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Abstract. In this present paper, we consider the following critical Kirchhoff problem

−
(
a + λ

∫

RN

|∇u|2dx
)
Δu + mu = μ|u|p−2u + |u|2∗−2u in R

N ,

where a, λ ∈ R and m, μ ∈ R
+ ∪{0}, N ≥ 3 and 2 < p < 2∗. In this first part, a pure critical Kirchhoff problem (m = μ = 0)

has been considered for both a > 0 and a ≤ 0. We obtain a series of fairly complete existence and multiplicity results and
have a clear understand the solutions of this pure critical Kirchhoff problem. In particular, if N ≥ 5, a > 0 and λ > 0
is suitable small, we obtain two positive solutions, in which one is a mountain pass solution and another one is a global
(local) minimum solution. In the second part, the original perturbation problem with m, μ > 0 has been considered and
two positive solutions also have been obtained for N ≥ 5, which is rather different compared with the case that λ = 0.
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1. Introduction and main results

In this present paper, we investigate the following critical Kirchhoff problem

−
(
a + λ

∫

RN

|∇u|2dx
)
Δu + mu = μ|u|p−2u + |u|2∗−2u in R

N , (1.1)

where a,m are two constants, λ, μ are two parameters, 2 < p < 2∗ and 2∗ = 2N
N−2 for N ≥ 3 is the critical

exponent. The original model comes from the following equation

utt − (a + b

∫

Ω

|∇u|2dx)Δu = f(x, t, u),

presented in Kirchhoff [23]. This kind of equations is an extension of the classical d’Alembert’s wave
equations because of taking into account the effects of the changes in the length of a string during
vibrations. Kirchhoff type problem is concerning not only the effects of the changes in length of a string,
but also the non-Newton mechanics, the physical laws of the universe, the problem of plasma, elastic
theory, population dynamics models and so on.

The stationary general problem

−
(
a + b

∫

R3

|∇u|2dx
)
Δu + V (x)u = g(x, u) in R

3, (1.2)

has been studied by many authors under variant conditions on V (x) and g(x, u). Li and Ye [25] proved
that problem (1.2) has a positive ground state solution for g(x, u) = up−1, 3 < p < 6 when V satisfies some
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suitable conditions. For more related results, we refer the readers to the bounded domain in [31,36,39], the
ground state solutions in [15,41], the nodal solutions [10,37,40,47], the periodic potential cases [3,27,48],
the semi-classical and multi-peak solutions [13,21,26].

In what follows, we briefly recall some known results about the critical Kirchhoff problem. A large
number of papers have been published in three-dimensional space. In Alves et al. [2], the authors studied
the following Kirchhoff problem⎧

⎨
⎩

−M(
∫
Ω

|∇u|2dx)Δu = νf(x, u) + u5 in Ω,

u = 0 on ∂Ω,
(1.3)

where the parameter ν > 0, M(t) and f(x, u) are continuous functions, and Ω is a bounded domain in
R

3. They obtained a positive solution if ν > 0 is large enough, among other things, f(x, u) satisfies the
well-known Ambrosetti-Rabinowitz sup-linear condition, i.e.,

0 < τF (x, u) := τ

u∫

0

f(x, s)ds ≤ f(x, u)u for all x ∈ Ω, u > 0 and some fixed τ.

After that, the authors in He and Zou [18] and Wang et al. [42] studied the following critical Kirchhoff
problem

− (aε2 + bε

∫

R3

|∇u|2dx)Δu + V (x)u = νf(u) + u5 in R
3, (1.4)

where ε > 0 is a small parameter, a, b > 0 are two constants and V (x) is a suitable potential. By recovering
a local (PS)c condition for c < c′

3 or c′′
3 , where

c′
3 =

1
12

(aS)
3
2 or c′′

3 =
1
3
(aS)

3
2 +

1
12

b3S6,

and S is the best Sobolev constant from D1,2(RN ) to L2∗
(RN ), they obtained a semi-classical solution if

ν > 0 large enough and f(u) satisfies the sup-4-linear condition.
In Li and Ye [24] and Xie et al. [44], the authors obtained a positive solution of the critical Kirchhoff

problem either in R
3 or in a bounded domain when the perturbation term f satisfies the sup-4-linear

condition by improving a local (PS)c condition for c < c3, where

c3 =
1
4
abS3 +

1
24

b3S6 +
1
24

(b2S4 + 4aS)
3
2 . (1.5)

For more related results concerning the perturbation term f with the sup-4-linear condition, we refer the
readers to Figueiredo et al. [12], He and Li [17], Liu and Guo [28,29], Naimen [33] and references therein.

In He and Li [16], the authors considered the following critical Kirchhoff problem with a sub-4-linear
perturbation term

− (aε2 + bε

∫

R3

|∇u|2dx)Δu + V (x)u = νup−1 + u5, u > 0 in R
3. (1.6)

They obtained some existence results of the semi-classical solutions for 2 < p < 4 and ν > 0 large
enough. Sun and Liu [38] obtained a positive solution for 1 < p < 2 and ν > 0 small enough. Some results
concerning the critical Kirchhoff problem with a nonhomogeneous term can be found in [8,22].

Little results have been obtained for the high-dimensional cases N ≥ 4. The authors in Xie et al.
[45,46] studied the following critical Kirchhoff problem in D1,2(RN ),

−
(
a + b

∫

RN

|∇u|2dx
)
Δu + V (x)u = |u|2∗−2u in R

N .
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With some suitable assumptions on b and the potential V , they obtained a bound stated solution for
N = 3, 4 and two solutions for N ≥ 5 by recovering a local (PS)c condition with

c ∈ (cN , 2cN ) for N = 3 or 4 and c �= cN,± for N ≥ 5, (1.7)

where cN,± are two fixed levels depending on N, a, b for N ≥ 5 and cN is defined in (1.5) for N = 3 and

c4 =
(aS)2

4(1 − bS2)
for N = 4. (1.8)

In Naimen [32], the author considered the following problem in high-dimensional space
⎧
⎨
⎩

−(a + b
∫
Ω

|∇u|2dx)Δu = νup−1 + μu2∗−1, u > 0 in Ω,

u = 0 on ∂Ω,
(1.9)

where p ∈ [2, 2∗) and Ω is a bounded domain in R
N , N ≥ 4. With some suitable assumptions on the

positive constants a, b and the parameters ν, μ, the author obtained a positive solution in four-dimensional
case by recovering a local (PS)c condition for c < c4,μ, where c4,μ = (aS)2

4(μ−bS2) . After that, Naimen and
Shibata [34] obtained two positive solutions for problem (1.9) in high-dimensional case N ≥ 5 by using
the critical levels cN,±, which coincides with (1.7). A related result can be found in Naimen and Shibata
[35] for four-dimensional case. We also refer the readers to Hebey [19,20] for the critical Kirchhoff problem
in manifolds.

The rescaling argument is an effective method dealing with a kind of autonomous Kirchhoff problem.
In Azzollini [6], the author considered the following Kirchhoff problem by a rescaling argument

−
(
a + b

∫

RN

|∇u|2dx
)
Δu = g(u) in R

N ,

where g satisfies some suitable assumptions. The author proved that there exist some positive constants
t such that u(t·) solving the Kirchhoff problem, where u is a solution of −Δu = g(u) in R

N . More related
results by using this similar method can be found in Azzollini [5], Lu [30] and Wu et al. [43].

From the above-mentioned works, we can find that it is necessary to make a clear and complete
study on the solutions and corresponding critical levels of the pure critical Kirchhoff problem, which are
interesting and basic works and heavily affect the compactness results or the local (PS)c condition. The
levels cN , which are defined by (1.5) and (1.8) for N = 3 and 4, respectively, are the first and optimal
threshold for the lack of compactness result. It should be mentioned that these are not clear for the
high-dimensional cases. From this point, we try to give a complete research on the pure critical Kirchhoff
problem, i.e., problem (1.1) with m = μ = 0, especially for the high-dimensional cases N ≥ 5.

In the first part of this paper, we investigate the following pure critical Kirchhoff problem
⎧
⎨
⎩

−
(
a + λ

∫
RN

|∇u|2dx
)
Δu = |u|2∗−2u in R

N ,

u ∈ D1,2(RN ),
(K∗

λ)

where a is a constant, λ is a parameter and N ≥ 3. Roughly speaking, we try to find solutions of (K∗
λ)

from the solutions of the following classical critical elliptic equation by a multiplying argument
{

−Δu = |u|2∗−2u in R
N ,

u ∈ D1,2(RN ).
(S∗)

It should be mentioned that this method has no difference comparing with the rescaling argument used
by Azzollini [6].
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To state our results, we need some basic and suitable variational setting. It is well-known that the
solutions of (K∗

λ) correspond to the critical points of C2 functional I: D1,2(RN ) → R given by

I(u) =
a

2

∫

RN

|∇u|2dx +
λ

4

⎛
⎝

∫

RN

|∇u|2dx

⎞
⎠

2

− 1
2∗

∫

RN

|u|2∗
dx. (1.10)

For each u ∈ D1,2(RN ), we denote the fibering map Qu(t) : [0,+∞) → R,

Qu(t) := I(tu) =
at2

2

∫

RN

|∇u|2dx +
λt4

4

⎛
⎝

∫

RN

|∇u|2dx

⎞
⎠

2

− t2
∗

2∗

∫

RN

|u|2∗
dx.

A good candidate for appropriate subset of D1,2(RN ) is so-called Nehari manifold

N N :=
{
u ∈ D1,2(RN )\{0} : Q′

u(1) = 0
}

. (1.11)

With the help of the fibering map, it is natural to divide N N into three subsets N N,−, N N,+ and N N,0

corresponding to the local maxima, local minima and points of inflexion of fibering map, respectively,

N N,− :=
{
u ∈ N N : Q′′

u(1) < 0
}

, N N,+ :=
{
u ∈ N N : Q′′

u(1) > 0
}

,

N N,0 :=
{
u ∈ N N : Q′′

u(1) = 0
}

.

We denote the unique positive solution of (S∗) by U , which achieves the best Sobolev constant S and
SN/2 = |U |2∗

2∗ = |∇U |22, where | · |q is the standard norm in Lq for q ≥ 1.
The results for the three- or four-dimensional cases can be stated as follows:

Theorem 1.1. Assume a > 0 and λ > 0. Then, the following results hold:

(i) For N = 3, problem (K∗
λ) has infinitely many distinct solutions {ϕi}∞

i=1. Moreover, ϕ1 is a positive
solution,

inf
u∈N 3

I(u) = c3 = I(ϕ1) > 0, I(ϕi) → +∞ as i → +∞.

