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Abstract. Describing the emerging macro-scale behavior by accounting for the micro-scale phenomena calls for microstructure-
informed continuum models accounting properly for the deformation mechanisms identifiable at the micro-scale. Classical
continuum theory, in contrast to the micromorphic continuum theory, is unable to take into account the effects of complex
kinematics and distribution of elastic energy in internal deformation modes within the continuum material point. In this
paper, we derive a geometrically nonlinear micromorphic continuum theory on the basis of granular mechanics, utilizing
grain-scale deformation as the fundamental building block. The definition of objective kinematic descriptors for relative
motion is followed by Piola’s ansatz for micro–macro-kinematic bridging and, finally, by a limit process leading to the
identification of the continuum stiffness parameters in terms of few micro-scale constitutive quantities. A key aspect of the
presented approach is the identification of relevant kinematic measures that describe the deformation of the continuum body
and link it to the micro-scale deformation. The methodology, therefore, has the ability to reveal the connections between
the micro-scale mechanisms that store elastic energy and lead to particular emergent behavior at the macro-scale.
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1. Introduction

Micromorphic continuum models provide an approach to describe micro-scale structural and mechanical
effects in the continuum description of material behavior [1–4]. For micromorphic models to be repre-
sentative, it is important to link the continuum fields with the micro-scale mechanisms. For instance,
when we seek descriptions of the collective behavior of a large number of grains, as in the case in which
a material’s granular microstructural effect need to be modeled, it is necessary to describe the effects of
grain and grain–grain interface deformations (termed as micromechanics), which could be highly localized
and directional, as in the case of Hertzian contacts [5,6]. These grain deformations could be non-uniform
due to the grain-shape and interfacial/surfacial characteristics or due to the grain-neighborhood struc-
ture (termed as microstructure). The grains can also experience rotations relative to their neighboring
grains further contributing to the overall deformation of the collective system [7,8]. These peculiarities
of granular systems renders the modeling of the behavior that emerges at the macro-scale (containing
large number of grains) particularly challenging. It is now widely accepted that the classical continuum
approach (or the Cauchy format) fails woefully in representing the true nature of the microstructured
material behavior and describe many observed phenomena at the macro-scale, even though it serves
well for a number of engineering problems. There is growing realization that to describe the emerging
macro-scale behavior of these materials faithfully and with increasing fidelity, it is necessary to consider
continuum models in which the deformations at micro-scale are properly accounted. A key shortcoming of
the classical continuum theory is its inability to describe the effects of complex kinematics and distribu-
tion of elastic energy in internal deformation modes within the continuum material point. In this regard,
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it is worthwhile to recall that in the early development of the continuum modeling of deformable media in
the works of Navier, Cauchy, Poisson and Piola, the material was viewed as composed of molecules (parti-
cles) that attract and repel each other [9–11]. Many materials, particularly at the scale in which granular
microstructures appear, can be treated in a similar sense in which the deformation of an interacting grain-
pair can be effectively described in terms of the relative movements of the grain centroids/barycenters
regardless of the location of the actual deformation within the grains. Indeed such a treatment can serve
as a point of departure for both discrete and continuum models. Examples of discrete models range from
atomistic and molecular (see among a very large literature base [12,13]) to more recent large grain models
(see among others [14,15]). Continuum models of these materials that proceed from this approach are
traced to early part of 20th century (see historical context in the review [16]) to more recent models such
as those in [7,17,18] devised for the case of small deformations to account for internal deformation modes.

