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Abstract. In this paper, we consider the Cauchy problem of the full compressible magnetohydrodynamic equations in R
3.

When ‖ρ0‖L1 +‖H0‖L2 is suitably small, we establish the global existence of the strong solution, where ρ0 and H0 represent
the initial density and magnetic field respectively. Our result shows that the strong solution may have large oscillations and
can contain vacuum states.
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1. Introduction

The equations of the three-dimensional compressible, viscous and heat-conducting magnetohydrodynamic
flows can be written as ([20])

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u) − μΔu − (μ + λ)∇divu + ∇P = (curl H) × H,

cv [(ρθ)t + div(ρuθ)] − κΔθ + Pdivu = 2μ|D(u)|2 + λ(divu)2 + ν|curl H|2,
Ht − curl (u × H) = νΔH, divH = 0.

(1.1)

Here D(u) is the deformation tensor given by

D(u) =
1
2

(∇u + (∇u)′) ,

ρ = ρ(x, t), u = u(x, t) = (u1, u2, u3)(x, t), θ = θ(x, t), P = Rρθ(R > 0) and H = (H1,H2,H3),
are unknown functions denoting the density, velocity, absolute temperature, pressure and magnetic field
respectively; μ and λ are coefficients of viscosity, satisfying the following physical restrictions

μ > 0, λ +
2μ

3
≥ 0. (1.2)

The positive constants κ and ν are respectively the heat conduction coefficient and the magnetic diffusion
coefficient.

In this paper, we are interested in the global existence of strong solutions to the Cauchy problem for
(1.1) with the following initial conditions:

(ρ, u, θ, H)|t=0 = (ρ0, u0, θ0, H0)(x), x ∈ R
3 (1.3)

and the far field behavior:

ρ(x, t) → 0, u(x, t) → 0, θ(x, t) → 0, H(x, t) → 0, as |x| → ∞, for t ≥ 0. (1.4)
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The compressible MHD system (1.1) is obtained by combining the Navier–Stokes equations of fluid
dynamics and Maxwell equations of electromagnetism. There are lots of works on the well-posedness of the
Cauchy problem and the initial-boundary value problem for Magnetohydrodynamics. The one-dimension
problem has been studied in many papers, for example, [3,4,8,9,18,32] and the references cited therein.
For the multi-dimensional case, see [6,10,12–17,22–25,27,29] and so on. To be more specific, for the 2D
case, Cao and Wu [2] obtained the global existence, conditional regularity and uniqueness of a weak
solution with only magnetic diffusion. Ren et al. [28] proved the global existence and the decay estimates
of small smooth solution without magnetic diffusion. Yang and Sun [21] got the global existence of weak
solutions for any adiabatic exponent γ ≥ 1. Zhong [35] established the global existence and exponential
decay of strong solutions to the initial boundary value problem of two-dimensional nonhomogeneous
magnetohydrodynamic (MHD) equations with non-negative density.

For the 3D case, when the initial density is strictly positive, Vol’pert et al. [31] investigated the local
strong solutions of the compressible MHD with large initial data. This result was extended by Fan et
al. [7] to the case that the initial density could contain vacuum. Suen and Hoff [30] proved the global-
in-time existence of weak solutions to the 3D compressible MHD equations with initial data small in L2

and initial density positive and essentially bounded. In [34], they studied the Cauchy problem for the
multi-dimensional (N ≥ 3) non-isentropic full compressible MHD equations.They got the existence and
uniqueness of a global strong solution to the system for the initial data close to a stable equilibrium state
in critical Besov spaces. For more information on the MHD equations, we refer to [1,26] and the references
therein. Hu and Wang [13] studied the existence of a global variational weak solution to the full MHD
equations with large data. Li et al. [22] obtained the global classical solution with small initial energy
but large oscillations for the isentropic flows. Later on, Hong et al. [10] got the global classical solution
with large initial energy but the adiabatic exponent γ is close to 1 and the resistivity coefficient ν is
suitably large. Recently, Chen et al. [5] considered the 3D MHD equations with slip boundary condition
and vacuum, and obtained the global classical solutions with small energy but large oscillations.

It is worth noting that, Wen and Zhu [33] got the strong solution with vacuum and large initial data
for the three-dimensional full compressible Navier–Stokes equations under the condition that the initial
mass is small. One natural question is: does there exist some global solution to (1.1) in some classes
of large initial data under the condition that the initial mass is small? We will answer the question in
this paper. More precisely, we want to find a global strong solution to the 3D full compressible MHD
equations under the small initial mass.

Before we state our main results, we would like to introduce some notations which will be used
throughout this paper.

1.1. Notations

(i)
∫

R3

f =
∫

R3

f dx.

(ii) For 1 ≤ l ≤ ∞, denote the standard homogeneous and inhomogeneous Sobolev spaces as follows:

Ll = Ll(R3), Dk,l =
{
u ∈ L1

loc(R
3) : ‖∇ku‖Ll < ∞}

, ‖u‖Dk,l = ‖∇ku‖Ll ,

W k,l = Ll ∩ Dk,l, Dk = Dk,2, D1
0 =

{
u ∈ L6 : ‖∇u‖L2 < ∞

}
, Hk = W k,2.

(iii) G = (2μ + λ)divu − P is the effective viscous flux.

(iv) ḣ = ht + u · ∇h denotes the material derivative.

(v) m0 =
∫

R3

ρ0 is the initial mass.
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The rest of the paper is organized as follows. In Sect. 2, we present our main results. Section 3 focuses
on obtaining the necessary a priori estimates for the strong solution to extend the local solution to all
time. Finally, we give the proof of the main results.

