',t) = (ul,uQaUS)(xat)v 0 = 9(33,t), P = Rpo(R > 0) and H = (HlvH27H3)7
are unknown functions denoting the density, velocity, absolute temperature, pressure and magnetic field
respectively; p and A are coefficients of viscosity, satisfying the following physical restrictions

2
>0, A+§“zo. (1.2)

The positive constants k and v are respectively the heat conduction coefficient and the magnetic diffusion
coefficient.

In this paper, we are interested in the global existence of strong solutions to the Cauchy problem for
(1.1) with the following initial conditions:

(p, u, 0, H)|i—o = (po, uo, 6o, Ho)(x), z€R’ (1.3)
and the far field behavior:
plx,t) — 0, u(zr,t) — 0, O(x,t) — 0, H(z,t) — 0,as |z| — o0, for ¢t>0. (1.4)
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The compressible MHD system (1.1) is obtained by combining the Navier—Stokes equations of fluid
dynamics and Maxwell equations of electromagnetism. There are lots of works on the well-posedness of the
Cauchy problem and the initial-boundary value problem for Magnetohydrodynamics. The one-dimension
problem has been studied in many papers, for example, [3,4,8,9,18,32] and the references cited therein.
For the multi-dimensional case, see [6,10,12-17,22-25,27,29] and so on. To be more specific, for the 2D
case, Cao and Wu [2] obtained the global existence, conditional regularity and uniqueness of a weak
solution with only magnetic diffusion. Ren et al. [28] proved the global existence and the decay estimates
of small smooth solution without magnetic diffusion. Yang and Sun [21] got the global existence of weak
solutions for any adiabatic exponent v > 1. Zhong [35] established the global existence and exponential
decay of strong solutions to the initial boundary value problem of two-dimensional nonhomogeneous
magnetohydrodynamic (MHD) equations with non-negative density.

For the 3D case, when the initial density is strictly positive, Vol’pert et al. [31] investigated the local
strong solutions of the compressible MHD with large initial data. This result was extended by Fan et
al. [7] to the case that the initial density could contain vacuum. Suen and Hoff [30] proved the global-
in-time existence of weak solutions to the 3D compressible MHD equations with initial data small in L?
and initial density positive and essentially bounded. In [34], they studied the Cauchy problem for the
multi-dimensional (N > 3) non-isentropic full compressible MHD equations.They got the existence and
uniqueness of a global strong solution to the system for the initial data close to a stable equilibrium state
in critical Besov spaces. For more information on the MHD equations, we refer to [1,26] and the references
therein. Hu and Wang [13] studied the existence of a global variational weak solution to the full MHD
equations with large data. Li et al. [22] obtained the global classical solution with small initial energy
but large oscillations for the isentropic flows. Later on, Hong et al. [10] got the global classical solution
with large initial energy but the adiabatic exponent 7 is close to 1 and the resistivity coefficient v is
suitably large. Recently, Chen et al. [5] considered the 3D MHD equations with slip boundary condition
and vacuum, and obtained the global classical solutions with small energy but large oscillations.

It is worth noting that, Wen and Zhu [33] got the strong solution with vacuum and large initial data
for the three-dimensional full compressible Navier—Stokes equations under the condition that the initial
mass is small. One natural question is: does there exist some global solution to (1.1) in some classes
of large initial data under the condition that the initial mass is small? We will answer the question in
this paper. More precisely, we want to find a global strong solution to the 3D full compressible MHD
equations under the small initial mass.

Before we state our main results, we would like to introduce some notations which will be used
throughout this paper.

1.1. Notations

(i /f=/fdw-

RB
(ii) For 1 <1 < 00, denote the standard homogeneous and inhomogeneous Sobolev spaces as follows:

L'= L'(R?), D™ = {u € Lioo(R?) : [V ullpr < oo}, [Jullpes = [[VFull:,
WH = [N DH, DF = D2 Dy = {ue 19 |Vullpe < oo}, HF =WH2
(i) G = (2u + A)divu — P is the effective viscous flux.