In discrete models, the key kinematic variable is the grain motion; thus, by their nature, these models
describe the fate of every grain as a result of its interactions with the neighbors and by extension the whole
collection. Discrete models, therefore, can result in grain trajectories (that can include grain translations
and grain spins) and spatial distributions of deformation energies and their potential decomposition into
various deformation modes. The extensive approach is also a principal drawback of discrete model as
the detailed data is, in many cases, distinguished by the lack of accurate knowledge of grain locations,
shapes and surface type/conditions and every possible grain-pair interaction relationships. Nevertheless,
simulations using discrete models [19–29] have been suggestive and have led to the recognition of certain
micro-scale phenomena, such as localization of energy into small zones of grain/atomic clusters [30,31]or
localization bands and vortices [32,33], propensity of micro-rotation [34], identification of floppy modes
[35], and so-called ’force-chains’ (see for example [14,36–38]). Many of these micro-scale phenomena,
particularly those related to certain clustering of grain displacements and coherent/incoherent grain
rotations, are attested to by experimental measurements of grain motions such as [39,40]. For describing
the many relevant phenomena exhibited by grain collections detailed information regarding precise grain
trajectory is unnecessary. However, the grain-scale kinematics have profound relevance in the macro-
scale description of granular materials representing the emergent collective behavior of large number
of grains. Indeed the practical pathway to the control of macro-scale behavior by accessing the micro-
scale lies in their representative linkages based upon predictive theories [41]. The recent realization of
metamaterials based on pantographic motif that link to second gradient continuum description [42–50]
and chiral granular materials that link to Cosserat continuum are exemplar of such predictive micro–
macro-theoretical identifications [51–54]. These works have shown that successful efforts to link micro-
to macro-scale lead to generalized continuum theories, and these can, therefore, provide efficient ways
for rational design of (meta)materials (as opposed to trial and error or other ad hoc approaches, see for
example the review by [55,56]). Remarkably these micro–macro-identifications indicate how the stored
elastic energy can be distributed within internal deformation modes, including second [57–69] and higher
[35] gradient modes, grain rotations/spins [7], and non-standard coupling of shear and rotations [70,71].

In the spirit of developing such micro–macro-identifications in a generalized setting of finite deforma-
tions that account for geometric nonlinearity, we focus in this paper upon a micromorphic continuum
description of materials in which granular microstructural effects need to be modeled. In these cases,
Taylor expansion of only conventional macro-scale kinematic descriptor is not representative and addi-
tional kinematic descriptors may be introduced to accurately describe the response as in Cosserat or
micromorphic media [17,18,51,72–83]. To this end, we utilize neighboring grain-pair deformation as the
fundamental building block and develop objective kinematic descriptors for relative displacements fol-
lowing Piola’s ansatz for micro–macro-identification. Micro-scale deformation energy is then introduced
in terms of the developed objective relative displacement decomposed into a component along the vector
that represents the directors of generic grain-pairs centroids in the system, termed as normal component,
and a component in the orthogonal plane, termed as tangential component. For the present work, a qua-
dratic form of the micro-scale deformation energy is utilized to obtain an identification for the case of



ZAMP Identification of a geometrically nonlinear Page 3 of 21 157

geometrically nonlinear isotropic elasticity. As a result, expressions for elastic constants of a linear novel
micromorphic continuum are obtained in terms of the micro-scale parameters. The plan of the paper is
the following. Subsequent to this introduction, in Sect. 2, the discrete and continuous models describing
a granular system are presented. Particularly, the discrete model, whose kinematics is ultimately spec-
ified in terms of a position and a micromorphic deformation gradient for each subsystem—a granular
aggregate—termed here as sub-body is introduced first. The continuum model is then introduced and
discrete-continuum kinematic bridging is performed through the Piola’s ansatz. Specialization of the pro-
posed approach to Cosserat and strain-gradient continua through proper restrictions of the micromorphic
deformation gradient is subsequently discussed. Section 3 builds on the previous sections, which are exclu-
sively concerned with the kinematics of the studied systems, by introducing the elastic strain energy for
the discrete model and the corresponding one for the continuum model as the result of a homogenization
procedure based on the Piola’s ansatz. More specifically, relative deformation measures are introduced
followed by the definition of the elastic strain energy function in the nonlinear case. Special emphasis is
given to the nonlinear 3D isotropic case for no intergranular micromorphic deformation effects and to
the linear 3D isotropic case for general intergranular micromorphic deformations. Finally, conclusions are
briefly presented.