2. Main results

Before stating the main results, let us make some preliminaries. Assume that μ, λ, κ and ν are constants.
We assume R = Cν = 1 henceforth, since the constants R in the pressure function and Cν in the internal
energy play no role in the analysis. In this case, if the solutions are regular enough (such as strong
solutions and classical solutions), (1.1) is equivalent to the following system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρt + ∇ · (ρu) = 0,
ρut + ρu · ∇u + ∇P (ρ, θ) = μΔu + (μ + λ)∇divu + (curl H) × H,

ρθt + ρu · ∇θ + ρθdivu = μ
2 |∇u + (∇u)′|2 + λ(divu)2 + κΔθ + ν|curl H|2,

Ht − curl (u × H) = νΔH, divH = 0 in R
3 × (0,∞).

(2.1)

System (2.1) is supplemented with initial conditions

(ρ, u, θ,H)|t=0 = (ρ0, u0, θ0,H0)(x), x ∈ R
3, (2.2)

and the far-field conditions

ρ(x, t) → 0, u(x, t) → 0, θ(x, t) → 0, H(x, t) → 0, as |x| → ∞, for t ≥ 0. (2.3)

First, the well-known Gagliardo–Nirenberg inequality will be used frequently later (see [19]).

Lemma 2.1. For any p ∈ [2, 6], q ∈ (1,∞) and r ∈ (3,∞), there exists some generic constant C > 0 that
may depend on q and r such that for f ∈ H1(R3) and g ∈ Lq(R3) ∩ D1,r(R3), we have

‖f‖p
Lp(R3) ≤ C‖f‖

6−p
2

L2(R3)‖∇f‖
3p−6

2
L2(R3), (2.4)

‖g‖C(R3) ≤ C‖g‖
q(r−3)

3r+q(r−3)

Lq(R3) ‖∇g‖
3r

3r+q(r−3)

Lr(R3) . (2.5)

Next, we give the definition of the strong solution to (2.1)–(2.3) throughout this paper, which is similar
to [11].

Definition 2.2. (Strong solution) For T > 0, (ρ, u, θ,H) is called a strong solution to the compressible
Magnetohydrodynamic flows (2.1)–(2.3) in R

3 × [0, T ], if for some q ∈ (3, 6),

0 ≤ ρ ∈ C([0, T ];W 1,q ∩ H1), ρt ∈ C([0, T ];L2 ∩ Lq),

(u, θ,H) ∈ C([0, T ];D2 ∩ D1
0) ∩ L2([0, T ];D2,q), θ ≥ 0,

(ut, θt,Ht) ∈ L2([0, T ];D1
0), (

√
ρut,

√
ρθt,Ht) ∈ L∞([0, T ];L2),

(2.6)

and (ρ, u, θ,H) satisfies (2.1) a.e. in R
3×(0, T ]. In particular, the strong solution (ρ, u, θ,H) of (2.1)–(2.3)

is called a global strong solution, if the strong solution satisfies (2.6) for any T > 0, and satisfies (2.1)
a.e. in R

3 × (0,∞).

Then the main results in this paper can be stated as follows:

Theorem 2.3. (Global strong solution) Assume that the initial data (ρ0, u0, θ0,H0) satisfies

ρ0 ≥ 0, θ0 ≥ 0, in R
3, ρ0 ∈ H1 ∩ W 1,q ∩ L1, (u0, θ0,H0) ∈ D2 ∩ D1

0 (2.7)
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and
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ ρ0 ≤ ρ̄, m0 =
∫

R3

ρ0, ‖H0‖2L2 ≤ m
1
2
0 ,

(1 + ν)‖∇H0‖2L2 + ‖√
ρ0θ0‖2L2 + μ‖∇u0‖L2 + (μ + λ)‖divu0‖L2 +

1
2(2μ + λ)

‖ρ0θ0‖2L2

+
∫

R3

|ρ0θ0divu0| +
∫

R3

(|H0|2|divu0| + 2|H0 · ∇u0 · H0|
) ≤ K

(2.8)

for some constants K > 1, ρ̄ > 0 and q ∈ (3, 6), and that the following compatibility conditions are
satisfied:

{
μΔu0 + (μ + λ)∇divu0 − ∇P (ρ0, θ0) − (curlH0) × H0 =

√
ρ
0
g1,

κΔθ0 + μ
2 |∇u0 + (∇u0)′|2 + λ(divu0)2 + ν|curlH0|2 =

√
ρ0g2, x ∈ R

3,
(2.9)

with gi ∈ L2, i = 1, 2. Then there exists a unique global strong solution (ρ, u, θ,H) in R
3 × [0, T ] for any

T > 0, provided

m0 ≤ ε,

where ε is a positive constant depending on ρ̄, K, μ and λ but independent of t.

3. Proof of Theorem 2.3

In this section, we will prove the global existence and uniqueness of the strong solution to the problem
(2.1)–(2.3). The local existence and uniqueness of the strong solution has been obtained in [11] under the
conditions of Theorem 2.3. In order to get the global solution, we denote

A(T ) = sup
0≤t≤T

∫

R3

|∇u|2 +

T∫

0

∫

R3

ρ|u̇|2

and

B(T ) = sup
0≤t≤T

∫

R3

ρθ2 +

T∫

0

∫

R3

|∇θ|2.

The following proposition plays a crucial role in the proof.

Proposition 3.1. Assume that the initial data satisfies (2.7), (2.8) and (2.9). If the solution (ρ, u, θ,H) of
(2.1)–(2.3) satisfies that for (x, t) ∈ R

3 × [0, T ],

‖H‖2L2 ≤ 2m
1
2
0 , ‖∇H‖2L2 ≤ 2K, A(T ) ≤ 2ẼK,

B(T ) ≤ 2K, 0 ≤ ρ ≤ 2ρ̄,
(3.1)

then

‖H‖2L2 ≤ 3m
1
2
0

2
, ‖∇H‖2L2 ≤ 3K

2
, A(T ) ≤ 3ẼK

2
,

B(T ) ≤ 3K

2
, 0 ≤ ρ ≤ 3ρ̄

2
, (x, t) ∈ R

3 × [0, T ],

(3.2)
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provided

m0 ≤ min

⎧
⎪⎨

⎪⎩

1
CK6

,
1

C
(
Ẽ2K

)2 ,
1

C
(
K

1
2 + ẼKm

1
12
0

)4 ,

1

C
(
Ẽ

3
2 K + ẼK

5
4

)6 ,
1

C(ẼK)
144
45

,
1

C
(
ẼK + m

1
4
0 K

3
2

)48

⎫
⎪⎬

⎪⎭
,

where

Ẽ = 1 +
4
μ

+
2ρ̄

μ(μ + λ)
+

6K

μ
.