(ii) For N = 4, problem (K∗
λ) has a positive solution ϕ1 if and only if λ < S−2. Moreover, for any n ∈ N,

there exists λn > 0 such that problem (K∗
λ) with λ ∈ (0, λn) has n solutions {ϕi}n

i=1 satisfying

inf
u∈N 4

I(u) = c4 = I(ϕ1) > 0,

I(ϕ1) < I(ϕ2) < · · · < I(ϕn) =
a2

4(λn − λ)
.

If N ≥ 5, the solutions of problem (K∗
λ) exist in pairs and the main results can be stated as follows:

Theorem 1.2. Assume N ≥ 5, a > 0 and λ > 0. Then, the following results hold:

(i) Problem (K∗
λ) has two positive solutions ϕ1,± if and only if λ ∈ (0,Λ0). Both of them are two local

minimum points on the Nehari manifolds

inf
u∈N N,−

I(u) = I(ϕ1,−) = cN,− > 0, inf
u∈N N,+

I(u) = I(ϕ1,+) = cN,+,

and cN,− > cN,+. Moreover, cN,+ < 0 for λ ∈ (0,Λ1) and cN,+ > 0 for λ ∈ (Λ1,Λ0), where Λ0 and
Λ1 are defined as follows, respectively,

Λ0 :=
2

N − 2

(
N − 4

a(N − 2)

)N−4
2

S− N
2 and Λ1 :=

4
N

(
N − 4
aN

)N−4
2

S− N
2 . (1.12)
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(ii) For any n ∈ N, there exists λn > 0 such that problem (K∗
λ) with λ ∈ (0, λn) has 2n solutions

ϕi,± ∈ N N,±, i ∈ {1, 2, . . . , n} and

I(ϕi,−) > I(ϕi,+),

I(ϕ1,±) < I(ϕ2,±) < · · · < I(ϕn,±) <
a2

N(N − 4)λ
.

Remark 1.3. More details can be stated as follows for N ≥ 5.
(i). It should be mentioned that 0 and ϕ1,+ are two local minimum points of the energy functional I

and one of them is the global minimum point in D1,2(RN ). In other words, there hold,

I(0) = inf
u∈Brλ

I(u) and I(ϕ1,+) = inf
u∈D1,2(RN )\Brλ

I(u), (1.13)

where Brλ
= {u ∈ D1,2(RN ) : |∇u|2 ≤ rλ} and rλ := ξ1,− is a constant defined by (1.21). Moreover,

inf
u∈D1,2(RN )

I(u) =

{
I(ϕ1,+), if λ ∈ (0,Λ1),
I(0), if λ ∈ (Λ1,Λ0).

Actually, by the Sobolev inequalities and some basic computations, one obtains

I(0) ≥ inf
u∈Brλ

I(u) ≥ inf
u∈Brλ

(
a

2
|∇u|22 +

λ

4
|∇u|42 − 1

2∗ S− 2∗
2 |∇u|2∗

2

)

= inf
t∈[0,rλ]

θ(t) = 0,

where θ(t) = a
2 t2 + λ

4 t4 − 1
2∗ S− 2∗

2 t2
∗
. Here I(0) = infBrλ

I(u) holds.
On the one hand, for u ∈ N N,+, we have that |∇u|2 > ηλ > rλ (see (1.23)), which implies N N,+ ⊂ Bc

rλ
.

Thus, infu∈N N,+ I(u) ≥ infu∈Bc
rλ

I(u). On the other hand, it follows that

inf
u∈Bc

rλ

I(u) ≥ inf
t≥rλ

θ(t) = θ(ξ1,+) = cN,+ = inf
u∈N N,+

I(u),

where ξ1,+ is given in (1.21). Thus, I(ϕ1,+) = infu∈Bc
rλ

I(u) holds. Moreover, by Theorem 1.2 (i), we
have

inf
u∈D1,2(RN )

I(u) =

{
I(ϕ1,+), if λ ∈ (0,Λ1),
I(0), if λ ∈ (Λ1,Λ0).

(ii) Moreover, ϕ1,− is a mountain pass solution. Actually, by (1.13), Theorem 1.2 (i) and |∇ϕ1,+|2 >
rλ = |∇ϕ1,−|2, we can check that

max{I(0), I(ϕ1,+)} < I(ϕ1,−) ≤ inf
u∈∂Brλ

I(u).

Thus, we can define a mountain pass level as following:

m− := inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)), (1.14)

where Γ = {γ(t) ∈ C([0, 1]) : γ(0) = 0 and γ(1) = ϕ1,+}. We claim that

cN,− = m−. (1.15)

In fact, since |∇γ(0)|2 < rλ < |∇γ(1)|2 for any γ ∈ Γ, there exists tγ ∈ (0, 1) such that γ(tγ) ∈ ∂Brλ
.

Thus, it follows that

sup
t∈[0,1]

I(γ(t)) ≥ I(γ(tγ)) ≥ inf
u∈∂Brλ

I(u) ≥ I(ϕ1,−),
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which implies cN,− ≤ m−. Let γ1(t) := tϕ1,+ and γ1(t) ∈ Γ. Then, we have

m− ≤ sup
t∈[0,1]

I(γ1(t)) = max
t∈[0,1]

I(tϕ1,+) = I(ϕ1,−),

which implies cN,− ≥ m−. Then, cN,− = m− holds.

Theorem 1.4. Assume that N ≥ 3, a > 0 and λ < 0, problem (K∗
λ) has infinitely many distinct solutions

{ϕi}∞
i=1. Moreover, ϕ1 is the positive ground state solution with I(ϕ1) = cN > 0 and I(ϕi) < − a2

4λ .

Remark 1.5. (i). Similar to Remark 1.3, the critical level cN obtained in Theorem 1.1 (i)-(ii) and Theorem
1.4 are the mountain pass levels. In fact, for a > 0, if N = 3 or N = 4 and λ < S−2 or N ≥ 5 and λ < 0,
we take T0 > 0 large such that ‖T0U‖ > ξ1 and I(T0U) < 0, where ξ1 comes from (1.19), (1.20) and
(1.28),

max{I(0), I(T0U)} < I(ϕ1) ≤ inf
u∈∂Bξ1

I(u).

Thus, we can define a mountain pass level as following:

m− := inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)),

where Γ := {γ(t) ∈ C([0, 1]) : γ(0) = 0 and γ(1) = T0U}. It is evident to prove that

cN = m−.

(ii). We have a clear description of the above critical levels cN and cN,± as follows. Set

θ(t) =
a

2
t2 +

λ

4
t4 − 1

2∗ S− 2∗
2 t2

∗
for t ≥ 0. (1.16)

If N = 3 or N = 4 and λ < S−2 or N ≥ 5 and λ < 0, the critical levels cN defined in Theorem 1.1 (i)-(ii)
and Theorem 1.4 can be rewritten as

cN = max
t≥0

θ(t). (1.17)

If N ≥ 5 and 0 < λ < Λ0, the critical levels cN,± defined in Theorem 1.2 (i) can be rewritten as

cN,− = max
0≤t≤ηλ

θ(t) and cN,+ = min
t≥ηλ

θ(t), (1.18)

where ηλ =
(

2a
(N−4)λ

)1/2

. It is easy to check that (1.17) coincide with (1.5) for N = 3 and (1.8) for N = 4

and 0 < λ < S−2, (replace b by λ).

Here, we begin to give the proof of the above Theorem 1.1–1.4 by the multiplying argument.

The proof of Theorem 1.1 (i).. Equation (S∗) admits infinitely many distinct solutions {ui}∞
i=1 satisfying

|∇ui|2 → +∞ as i → ∞ (see Ding [11]). Without loss of generality, we assume |∇u1|2 < |∇u2|2 < · · · <
|∇ui|2 → +∞, where u1 = U is the positive solution. It is evident to check that the existence of a positive
root Ki for equation gi(t) = 0 defined by

gi(t) = −t4 + λ|∇ui|22t2 + a, t ≥ 0,

where i ∈ N, a > 0 and λ > 0. Let ϕi := Kiui, then

−Δϕi = −KiΔui = Ki

(
|ui|2∗−2ui

)

=
K5

i

a + λK2|∇ui|22
(
|ui|2∗−2ui

)
=

1
a + λ|∇ϕi|22

(
|ϕi|2∗−2ϕi

)
.
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Thus, {ϕi}∞
i=1 is a sequence of solutions for problem (K∗

λ) and ϕi ∈ N 3,− because of

Q′′
ϕi

(1) = −2λ|∇ϕi|22
(

|∇ϕi|22 +
2a

λ

)
< 0.

Set ξi := |∇ϕi|2, then ξi is the positive root of equation fi(t) = 0 defined by

fi(t) = − (|∇ui|−1
2 t

)4
+ λt2 + a, t ≥ 0,

where i ∈ N, a > 0 and λ > 0. By the fact that |∇ui|2 < |∇ui+1|2 and |∇ui|2 → +∞ as i → ∞ and some
calculations, one has fi(t) < fi+1(t) and

0 < ξ1 < ξ2 < · · · < ξi → +∞ as i → ∞. (1.19)

Therefore, I(ϕi) = 1
3a|∇ϕi|22 + 1

12λ|∇ϕi|42. By (1.19), one obtains

0 < I(ϕ1) < I(ϕ2) < · · · < I(ϕi) → +∞ as i → ∞.

Moreover, it follows from u ∈ N 3 and the Sobolev inequalities that

a|∇u|22 + λ|∇u|42 = |u|66 ≤ S−3|∇u|62,
which implies |∇u|2 ≥ ξ1. Combing with ξ1 = |∇ϕ1|2, it follows that

inf
u∈N 3

I(u) = c3 = I(ϕ1) > 0.