2. Discrete and continuous models for granular systems

2.1. Discrete model

For a material with granular microstructure, the discrete granular model is illustrated, as a general
example, in Fig. 1. In the reference configuration, we have N sub-bodies. Each sub-body is composed by
many grains and is assumed to be a continuum, one point of which is labeled Xn ∈ Bn with n = 1, . . . N .
All other points of the sub-body are labeled X ′

n ∈ Bn. When this material undergoes deformation, the
point Xn is placed, in the present configuration, at xn via the placement function χn, i.e.,

xn = χn (t) , ∀t ∈ R, ∀n = 1, . . . , N, (1)

where t is the time variable. While all the other points X ′
n ∈ Bn of the grain n are placed, in the present

configuration, at x′
n via a different placement function χ′

n, i.e.,

x′
n = χ′

n (X ′
n, t) , ∀t ∈ R, ∀X ′

n ∈ Bn, ∀n = 1, . . . , N, (2)

in such a way that, evaluating this second placement function at X ′
n = Xn, we have

χ′
n (Xn, t) = χn (t) , ∀t ∈ R, ∀n = 1, . . . , N.

The sub-body Bn is assumed to be sufficiently small that a Taylor’s series expansion of χ′
n centered at

X ′
n = Xn can be truncated at the first order, i.e.,

x′
n = χ′

n (X ′
n, t) = χn (t) + Pn (t) (X ′

n − Xn) , ∀t ∈ R, ∀n = 1, . . . , N (3)

where deformation gradients are defined,

Pn (t) =
∂χ′

n

∂X ′
n

∣
∣
∣
∣
X′

n=Xn

,

and the truncation is equivalent to assuming an affine deformation of each sub-body Bn.
Thus, the kinematics of the discrete model is completely described, for each sub-body Bn, by the

following two functions

χn (t) , Pn (t) , ∀t ∈ R, ∀n = 1, . . . , N.
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Fig. 1. Discrete model. Each sub-body Bn with n = 1, . . . N in the reference configuration is represented with black
boundaries and is composed by many grains. Each grain is represented with blue boundaries. For each sub-body Bn, two
placements are defined. The placement of the point Xn, belonging to one of the grain of the sub-body Bn, is χn (t), according
to (1). The placement of the point X′

n, belonging eventually to another grain of the sub-body Bn, is χ′
n (X′

n, t), according
to (2)

2.2. Continuum model

The continuum model is described in Fig. 2. In the reference configuration, we have a continuum body C∗.
Each point of this continuum is called X ∈ C∗. The same point X is the representative of a microstructure
at a different, smaller scale, and may be another continuum. Any point within this microstructure is called
X ′. The point X is placed, in the present configuration, at x via the placement function χ, i.e.,

x = χ (X, t) , ∀t ∈ R, ∀X ∈ C∗. (4)

Further, the points X ′ of the microstructure are placed, in the present configuration, at x′ via a different
placement function χ’, i.e.,

x′ = χ′ (X,X ′, t) , ∀t ∈ R, ∀X ∈ C∗, (5)

in such a way that evaluating it at X ′ = X, we have

χ′ (X,X, t) = χ (X, t) , ∀t ∈ R, ∀X ∈ C∗. (6)

The microstructure is assumed to be sufficiently small that a Taylor’s series expansion of the placement
function χ′ (X,X ′, t) centered at X ′ = X can be truncated at the first order, i.e.,

x′ = χ′ (X,X ′, t) = χ (X, t) + P (X, t) (X ′ − X) , ∀t ∈ R, ∀X ∈ C∗ (7)

where the micromorphic deformation gradient P = P (X, t) of each microstructure is defined,

P = P (X, t) =
∂χ′

∂X ′

∣
∣
∣
∣
X′=X

, ∀t ∈ R, ∀X ∈ C∗. (8)

and where (6) has been considered. The truncation of (7) at first order is equivalent to assume an affine
deformation of each microstructure. Thus, the kinematics of the continuum model is completely described
by the following couple of functions

χ (X, t) , P (X, t) , ∀t ∈ R, ∀X ∈ C∗.