Proof of Proposition 3.1. The Proposition 3.1 can be proved by the Lemmas 3.2–3.7 below.
Throughout the rest of the paper, we denote by C or Ci, (i = 1, 2, . . .) the generic positive constants

which may depend on μ, λ, κ, ν, ρ̄ and K but independent of time T . �
Lemma 3.2. Under the assumptions of Proposition 3.1, it holds that

∫

R3

ρ =
∫

R3

ρ0, (3.3)

for any t ∈ [0, T ].

The proof of Lemma 3.2 can be found in [33], and we omit it here.

Lemma 3.3. Under the assumptions of Proposition 3.1, it holds that
∫

R3

(ρ|u|2 + |H|2) + μ

T∫

0

∫

R3

|∇u|2ds + ν

T∫

0

∫

R3

|∇H|2ds ≤ 3m
1
2
0

2
, (3.4)

provided

m0 ≤ 1
CK6

.

Proof. Multiplying (2.1)2 and (2.1)4 by u and H respectively, integrating by parts over R3 and summing
up the resulting equations, one gets that

1
2

d
dt

∫

R3

(ρ|u|2 + |H|2) +
∫

R3

μ|∇u|2 +
∫

R3

(
ν|∇H|2 + (μ + λ)|divu|2)

=
∫

R3

ρθdivu +
∫

R3

(curl H) × H · u +
∫

R3

curl (u × H) · H

:=
3∑

i=1

Ii. (3.5)

Then we estimate the terms on the right-hand side. For I1, it follows that by using Cauchy inequality,

I1 ≤ (μ + λ)
∫

R3

|divu|2 +
1

4(μ + λ)

∫

R3

ρ2θ2. (3.6)

Next, to estimate I2 and I3, note that

(curl H) × H = −1
2
∇|H|2 + H · ∇H = −1

2
∇|H|2 + div(H ⊗ H) (3.7)
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and

curl (u × H) = H · ∇u − u · ∇H − divu · H, (3.8)

where we have used the fact divH = 0. This, together with Hölder inequality, Sobolev inequality, Cauchy
inequality and (3.1), deduces

I2 =
1
2

∫

R3

|H|2divu +
∫

R3

div(H ⊗ H)u

≤ C‖divu‖L2‖H‖L6‖H‖L3 + C‖H‖L6‖∇u‖L2‖H‖L3

≤ C‖∇H‖L2‖∇u‖L2‖∇H‖ 1
2
L2‖H‖ 1

2
L2

≤ μ

4
‖∇u‖2L2 + C‖∇H‖2L2‖∇H‖L2‖H‖L2

≤ μ

4
‖∇u‖2L2 + CK

1
2 m

1
4
0 ‖∇H‖2L2 , (3.9)

and

I3 =
∫

R3

H · ∇u · H −
∫

R3

u · ∇H · H +
∫

R3

u · ∇|H|2

≤ C‖H‖L6‖∇u‖L2‖H‖L3

≤ μ

4
‖∇u‖2L2 + CK

1
2 m

1
4
0 ‖∇H‖2L2 . (3.10)

Substituting (3.6) and (3.9)–(3.10) into (3.5) and setting m0 ≤ ν4

C4K2
, one may arrive at

d
dt

∫

R3

(ρ|u|2 + |H|2) + μ

∫

R3

|∇u|2 + ν

∫

R3

|∇H|2 ≤ C‖ρ‖2L3‖θ‖2L6 ≤ Cm
2
3
0 ‖∇θ‖2L2 . (3.11)

Integrating (3.11) over [0, T ], and using (3.1) again, we have

∫

R3

(ρ|u|2 + |H|2) + μ

T∫

0

∫

R3

|∇u|2 + ν

T∫

0

∫

R3

|∇H|2

≤
∫

R3

(ρ0|u0|2 + |H0|2) + Cm
2
3
0

T∫

0

‖∇θ‖2L2

≤ C‖ρ0‖
L

3
2
‖∇u0‖2L2 + m

1
2
0 + Cm

2
3
0 K ≤ m

1
2
0

(
1 + Cm

1
6
0 K

)
≤ 3m

1
2
0

2
,

provided

m0 ≤ 1
CK6

.

�

Lemma 3.4. Under the conditions of Proposition 3.1, it holds that

‖∇H‖2L2 +

T∫

0

(‖Ht‖2L2 + ‖ΔH‖2L2

)
ds ≤ 3K

2
, (3.12)
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provided

m0 ≤ 1

C
(
Ẽ2K

)2 .