The proof is completed. �

The Proof of Theorem 1.1 (ii). On the one hand, if 0 < λ < S−2, let K1 =
√

a
1−λS2 and U be the positive

solution of problem (S∗). Then, it is evident to check that ϕ1 := K1U is a positive solution of problem
(K∗

λ). On the other hand, if ϕ1 is a positive solution of problem (K∗
λ), then U =

(
a + λ|∇ϕ1|22

)−1/2
ϕ1 is

a positive solution of problem (S∗). Remind that |∇U |22 = SN/2, then ξ1 := |∇ϕ1|2 is the root of equation
f(t) = 0 defined by

f(t) = (λ − S−2)t2 + a, t ≥ 0,

where a > 0 and λ > 0. The existence of a positive root for f(t) = 0 implies that λ < S−2.
For any n ∈ N, let {ui}n

i=1 be n solutions of equation (S∗) satisfying |∇U |2 = |∇u1|2 < |∇u2|2
< · · · < |∇un|2. Setting λn = |∇un|−2

2 , it is evident to check that the existence of a positive root Ki for
equation gi(t) = 0 defined by

gi(t) = −(1 − λ|∇ui|22)t2 + a, t ≥ 0,

where i ∈ {1, 2, . . . , n}, a > 0 and λ ∈ (0, λn). Let ϕi := Kiui, then {ϕi}n
i=1 is a sequence of solutions

for problem (K∗
λ) and ϕi ∈ N 4,− because of Q′′

ϕi
(1) = −2a|∇ϕi|22 < 0. Set ξi := |∇ϕi|2 for any i ∈

{1, 2, . . . , n}, then ξi is the positive root of equation fi(t) = 0 defined by

fi(t) = −(|∇ui|−2
2 − λ)t2 + a, t ≥ 0,

where i ∈ {1, 2, . . . , n}, a > 0 and λ ∈ (0, λn). By some calculations and |∇ui|2 < |∇ui+1|2 for i ∈
{1, 2 . . . , n − 1}, one has fi(t) < fi+1(t) and

0 < ξ1 < ξ2 < · · · < ξn =
√

a

|∇un|−2
2 − λ

. (1.20)

It follows from I(ϕi) = 1
4a|∇ϕi|22 and (1.20) that

0 < I(ϕ1) < I(ϕ2) < · · · < I(ϕn) =
a2

4(λn − λ)
.

By the Sobolev inequalities, for u ∈ N 4, we obtain

a|∇u|22 + λ|∇u|42 = |u|44 ≤ S−2|∇u|42,
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which implies that |∇u|2 ≥ ξ1. Combing with |∇ϕ1|2 = ξ1, it follows that

inf
u∈N 4

I(u) = c4 = I(ϕ1) > 0.

The proof is completed. �

The proof of Theorem 1.2 (i).. On the one hand, by the assumption λ ∈ (0,Λ0), there exist two positive
roots for equation g(t) = 0 defined by

g(t) = λS
N
2 t2 − t

4
N−2 + a, t ≥ 0,

where a > 0. Without loss of generality, we denote the roots by K1,± and K1,− < K1,+. Let U be
the positive solution of problem (S∗), then it is evident to check that ϕ1,± := K1,±U are two positive
solutions of problem (K∗

λ). On the other hand, if ϕ1,± are two positive solutions of problem (K∗
λ), then

U =
(
a + λ|∇ϕ1,±|22

)−(N−2)/4
ϕ1,± are the positive solutions of problem (S∗). Remind that |∇U |22 = SN/2.

Set

ξ1,± := |∇ϕ1,±|2, (1.21)

then ξ1,± are the roots of equation f(t) = 0 defined by

f(t) = λt2 −
(
S− N

4 t
) 4

N−2
+ a, t ≥ 0, (1.22)

where a > 0 and λ > 0. The existence of two positive roots for f(t) = 0 implies that λ ∈ (0,Λ0).
Secondly, it follows from u ∈ N N and the Sobolev inequalities that

a|∇u|22 + λ|∇u|42 = |u|2∗
2∗ ≤ S− N

N−2 |∇u|
2N

N−2
2 ,

which implies that ξ1,− ≤ |∇u|2 ≤ ξ1,+. Therefore, for any N N , one obtains

Q′′
u(1) =

2(N − 4)
N − 2

λ|∇u|22
(

|∇u|22 − 2a

(N − 4)λ

)
=

2(N − 4)
N − 2

λ|∇u|22
(|∇u|22 − η2

λ

)
, (1.23)

where ηλ := ( 2a
(N−4)λ )1/2. Combining with ξ1,− ≤ |∇u|2 ≤ ξ1,+ for any u ∈ N N and ξ1,− < ηλ < ξ1,+ (see

Lemma 3.3), we can rewrite the Nehari manifolds as follows:

N N,− =
{

u ∈ N N : ξ1,− ≤ |∇u|2 < ηλ

}
, N N,0 =

{
u ∈ N N : |∇u|2 = ηλ

}
,

N N,+ =
{

u ∈ N N : ηλ < |∇u|2 ≤ ξ1,+

}
.

Directly, ϕ1,± ∈ N N,±. For any u ∈ N N , there holds,

I(u) = I(u) − 1
2∗ 〈I ′(u), u〉 =

1
N

a|∇u|22 − N − 4
4N

λ|∇u|42 := I(|∇u|22), (1.24)

where

I(t) =
1
N

at − N − 4
4N

λt2, t ≥ 0. (1.25)

It is easy to check that I(t) is increasing in (0, η2
λ) and decreasing in (η2

λ,+∞). I achieves its maximum
point at η2

λ. It follows from ϕ1,± ∈ N N,± and 0 < ξ1,− < ηλ < ξ1,+ that

I(ϕ1,−) ≥ inf
u∈N N,−

I(u) ≥ inf
ξ2
1,−≤t<η2

λ

I(t) = I(ξ2
1,−) = I(ϕ1,−) > 0,

I(ϕ1,+) ≥ inf
u∈N N,+

I(u) ≥ inf
ξ2
1,+≥t>η2

λ

I(t) = I(ξ2
1,+) = I(ϕ1,+),

which imply that infu∈N N,± I(u) = I(ϕ1,±) and I(ϕ1,−) > 0. Moreover, by the fact that

ξ2
1,+ − η2

λ > η2
λ − ξ2

1,−,
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in Lemma 3.3, one obtains I(ϕ1,+) < I(ϕ1,−).
Lastly, it remains to prove that I(ϕ1,+) < 0 for λ ∈ (0,Λ1) and I(ϕ1,+) > 0 for λ ∈ (Λ1,Λ0). Actually,

it is evident to check that I(t) > 0 for t ∈ (0, 2η2
λ), I(2η2

λ) = 0 and I(t) < 0 for t ∈ (2η2
λ,+∞). Then, it

is sufficient to prove that ξ1,+ >
√

2ηλ for λ ∈ (0,Λ1) and ξ1,+ <
√

2ηλ for λ ∈ (Λ1,Λ0). It follows that

f(
√

2ηλ) = 2λη2
λ − (2S− N

2 η2
λ)

2
N−2 + a =

aN

N − 4
−

(
4a

(N − 4)λSN/2

) 2
N−2

.

Here, f(
√

2ηλ) < 0 for λ ∈ (0,Λ1) and f(
√

2ηλ) > 0 for λ ∈ (Λ1,Λ0). Combining this and f(ξ1,−) =
f(ξ1,+) = 0, one has that ξ1,+ >

√
2ηλ for λ ∈ (0,Λ1) and ξ1,+ <

√
2ηλ for λ ∈ (Λ1,Λ0). The proof is

completed. �

The Proof of Theorem 1.2 (ii). For any n ∈ N, let {ui}n
i=1 be n solutions of equation (S∗) satisfying

|∇U |2 = |∇u1|2 < |∇u2|2 < · · · < |∇un|2. Let

λn =
2

N − 2

(
N − 4

a(N − 2)

)(N−4)/2

|∇un|−2
2 ,

it is evident to check that the existence of two positive roots Ki,± (Ki,− < Ki,+) for equation gi(t) = 0
defined by

gi(t) = λ|∇ui|22t2 − t
4

N−2 + a, t ≥ 0, (1.26)

where i ∈ {1, 2, . . . , n}, a > 0 and λ ∈ (0, λn). Let ϕi,± := Ki,±ui, then {ϕi,±}n
i=1 are the solutions of

equation (K∗
λ). Set ξi,± := |∇ϕi,±|2 for i ∈ {1, 2, . . . , n}, then ξi,± are the roots of equation fi(t) = 0

defined by

fi(t) = λt2 − (|∇ui|−1
2 t

) 4
N−2 + a, t ≥ 0, (1.27)

where i ∈ {1, 2, . . . , n}, a > 0 and λ ∈ (0, λn). With a similar argument of Lemma 3.3, we obtain

ξi,− < ηλ < ξi,+ and ξ2
i,+ − η2

λ > η2
λ − ξ2

i,−,

which implies ϕi,± ∈ N N,± and I(ϕi,−) > I(ϕi,+). From the assumption |∇ui|2 < |∇ui+1|2 for i ∈
{1, 2, . . . , n − 1}, it follows that fi(t) < fi+1(t) and

0 < ξ1,− < ξ2,− < · · · < ξn,− < ηλ < ξn,+ < · · · < ξ1,+.

Combining with the monotonicity of I(t), the desired result holds,

I(ϕ1,±) < I(ϕ2,±) < · · · < I(ϕn,±) <
a2

N(N − 4)λ
.

The proof is completed. �

The proof of Theorem 1.4. Let {ui}∞
i=1 be a sequence of solutions for equation (S∗) and satisfy |∇U |2 =

|∇u1|2 < |∇u2|2 < · · · < |∇ui|2 → +∞. It is evident to check that the existence of a positive root Ki for
equation gi(t) = 0 defined by

gi(t) = λ|∇ui|22t2 − t
4

N−2 + a, t ≥ 0,

where i ∈ N, a > 0 and λ < 0. Let ϕi := Kiui, then {ϕi}∞
i=1 is a sequence of solutions of equation (K∗

λ).
Set

ξi := |∇ϕi|2, (1.28)

then ξi is a positive root of fi(t) = 0 defined by

fi(t) = λt2 − (|∇ui|−1
2 t

) 4
N−2 + a, t ≥ 0,
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Fig. 1. a > 0 and N = 3

where i ∈ N, a > 0 and λ < 0. From the assumption |∇ui|2 < |∇ui+1|2, it follows that fi(t) < fi+1(t) <
λt2 + a and

0 < ξ1 < ξ2 < · · · < ξn < · · · <

√
−a

λ
. (1.29)

By (1.29), a > 0 and λ < 0, one has

Q′′
ϕi

(1) =
2(N − 4)
N − 2

λ|∇ϕi|42 − 4a

(N − 2)
|∇ϕi|22 < 0,

which implies that ϕi ∈ N N,−. By (1.29) and the monotonicity of I(t), the desired result I(ϕi) < − a2

4λ

holds. It follows from u ∈ N N that

a|∇u|22 + λ|∇u|42 = |u|2∗
2∗ ≤ S− N

N−2 |∇u|
2N

N−2
2 ,

which implies that |∇u|2 ≥ ξ1. Combing with |∇ϕ1|2 = ξ1, it follows that

inf
u∈N N

I(u) = cN = I(ϕ1) > 0.