(iv) h = hy +u - Vh denotes the material derivative.
(v) mog = / po is the initial mass.

R3
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The rest of the paper is organized as follows. In Sect. 2, we present our main results. Section 3 focuses
on obtaining the necessary a priori estimates for the strong solution to extend the local solution to all
time. Finally, we give the proof of the main results.

2. Main results

Before stating the main results, let us make some preliminaries. Assume that p, A, k and v are constants.
We assume R = C, = 1 henceforth, since the constants R in the pressure function and C,, in the internal
energy play no role in the analysis. In this case, if the solutions are regular enough (such as strong
solutions and classical solutions), (1.1) is equivalent to the following system

pt + V- (pu) =0,
pus + pu - Vu+ VP(p,0) = pAu+ (pn+ N\)Vdivu + (curl H) x H,

PO + pu - VO + pfdivu = § [Vu + (Vu)'|* + A(dive)? + kA0 + vlcurl H|?, 21)
Hy —curl (ux H)=vAH, divH =0 in R3 x (0, c0).
System (2.1) is supplemented with initial conditions
(pyu, 0, H)|i—o = (po, uo, 0o, Ho)(z), = € R3, (2.2)
and the far-field conditions
pla,t) — 0, u(z,t) — 0, O(x,t) — 0, H(x,t) — 0,as |z| — oo, for t > 0. (2.3)

First, the well-known Gagliardo—Nirenberg inequality will be used frequently later (see [19]).

Lemma 2.1. For any p € [2,6],q € (1,00) and r € (3,00), there exists some generic constant C' > 0 that
may depend on q and r such that for f € HY(R3) and g € LY(R?) N DV (R?), we have

6—p 3p—6

17112z < ClEI sy IV A1 2 (2.4)
q(r—3) 3r

lglles) < ClallZis, P IVgl it ™. (2.5)

Next, we give the definition of the strong solution to (2.1)—(2.3) throughout this paper, which is similar
to [11].

Definition 2.2. (Strong solution) For T' > 0, (p,u, 6, H) is called a strong solution to the compressible
Magnetohydrodynamic flows (2.1)—(2.3) in R? x [0, 77, if for some ¢ € (3, 6),
0<peC(0,T;WhinHY), p, € C([0,T]; L* N L),
(u,0,H) € C([0,T]; D* n Dg) N L*([0,T]; D*9), 6 > 0, (2.6)
(ut, 04, Hy) € L*([0,T); Dg), (v/pue, /pby, Hy) € L>=([0,T]; L?),

and (p, u, 0, H) satisfies (2.1) a.e. in R3 x (0, 7. In particular, the strong solution (p,u, 0, H) of (2.1)—(2.3)
is called a global strong solution, if the strong solution satisfies (2.6) for any 7' > 0, and satisfies (2.1)
a.e. in R? x (0, 00).

Then the main results in this paper can be stated as follows:

Theorem 2.3. (Global strong solution) Assume that the initial data (po,uo, 6o, Ho) satisfies
00 >0, 0 >0, inR® pg€ H*NW™INLY, (ug,0, Hy) € D* N D} (2.7)
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and

1
OSPOSﬁ, mO_/p07 ||H0H%2 Smga
RJ

(L+v)IVHoll7> + [Iv/poboll 72 + pl Vuoll L2 + (1 + A)lldivug| 2 + llp0boll7» (2.8)

1
22u + A)
/|p090dlvuo|+/(|H0\ |divug| + 2|Ho - Vug - Hol) < K

R3

for some constants K > 1, p > 0 and q € (3,6), and that the following compatibility conditions are
satisfied:

{uAuo + (p+ \)Vdivug — VP(po, o) — (curlHy) x Hy = VP91 (2.9)

kAbOy + 5 [Vug + (Vuo)')* + A(divug)? + v]curlHy|? = VPogz, © € R3,

with g; € L?, i = 1,2. Then there exists a unique global strong solution (p,u,0, H) in R x [0,T] for any
T > 0, provided

m0§€a

where € is a positive constant depending on p, K, i and X but independent of t.