Proof. Applying ∂j , j = 1, 2, 3 to (2.1)4, multiplying the resulting equations by ∂jH, summing with
respect to j, then integrating by parts over R

3 × [0, T ] and using Cauchy inequality, one has

1
2

∫

R3

|∇H|2 + ν

T∫

0

‖ΔH‖2L2ds

=
1
2
‖∇H0‖2L2 −

T∫

0

∫

R3

curl (u × H) · ΔHds

≤ 1
2
‖∇H0‖2L2 +

ν

4

T∫

0

‖ΔH‖2L2ds +
1
ν

T∫

0

‖curl (u × H)‖2L2ds. (3.13)

We estimate the last term on the right-hand side of (3.13 ) as follows:

‖curl (u × H)‖2 ≤ ‖u · ∇H‖2L2 + ‖H · ∇u‖2L2 + ‖divuH‖2L2

≤ C‖∇u‖2L2‖∇H‖2L3 + C‖H‖2L∞‖∇u‖2L2

≤ C‖∇u‖2L2‖∇H‖L2‖∇2H‖L2

≤ ν2

4
‖ΔH‖2L2 +

C

ν2
‖∇u‖4L2‖∇H‖2L2 . (3.14)

On the other hand, multiplying (2.1)4 by Ht, integrating by parts over R
3 × [0, T ] and using Cauchy

inequality, one has

ν

2

∫

R3

|∇H|2 +

T∫

0

‖Ht‖2L2ds ≤ ν

2
‖∇H0‖2L2 +

T∫

0

‖curl (u × H)‖2

≤ ν

2
‖∇H0‖2L2 +

ν

4

T∫

0

‖ΔH‖2L2ds +
C

ν

T∫

0

‖∇u‖4L2‖∇H‖2L2ds. (3.15)

Combing (3.13) with (3.15) implies

∫

R3

|∇H|2 +

T∫

0

(‖Ht‖2L2 + ‖ΔH‖2L2

)
ds ≤ 1 + ν

2
‖∇H0‖2L2 +

C

ν

T∫

0

‖∇u‖4L2‖∇H‖2L2ds

≤ K + C sup
0≤t≤T

‖∇u‖4L2

T∫

0

‖∇H‖2L2ds

≤ K + CẼ2K2m
1
2
0 ≤ 3

2
K,

provided

m0 ≤ 1

C
(
Ẽ2K

)2 .

�
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Lemma 3.5. Under the conditions of Proposition 3.1, it holds that

A(T ) ≤ 3ẼK

2
, (3.16)

provided

m0 ≤ min

⎧
⎪⎨

⎪⎩

1
CK6

,
1

C
(
Ẽ2K

)2 ,
1

C
(
K

1
2 + ẼKm

1
12
0

)4

⎫
⎪⎬

⎪⎭
.

Proof. Multiplying (2.1)2 by ut and integrating by parts over R
3, we have

∫

R3

ρ|u̇|2 +
1
2

d
dt

∫

R3

(
μ|∇u|2 + (μ + λ)|divu|2)

=
d
dt

∫

R3

Pdivu − 1
2(2μ + λ)

d
dt

∫

R3

P 2 − 1
2μ + λ

∫

R3

PtG

+
∫

R3

ρ(u · ∇)u · u̇ +
∫

R3

(curl H) × H · ut

=
d
dt

∫

R3

Pdivu − 1
2(2μ + λ)

d
dt

∫

R3

P 2 +
3∑

i=1

IIi, (3.17)

where G = (2μ + λ)divu − P . Recalling P = ρθ, we obtain from (2.1)1 and (2.1)3

Pt = −div(ρθu) − ρθdivu +
μ

2
|∇u + (∇u)′|2 + κΔθ + ν|curl H|2. (3.18)

Substituting (3.18) into II1, and by integration by parts, Hölder inequality and Sobolev inequality, we
have

II1 ≤ C‖ρθ‖L3‖u‖L6‖∇G‖L2 + C‖ρθ‖L3‖divu‖L2‖G‖L6 + C‖G‖L6‖∇u‖L2‖∇u‖L3

+
κ

2μ + λ
‖∇G‖L2‖∇θ‖L2 + C‖G‖L6‖curl H‖L2‖curl H‖L3

≤ C‖ρ‖L6‖θ‖L6‖∇u‖L2‖∇G‖L2 + C‖∇G‖L2‖∇u‖L2‖∇u‖L3

+
κ

2μ + λ
‖∇G‖L2‖∇θ‖L2 + C‖∇G‖L2‖∇H‖ 3

2
L2‖∇2H‖ 1

2
L2 ,

and

II2 ≤ C‖√
ρu̇‖L2‖u‖L6‖∇u‖L3 ≤ C‖√

ρu̇‖L2‖∇u‖L2‖∇u‖L3 .

Taking div and curl, respectively, on both side of (2.1)2, we get

ΔG = div(ρu̇) − div[(curl H) × H], (3.19)

μΔ(curlu) = curl(ρu̇) − curl[(curl H) × H]. (3.20)

By (3.19), (3.20), the standard L2-estimates, and (3.1), we get

‖∇G‖L2 ≤ ‖ρu̇‖L2 + ‖(curl H) × H‖L2 ≤
√

2ρ̄‖√
ρu̇‖L2 + ‖(curl H) × H‖L2 (3.21)

and

‖∇curlu‖L2 ≤ ‖ρu̇‖L2 + ‖(curl H) × H‖L2 ≤
√

2ρ̄‖√
ρu̇‖L2 + ‖(curl H) × H‖L2 . (3.22)

Since ∇u = ∇Δ−1 (∇divu − ∇ × curlu), we apply the Calderon-Zygmund inequality to get

‖∇u‖L3 ≤ C
(‖curlu‖L3 + ‖divu‖L3

)
. (3.23)
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Using (3.21)–(3.23), Sobolev inequality, Hölder inequality and Gagliardo-Nirenberg inequality, we have

‖∇u‖L3 ≤ C‖curlu‖L3 + C‖G‖L3 + C‖ρθ‖L3

≤ C‖curlu‖ 1
2
L2‖∇curlu‖ 1

2
L2 + C‖G‖ 1

2
L2‖∇G‖ 1

2
L2 + C‖ρ‖L6‖θ‖L6

≤ C‖curlu‖ 1
2
L2 (‖√

ρu̇‖L2 + C‖|H||∇H|‖L2)
1
2

+ C‖G‖ 1
2
L2 (‖√

ρu̇‖L2 + C‖|H||∇H|‖L2)
1
2 + Cm

1
6
0 ‖∇θ‖L2 . (3.24)