The proof is completed. �

Remark 1.6. For N ≥ 5, let {λn} be a positive and decreasing sequence satisfying that λn < Λ0 and
λn → 0+ as n → ∞. It follows from Theorem 1.2 (i) that ϕn

1,± := Kn
1,±U being two positive solutions of

problem (K∗
λ), where Kn

1,± are the positive roots of the equation λnS
N
2 t2 − t

4
N−2 + a = 0. It is evident to

check that a
N−2

4 < Kn
1,− <

(
2

(N−2)λSN/2

) N−2
2(N−4)

< Kn
1,+ and

lim
n→∞ Kn

1,− = a
N−2

4 , lim
n→∞ Kn

1,+ = ∞. (1.30)

Moreover, let {λn} be a negative and increasing sequence satisfying that λn → 0−. It follows from
Theorem 1.4 that ϕn

1,± := Kn
1 U being a positive solutions of problem (K∗

λ), where Kn
1 < a

N−2
4 and

limn→∞ Kn
1 = a

N−2
4 . It is easy to check that ϕ0

1 := a
N−2

4 U solves (K∗
λ) with λ = 0. Thus, from this

aspect, the existence results are continuous in λ = 0.
From all the above analysis, we can give the following bifurcation and the red one is the positive

solution.

In the last part of this section, we consider the case that a ≤ 0.
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Fig. 2. a > 0 and N = 4

Fig. 3. a > 0 and N ≥ 5

Theorem 1.7. Assume a = 0 and λ > 0. Then, the following results hold:

(i) If N = 3, problem (K∗
λ) has infinitely many distinct solutions {ϕi}∞

i=1. Moreover, ϕ1 is a positive
ground state solution

0 < inf
u∈N 3

I(u) = inf
u∈N 3,−

I(u) = I(ϕ1), I(ϕi) → +∞ as i → +∞.

(ii) If N = 4, problem (K∗
λ) admits a nontrivial solution ϕ if and only if λ = ‖w‖−2, where w is a

nontrivial solution of problem (S∗). Moreover, I(ϕ) = 0.
(iii) If N ≥ 5, problem (K∗

λ) has infinitely many distinct solutions {ϕi}∞
i=1. Moreover, ϕ1 is a positive

ground state solution

inf
u∈N N

I(u) = inf
u∈N N,+

I(u) = I(ϕ1), I(ϕi) < 0, I(ϕi) → 0 as i → +∞.

Proof. Since the proof is similar, we omit it here. �
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Theorem 1.8. Assume a < 0 and λ > 0. Then, the following results hold:
(i) For N = 3, problem (K∗

λ) has two sequences of distinct solutions {ϕi,±}∞
i=1.

I(ϕi,−) < I(ϕi,+),
I(ϕ1,−) < I(ϕ2,−) < · · · < I(ϕi,−) < · · · < 0,

I(ϕ1,+) < I(ϕ2,+) < · · · < I(ϕi,+) → +∞.

Moreover, if λ > λ1 = −4aS−3, then ϕ1,± are two positive solution. Both of them are local minimum
points on the Nehari manifolds,

inf
u∈N N,−

I(u) = I(ϕ1,−) < 0, inf
u∈N N,+

I(u) = I(ϕ1,+).

(ii) For N ≥ 4, problem (K∗
λ) has infinitely many distinct solutions {ϕi}∞

i=1 satisfying

I(ϕ1) < I(ϕ2) < · · · < I(ϕi) < · · · < − a2

4λ
.

For N = 4 and λ > λ1 = S−2 or N ≥ 5 and λ > 0, then ϕ1 is a positive solution,

inf
u∈N N

I(u) = inf
u∈N N,+

I(u) = I(ϕ1).

The proof Theorem 1.8 (i). Equation (S∗) admits infinitely many distinct solutions {ui}∞
i=1 satisfying

|∇U |2 = |∇u1|2 < |∇u2|2 < · · · < |∇ui|2 → +∞. Set

i0 := min{i ∈ N : |∇ui|2 >
(−4a/λ2

)1/4}.

Then, we can check that the existence of two positive roots Ki,± (Ki,− < Ki,+) for equation gi(t) = 0
defined by

gi(t) = −t4 + λ|∇ui+i0−1|22t2 + a, t ≥ 0,

where i ∈ N, a < 0 and λ > 0. Let ϕi,± := Ki,±ui+i0−1, i ∈ N, then {ϕi,±}∞
i=1 are two sequences of

solutions of equation (K∗
λ). Set ξi,± := |∇ϕi,±|2 for any i ∈ N, then ξi,± admit the following forms:

ξi,− =
(

1
2
(λAi −

√
λ2A2

i + 4aAi)
)1/2

, ξi,+ =
(

1
2
(λAi +

√
λ2A2

i + 4aAi)
)1/2

,

where Ai := |∇ui+i0−1|42. Then by some calculations and Ai < Ai+1, one has fi(t) < fi+1(t) < λt2 + a
and √

−a

λ
< ξi,− < · · · < ξ2,− < ξ1,− <

√
−2a

λ
< ξ1,+ < ξ2,+ < · · · < ξi,+ → +∞, (1.31)

ξ2
i,+ +

2a

λ
> −2a

λ
− ξ2

i,− > 0. (1.32)

Then, ϕi,∓ ∈ N 3,± because of ±Q′′
ϕi,∓(1) = ±2λ|∇ϕi,∓|22

(|∇ϕi,∓|22 + 2a
λ

)
< 0. Therefore, I(ϕi,±) =

1
3a|∇ϕi,±|22 + 1

12λ|∇ϕi,±|42. The desired results follow from (1.31) and (1.32).
Moreover, if λ > −4aS−3, then i0 = 1, that is, u1 = U . It means that ϕ1,± are positive solutions. It

follows from u ∈ N 4 that

a|∇u|22 + λ|∇u|42 = |u|66 ≤ S−3|∇u|62,
which implies that |∇u|2 ≤ ξ1,− for u ∈ N 3,+ and |∇u|2 ≥ ξ1,+ for u ∈ N 3,−. Combing with ‖ϕ1,±‖ =
ξ1,±, it follows that

inf
u∈N N,+

I(u) = I(ϕ1,−) < 0, inf
u∈N N,−

I(u) = I(ϕ1,+).

The proof is completed. �
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Fig. 4. a < 0 and N = 3

The Proof of Theorem 1.8 (ii). Equation (S∗) admits infinitely many distinct solutions {ui}+∞
i=1 satisfying

|∇U |2 = |∇u1|2 < |∇u2|2 < · · · < |∇ui|2 → +∞.

i0 =

{
min{i ∈ N : |∇ui|2 > λ−1/2}, if N = 4;
1, if N ≥ 5.

Then, we can check that the existence of a positive root Ki for equation gi(t) = 0 defined by

gi(t) = λ|∇ui+i0−1|22t2 − t
4

N−2 + a, t ≥ 0,

where λ > 0 and i ∈ N. Let ϕi := Kiui+i0−1, i ∈ N, then {ϕi}∞
i=1 a sequence of solutions of equation

(K∗
λ) . Set ξi := |∇ϕi|2 for any i ∈ N, then ξi is the positive solution of fi(t) = 0, i ∈ N,

fi(t) = λt2 − (|∇ui+i0−1|−1
2 t

) 4
N−2 + a.

Then by some calculations and |∇ui|2 < |∇ui+1|2, one has fi(t) < fi+1(t) < λt2 + a and
√

−a

λ
< · · · < ξi < · · · < ξ2 < ξ1. (1.33)

Then, ϕi ∈ N 4,+ for Q′′
ϕi

(1) = −2a|∇ϕi|22 > 0 and ϕi ∈ N N,+ for

Q′′
ϕi

(1) =
2(N − 4)
N − 2

λ|∇u|22
(

|∇u|22 − 2a

(N − 4)λ

)
> 0.

By (1.33), the following desired results hold,

I(ϕ1) < I(ϕ2) < · · · < I(ϕi) < · · · < − a2

4λ
.

Similarly, for N = 4 and λ > S−2 or N ≥ 5 and λ > 0, we can obtain that ϕ1 is a positive solution
satisfying

inf
u∈N N

I(u) = inf
u∈N N,+

I(u) = I(ϕ1).

The proof is completed. �

We also have the following bifurcation and the red one is the positive solution.
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Fig. 5. a < 0 and N = 4

Fig. 6. a < 0 and N ≥ 5

2. A perturbed problem

In this present paper, we consider the following critical Kirchhoff problem

−
(
a + λ

∫

RN

|∇u|2dx
)
Δu + mu = μup−1 + u2∗−1, u > 0 in R

N , (K∗
λ,μ)

where a > 0,m > 0 are two constants, λ > 0, μ > 0 are two parameters, 2 < p < 2∗ and 2∗ = 2N
N−2 for

N ≥ 3. It can be easily checked that problem (K∗
λ,μ) has no nontrivial solutions for any m > 0 if μ = 0

by the Pohoz̆aev identity.
Now, we state our existence results as follows.

Theorem 2.1. Assume a > 0, m > 0 and λ > 0. Then, the following results hold.

(i) If N = 3, problem (K∗
λ,μ) has a positive ground solution for one of the following cases:

p ∈ (2, 4) and μ > 0 large enough or p ∈ (4, 6) and for any μ > 0.

(ii) If N = 4, there exists 0 < Λ2 < S−2 such that problem (K∗
λ,μ) has a positive ground solution for

p ∈ (2, 4), 0 < λ < Λ2 and μ > 0.
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The critical Kirchhoff problem (K∗
λ,μ) with p ∈ (2, 4) or p ∈ (4, 6) in three-dimensional case is consid-

ered in Proposition 3.8 of He and Li [16] and in Theorem 1.3 of Li and Ye [24], respectively. We list it in
Theorem 2.1(i) for the sake of the completeness.