3. Proof of Theorem 2.3

In this section, we will prove the global existence and uniqueness of the strong solution to the problem
(2.1)—(2.3). The local existence and uniqueness of the strong solution has been obtained in [11] under the
conditions of Theorem 2.3. In order to get the global solution, we denote

~ sup / Tl + / / plif?
0<t<T

0 ®e
and
= sup /p92 //|V0\2
0<t<T
0 R3

The following proposition plays a crucial role in the proof.

Proposition 3.1. Assume that the initial data satisfies (2.7), (2.8) and (2.9). If the solution (p,u,0,H) of
(2.1)~(2.3) satisfies that for (x,t) € R3 x [0, 7],

|H|2: <2mé, [|VH|2. <2K, A(T)<2EK,

(3.1)
B(T) <2K, 0<p<2p,
then
1 ~
3mg 3K SEK
|HIG < =50, IVHI < 5 AT) < ==
(3.2)
K 7] ]
BT <32 0<p<® (@i erx0,T)

2 27
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provided
mo < min ! 1 1
0= 6’ 2 ~ 1\4
K c(BK) (K4 ERm)
1 1 1
~ ~ 6’ r 144 N 18 y
C(E%K—i—EK%) C(EK)s C(EK+m§K%)
where
~ 4 2p 6K
E=14-4—L 4

poop(ptN) o

Proof of Proposition 3.1. The Proposition 3.1 can be proved by the Lemmas 3.2-3.7 below.
Throughout the rest of the paper, we denote by C or C;, (i =1,2,...) the generic positive constants
which may depend on pu, A\, k,v, p and K but independent of time 7. O

Lemma 3.2. Under the assumptions of Proposition 3.1, it holds that

[o- / o0, (3.3)

The proof of Lemma 3.2 can be found in [33], and we omit it here.

for any t € [0,T].

Lemma 3.3. Under the assumptions of Proposition 3.1, it holds that

T T 1
3 2
/(p|u|2+|H|2)+u//|Vu|2ds+1///\VH\st < % (3.4)
]R3 0 R3 0 ]RS
provided
1
"= Egs

Proof. Multiplying (2.1)2 and (2.1)4 by u and H respectively, integrating by parts over R? and summing
up the resulting equations, one gets that

1d )
>d (plul® + [H|*) + /,MIVul2 - / (VIVH]? + (p+ A)[divul?)
R3 R3 R3

:/pﬂdivu+/(curlH)><H-u+/cur1 (ux H)-H

R3 R3 R3
3
=Y "I (3.5)
i=1
Then we estimate the terms on the right-hand side. For I3, it follows that by using Cauchy inequality,
R3 R3

Next, to estimate I, and I3, note that

1 1
(curl H) x H = —§V|H\2 +H-VH = —§V|H|2 +div(H @ H) (3.7)



13 Page 6 of 18 X. Hou, M. Jiang, and H. Peng ZAMP

and

curl (ux H)=H-Vu—u-VH —divu - H, (3.8)
where we have used the fact divH = 0. This, together with Holder inequality, Sobolev inequality, Cauchy
inequality and (3.1), deduces

I, =— /|H| d1vu+/d1v(H®H)
R3
Cldivall o [l H o + ClH e [Vl o2 ]

IN

1 1
S CIVH|| 2| Vull 2 [[VH 72 | HI| 7

W

ZIVullz: + CIVHIL: [VH| 2| H |l 2

IN

IN

1
LIVullis + CK bmg | VH]| ., (3.9)
and

I3 = /H Vu-H — /u VH - H+/u V|H|?
R3
< CHH||L5||VU”L2||HHL3

M 2 L% 2
< 4||Vu||L2+CK mg |VH||-. (3.10)

4
Substituting (3.6) and (3.9)—(3.10) into (3.5) and setting mg < ﬁ7 one may arrive at

d
i A 197+ / IVl 4+ / VHP < Cllol3:00s < Cod IV0I2:. gy

Integrating (3.11) over [0, 7], and using (3.1) again, we have

[l =P+ 1 /T / V> + v /T / IV H?