It follows from (3.21),(3.24) that

II1 + II2 ≤ C
(
m

1
6
0 ‖∇θ‖L2‖∇u‖L2 + ‖∇u‖L2‖∇u‖L3 + κ‖∇θ‖L2 + ‖∇H‖L2‖∇H‖L3

)
(‖√

ρu̇‖L2

+‖|H||∇H|‖L2)

≤ C‖∇u‖L2 (‖∇u‖L2 + ‖P‖L2)
1
2 (‖√

ρu̇‖L2 + ‖|H||∇H|‖L2)
3
2

+ C
(
m

1
6
0 ‖∇u‖L2

)
‖∇θ‖L2 (‖√

ρu̇‖L2 + ‖|H||∇H|‖L2)

+
κ

2μ + λ
‖∇θ‖L2

(√
2ρ̄‖√

ρu̇‖L2 + ‖(curl H) × H‖L2

)

+ C‖∇H‖3L2‖∇2H‖L2 (‖√
ρu̇‖L2 + ‖|H||∇H|‖L2)

≤ C‖∇u‖6L2 + Cm0‖∇u‖4L2 +
1
2
‖√

ρu̇‖2L2 + C‖|H||∇H|‖2L2 + Cm
1
3
0 ‖∇u‖2L2‖∇θ‖2L2

+
κ2(2ρ̄ + 1)
(2μ + λ)2

‖∇θ‖2L2 + C‖∇H‖6L2 + ‖∇2H‖2L2 . (3.25)

For II3, by using (3.1), (3.7), Hölder inequality and Sobolev inequality, we have

II3 =
1
2

∫

R3

(|H|2divut − 2H · ∇ut · H
)

=
1
2

d
dt

∫

R3

(|H|2divu − 2H · ∇u · H
) −

∫

R3

(H · Htdivu − Ht · ∇u · H − H · ∇u · Ht)

≤ 1
2

d
dt

∫

R3

(|H|2divu − 2H · ∇u · H
)

+ C‖Ht‖L2‖∇H‖L2‖∇u‖L3

≤ 1
2

d
dt

∫

R3

(|H|2divu − 2H · ∇u · H
)

+ ‖Ht‖2L2‖∇H‖2L2 + C‖∇u‖2L3

≤ 1
2

d
dt

∫

R3

(|H|2divu − 2H · ∇u · H
)

+ ‖Ht‖2L2‖∇H‖2L2

+ C (‖∇u‖L2 + ‖ρθ‖L2) (‖√
ρu̇‖L2 + ‖|H||∇H|‖L2)

≤ 1
2

d
dt

∫

R3

(|H|2divu − 2H · ∇u · H
)

+ ‖Ht‖2L2‖∇H‖2L2 +
1
4
‖√

ρu̇‖2L2

+ C
(‖|H||∇H|‖2L2 + ‖ρ‖2L3‖θ‖2L6 + ‖∇u‖2L2

)
. (3.26)

By (2.4), Lemmas 3.3 and 3.4 we have

‖|H||∇H|‖2L2 ≤ C‖H‖L2‖∇H‖L2‖∇2H‖2L2 ≤ Cm
1
4
0 K

1
2 ‖∇2H‖2L2 . (3.27)
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Substituting (3.25), (3.26) into (3.17), and integrating the resulting equation over [0, T ], using Cauchy
inequality, we have

1
4

T∫

0

∫

R3

ρ|u̇|2ds + μ

∫

R3

|∇u|2 + (μ + λ)
∫

R3

|divu|2 +
1

2(2μ + λ)

∫

R3

ρ2θ2

≤ μ‖∇u0‖L2 + (μ + λ)‖divu0‖L2 +
1

2(2μ + λ)
‖ρ0θ0‖2L2 −

∫

R3

ρ0θ0divu0 −
∫

R3

(|H0|2divu0 − 2H0 · ∇u0 · H0

)

+
∫

R3

Pdivu +
∫

R3

(|H|2divu − 2H · ∇u · H
)

+ sup
0≤t≤T

(‖∇u‖4L2 + m0‖∇u‖2L2 + 1
)

T∫

0

‖∇u‖2L2ds

+ sup
0≤t≤T

(

m
1
3
0 ‖∇u‖2L2 + m

2
3
0 +

κ2(2ρ̄ + 1)
(2μ + λ)2

) T∫

0

‖∇θ‖2L2ds + sup
0≤t≤T

‖∇H‖2L2

T∫

0

‖Ht‖2L2ds

+
(
Cm

1
4
0 K

1
2
0 + 1

) T∫

0

‖∇2H‖2L2ds + C sup
0≤t≤T

‖∇H‖4L2

T∫

0

‖∇H‖2L2ds. (3.28)

It follows by Hölder inequality and (2.4) that
∫

R3

Pdivu ≤ ‖ρθ‖L2‖divu‖L2 ≤ ρ̄

4(μ + λ)
‖√

ρθ‖2L2 + (μ + λ)‖divu‖2L2 , (3.29)

∫

R3

(|H|2divu − 2H · ∇u · H
) ≤ C‖H‖2L4‖∇u‖L2

≤ C‖H‖ 1
2
L2‖∇H‖ 3

2
L2‖∇u‖L2 ≤ C‖H‖L2‖∇H‖3L2 +

μ

2
‖∇u‖2L2 . (3.30)

Then (3.28) together with (3.29), (3.30) leads to

T∫

0

∫

R3

ρ|u̇|2ds +
∫

R3

|∇u|2

≤ 2K

μ
+

2ρ̄

μ(μ + λ)
‖√

ρθ‖2L2 + C‖H‖L2‖∇H‖3L2 + C sup
0≤t≤T

(‖∇u‖4L2 + m0‖∇u‖2L2 + 1
)