The deformation gradient, in this case, is defined by two gradients: the gradient ∇χ of the placement
function, and the gradient ∇P of the micromorphic deformation gradient

F = F (X, t) = ∇χ =
∂χ

∂X
, ∇P =

∂P

∂X
. (9)
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Thus, the Green–Saint-Venant tensor G (or nonlinear macro-strain) and the micromorphic Green–Saint-
Venant tensor M are defined as in (10)

G =
1
2

(FTF − I
)

, M =
1
2

(PTP − I
)

, (10)

In addition, a relative micro–macro-Green–Saint-Venant tensor (or nonlinear relative deformation) is
defined as

Υ =
(

I − PTF−T
)

. (11)

Note that the tensor Υ defined in (11) vanishes when P ≡ F , i.e. when the micromorphic deformation
gradient P equals the deformation gradient F . Such a tensor is nothing but a strain measure taking
into account the differential deformations of the continuum element and the microstructure. Further,
considering that a polar decomposition holds for both the micromorphic deformation gradient and the
macro-deformation gradient, it can be concluded that the tensor Υ takes into account also the differential
rotation between the micro- and macro-scale. Remark that as it will be shown in the sequel, the definition
of Υ in (11) is only one of the possible nonlinear generalizations of the relative deformation γ defined in
Mindlin’s work [1]. It is also worthwhile to define the following third-order tensors, the so-called first and
second nonlinear micro-deformation gradients

Λ =
(F−1∇P

)T13
, Λr =

(PT∇P
)T13 (12)

where the transpose operator T13 refers to the first and to the third indices of the third-order tensors Λ
and Λr as better defined in index notation as follows:

Λijh =
([F−1∇P

]T13
)

ijh
=

(F−1∇P
)

hji
=

(F−1
)

ha
(∇P )aji = F−1

ha Paj,i, (13)

Λr
ijh =

([PT∇P
]T13

)

ijh
=

(PT∇P
)

hji
=

(PT
)

ha
(∇P )aji = PahPaj,i. (14)

We remark that the tensors defined in (10), (11) and (12) are objective as shown in the following.
Let Q be a general orthogonal matrix giving a change of the frame of reference, let [F ] be the matrix
representation of the deformation gradient F , [P] be that of the micromorphic deformation gradient P
and [∇P ] be that of its gradient. This leads to

[F]

= Q [F ] ,
[P]

= Q [P] ,
[∇P

]

= Q [∇P ] ,

where
[F]

,
[P]

and
[∇P

]

are the matrix representations of the same tensors F , P and ∇P , respectively,
in the rotated, via Q, frame of reference. It is straightforward to show that the matrix representation
[

G
]

of the Green–Saint-Venant tensor in this rotated frame of reference is the same as that in the initial
frame of reference, denoted by [G],

[

G
]

=
1
2

([F]T [F] − [I]
)

=
1
2

(

[F ]T QTQ [F ] − [I]
)

=
1
2

(

[F ]T [F ] − [I]
)

= [G] ,

where [I] is the identity matrix. The same frame indifference can be demonstrated for the micromorphic
Green–Saint-Venant tensor M , using the matrix representations

[

M
]

and [M ] as

[

M
]

=
1
2

([P]T [P] − [I]
)

=
1
2

(

[P]T QTQ [P] − [I]
)

=
1
2

(

[P]T [P] − [I]
)

= [M ] ,

for the relative micro–macro-Green–Saint-Venant tensor Υ, using the matrix representations
[

Υ
]

and [Υ]
as

[

Υ
]

= [I] − [P]T [F]−T
= [P]T QTQ [F ]−T − I = [P]T [F ]−T − I = [Υ] ,
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Fig. 2. Continuum model. The reference configuration of the continuum body is C∗. Each point of it is called X ∈ C∗,
and its placement is χ (X, t). Such a point X is the representative of a microstructure, e.g., the cube in the figure. Within
the microstructure (thus, within the cube in the figure), two placements are defined. The first, according to (4), is the same
placement χ (X, t) of the point X. The second, according to (5), placement χ′ (X, X′, t) define that of any other points X′
of the microstructure

for the first relative micro-deformation gradient using with the matrix representations
[

Λ
]

and [Λ] (or

with that of its transpose 1–3 counterparts
[

Λ
T13

]

and
[

ΛT13
]

) as

[

Λ
T13

]

=
[F]−1 [∇P

]

= [F ]−1
QTQ [∇P ] = [F ]−1 [∇P ] =

[

ΛT13
]

.

and, for the second relative micro-deformation gradient, using the matrix representations
[

Λr

]

and [Λr]

(or with that of its transpose 1 − 3 counterparts
[

Λ
T13

r

]

and
[

ΛT13
r

]

) as,

[

Λ
T13

r

]

=
[P]T [∇P

]

= [P]T QTQ [∇P ] = [P]T [∇P ] =
[

ΛT13
r

]

.