R3 0 0

/ (poluol® + |Hol?) + Cm / vl

R3
1
5 1 2 1 3m0
< Clipoll 3 IVuol22 + mg + Cmg K < mg (1 +Cms K) <=
provided
o1
m, .
0= CK®

Lemma 3.4. Under the conditions of Proposition 3.1, it holds that

T
3K
IVHIE+ [ (1HE: + AR ds < 27 (312)
0
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provided
1

m0<C(EZK)2.

Proof. Applying 9;, j = 1,2,3 to (2.1)4, multiplying the resulting equations by 0;H, summing with
respect to j, then integrating by parts over R? x [0, 7] and using Cauchy inequality, one has

T
1
5 [1vaE+v [1aH]E.ds
R3 0

T
1
:§HVH0||2L2 —//curl (ux H)-AHds

0 R3
1 ’ 1 ’
< §HVH0||2L2 + % / |AH||32ds + ;/chrl (ux H)||2.ds. (3.13)
0 0

We estimate the last term on the right-hand side of (3.13 ) as follows:
lewrl (ux H)|[* < |lu- VH|Z> + [|H - Vul|Z> + [[divu |7,
< CIVulL:IVH|Zs + ClH|[Z [ VullZ
< CIVulL:VH| 2|V H e

<V—2AH2 Qv‘*VH? 3.14
< 4|| HL2+UQII u|| 72 [[VH| 72 (3.14)

On the other hand, multiplying (2.1); by Hy, integrating by parts over R3 x [0, 7] and using Cauchy
inequality, one has

T T
14 14
5/|VH|2 +/||Ht||§2ds < §HVHO||2L2 +/||cur1 (ux H)||?
R3 0 0

<

VIS

T T
C
|V Ho |2 +%/HAHHQLQdH;/||vu||‘j2||VH||2des. (3.15)
0 0
Combing (3.13) with (3.15) implies

T T
1+v C
JIvHE [ (8 + 181 ds < 2V HolE + 5 [ 190l VA s
R3 0 0

T
<K+ C sup HVUH%z/HvH”ZL?dS
0<t<T /

< K+ CEK’mi < >k,
provided 2
1
- 2"
C (E?K)

mo <
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Lemma 3.5. Under the conditions of Proposition 3.1, it holds that

3EK
provided
< m 1 1 1
mo < min 5 - 5 - 1
T o(mx) o (K% + Bxmg?)
Proof. Multiplying (2.1)2 by u; and integrating by parts over R*, we have
1d .
[ otak 5 i | (KT s Nl
R3
d 1 d 1
Pdi ——— [ P*— PG
dt e (2u+)\)dt/ 2u+)\/ ¢
R3 R3
+/ (u-V)u~u—|—/(0url H)x H -uy
R3
— [P p? II; 1
/ divu — 205 +)\ dt/ +Z i (3.17)
where G = (2u + A)divu — P. Recalhng P= p0 we obtaln from (2.1); and (2.1)3
P, = —div(pfu) — pOdivu + = |Vu + (Vu)'|* + A6 + v]curl H|?. (3.18)

Substituting (3.18) into I, and by integratlon by parts, Holder inequality and Sobolev inequality, we
have

I < CHP0||L3||UHL6HVG||L2 + Clipf|l sl divul| 2[|Gll Lo + ClIG| Lo [Vul[ L2 [ Vul| L3

+ VG2 [[VO 2 + CllG]| s [|eurl H]| 2 [[curl H][Ls

240 +)\
< CHPHL6H9||L6HVUHL2HVGHL2 + CIVG] 2|Vl 2 [Vl s

+ IVG|22 16122 + ClIV G| 2 IV H| 22 [V H | 7.