T∫

0

‖∇u‖2L2ds

+ sup
0≤t≤T

(

m
1
3
0 ‖∇u‖2L2 + m

2
3
0 +

κ2(2ρ̄ + 1)
(2μ + λ)2

) T∫

0

‖∇θ‖2L2ds +
2
μ

sup
0≤t≤T

‖∇H‖2L2

T∫

0

‖Ht‖2L2ds

+
(

Cm
1
4
0 K

1
2
0 +

2
μ

) T∫

0

‖∇2H‖2L2ds + C sup
0≤t≤T

‖∇H‖4L2

T∫

0

‖∇H‖2L2ds

≤
(

2
μ

+
2ρ̄

μ(μ + λ)

)

K + Cm
1
4
0 K

3
2 + C

(
4Ẽ2K2 + m0ẼK + 1

)
m

1
2
0 + C

(
2m

1
3
0 ẼK + m

2
3
0

)
K

+ 4K2 +
(
Cm

1
4
0 K

1
2 + C1

)
K + CK2m

1
2
0
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≤
(

4
μ

+
2ρ̄

μ(μ + λ)
+

6K

μ

)

K + C

(

K
1
2 + ẼKm

1
4
0 + Ẽm

5
4
0 +

m
1
4
0

K
+ Km

1
12
0 + m

5
12
0 + Km

1
4
0

)

Km
1
4
0

≤ ẼK + C
(
K

1
2 + ẼKm

1
12
0

)
≤ 3ẼK

2
,

provided

m0 ≤ 1

C
(
K

1
2 + ẼKm

1
12
0

)4

with

Ẽ = 1 +
4
μ

+
2ρ̄

μ(μ + λ)
+

6K

μ
.

Thus, the proof of Lemma 3.5 is completed. �

Lemma 3.6. Under the conditions of Proposition 3.1, it holds that

B(T ) ≤ 3K

2
,

provided

m0 ≤ min

⎧
⎪⎨

⎪⎩

1
CK6

,
1

C
(
Ẽ2K

)2 ,
1

C
(
K

1
2 + ẼKm

1
12
0

)4 ,
1

C
(
Ẽ

3
2 K + ẼK

5
4

)6

⎫
⎪⎬

⎪⎭
.

Proof. Multiplying (2.1)3 by θ, and integrating by parts over R
3, we obtain

1
2

d
dt

∫

R3

ρ|θ|2 + κ

∫

R3

|∇θ|2

= −
∫

R3

ρθ2divu +
∫

R3

μ

2
|∇u + (∇u)′|2θ +

∫

R3

λ(divu)2θ + ν

∫

R3

|curl H|2θ

:=
4∑

i=1

IIIi. (3.31)

For III1, it follows by Hölder inequality and Sobolev inequality that

III1 ≤ C‖divu‖L2‖θ‖2L6‖ρ‖L6 ≤ Cm
1
6
0 ‖∇u‖L2‖∇θ‖2L2 . (3.32)

For III2 and III3, by virtue of Hölder inequality and Sobolev inequality, together with (3.24), one has

III2 + III3 ≤ C‖∇u‖L2‖∇u‖L3‖θ‖L6

≤ C‖∇u‖L2‖∇u‖L3‖∇θ‖L2

≤ C‖∇u‖ 3
2
L2‖∇θ‖L2 (‖√

ρu̇‖L2 + ‖|H||∇H|‖L2)
1
2

+ C‖∇u‖L2‖∇θ‖L2‖ρθ‖ 1
2
L2 (‖√

ρu̇‖L2 + ‖|H||∇H|‖L2)
1
2

+ Cm
1
6
0 ‖∇u‖L2‖∇θ‖2L2 . (3.33)

Then we estimate III4 as

III4 ≤ C‖∇H‖L2‖θ‖L6‖∇H‖L3 ≤ C‖∇θ‖L2‖∇H‖ 3
2
L2‖∇2H‖ 1

2
L2 . (3.34)
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We substitute (3.32)–(3.33) into (3.31) to obtain

κ

∫

R3

|∇θ|2 +
1
2

d
dt

∫

R3

ρ|θ|2 ≤ C‖∇u‖ 3
2
L2‖∇θ‖L2 (‖√

ρu̇‖L2 + ‖|H||∇H|‖L2)
1
2

+ C‖∇u‖L2‖∇θ‖L2‖ρθ‖ 1
2
L2 (‖√

ρu̇‖L2 + ‖|H||∇H|‖L2)
1
2
L2

+ C‖∇u‖L2‖∇θ‖2L2‖ρ‖L6 + C‖∇θ‖L2‖∇H‖ 3
2
L2‖∇2H‖ 1

2
L2 .

≤ κ

2
‖θ‖2L2 + C‖∇u‖3L2 (‖√

ρu̇‖L2 + ‖|H||∇H|‖L2)

+ C‖∇u‖2L2‖ρθ‖L2 (‖√
ρu̇‖L2 + ‖|H||∇H|‖L2)

+ Cm
1
6
0 ‖∇u‖L2‖∇θ‖2L2 + C‖∇H‖3L2‖∇2H‖L2 . (3.35)

Integrating (3.35) over [0, T ], and using (3.1), (3.3), (3.4) and (3.27), we have