.

2.3. Identification via Piola’s ansatz

In the continuum-discrete models identification, we follow Piola’s ansatz, such that

χ (Xi, t) = χi (t) , P (Xi, t) = Pi (t) , ∀i = 1, . . . , N, ∀t ∈ R. (15)

The (15) implies that the placements χi (t) and the micro-deformation Pi (t), with i = 1, . . . , N , of the
N sub-bodies Bn in the discrete model illustrated in Fig. 1 correspond to the placement χ (X, t) and the
micro-deformation P (X, t), evaluated, respectively, at the points Xi with i = 1, . . . , N , of the body C∗

in the continuous model given in Fig. 2. With this in mind, we will utilize the discrete model only as a
guiding justification for the constitutive assumptions postulated in Sect. 3. Needless to say, the content
of this paper refers to the continuous model of Fig. 2. The connection with the discrete model is only
suggestive of possible micro-scale mechanism that could be revealed through the Piola’s ansatz (15) and
is useful for the introduction of the indicated constitutive assumptions. We note that no attempt is made
here to give an evolution equation of each grain as one would for a completely discrete description.
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2.4. Cosserat and strain-gradient continua obtained by proper restrictions of the micro-deformation P

We note that restrictions on the micro-deformation P = P (X, t) define different type of microstructural
continua. First of all, no restriction on P defines a micromorphic continua, but (i) an orthogonal micro-
deformation P define from (10) Cosserat continua,

P ∈ Orth, =⇒ M = 0,

and (ii) second gradient continua are obtained when the micro-deformation P is identified with the
deformation gradient F ,

P = F = (∇χ) ,

that implies (iia) zero nonlinear relative deformation Υ from (11), (iib) identification of the Green–Saint-
Venant tensor G and of the micromorphic Green–Saint-Venant tensor M from (10),

Υ = 0, G = M,

(iic) identification of the 13-transpose second relative micro-deformation gradient Λr and nonlinear macro-
strain-gradient tensor ∇G,

(Λr)T13 = PT∇P = FT∇F = ∇G,

and (iid) the following relation between the first relative micro-deformation gradient Λ and the nonlinear
macro-strain-gradient ∇G,

(Λ)T13 = PT∇P = F−1∇F = F−1F−TFT∇F = C−1∇G,

where the left Cauchy–Green deformation tensor C is defined,

C = FTF .

3. Elastic strain energy

3.1. Relative deformation measures

Let us now assume that two sub-bodies, n and p, respectively, placed in the reference configuration at
Xn and Xp, are neighboring ones that their distance is L in the reference configuration and that the unit
vector ĉ is defined as follows:

Xn − Xp = ĉL. (16)

In the reference configuration, therefore, the vector attached to the position Xn and pointing to the
position Xp is ĉL and given in (16). Further, let us restrict the present model to the case in which the
sub-bodies, n and p, place and deform similarly in the present configuration, and therefore the following
Taylor’s series expansions are possible and yield

χ (Xn, t) ∼= χ (Xp, t) + (∇χ)Xp
(Xn − Xp) = χ (Xp, t) + F (Xn − Xp) . (17)

P (Xn, t) ∼= P (Xp, t) + (∇P )Xp
(Xn − Xp) . (18)

F (Xn, t) ∼= F (Xp, t) . (19)

We can now define the following 3 objective tensors that may be utilized to represent the material
deformation that are traceable to the micro-scale grain-pair relative displacements

gnp (t) =
1
2

[

FT (Xp, t) F (Xn, t) − I
]

, (20)
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mnp (t) =
1
2

[

PT (Xp, t) P (Xn, t) − I
]

, (21)

γnp (t) = I − PT (Xn, t) F−T (Xp, t) , (22)

where the superscripts n and p refers to the microstructures placed at Xn and at Xp. We call the tensor
gnp in (20) the macro-deformation, the tensor mnp in (21) the micro-deformation and the tensor γnp in
(22) the micro–macro-deformation. The proof of their objectivity is analogous with that derived at the
end of Sect. 2.2.