20 +>\
and

1Ty < Clly/pil| 2 [ul s [Vull s < Cllv/pill 2] Vul[ L2 [ Vul| s
Taking div and curl, respectively, on both side of (2.1)2, we get

AG = div(pa) — div[(curl H) x H], (3.19)
pA(curlu) = curl(pa) — curl[(curl H) x H]. (3.20)
By (3.19), (3.20), the standard L2-estimates, and (3.1), we get
I9Gllz < llpillza + ll(curl H) x Hllgz < v/23llillgs + | (cwrl H) x Hilps (3.21)
and
IVeurlul| 2 < [|pi] 2 + |[(curl H) x Hl|z= < /25lly/pi 2 + [|(cwrl H) x H| 2. (3.22)

Since Vu = VA~! (Vdivu — V x curlu), we apply the Calderon-Zygmund inequality to get
[Vullp: < C(|leurlul|zs + ||dive||zs). (3.23)
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Using (3.21)—(3.23), Sobolev inequality, Holder inequality and Gagliardo-Nirenberg inequality, we have
[Vullzs < Cllewlul|zs + C||Gl| s + Cllpf)| 2
< Cllewtu] 3] Veurlul 7. + C|IGI £ IV Gl 72 + Clole 610
< Clleurtul £, (I/pil + CIl[HI[VH]|2)*
+ClIG 2. (/i + CNHIVH]12)? + Cmg V6] 1z (3.24)
It follows from (3.21),(3.24) that
15y + 11 < C (md [90]2] Vil + [Vl 2 [ Vel s + 5]V6l| 2 + [VE 2|V H 22 (/i .2
I H|[VH]| =)
< ClIVullzz (IVul = + 1Pll22)* (I/pillos + || HIIVH]| 12)*
+C (mdIVullss) IVl (1Al s + I1HIVH]]12)

K - .
3 19O (VEPIVpilse + curl 1) x Hllz2)

+CIVH| LIV Hl|L2 (Iv/pillzz + [ HIVH]] =)

+

1 . 1
< ClIVullz: + Cmo||Vullze + S IVpillZ: + CIHIIVH|IZ: + Cmi || VullZ: [ VO] 72
K2 (2p+ 1)

2 6 2772
CTESNE V0|72 + CIIVH|72 + [|[V H||7-. (3.25)
For II3, by using (3.1), (3.7), Holder inequality and Sobolev inequality, we have
1
II5 = 5 / (|H|*divu, — 2H - Vu, - H)
R3
1d
=59 (|H|*divu — 2H - Vu - H) —/(H-thivu—Ht-Vu~H—H-Vu-Ht)
R3 R3
1d 9 1.
<53 (|H|*divu — 2H - Vu - H) + C||Hy| 2| VH|| 2 || Vul| 12
R3
1d
<33 (|H[*divu — 2H - Vu- H) + || Hy|| 72| VH||7> + C||Vul|7s
R3
1d
<33 (|H|*divu — 2H - Vu - H) + |H||7:|VH|7-
R3
+ C(IVull2 + 191l 2) (Il 2 + IH|IVH]] £2)
1d . 1 .
< 5o | (HPdiva =28 V- H) + B3 IVHIE: + 15l
R3
+C ([HIVH[72 + ol 710176 + [Vull72) - (3.26)

By (2.4), Lemmas 3.3 and 3.4 we have

11
I|H|IVH||7: < C|H| 2| VH| 2| V2 H]|72 < Cmg K=[|V2H||7.. (3.27)
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Substituting (3.25), (3.26) into (3.17), and integrating the resulting equation over [0, 7], using Cauchy
inequality, we have

2, 2y 292
//p\u| ds—|—u/|Vu\ (n+ ) /|d1vu| e _’_)\)/pﬂ

. 1 . .
< pl[Vuollr2 + (1 + A)[[divuo || 2 + m”ﬂo%”%z - /Pot‘)oleuo —/(|H0|2d1Vu0 —2H, - Vug - H)
R3 R3

/PleU+/(|H|2d1V’u—2H Vu - H)+ sup (||Vu||L2 +mo||Vull7: +1) /HVuHLgds

R3 R3

K3 (2p +1)