B(T ) ≤
∫

R3

ρ0|θ0|2 + C

T∫

0

‖∇u‖3L2 (‖√
ρu̇‖L2 + ‖|H||∇H|‖L2) ds + C

T∫

0

‖∇H‖3L2‖∇2H‖L2ds

+ C

T∫

0

‖∇u‖2L2‖ρθ‖L2 (‖√
ρu̇‖L2 + ‖|H||∇H|‖L2) ds + C

T∫

0

‖∇u‖L2‖∇θ‖2L2‖ρ‖L6ds

≤ K + C sup
0≤t≤T

‖∇u‖2L2

⎛

⎝

T∫

0

‖∇u‖2L2ds

⎞

⎠

1
2

⎛

⎜
⎝

⎛

⎝

T∫

0

‖√
ρu̇‖2L2ds

⎞

⎠

1
2

+ K
1
4 m

1
8
0

⎛

⎝

T∫

0

‖∇2H‖2L2ds

⎞

⎠

1
2
⎞

⎟
⎠

+ C sup
0≤t≤T

‖∇H‖2L2

⎛

⎝

T∫

0

‖∇H‖2L2ds

⎞

⎠

1
2

⎛

⎝

T∫

0

‖∇2H‖2L2ds

⎞

⎠

1
2

+ Cm
1
3
0 sup

0≤t≤T
‖∇u‖2L2

⎛

⎝

T∫

0

‖∇θ‖2L2ds

⎞

⎠

1
2

⎛

⎜
⎝

⎛

⎝

T∫

0

‖√
ρu̇‖2L2ds

⎞

⎠

1
2

+ m
1
8
0 K

1
4

⎛

⎝

T∫

0

‖∇H2‖2L2ds

⎞

⎠

1
2
⎞

⎟
⎠

+ Cm
1
6
0

(

sup
0≤t≤T

‖∇u‖2L2

) 1
2

T∫

0

‖∇θ‖2L2ds

≤ K + Cm
1
6
0 K

(
Ẽ

3
2 K + ẼK

5
4 + Ẽ

1
2 K

1
2

)
≤ 3K

2
, (3.36)

provided

m0 ≤ 1

C
(
Ẽ

3
2 K + ẼK

5
4

)6 .

�

Lemma 3.7. Under the assumptions of Proposition 3.1, it holds that

0 ≤ ρ ≤ 3ρ̄

2
, (3.37)
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for any (x, t) ∈ R
3 × [0, T ], provided

m0 ≤ min

⎧
⎪⎨

⎪⎩

1
CK6

,
1

C
(
Ẽ2K

)2 ,
1

C
(
K

1
2 + ẼKm

1
12
0

)4 ,

1

C
(
Ẽ

3
2 K + ẼK

5
4

)6 ,
1

C(ẼK)
144
45

,
1

C
(
ẼK + K

3
2 m

1
4
0

)48

⎫
⎪⎬

⎪⎭
.

Proof. It follows from (2.1)1 formally that

Y ′(s) = g(Y ) + b′(s), (3.38)

where

Y (s) = log ρ (X(t;x, s), s) , g(Y ) = −P (X(t;x, s), s)
2μ + λ

, b(s) = − 1
2μ + λ

s∫

0

G (X(t;x, τ), τ) dτ,

and X(t;x, s) is given by
{ d

ds
X(t;x, s) = u (X(t;x, s), s) , 0 ≤ s < t,

X(t;x, t) = x.

By (2.1)1, we have

G (X(t;x, τ), τ) = Δ−1div ((ρu)τ + u · ∇(ρu) + ρudivu) + Δ−1div[(curl H) × H]

= Δ−1div
(

d
dτ

(ρu) + ρudivu

)

+ Δ−1div[(curl H) × H].

This deduces

b(t) − b(0) = − 1
2μ + λ

t∫

0

Δ−1div
(

d
dτ

(ρu) + ρudivu

)

dτ − 1
2μ + λ

t∫

0

Δ−1div[(curl H) × H]dτ

= − 1
2μ + λ

Δ−1div(ρu) +
1

2μ + λ
Δ−1div(ρ0u0) − 1

2μ + λ

t∫

0

Δ−1div (ρudivu) dτ

− 1
2μ + λ

t∫

0

Δ−1div[(curl H) × H]dτ

≤ C‖Δ−1div(ρu)‖L∞ + C‖Δ−1div(ρ0u0)‖L∞ + C

t∫

0

‖Δ−1div (ρudivu) ‖L∞ dτ

+ C

t∫

0

‖Δ−1div[(curl H) × H]‖L∞dτ =
4∑

i=1

IVi.

For IV1, using (2.5), Sobolev inequality, Calderon–Zygmund inequality, Hölder inequality, (3.1) and (3.3),
we get

IV1 ≤ C‖Δ−1div(ρu)‖ 1
3
L6‖∇Δ−1div(ρu)‖ 2

3
L4 ≤ C‖ρu‖ 1

3
L2‖ρu‖ 2

3
L4 ≤ C‖ρ‖ 1

3
L3‖u‖ 1

3
L6‖ρ‖ 2

3
L12‖u‖ 2

3
L6 ≤ Cm

7
18
0 ẼK.
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Similarly, it holds

IV2 ≤ Cm
7
18
0 K,

and then it implies

IV1 + IV2 ≤ Cm
7
18
0 ẼK ≤ m

1
16
0 , (3.39)

provided

m0 ≤ 1
C(ẼK)

144
45

.

(2.4) and (2.5) give

IV3 ≤ C

t∫

0

‖Δ−1div (ρudivu) ‖ 1
3
L6‖∇Δ−1div (ρudivu) ‖ 2

3
L4 dτ

≤ C

t∫

0

‖ρudivu‖ 1
3
L2‖ρudivu‖ 2

3
L4 dτ

≤ C

t∫

0

‖ρudivu‖L2 dτ + C

t∫

0

‖ρudivu‖L4 dτ. (3.40)

By the definition of G, it reads

ρudivu =
1

2μ + λ
ρuG +

1
2μ + λ

ρ2uθ.