Theorem 2.2. Assume a > 0, m > 0, μ > 0, p ∈ (2, 2∗) and N ≥ 5.
(i) If λ ∈ (0,Λ1), problem (K∗

λ,μ) has a positive ground state solution with negative energy, which is
the global minima point of the corresponding functional, where

Λ1 =
4
N

(
N − 4
aN

)N−4
2

S− N
2 .

(ii) There exists 0 < Λ2 < Λ1, problem (K∗
λ,μ) with λ ∈ (0,Λ2) has two positive solutions.

Remark 2.3. If a = 1 and λ = 0, the problem reduces to a semi-linear elliptic equation

−Δu + mu = μup−1 + u2∗−1, u > 0 in R
N . (S∗

m)

The authors in Zhang and Zou [49] and Alves et al. [4] obtained a positive ground state solution for
problem (S∗

m) either N = 3 and p ∈ (4, 6) or N ≥ 4 and p ∈ (2, 2∗). A simple proof also is found in
Proposition 1.1 of Akahori et al. [1], in which the authors proved that problem (S∗

m) admits a unique
positive ground state solution in H1

rad(R
N ) if N ≥ 5, p ∈ (2, 2∗) and m > 0. However, from this point,

we found a different result that problem (K∗
λ,μ) admits two positive solutions if λ > 0 suitable small.

Since problem (K∗
λ,μ) is an autonomous problem, we consider this problem on the space H :=

H1
rad(R

3), the subspace formed by radially symmetric functions, with the norm

‖u‖ =

⎛
⎝

∫

RN

|∇u|2 + |u|2dx

⎞
⎠

1/2

.

To get the positive solution, the functional is defined by

J(u) :=
1
2

∫

RN

(a|∇u|2 + m|u|2)dx +
λ

4
|∇u|42 − 1

p

∫

RN

up
+dx − 1

2∗

∫

RN

u2∗
+ dx, (2.1)

for any u ∈ H, where u+ = max{u, 0}. Similar to the above section, we set that Qu,m(t) := J(tu) for any
u ∈ H and t ≥ 0. Recall that Uε is the unique positive solution of (S∗),

Uε(x) =

(√
N(N − 2)ε
ε + |x|2

)N−2
2

, ε > 0, x ∈ R
N (2.2)

and |∇U |22 = |U |2∗
2∗ = SN/2. Similar to Brezis and Nirenberg [9], by some directly computations, it is

evident to check that

|Uε|22 =

{
O(ε| log ε|), if N = 4,

O(ε), if N ≥ 5,

and

|Uε|pp = O(ε
2N−(N−2)p

4 ) if N ≥ 4 and 2 < p < 2∗.

Lemma 2.4. Assume that N = 4, a,m, μ > 0 and 0 < λ < S−2. Let QUε,m(t) := J(tUε) for t ≥ 0. There
exists tε > 0 such that Q′

Uε,m(tε) = 0 and Q′′
Uε,m(tε) < 0 for small ε > 0. Moreover, I(tεUε) < c4, where

c4 is defined in Theorem 1.1(ii).

Since the proof of Lemma 2.4 is similar, we omit it here and only prove the following lemma.
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Lemma 2.5. Assume that N ≥ 5, a,m, μ > 0 and 0 < λ < Λ0. Let QUε,m(t) := J(tUε) for t ≥ 0. There
exist 0 < tε,− < tε,+ such that Q′

Uε,m(tε,±) = 0 and ±Q′′
Uε,m(tε,±) > 0 for small ε > 0. Moreover,

I(tε,±Uε) < cN,±, where cN,± is defined in Theorem 1.2 (i).

Proof. By λ ∈ (0,Λ0), the following equation admits two positive roots 0 < K− < K+,

λS
N
2 t2 − t2

∗−2 + a = 0.

It is evident to check that ±(2λSN/2K± − (2∗ − 2)K2∗−3
± ) > 0. Moreover,

1
2
aS

N
2 K2

± +
1
4
λSNK4

± − 1
2∗ S

N
2 K2∗

± = cN,±. (2.3)

It is evident to check that there exists ε0 such that Q′
Uε,m(t) = 0 admits two positive roots tε,± and

±Q′′
Uε,m(tε,±) > 0 for ε < ε0. Set tε,± = K± + δε,±, then δε → 0 as ε → 0. We claim that

δε,± = O(ε
2N−(N−2)p

4 ). (2.4)

In fact, it follows from Q′
Uε,m(tε,±) = 0 that

0 = a|∇Uε|22 + m|Uε|22 + λ|∇Uε|42t2ε,± − μ|Uε|pptp−2
ε,± − |Uε|2∗

2∗t2
∗−2

ε,±

= aSN/2 + λSN t2ε,± − SN/2t2
∗−2

ε,± − O(ε
2N−(N−2)p

4 ) + o(ε
2N−(N−2)p

4 )

= Cλ,±δε,± − O(ε
2N−(N−2)p

4 ) + o(δε,±) + o(ε
2N−(N−2)p

4 ),

where Cλ,± = 2λSN/2K± − (2∗ − 2)K2∗−3
± and ±Cλ,± > 0. So our claim holds. It follows from (2.3) and

(2.4) that

I(tε,±Uε) =
1
2
a|∇Uε|22t2ε,± +

1
4
λ|∇Uε|42t4ε,± − 1

2∗ |Uε|2∗
2∗t2

∗
ε,±

+
1
2
m|Uε|22t2ε,± − 1

p
μ|Uε|pptpε,±

=
1
2
aSN/2K2

± +
1
4
λSNK4

± − 1
2∗ SN/2K2∗

±

+ SN/2(a + λSN/2K2
± − K2∗−2

± )t±δε,±

+ o(δε,±) − μCε
2N−(N−2)p

4 + o(ε
2N−(N−2)p

4 )

= cN,± − μCε
2N−(N−2)p

4 + o(ε
2N−(N−2)p

4 ) + o(δε,±) < cN,±.

This completes the proof. �

Thanks to the radially symmetric functions space H and the compact embedding from H to Lq(RN )
for q ∈ (2, 2∗), we avoid to deal with the lack of the compactness caused by the translation. Thus, we
have the following analysis on the Palais–Smale sequence by a standard argument (see Naimen [32] or
Xie et al. [45]).

Proposition 2.6. Let {un} be a bounded Palais–Smale sequence for J in H. Then, {un} has a subsequence
which strongly converges in H. Otherwise, replacing {un} if necessary by a subsequence, there exist a
function u0 ∈ H, a number A ∈ R, a number l ∈ N, l sequences of number {σi

n} ⊂ R
+, points {yi

n} ⊂ R
N

and l functions ui ∈ D1,2(RN ), i ∈ {1, 2, . . . , l}, which satisfy

− (a + λA)Δu0 + mu0 = μup−1
0 + u2∗−1

0 , u0 > 0 in R
N (2.5)

and

− (a + λA)Δui = (ui)2
∗−1, ui > 0 in R

N , (2.6)
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such that, up to subsequences, there hold∣∣∣∣∣∇
(

un − u0 −
l∑

i=1

(σi
n)− N−2

2 ui(
· − yi

n

σi
n

)

)∣∣∣∣∣
2

→ 0,

|∇un|22 → A = |∇u0|22 +
l∑

i=1

|∇ui|22
(2.7)

and

J(un) → J1(u0) +
l∑

i=1

J2(ui), (2.8)

as n → ∞, where J1(u) and J2(u) are defined by

J1(u0) =
(

a

2
+

λA

4

)
|∇u0|22 +

1
2
m|u0|22 − 1

p
μ|u0|pp − 1

2∗ |u0|2∗
2∗ ;

J2(ui) =
(

a

2
+

λA

4

)
|∇ui|22 − 1

2∗ |ui|2∗
2∗ .

(2.9)

Remark 2.7. (i). From the fact that equation (S∗) admits a unique positive solution and (2.6), it is
evident to check that ui can be rewritten as

ui = (a + λA)1/(2∗−2)Uε,

which implies that |ui|2∗
2∗ = S−2∗/2|∇ui|2∗

2 and |∇ui|22 = |∇uj |22 for any i �= j. Moreover, the constant A
can be rewritten as

A = |∇u0|22 + l|∇ui|22.
(ii). Set j1(t) and j2(t), respectively,

j1(t) :=
1
2

(
a|∇u0|22 + m|u0|22

)
t2 +

1
4
λA|∇u0|22t4 − 1

p
μ|u0|pptp − 1

2∗ |u0|2∗
2∗t2

∗
, (2.10)

j2(t) :=
1
2
a|∇ui|22t2 +

1
4
λA|∇ui|22t4 − 1

2∗ S− 2∗
2 |∇ui|2∗

2 t2
∗
, (2.11)

for t ≥ 0. It follows from (2.5), (2.6) and (2.7) that

j1(1) = J1(u0), j2(1) = J2(ui) and j′
1(1) = j′

2(1) = 0. (2.12)

By a standard argument (see [7]), we get a Pohoz̆aev identity from (2.5) as follows:

P (u0) :=
1
2∗ (a + λA)|∇u0|22 +

1
2
m|u0|22 − 1

p
μ|u0|pp − 1

2∗ |u0|2∗
2∗ = 0.

Thus, combining with P (u0) = j′
1(1) = 0, one has

2∗ − 2
2

m|u0|22 =
2∗ − p

p
μ|u0|pp. (2.13)

Proposition 2.8. For N ≥ 5, then J(u) is coercive, i.e., J(u) → +∞ as ‖u‖ → ∞.