1 2
+ sup (w9l +mf + 22 / IVOlads + sup [[VH]E: / I s
0<t<T ) ) 0<t<T )

2u—+ A
1 1
+ (omg K +1)/HV2HH2L2ds+C sup ||VH||§2/|\VH\|§2ds. (3.28)
0<t<T )

It follows by Holder inequality and (2.4) that

/Pdivu < 19612 | diva 12 <
]RS)
/ (|H?divu — 2H - Vu - H) < C|H|24]|Val| 2
]RS

< CIH|EIVH| IVl 2 < ClH|| | VEI: + 5 ||VU||L2 (3.30)

L 2 . 2
Ty VI + G+ Vvl (3.29)

Then (3.28) together with (3.29), (3.30) leads to

//p|u| ds+/|Vu|2

0 R3

2K 2p 2 3 4 2 / 2
< — 4+ — 0 +C||H VH +C su Vu + mol||Vu +1 Vul||7.ds
1 1+ ) ||\/f3 ||L2 | H Lzl ||L2 ogth (H ||L2 ol ||L2 ) | ||Lz

(2p +1

o)) / HV@Hde; sup [ / LR

1 2
+ sup <m3||Vu||2L2 +md +
0<t<T

T
fs 2 2772 4 2
+(Cmi K¢ + |V2H||7.ds +C sup ||VH||L2 HVHHdeS
" 0<t<T

< <2+2p>K+Cm3K2 +C<4E2K2+mOEK+1) mg +C< §EK+m§)K
o p(ptA)
1 1 1
+AK? 4 (Cmg K} 4 Cy) K + CK*mj
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4 2p GK) PR ERNE 1 mé
<|(-+—"—+—)K+C|K>+EKm: +FEm: +
<u pwlp+A)  p ( 0 C K

a1 5 1 1
+ Kmg® +mg® +Km6‘> Kmg

-
N———
IA
w
&

gEKJrC(K% + EKm
provided
1

1 ~ 14
C (Kt + EKmg?)
with
~ 4 2p 6K
E=14+-4 L 122
pooplp+A)
Thus, the proof of Lemma 3.5 is completed. O

Lemma 3.6. Under the conditions of Proposition 3.1, it holds that

provided

1 1 1
CK¢’ - 27 1 ~ RS ~ 3 ~ .5
C(B2K) o (Ki+EEmy) C(BIK+EKY)

mo < min 3

Proof. Multiplying (2.1)3 by 6, and integrating by parts over R?, we obtain

1d 9 9
sa [ Plor -+ [ 1v0)
R3 R3
= —/p02divu+/%|Vu+(Vu)'\20+/)\(divu)29+l//|cur1 H|%0
RS RS RS RS
4
=Y 111, (3.31)
i=1

For 111, it follows by Holder inequality and Sobolev inequality that
1
111 < O||divul|2[|0]1Zsllpll s < Cm§ ||Vl 2] VO]7-. (3.32)
For II15 and 1113, by virtue of Holder inequality and Sobolev inequality, together with (3.24), one has

IIIQ —|—II[3 < CHVUHLQHVUHL5H8”L6
< CVull L2 [ VullLs [ VO] 2

< C||Vul £ 11V6) = (I/pall = + | HIIVH]||2) ¥
+ CIVull 2 l1V0] 21181 2 (Ily/Bil e + | HIVH] | 22)?
+ Cmg [ Vull 2|03 (3.33)
Then we estimate 111, as

3 1
1y < C|\VH| 20l o[ VH | s < C|VO|| 2|V HI| 72|V H]| 7. (3.34)
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We substitute (3.32)— (3 33) into (3.31) to obtain
/ wopr s L4 / Pl < ClIVull 298] = (1Bl e + ||| V][ 12)?