By insertion of the Taylor’s series expansions (18–19) into the 3 definitions (20–22), yield, respectively,

gnp (t) =
1
2

[

FT (Xp, t) F (Xn, t) − I
]

=
1
2

[

FT (Xp, t) F (Xp, t) − I
]

, (23)

mnp (t) =
1
2

[

PT (Xp, t) P (Xn, t) − I
]

=
1
2

[

PT (Xp, t) P (Xp, t) − I
]

+
1
2
PT (Xp, t) (∇P )Xp

(Xn − Xp) , (24)

γnp (t) = I − PT (Xn, t) F−T (Xp, t) =

= I − PT (Xp, t) F−T (Xp, t) −
[(∇PT

)

Xp
(Xn − Xp)

]

F−T (Xp, t) . (25)

The use of objective Green–Saint-Venant tensors in (10), (11) and (12) into (23), (24) and (25), yield,

gnp = G (26)

mnp = M +
L

2
PT∇P ĉ = M +

L

2
(ĉΛr)T (27)

γnp = Υ − L
[(∇PT

)

ĉ
]

F−T = Υ − LĉΛ (28)

The last two equations are derived easily in index notation as follows:

mnp
ij = Mij +

L

2
(

PT
)

ia
(∇P )ajk ĉk = Mij +

L

2
PaiPaj,k ĉk = Mij +

L

2
Λr

kjiĉk,

γnp
ij = Υij − L

(∇PT
)

iab
ĉb

(

F−T
)

aj
= Υij − LPai,bĉbF

−1
ja = Υij − LF−1

ja Pai,bĉb = Υij − LĉbΛbij ,

where the definitions (13) and (14) have been considered.
Thus, we define the objective relative displacement, i.e., the macro-relative displacement, with (26),

unp = 2Lgnpĉ = 2LGĉ, (29)

the micro–macro-relative displacement, with (28),

dnp = Lγnpĉ = L (Υ − LĉΛ) ĉ (30)

and the micro-relative-displacement, with (27),

rnp = 2Lmnpĉ = 2LMĉ + L2ĉ (ĉΛr) (31)

that, in index notation, are

unp
i = 2LGij ĉj , dnp

i = LΥij ĉj − L2Λbij ĉbĉj , rnp
i = 2LMij ĉj + L2Λr

abiĉaĉb

The half projection of the objective relative displacements on the unit vector ĉ, defined in (16), is the
so called normal displacements uη. In the same way, dη is defined as the normal micro–macro-relative
displacement and rη is defined as the normal micro-relative displacement,

uη =
1
2
unp · ĉ = LGij ĉiĉj , dη = dnp · ĉ = LΥij ĉj ĉi − L2Λabcĉaĉbĉc, (32)

rη = rnp · ĉ = 2LMij ĉj ĉi + L2Λr
abcĉaĉbĉc. (33)
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Their squares are

u2
η = (LGij ĉiĉj) (LGabĉaĉb) ,

d2η =
(

LΥij ĉj ĉi − L2Λijhĉiĉj ĉh

) (

LΥabĉaĉb − L2Λabcĉaĉbĉc

)

,

r2η =
(

2LMij ĉj ĉi + L2Λr
ijhĉiĉj ĉh

) (

2LMabĉaĉb + L2Λr
abcĉaĉbĉc

)

,

and therefore

u2
η = L2GijGabĉiĉj ĉaĉb, (34)

d2η = L2ΥijΥabĉiĉj ĉaĉb − 2L3ΥijΛabcĉiĉj ĉaĉbĉc + L4ΛijhΛabcĉiĉj ĉhĉaĉbĉc, (35)

r2η = 4L2MijMabĉiĉj ĉaĉb + 4L3MijΛr
abcĉiĉj ĉaĉbĉc + L4Λr

ijhΛr
abcĉiĉj ĉhĉaĉbĉc, (36)

uηdη = L2GijΥabĉiĉj ĉaĉb − L3GijΛabcĉiĉj ĉhĉaĉbĉc, (37)

uηrη = 2L2GijMabĉiĉj ĉaĉb + L3GijΛr
abcĉiĉj ĉhĉaĉbĉc, (38)

rηdη = 2L2MijΥabĉiĉj ĉaĉb + L3ΥijΛr
abcĉiĉj ĉhĉaĉbĉc

−L3MijΛabcĉiĉj ĉhĉaĉbĉc − L4Λr
ijhΛabcĉiĉj ĉhĉaĉbĉc. (39)