Proof. By the Gagliardo–Nirenberg inequality in [14], we have that for all u ∈ H,

|u|p ≤ C|∇u|α2 |u|1−α
2 , (2.14)

where α = N(1
2 − 1

p ). Let δ1 = (p − 2)(N − 4)/4. Then, for 0 < δ < δ1, we set

q′
1 =

2
2 − (p(1 − α) + δ)

and q′
2 =

2
p(1 − α) + δ

.
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It is evident to check that q′
1 > 1, q′

2 > 1 and 1/q′
1+1/q′

2 = 1. Here by the Gagliardo–Nirenberg inequality
and Young’s inequality, one obtains

|u|pp ≤ C|∇u|pα
2 |u|p(1−α)

2 ≤ C

(
1
q′
1

|∇u|q′
1pα

2 +
1
q′
2

|u|q′
2p(1−α)

2

)
:= C|∇u|q12 + C|u|q22 . (2.15)

where q1 := q′
1pα and q2 := q′

2p(1 − α). It follows from δ ∈ (0, δ1) that q1 < 4 and q2 < 2. By the above
fact and the Sobolev inequalities, we obtain

J(u) ≥ 1
2
(a|∇u|22 + m|u|22) +

λ

4
|∇u|42 − μ

p
|u|pp − 1

2∗ |u|2∗
2∗

≥ (
1
2
m|u|22 − C|u|q22 ) +

1
2
a|∇u|22 +

λ

4
|∇u|42 − C|∇u|q12 − 1

2∗ S−2∗/2|∇u|2∗
2 ,

which implies that J(u) → +∞ as ‖u‖ → ∞ because of 2∗ < 4, q1 < 4 and q2 < 2. �

The proof of Theorem 2.2 (i). Firstly, we define that

c+ = inf
u∈H

J(u). (2.16)

Combining with Proposition 2.8, Lemma 2.5 and Theorem 1.2(i), one has

− ∞ < c+ < cN,+ < 0. (2.17)

It is evident to obtain a (PS) sequence {un} of J at c+ by Ekeland variational principle. By the coercive-
ness of J , {un} is bounded in H. Assume that un ⇀ u0 weakly in H. We claim that u0 �= 0. Otherwise,
if u0 = 0, it follows from (2.11) and (2.12) that A = l|∇ui|22,

j2(1) = J2(ui) =
c+

l
< 0 and j′

2(1) = 0,

which imply that j′′
2 (1) > 0. Thus, it obtains

0 < j′′
2 (1) = j′′

2 (1) − (2∗ − 1)j′
2(1) =

2(N − 4)
N − 2

λ|∇ui|22
(

l|∇ui|22 − 2a

(N − 4)λ

)
, (2.18)

which implies l|∇ui|22 > η2
λ. Moreover, by j′

2(1) = 0, one has

a(l1/2|∇u|2)2 + λ(l1/2|∇u|2)4 = S− 2∗
2 l−

2∗−2
2 (l1/2|∇u|2)2∗ ≤ S− 2∗

2 (l1/2|∇u|2)2∗
,

which implies that ξ2
1,− ≤ l|∇u|22 ≤ ξ2

1,+. Thus, we obtain

η2
λ < l|∇u|22 ≤ ξ2

1,+.

It follows that

c+ = lj2(1) − 1
2∗ j′

2(1) =
1
N

(l|∇ui|22) − N − 4
4N

λ(l|∇ui|22)2

≥ 1
N

(ξ2
1,+) − N − 4

4N
λ(ξ2

1,+)2 = cN,+,

(2.19)

which is impossible for c+ < cN,+. Thus, u0 �= 0.
It remains to prove that un → u0 strongly in H. Arguing indirectly, let un = un − u0 ∈ H. Thus,

un ⇀ 0 weakly in H and limn→∞ |∇un|22 = l|∇ui|22. Set that

un,s = (1 + s)
1
2 u0 + (1 − es)

1
2 un ∈ H,

where e = |∇u0|22/(l|∇ui|22) and s ∈ (−1, 1/e) is a parameter. Then,

lim
n→∞ |∇un,s|22 = |∇(1 + s)

1
2 u0|22 + lim

n→∞ |∇(1 − es)
1
2 un|22 = A
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for s ∈ (−1, 1/e). Set h(s) := limn→∞ J(un,s). Thus, we know that h(0) = c+ and

h(s) =
1
2

(
a|∇u0|22 + m|u0|22

)
(1 + s) +

1
4
λA|∇u0|22(1 + s)

− 1
p
μ|u0|pp(1 + s)p/2 − 1

2∗ |u0|2∗
2∗(1 + s)2

∗/2

+ l

(
1
2
a|∇ui|22(1 − es) +

1
4
λA|∇ui|22(1 − es) − 1

2∗ |ui|2∗
2∗(1 − es)2

∗/2

)
.

By some direct calculations, it obtains

h′(0) =
1
2

(
a|∇u0|22 + m|u0|22

)
+

1
4
λA|∇u0|22 − 1

2
μ|u0|pp − 1

2
|u0|2∗

2∗ − 1
2
j′
1(1)

− el

(
1
2
a|∇ui|22 +

1
4
λA|∇ui|22 − 1

2
|ui|2∗

2∗ − 1
2
j′
2(1)

)

= −1
4
λA|∇u0|22 + el

1
4
λA|∇ui|22 = −1

4
λA

(|∇u0|22 − el|∇ui|22
)

= 0

and

h′′(0) = −1
4
μ(p − 2)|u0|pp − 1

4
(2∗ − 2)|u0|2∗

2∗ − 1
4
(2∗ − 2)e2l|ui|2∗

2∗ < 0.

That is h(0) = c+, h′(0) = 0 and h′′(0) < 0. Thus, there exists s0 small, such that h(s0) < h(0).
Combining with h(s0) = limn→∞ J(un,s0), we have J(un,s0) < c+ for n large enough, which is impossible
because of the definition of c+. The proof is completed. �

In what follows, we will prove the existence of the solution for N = 4 and the second solution for
N ≥ 5. With the help of the fibering map, it is useful to understand the structure of N N

μ,m for N ≥ 4,
where

N N
μ,m =

{
u ∈ H\{0} : Q′

u,m(1) = 0
}

. (2.20)

We define that for N ≥ 4,

N N,−
μ,m =

{
u ∈ N N

μ,m : Q′′
u,m(1) < 0

}
, N N,0

μ,m =
{
u ∈ N N

μ,m : Q′′
u,m(1) = 0

}
.

It follows from the Sobolev inequalities that for any u ∈ N N
μ,m,

min{a, m}‖u‖2 ≤ a|∇u|22 + m|u|22 + λ|∇u|42 = μ|u|p + |u|2∗
2∗ ≤ μCp‖u‖p + S− 2∗

2 ‖u‖2∗
.

By 2 < p < 2∗, there exists ρ0 > 0 such that ‖u‖ ≥ ρ0 for any u ∈ N N
μ,m.

For N ≥ 4, set

c− := inf
N N,−

μ,m

J(u). (2.21)

It follows from Lemma 2.4 and Lemma 2.5 that N N,−
μ,m �= ∅. By u ∈ N N,−

μ,m , we obtain

Q′′
u,m(1) = (2 − 2∗)(a|∇u|22 + m|u|22) + (4 − 2∗)λ|∇u|42 − (p − 2∗)μ|u|pp.

It follows that

J(u) = Qu,m(1) − 1
2∗ Q′

u,m(1)

= (
1
2

− 1
2∗ )(a|∇u|22 + m|u|22) + (

1
4

− 1
2∗ )λ|∇u|42 + (

1
2∗ − 1

p
)μ|u|pp

=
p − 2
Np

(a|∇u|22 + m|u|22) +
(N − 4)(4 − p)

4Np
λ|∇u|42 − 1

2∗p
Q′′

u,m(1)

>
p − 2
Np

min{a,m}ρ2
0,

(2.22)
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which implies that c− > 0. To get a PS sequence, we set

c0 := inf
{

lim inf
n→∞ J(un) : {un} ∈ Ñ N,0

}
,

where Ñ N,0 :=
{{un} ⊂ N N

μ,m : limn→∞ Q′′
un,m(1) = 0

}
. If Ñ N,0 = ∅, we set c0 = ∞.

Lemma 2.9. There exists 0 < Λ2 < S−2 for N = 4 or 0 < Λ2 < Λ1 for N ≥ 5 such that

c− <
(p − 2)2

4p(4 − p)λ max{a−2, 1} ≤ c0, (2.23)

for 0 < λ < Λ2.

Proof. Firstly, we prove the second inequality. Let {un} ∈ Ñ N,0, then

Q′′
un,m(1) = (2 − p)(a|∇un|22 + m|un|22) + (4 − p)λ|∇un|42 + (p − 2∗)|un|2∗

2∗ ,

which implies that

(2 − p)(a|∇un|22 + m|un|22) + (4 − p)λ|∇un|42 = (2∗ − p)|un|2∗
2∗ + Q′′

un,m(1) ≥ Q′′
un,m(1).

Then, we have

λ|∇un|42 ≥ p − 2
4 − p

(a|∇un|22 + m|un|22) +
1

4 − p
Q′′

un,m(1) (2.24)

and

a|∇un|22 + m|un|22 ≥ p − 2
λ(4 − p)max{a−2, 1}
+

1
λ(4 − p)max{a−2, 1}(a|∇un|22 + m|un|22)

Q′′
un,m(1).

(2.25)

By (2.24), we have

J(un) = Qun,m(1) − 1
2∗ Q′

un,m(1)

= (
1
2

− 1
2∗ )(a|∇un|22 + m|un|22) + (

1
4

− 1
2∗ )λ|∇un|42 + (

1
2∗ − 1

p
)μ|un|pp

=
p − 2
Np

(a|∇un|22 + m|un|22) +
(N − 4)(4 − p)

4Np
λ|∇un|42 − 1

2∗p
Q′′

un,m(1)

≥ p − 2
4p

(a|∇un|22 + m|un|22) − 1
4p

Q′′
un,m(1).

With the help of (2.25), it obtains

lim inf
n→∞ J(un) ≥ (p − 2)2

4p(4 − p)λ max{a−2, 1} .

By the arbitrariness of {un} ∈ Ñ N,0 and the definition of c0, we have

(p − 2)2

4p(4 − p)λ max{a−2, 1} ≤ c0.

For N = 4, we have cλ1
N ≤ cλ2

N for 0 < λ1 ≤ λ2 < S−2 directly from

cλ2
4 = max

t≥0
Iλ2(tU) ≥ max

t≥0
Iλ1(tU) = cλ1

4 .

Similarly, for N ≥ 5, we have cλ1
N,− ≤ cλ2

N,− for 0 < λ1 ≤ λ2 < Λ0 from

cλ2
N,− = max

0≤t≤K
λ2
+

Iλ2(tU) ≥ max
0≤t≤K

λ2
+

Iλ1(tU) = cλ1
N,−.
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Moreover, by Remark 1.6, we can easily obtain that

lim
λ→0+

cλ
4 =

1
4
(aS)2 and lim

λ→0+
cλ
N,− =

1
N

(aS)N/2.