+ C|IVull 2 lIV0] 21|61 2 (IIy/Bill e + |ENIVH]|22)zs
+ OVl 2 V0132 lIpll s + CIVON 2 IVH | 2, | V2 H] 2.
< SI0113: + CIVulli (1ypil e + I1HIV ] 12)
+ OVl 2218 = (1| /il = + II|HI [V H] | =)
+ Om [Vl 2[[VO]32 + CIVH ] V2H]| 2. (3.35)
Integrating (3.35) over [0, 7], and using (3.1), (3.3), (3.4) and (3.27), we have

B < [ mltol? + C / IVults (Wpilze + I|HIIVH|2) ds + / IV H|3 |V s

R3

+c / IVuls 961 2 (Bilz2 + 1| HIIVE|2) ds + / IVl 2 VO]l s
0

1 1
2 T 2

T T
1
<K +C swp [Vulls | [I9ulfads ||| [vpiliads |+ Kimd | [ 192H]3as
o<t<T
- 0 0

Nl=

SIS

1
2

+C sup |VH|: /||VH||izds /\\V2H||2des
0<t<

N
[N
[N

1 1
+Cm¢ sup ||Vul2. /||v9||i2ds /||\/ﬁit\|%2ds +miK+ /||VH2||izds
o<t<T
- 0 0

1 T
1 3
+Cm§ ( sup ||Vu||2L2> /||V9||2L2d5
0<t<T

len

N
ol

1oz - . K
<K+CmiK (E%K+EK4 v ERK ) < 37 (3.36)

provided

Lemma 3.7. Under the assumptions of Proposition 3.1, it holds that

0<p< %, (3.37)
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for any (z,t) € R® x [0,T], provided
<mi 1 1 1
mo <min 5 - R —
O c(mk) (K#+ EKmg?)
1 1 1
N N 6 F o 1 N 1\ 48
c(Bik+ExY)  CERT o(BK+ Kim))

Proof. Tt follows from (2.1); formally that

Y'(s) = g(Y) +V(s), (3.38)
where

P(X(4 1
Y(s) = logp (X(t:2,5).5) 9(1) =~ ) D [6 (Xt m),7)

and X (t; x, s) is given by

diX(t;%s) =u(X(t;z,s),s), 0<s<t,

s

X(t;z,t)=x

By (2.1)1, we have
G (X(t;2,7),7) = A div ((pu), +u - V(pu) + pudivu) + A~ div[(curl H) x H]
= A" ldiv <;(pu) + pudivu) + A~ tdiv[(curl H) x H].
T

This deduces
t

b(t) — b(0) = —2M1+A /A*ldiv (;T(pu) +pudivu> dr — o +A /A Liv[(curl H) x H]dr
O t
- 2,ul+ )\Aildiv(pu) + 2M1+ \ ~div(pouo) — 2+ A /Afldiv (pudivu) dr
. 0
- 2u1+A /A’ldiv[(curl H) x Hldr
0

< C|| A div(pu)||p= + C|| A7 div(pouo) ||z~ + C/ A~ div (pudivu) || L dT

+ C/ |A= div[(curl H) x H]||pedr = ZIV

i=1

For IV;, using (2.5), Sobolev inequality, Calderon—Zygmund inequality, Holder inequality, (3.1) and (3.3),

we get

e
IVi < C A div(pu) |6 [VA~ div(pu) | §4 < Cllpulljalloull o < Cllollfsllul follplullullfe < Cm® BE.
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Similarly, it holds

z
1V, < Cmy* K,
and then it implies
IVi + IVy < Om* EK < mj, (3.39)
provided
- 1
m —
" T C(BK)E
(2.4) and (2.5) give
1 2
v, <c / IAdiv (pudiva) |2 VA~ div (pudiva) | 5, dr
t
<C /||pud1vu||L2||pud1vu||L4 dr
0
¢
/ [lpudivul| = dT + C/ |pudivul| pa dr. (3.40)
0
By the definition of G, it reads
1 1
divu = ———puG 2uf.
pudivu 2M+>\pu +2u+)\pu
This, together with Hélder inequality, Sobolev inequality, (3.22), (3.21), (3.3) and (3.1) deduces
lpudivul|z2 < CllpuG]|L2 + Cllp*ub|| 2
< CllplrellullzellGlizs + lloll7 e lull zoll6]l Lo
< CllpllslIVull 12Vl 2 + Cllpl ez | Vull 2| VO] 2
1 .
< mg |[Vul[zz (el 2 + [[[HIVH][ 2 + [[VO]|2) (3.41)
and
lpudivu|| L