The tangent displacement uτ is defined

uτ = unp − (unp · ĉ) ĉ. (40)

as well as its square

u2
τ = unp · unp − u2

η = 4L2GijGab (δiaĉj ĉb − ĉiĉj ĉaĉb) (41)

The tangent micro–macro-relative displacement dτ and the tangent micro-relative displacement rτ are
defined

dτ = dnp − (dnp · ĉ) ĉ. (42)
rτ = rnp − (rnp · ĉ) ĉ. (43)

Thus, their squares are calculated as follows:

d2τ = L2ΥijΥab [ĉj ĉbδia − ĉiĉj ĉaĉb]

−2L3ΥijΛabc [ĉj ĉaĉcδib − ĉiĉj ĉaĉbĉc] + L4ΛijhΛabc [ĉiδjbĉhĉaĉc − ĉiĉj ĉhĉaĉbĉc] , (44)

r2τ = 4L2MijMab [ĉj ĉbδia − ĉiĉj ĉaĉb]

+4L3MijΛr
abc [ĉj ĉaĉcδib − ĉiĉj ĉaĉbĉc] + L4Λr

ijhΛr
abc [ĉiδjbĉhĉaĉc − ĉiĉj ĉhĉaĉbĉc] . (45)

3.2. Definition of the elastic strain energy function in the nonlinear case

The elastic energy function for a given couple of sub-bodies, say the couple n–p considered in Sect. 3.1,
is assumed to be a quadratic form of normal and tangent components of the macro-relative displacement
(29), of the micro–macro-relative displacement (30) and of the micro-relative displacement (31),

Unp =
1
2
kηu2

η +
1
2
kτu2

τ +
1
2
kdηd2η +

1
2
kdτd2τ +

1
2
krηr2η +

1
2
krτr2τ + kuduηdη + kuruηrη + krdrηdη, (46)

where kη, kτ , kdη, kdτ , krη, krτ , kud, kur and krd are 9 elastic constitutive coefficients of the present
formulation. In principle, in the anisotropic case, they all are a function of the unit vector ĉ, i.e., they are
nine orientation distribution function of the stiffness of the continuum. In particular, kη and kτ are the
normal and tangent stiffness defined and used in [84]. Here, the kinematic characterization of the material
is more complicated, and we have also the normal kdη and tangent kdτ micro–macro-relative stiffness and
the normal krη and tangent krτ micro-relative stiffness. Besides, the presence of three scalar invariants
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uη, dη and rη makes possible three kinds of elastic interactions, i.e., the displacement-micro–macro-
relative interaction with the homonymous stiffness kud, the displacement-micro-relative interaction with
the homonymous stiffness kur and the micro–macro–micro-relative interaction with the homonymous stiff-
ness krd. We also note that the quadratic assumption in (46) is a first step. Other potential functions can
be introduced that can lead to material nonlinearity, and for the case of asymmetric tension-compression
response evolving anisotropy (see for example [85]) and chirality [84] can emerge at the macro-scale when
subjected to loading. Insertion of (34–41–35–44–36–45–37–38–39) into (46) and integrating over all the
orientations of the unit circle S1 in the 2D case or over the unit sphere S2 in the 3D case yields

U =
∫

S1,2

Unp =
∫

S1

1
2
kη

(

L2GijGabĉiĉj ĉaĉb

)

+
1
2
kτ

(

4L2GijGab (δiaĉj ĉb − ĉiĉj ĉaĉb)
)

+
∫

S1,2

1
2
kdηL2ΥijΥabĉiĉj ĉaĉb +

1
2
kdτL2ΥijΥab [ĉj ĉbδia − ĉiĉj ĉaĉb]

−
∫

S1,2

1
2
kdη2L3ΥijΛabcĉiĉj ĉaĉbĉc +

1
2
kdτ2L3ΥijΛabc [ĉj ĉaĉcδib − ĉiĉj ĉaĉbĉc]

+
∫

S1,2

1
2
kdηL4ΛijhΛabcĉiĉj ĉhĉaĉbĉc +

1
2
kdτL4ΛijhΛabc [ĉiδjbĉhĉaĉc − ĉiĉj ĉhĉaĉbĉc]