Thus, cλ
4 and cλ

N,− are nondecreasing with respect to λ ∈ (0, S−2) and λ ∈ (0,Λ1), respectively. Combining
with the above inequalities, there exists Λ2 such that

c− < c4 (cλ
N,−) <

(p − 2)2

4p(4 − p)λ max{a−2, 1} ,

for 0 < λ < Λ2. The proof is completed. �

The proof of Theorem 2.1 (i) and Theorem 2.2 (ii). We divide the proof into two steps.
Step 1. Construct a PS sequence for J at level c− in N N,−

μ,m .
From the boundedness of N N

μ,m, there exists a minimizing sequence {un} ⊂ N N,−
μ,m ∪ N N,0

μ,m satisfying
that

J(un) ≤ inf
N N,−

μ,m ∪N N,0
J(u) +

1
n

and J(w) ≥ J(un) − 1
n

‖un − w‖,

for any w ∈ N N,−
μ,m ∪ N N,0

μ,m, by Ekeland variational principle. With the help of Lemma 2.9, we know that

inf
N N,−

μ,m

J(u) = c− and {un} ⊂ N N,−
μ,m .

Then, it is evident to check that J ′(un) → 0 as n → ∞ since limn→∞ |Q′′
un,m(1)| > 0. Thus {un} is a PS

sequence for J at level c− in N N,−
μ,m .

Step 2. Claim un → u0 strongly in H.
If N = 4, then we have

c− + o(1) = J(un) = Qun,m(1) − 1
4
Q′

un
(1) >

p − 2
4p

min{a,m}‖un‖2

implies the boundedness of {un}. Without loss of generality, we assume that un ⇀ u0 weakly in H as
n → ∞. It remains to prove that un → u0 strongly in H. Arguing indirectly, by Proposition 2.6, Lemma
2.4, and (2.12), we get

lim
n→∞ J(un) = c− = j1(1) + lj2(1) < c4.

Firstly, we have j1(1) = j1(1) − 1
4j′

1(1) = 1
4a|∇u0|22 ≥ 0. Let

θ(t) =
a

2
t2 +

λ

4
t4 − 1

4
S−2t4 for t ≥ 0.

It follows from j′
1(1) = 0 that

a|∇ui|22t2 + λ|∇ui|42 ≤ a|∇ui|22t2 + λA|∇ui|22 = S−2|∇ui|42,
which implies that θ′(|∇ui|2) ≤ 0. It follows j′

1(1) = 0 and j′′
2 (1) < 0 that

j2(1) = max
t∈[0,1]

j2(t) ≥ max
t∈[0,1]

(
1
2
a|∇ui|22t2 +

1
4
λ|∇ui|42t4 − 1

4
S−2|∇ui|42t4

)

= max
0≤t≤|∇ui|2

θ(t) = c4,

which is impossible for j2(1) ≤ j1(1) + lj2(1) = c− < c4. Thus, un → u0 strongly in H.
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If N ≥ 5, the sequence {un} is bounded in H from the coerciveness of J(u) in H. We also assume that
un ⇀ u0 weakly in H as n → ∞. It remains to prove that un → u0 strongly in H. Arguing indirectly, by
Proposition 2.6 and (2.12), we get

lim
n→∞ J(un) = c− = j1(1) + lj2(1) − 1

2∗ j′
1(1) − 1

2∗ lj′
2(1)

=
(

1
2

− 1
2∗

)
aA +

(
1
4

− 1
2∗

)
λA2 > 0,

which implies that 0 < A < 2η2
λ = 4a

(N−4)λ . Then, we have

j1(1) = j1(1) − 1
2∗ j′

1(1) =
(

1
2

− 1
2∗

)
a|∇u0|22 +

(
1
4

− 1
2∗

)
λA|∇u0|22 ≥ 0, (2.26)

We claim that

j′′
2 (1) ≤ 0.

In fact, it obviously holds if u0 = 0 because of

0 ≥ lim
n→∞ Q′′

un
= j′′

1 (1) + j′′
2 (1) = j′′

2 (1).

If u0 �= 0, arguing indirectly, we assume j′′
2 (1) > 0, that is,

j′′
2 (1) = j′′

2 (1) − (2∗ − 1)j′
2(1) = ((2 − 2∗)a + (4 − 2∗)λA) |∇ui|22 > 0.

Then,

0 ≥ lim
n→∞ Q′′

un
= j′′

1 (1) + j′′
2 (1) > j′′

1 (1) = j′′
1 (1) − (2∗ − 1)j′

1(1)

= (2 − 2∗)a|∇u0|22 + (4 − 2∗)λA|∇u0|22 + (2 − 2∗)m|u0|22 + (2∗ − p)μ|u0|pp
= ((2 − 2∗)a + (4 − 2∗)λA) |∇u0|22 +

(2∗ − p)(p − 2)
p

μ|u0|pp

≥ (2∗ − p)(p − 2)
p

μ|u0|pp > 0,

which is impossible. Thus, our claim j′′
2 (1) ≤ 0 holds. Recall that

θ(t) =
a

2
t2 +

λ

4
t4 − 1

2∗ S− 2∗
2 t2

∗
for t ≥ 0.

It follows from j′
1(1) = 0 that

a|∇ui|22t2 + λ|∇ui|42 ≤ a|∇ui|22t2 + λA|∇ui|22 = S− 2∗
2 |∇ui|2∗

2 ,

which implies that θ′(|∇ui|2) ≤ 0. It follows from j′
1(1) = 0 and j′′

2 (1) ≤ 0 that

j2(1) = max
t∈[0,1]

j2(t) ≥ max
t∈[0,1]

(
1
2
a|∇ui|22t2 +

1
4
λ|∇ui|42t4 − 1

2∗ S− 2∗
2 |∇ui|2∗

2 t2
∗
)

= max
0≤t≤|∇ui|2

θ(t) = cN,−,

which is impossible for j2(1) < j1(1) + j2(1) ≤ c− < cN,−. �

Remark 2.10. The existence and multiplicity results also can be obtained by the rescaling argument as
follows. Problem (K∗

λ,μ) has a positive solution for any μ > 0 and m > 0 if one of the following cases
holds,

• N = 3, p ∈ (4, 6) and λ > 0;
• N = 4, p ∈ (2, 4) and 0 < λ < S−2.

Problem (K∗
λ,μ) has two positive solutions for any μ > 0 and m > 0 if
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• N ≥ 5, p ∈ (2, 2∗) and 0 < λ < Λ0, where

Λ0 =
2

N − 2

(
N − 4

a(N − 2)

)(N−4)/2

S− N
2 .

Actually, the authors in Akahori et al. [1] obtained a positive ground state solution u1 of the following
problem

−Δu + mu = μup−1 + u2∗−1, u > 0 in R
N , (S∗

m)

where m > 0, μ > 0, p ∈ (4, 6) for N = 3 and p ∈ (2, 2∗) for N ≥ 4. It follows from that Lemma A.2 in
Akahori et al. [1] that the ground state solution u1 satisfies

J0,m(u1) <
1
N

S
N
2 , (2.27)

where J0,m(u) = 1
2 (|∇u|2 + m|u|22) − 1

pμ|u|pp − 1
2∗ |u|2∗

2∗ . Since u1 is a solution, we have

P1(u1) = |∇u1|2 + m|u1|22 − μ|u1|pp − |u1|2∗
2∗ = 0 (2.28)

and P2(u1) = 1
2∗ |∇u1|2 + 1

2m|u1|22 − 1
pμ|u1|pp − 1

2∗ |u1|2∗
2∗ = 0, which implies that

2∗ − 2
2

m|u1|22 =
2∗ − p

p
μ|u1|pp. (2.29)

By (2.27), (2.28) and (2.29), we obtain that
1
N

S
N
2 >J0,m(u1) = J0,m(u1) − 1

2∗ P1(u1)

= (
1
2

− 1
2∗ )(|∇u1|22 + m|u1|22) + (

1
2∗ − 1

p
)|u1|2∗

2∗ =
1
N

|∇u1|22.
which implies that

|∇u1|22 < S
N
2 . (2.30)

Now, we try to prove the main results. Firstly, we consider the existence of positive roots of equation
G1(t) = 0 defined by

G1(t) = atN+2 − tN + λ|∇u1|22t4. (2.31)

Combining with (2.30), if N = 3 and λ > 0 or N = 4 and 0 < λ < S−2, then G1(t) = 0 has a positive
root. If N = 5 and

0 < λ < Λ0 =
2

N − 2

(
N − 4

a(N − 2)

)(N−4)/2

S− N
2 , (2.32)

then G1(t) = 0 has two positive roots.
Let ϕ1(x) := u1(δx), where δ > 0 such that G1(δ) = 0 and u1 is a solution of (S∗

m). Then, ϕ1 is a
solution of (K∗

λ,μ). In fact, G1(δ) = 0 implies that
(
a + λδ2−N |∇u1|22

)
δ2 = 1. Then, we obtain

−Δϕ1(x) = −δ2Δu1(δx) = δ2
(
μu1(δx)p−1 + u1(δx)2

∗−1 − mu1(δx)
)

=
1

a + λδ2−N |∇u1|22
(
μϕ1(x)p−1 + ϕ1(x)2

∗−1 − mϕ1(x)
)

=
1

a + λ|∇ϕ1|22
(
μϕ1(x)p−1 + ϕ1(x)2

∗−1 − mϕ1(x)
)

,

(2.33)

which implies that ϕ1 is a solution of (K∗
λ,μ). By the above argument, if N = 3 and λ > 0 or N = 4

and 0 < λ < S−2, then problem (K∗
λ,μ) has a positive solution. If N = 5 and 0 < λ < Λ0, then problem

(K∗
λ,μ) has two positive solutions.
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Compared with these results, we have more information about the energies of the solutions obtained
in Theorem 2.1 and 2.2. Though the exact intervals of λ for the existence of solutions seem different, we
tend to believe that the solutions obtained in the rescaling argument and in Theorems 2.1 or 2.2 are the
same.

Moreover, some existence results also can be obtained if λ < 0 by the same method and we do not
state it here.