< CllpuGll s + ClPub|

< llullzes (o2 Glue + ol 61]2e )

< C(IVullza + [9ullzs) (ol (1/7ilze + 1EITHNz2) + ol 9] 22)

< Cm (I Vullzs + 19 % ull o + |divlzo) (/B> + | HIVH |z + [ 96112 )

< Cmg (IVullze + (Il + |HIVHl 2 + [190]22)) (Il/pil 2 + | HIVH]| |22 + V6] 12 )
(3.42)
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Putting (3.41) and (3.42) into (3.40), and using Cauchy inequality, (3.1) and (3.4), we obtain

1 .
IVs < mg /IIVUIIL2 (vpullz + I[HIIVH|| 2 + [[VO]|2) dT

t
1 .
+md / (||vU||L2 + (Iv/pil 2 + || H||VH||| 2 + IIWIILz))
0

x (Ivpillze + I1HIIVHI 2 + V6] 12 ) dr

t
1 1 1
< C(mf +m) / Vults dr -+ onf +md®) [ (VFuls + IHIVHIE + Vol dr
0

1

1 1 1
<C’(m0 +m )mg—l—(mo +mg )(EK—I—mgK%—i—K) <mg°,

provided

mgy <

C(EK—&—K%mg)ZlS'

For 1V}, it follows that by using the above inequality,

vy < C’/ |A™ div][(curl H) x H]||%5||VA71div[(curl H) x H]H%4 dr

< C/ [[(curl H) x H“%zH(Curl H) x H”%z; dr

T

§C’/||(Cur1 H)><H||de7+/H(curl H) x H|psdr
0 0

<c / | H | o[V H]| 2 dr + / | H | e | VH] s dr
0

3 1
1 t 1

t t
<c /HVHH%Q dr /Hv?HHZLQ ar | + /||VH||2L2 dr /||v2H||iz dr
0 0 0 0

oole

3 3 1
<CmiKT 4+ CmiFK? <mi°,
provided

1
< .
"= OKs
By the estimates of I'V;,i = 1,2,3,4, it yields

b(t) — b(0) Smé6 log
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provided

1 1 1
) )48’ CK®

mo < min i
O(EK) 15 C(EK+K2mO

Integrating (3.38) with respect to s over [0,t], we get

3
log p(x,t) =log po (X (t;2,0)) + [ g(Y)dt +b(t) — b(0) < logp + log 2

O\H

which deduces

0

Remark 3.8. The proof of the upper bound of p is not rigorous, since p may vanish. In fact, this could
be handled by constructing an approximate solution p? > 0 to (2.1); with initial data pg + & > 0 for the
constant & > 0. Then one can replace log p by log p° in the above process and finally pass to the limits
d — 07 to obtain the desire estimate.

Now we are in the position to prove Theorem 2.3. Recall that in [11], the Serrin-Type blowup criterion
for the strong solution to the problem (2.1)—(2.3) is obtained, which is

lim sup (||p||Loo(07T;LOO) + ||u| LS(O,T;L"')) =00, —+— < 1. (343)
T,/T* S

r

Then combining Proposition 3.1 with (3.43), we can get the global existence and uniqueness of the strong
solution to (2.1)—(2.3). Indeed, the boundedness of p is given in Lemma 3.7. On the other hand, by
choosing s = 6, r = 6 in (3.43), and using Lemmas 3.3 and 3.5, one has

T T
[ ule < swp (vl [ 1l < c
J 0<t<T )

Thus, we obtain that T = co and complete the proof of Theorem 2.3.
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