This, together with Hölder inequality, Sobolev inequality, (3.22), (3.21), (3.3) and (3.1) deduces

‖ρudivu‖L2 ≤ C‖ρuG‖L2 + C‖ρ2uθ‖L2

≤ C‖ρ‖L6‖u‖L6‖G‖L6 + ‖ρ‖2L12‖u‖L6‖θ‖L6

≤ C‖ρ‖L6‖∇u‖L2‖∇G‖L2 + C‖ρ‖2L12‖∇u‖L2‖∇θ‖L2

≤ m
1
6
0 ‖∇u‖L2 (‖√

ρu̇‖L2 + ‖|H||∇H|‖L2 + ‖∇θ‖L2) (3.41)

and

‖ρudivu‖L4

≤ C‖ρuG‖L4 + C‖ρ2uθ‖L4

≤ ‖u‖L∞
(
‖ρ‖L12‖G‖L6 + ‖ρ‖2L24‖θ‖L6

)

≤ C(‖∇u‖L2 + ‖∇u‖L6)
(
‖ρ‖L12 (‖√

ρu̇‖L2 + ‖|H||∇H|‖L2) + ‖ρ‖2L24‖∇θ‖L2

)

≤ Cm
1
12
0 (‖∇u‖L2 + ‖∇ × u‖L6 + ‖divu‖L6)

(
‖√

ρu̇‖L2 + ‖|H||∇H|‖L2 + ‖∇θ‖L2

)

≤ Cm
1
12
0

(
‖∇u‖L2 + (‖√

ρu̇‖L2 + ‖|H||∇H|‖L2 + ‖∇θ‖L2)
)(

‖√
ρu̇‖L2 + ‖|H||∇H|‖L2 + ‖∇θ‖L2

)
.

(3.42)
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Putting (3.41) and (3.42) into (3.40), and using Cauchy inequality, (3.1) and (3.4), we obtain

IV3 ≤ m
1
6
0

t∫

0

‖∇u‖L2 (‖√
ρu̇‖L2 + ‖|H||∇H|‖L2 + ‖∇θ‖L2) dτ

+ m
1
12
0

t∫

0

(
‖∇u‖L2 + (‖√

ρu̇‖L2 + ‖|H||∇H|‖L2 + ‖∇θ‖L2)
)

×
(
‖√

ρu̇‖L2 + ‖|H||∇H|‖L2 + ‖∇θ‖L2

)
dτ

≤ C(m
1
6
0 + m

1
12
0 )

t∫

0

‖∇u‖2L2 dτ + (m
1
6
0 + m

1
12
0 )

t∫

0

(‖√
ρu̇‖2L2 + ‖|H||∇H|‖2L2 + ‖∇θ‖2L2) dτ

≤ C(m
1
6
0 + m

1
12
0 )m

1
2
0 + (m

1
6
0 + m

1
12
0 )

(
ẼK + m

1
4
0 K

3
2 + K

)
≤ m

1
16
0 ,

provided

m0 ≤ 1

C
(
ẼK + K

3
2 m

1
4
0

)48 .

For IV4, it follows that by using the above inequality,

IV4 ≤ C

t∫

0

‖Δ−1div[(curl H) × H]‖ 1
3
L6‖∇Δ−1div[(curl H) × H]‖ 2

3
L4 dτ

≤ C

t∫

0

‖(curl H) × H‖ 1
3
L2‖(curl H) × H‖ 2

3
L4 dτ

≤ C

t∫

0

‖(curl H) × H‖L2 dτ +

T∫

0

‖(curl H) × H‖L4 dτ

≤ C

t∫

0

‖H‖L6‖∇H‖L3 dτ +

t∫

0

‖H‖L∞‖∇H‖L4 dτ

≤ C

⎛

⎝

T∫

0

‖∇H‖2L2 dτ

⎞

⎠

3
4

⎛

⎝

t∫

0

‖∇2H‖2L2 dτ

⎞

⎠

1
4

+

⎛

⎝

t∫

0

‖∇H‖2L2 dτ

⎞

⎠

3
8

⎛

⎝

t∫

0

‖∇2H‖2L2 dτ

⎞

⎠

5
8

≤ Cm
3
8
0 K

1
4 + Cm

3
16
0 K

5
8 ≤ m

1
16
0 ,

provided

m0 ≤ 1
CK5

.

By the estimates of IVi, i = 1, 2, 3, 4, it yields

b(t) − b(0) ≤m
1
16
0 log

3
2

≤ log
3
2
,
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provided

m0 ≤ min

⎧
⎪⎨

⎪⎩

1
C(ẼK)

144
45

,
1

C
(
ẼK + K

3
2 m

1
4
0

)48 ,
1

CK5

⎫
⎪⎬

⎪⎭
.

Integrating (3.38) with respect to s over [0, t], we get

log ρ(x, t) = log ρ0 (X(t;x, 0)) +

T∫

0

g(Y ) dt + b(t) − b(0) ≤ log ρ̄ + log
3
2
,

which deduces

ρ ≤ 3ρ̄

2
.

�

Remark 3.8. The proof of the upper bound of ρ is not rigorous, since ρ may vanish. In fact, this could
be handled by constructing an approximate solution ρδ > 0 to (2.1)1 with initial data ρ0 + δ > 0 for the
constant δ > 0. Then one can replace log ρ by log ρδ in the above process and finally pass to the limits
δ → 0+ to obtain the desire estimate.

Now we are in the position to prove Theorem 2.3. Recall that in [11], the Serrin-Type blowup criterion
for the strong solution to the problem (2.1)–(2.3) is obtained, which is

lim sup
T↗T ∗

(‖ρ‖L∞(0,T ;L∞) + ‖u‖Ls(0,T ;Lr)

)
= ∞,

2
s

+
3
r

≤ 1. (3.43)

Then combining Proposition 3.1 with (3.43), we can get the global existence and uniqueness of the strong
solution to (2.1)–(2.3). Indeed, the boundedness of ρ is given in Lemma 3.7. On the other hand, by
choosing s = 6, r = 6 in (3.43), and using Lemmas 3.3 and 3.5, one has

T∫

0

‖u‖6L6 ≤ sup
0≤t≤T

‖∇u‖4L2

T∫

0

‖∇u‖2L2 ≤ C.

Thus, we obtain that T ∗ = ∞ and complete the proof of Theorem 2.3.
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