3. Some general results and an auxiliary lemma

In this section, we consider a general nonlocal equation by the multiplying argument⎧
⎪⎨
⎪⎩

−M1

(
∫
RN

|∇u|2dx

)
Δu = M2

(
∫
RN

|u|2∗
dx

)
|u|2∗−2u in R

N ,

u ∈ D1,2(RN ),

(3.1)

where Mi: [0,+∞) → (0,∞), are two continuous functions, i = 1, 2. Actually, the case that M1(t) = a+λt
and M2(t) = 1 has been considered in Section 1. As to the general cases, we have the following results:

Theorem 3.1. If there exists a positive root of the following equation,

M1

(
t(N−2)/2A

)
− M2

(
tN/2A

)
t = 0, (3.2)

where A = SN/2, problem (3.1) has a positive solution. Moreover, if there exists a positive root of equation
(3.2) for any positive parameter A, problem (3.1) has infinitely many distinct solutions.

Proof. Firstly, we denote the positive root of the following equation by t1,

M1

(
t(N−2)/2SN/2

)
− M2

(
tN/2SN/2

)
t = 0.

Thus, let ϕ1 = t
(N−2)/4
1 U , we can easily check that

−Δϕ1 = −t
(N−2)/4
1 ΔU = t

1
2∗−2
1 U2∗−1 = t−1

1

(
t

1
2∗−2 U

)2∗−1

=
M2(SN/2t

N
2 )

M1(SN/2t
N−2

2 )
ϕ2∗−1

1 =
M2(|U |2∗

2∗t
N
2 )

M1(|∇U |22t
N−2

2 )
ϕ2∗−1

1 =
M2(|ϕ1|2∗

2∗)
M1(|∇ϕ1|22)

ϕ2∗−1
1

and ϕ1 is a positive solution of problem (3.1).
Similarly, let {ui}∞

i=1 be a sequence of solutions for equation (S∗) satisfying |∇U |2 = |∇u1|2 <
|∇u2|2 < · · · < |∇ui|2 → +∞. By the assumption, there exists a positive root ti for the following
equation:

M1

(
t(N−2)/2Ai

)
− M2

(
tN/2Ai

)
t = 0,

where Ai = |∇ui|22 = |ui|2∗
2∗ . Thus, ϕi = tiui solves problem (3.1). Then, problem (3.1) admits a sequence

of solutions {ϕi}∞
i=1, and the proof is completed. �

In the last part of this section, we investigate the existence of positive solutions for two linear growth
terms case ⎧

⎪⎨
⎪⎩

−
(

a + λ
∫
RN

|∇u|2dx

)
Δu =

(
1 + μ

∫
RN

|u|2∗
dx

)
u2∗−1, u > 0 in R

N ,

u ∈ D1,2(RN ),

(3.3)

where a > 0, λ > 0 and μ ∈ R.
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Fig. 7. N ≤ 5 and λε(0Λ0)

Theorem 3.2. Assume that a > 0 and λ > 0, μ ∈ R. The following statements hold.
(i) If N = 3 or 4, problem (3.3) has a positive solution for μ ∈ (0,+∞).

(ii) If N ≥ 5 and λ ∈ (0,Λ0), there exist μ1 < 0 < μ2 such that problem (3.3) has two positive solutions
for μ ∈ (μ1, 0), three positive solutions for μ ∈ (0, μ2) and a positive solution for μ ∈ (μ2,+∞).

(iii) If N ≥ 5 and λ ∈ (Λ0,Λ), there exist μ4 > μ3 > 0 such that problem (3.3) has three positive solutions
for μ ∈ (μ3, μ4) and a positive solution for μ ∈ (0, μ3) ∪ (μ4,+∞), where Λ is defined by a exact
form,

Λ =
N

4

(
N

N + 2

)N−4
2

Λ0. (3.4)

(iv) If N ≥ 5 and λ ∈ (Λ,+∞), problem (3.3) has a positive solution for μ ∈ (0,+∞).

The proof of Theorem 3.2. Setting that G(t) := G1(t) − μS
N
2 , where

G1(t) := atN+2 − tN + λS
N
2 t4, t > 0.

It is obvious that G1(0) = 0 and G1(t) → +∞ as t → +∞. If N = 3 or 4, then G(t) = 0 admits a positive
root denoted by t1. Let K = t

−(N−2)/2
1 and U be the positive solution of problem (S∗), then it is evident

to check that ϕ = KU solves problem (3.3). Thus, (i) holds.
It remains to prove that N ≥ 5. By some calculations, for λ ∈ (0,Λ), G1(t) admits a local maximum

point tmax and a local minimum point tmin satisfying 0 < tmax < tmin and

G1(tmax) > 0 > G1(tmin) for λ ∈ (0,Λ0),

G1(tmax) > G1(tmin) > 0 for λ ∈ (Λ0,Λ).

(I). For λ ∈ (0,Λ0), set that μ1 = −G1(tmin)S−N/2 and μ2 = G1(tmax)S−N/2. Then, G(t) admits two
roots for μ ∈ (μ1, 0), three roots for μ ∈ (0, μ2) and a root for μ ∈ (μ2,+∞).

(II). For λ ∈ (Λ0,Λ), set that μ3 = G1(tmin)S−N/2 and μ4 = G1(tmax)S−N/2. Then, G(t) admits three
roots for μ ∈ (μ3, μ4) and a root for μ ∈ (0, μ3) ∪ (μ4,+∞).

(III). For λ ∈ (Λ,+∞), then G(t) admits a root for μ ∈ (0,+∞).

Lastly, assume that ti is a root of G(t) = 0. Let Ki := t
−(N−2)/2
i and U be the positive solution of

problem (S∗), then it is evident to check that ϕi = KiU solves problem (3.3). The desired results
from (I)–(III). �

By some careful analysis on the roots of G(t) = 0, we can give the following bifurcation of the positive
solutions.

We complete this paper by proving an auxiliary lemma.
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Fig. 8. N ≤ 5 and λε(Λ0Λ)

Fig. 9. N ≤ 5 and λε(Λ + ∞)

Lemma 3.3. Let N ≥ 5, a > 0 and

f(t) = λt2 −
(
S−N/4t

) 4
N−2

+ a, t ≥ 0.

For λ ∈ (0,Λ0), we denote the roots of f(t) = 0 by ξ1,− and ξ1,+ (0 < ξ1,− < ξ1,+). Let ηλ = ( 2a
(N−4)λ )

1
2 ,

then ξ1,− < ηλ < ξ1,+ and

ξ2
1,+ − η2

λ > η2
λ − ξ2

1,−. (3.5)

Proof. For λ ∈ (0,Λ0), there exists ζλ such that

f ′(ζλ) = 0, f(ζλ) = min
t≥0

f(t), where ζλ = (
2

(N − 2)λ
)

N−2
2(N−4) S− N

2(N−4) .

Therefore, ξ1,− < ζλ < ξ1,+ and η2
λ < ζ2

λ because of 0 < λ < Λ0. By λ ∈ (0,Λ0), then f(ηλ) < 0 implies
ξ1,− < ηλ < ξ1,+.

If we set that ζ̃λ := ζ2
λ, ξ̃± := ξ2

1,± and

k(t) := f(t1/2) = λt − S− N
N−2 t

2
N−2 + a for t > 0,

then f ′(ζλ) = k′(ζ̃λ) = f(ξ1,±) = k(ξ̃±) = 0. By the above setting, to prove (3.5), it is sufficient to prove
that

ξ̃+ − ζ̃λ > ζ̃λ − ξ̃−. (3.6)

We claim that

k(ζ̃λ − t) > k(ζ̃λ + t) for any 0 < t < ζ̃λ. (3.7)
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The desired result (3.6) follows from the claim (3.7). If (3.6) does not hold, that is, ξ̃+ − ζ̃λ ≤ ζ̃λ − ξ̃−.
Setting δ := ξ̃+ − ζ̃λ, then δ ∈ (0, ζ̃λ). It follows from ξ̃− ≤ 2ζ̃λ − ξ̃+ < ξ̃+ and (3.7) that

0 = k(ξ̃−) ≥ k(2ζ̃λ − ξ̃+) = k(ζ̃λ − δ) > k(ζ̃λ + δ) = k(ξ̃+) = 0,

which is a contradiction.
Lastly, it remains to prove our claim (3.7). In fact, by some basic calculations, it follows that

k′(t) = λ − 2
N − 2

S− N
N−2 t−

N−4
N−2 , k′′(t) =

2(N − 4)
(N − 2)2

S− N
N−2 t−

2(N−3)
N−2 ,

k′′′(t) = −4(N − 3)(N − 4)
(N − 2)3

S− N
N−2 t−

3N−8
N−2 .

Since N ≥ 5, k′′′(t) < 0 for any t > 0. Then, one obtains that for any 0 < t < ζ̃λ,

k′′(ζ̃λ − t) > k′′(ζ̃λ + t).

For 0 < s < ζ̃λ, integrating the above inequality from 0 to s gives us

ζ̃λ∫

ζ̃λ−s

k′′(t)dt >

ζ̃λ+s∫

ζ̃λ

k′′(t)dt. (3.8)

Moreover, by k′(ζ̃λ) = 0 and (3.8), then one obtains

− k′(ζ̃λ − s) =

ζ̃λ∫

ζ̃λ−s

k′′(t)dt >

ζ̃λ+s∫

ζ̃λ

k′′(t)dt = k′(ζ̃λ + s), (3.9)

Similarly, integrating the inequality (3.9) again from 0 to t, it follows that k(ζ̃λ − t) > k(ζ̃λ + t) for
0 < t < ζ̃λ. The proof is completed. �

Acknowledgements

This work was partially done while Qilin Xie was visiting the Stochastic Analysis and Application Re-
search Center of the Korea Advanced Institute of Science and Technology (KAIST). The first author would
like to express his gratitude to Prof. Jaeyoung Byeon for his warm hospitality and support. The first au-
thor is deeply grateful to Dr. Sangdon Jin for his kindly help during the visit. This research is supported
by the National Natural Science Foundation of China (No. 11701113), the Natural Science Foundation of
Guangdong Province (No. 2021A1515010383), the Project of Science and Technology of Guangzhou (No.
202102020730) and the grant from Guangdong University of Technology (No. 220413278), the Opening
Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University
(No. 2021023).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

[1] Akahori, T., Ibrahim, S., Ikoma, N., Kikuchi, H., Nawa, H.: Uniqueness and nondegeneracy of ground states to nonlinear
scalar field equations involving the Sobolev critical exponent in their nonlinearities for high frequencies. Calc. Var. Partial
Differ. Equ. 58(4), Paper No. 120 (2019)



4 Page 28 of 29 Q. Xie and B.-X. Zhou ZAMP
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