+
∫

S1,2

kudL
2GijΥabĉiĉj ĉaĉb − kudL

3GijΛabcĉiĉj ĉaĉbĉc

+
∫

S1,2

1
2
krη4L2MijMabĉiĉj ĉaĉb +

1
2
krτ4L2MijMab [ĉj ĉbδia − ĉiĉj ĉaĉb]

+
∫

S1,2

1
2
krη4L3MijΛr

abcĉiĉj ĉaĉbĉc +
1
2
krτ4L3MijΛr

abc [ĉj ĉaĉcδib − ĉiĉj ĉaĉbĉc]

+
∫

S1,2

1
2
krηL4Λr

ijhΛr
abcĉiĉj ĉhĉaĉbĉc +

1
2
krτL4Λr

ijhΛr
abc [ĉiδjbĉhĉaĉc − ĉiĉj ĉhĉaĉbĉc]

−
∫

S1,2

krdL
4Λr

ijhΛabcĉiĉj ĉhĉaĉbĉc

+
∫

S1,2

kur2L2GijMabĉiĉj ĉaĉb + kurL
3GijΛr

abcĉiĉj ĉhĉaĉbĉc

+
∫

S1,2

krd2L2MijΥabĉiĉj ĉaĉb + krdL
3ΥijΛr

abcĉiĉj ĉaĉbĉc − krdL
3MijΛabcĉiĉj ĉaĉbĉc

or, in a compact form we have

U =
1
2
CijklGijGkl +

1
2
BijabΥijΥab +

1
2
AijhabcΛijhΛabc

+DijklmΥijΛklm + FijklmΛijkGlm + GijklΥijGkl,

+
1
2
C

r
ijklMijMkl + D

r
ijklmMijΛr

klm + D
rr
ijklm (ΥijΛr

klm − MijΛklm)

+
1
2
A

r
ijhabcΛ

r
ijhΛr

abc + G
r
ijklMijGkl + F

r
ijklmΛr

ijkGlm + B
r
ijabMijΥab (47)
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where the elastic stiffness C, B, A, D, Dr, Drr, F, Fr, G, Cr, Ar and B
r are identified in (47) as follows,

with the symmetrization induced by the symmetry of the strain tensors G and M

Cijkl = L2

∫

S1,2

(kη − 4kτ ) ĉiĉj ĉk ĉl (48)

+L2

∫

S1,2

kτ (δik ĉj ĉl + δilĉj ĉk + δjk ĉiĉl + δjlĉiĉk) ,

Bijab = L2

∫

S1,2

[(kdη − kdτ ) ĉiĉa + kdτδia] ĉj ĉb, (49)

Aijhabc = L4

∫

S1,2

[(kdη − kdτ ) ĉj ĉb + kdτδjb] ĉiĉhĉaĉc, (50)

Dijabc = −L3

∫

S1,2

[(kdη − kdτ ) ĉiĉb + kdτδib] ĉj ĉaĉc, (51)

D
r
ijabc = 2L3

∫

S1,2

(krη − krτ ) ĉiĉj ĉb +
1
2
krτ [(ĉjδib + ĉiδjb)] ĉaĉc, (52)

D
rr
ijabc = L3

∫

S1,2

krdĉiĉj ĉaĉbĉc, (53)

Fijklm = −L3

∫

S1,2

kudĉiĉj ĉk ĉlĉm, F
r
ijklm = L3

∫

S1,2

kur ĉiĉj ĉk ĉlĉm, (54)

Gijkl = L2

∫

S1,2

kudĉiĉj ĉk ĉl, G
r
ijkl = L2

∫

S1,2

kur ĉiĉj ĉk ĉl, (55)

C
r
ijkl = 4L2

∫

S1,2

(krη − krτ ) ĉiĉj ĉk ĉl (56)

L2

∫

S1,2

krτ (δik ĉj ĉl + δilĉj ĉk + δjk ĉiĉl + δjlĉiĉk) ,

A
r
ijhabc =

1
2
L4

∫

S1,2

(krη − krτ − 2krd) ĉiĉj ĉhĉaĉbĉc + krτ ĉiδjbĉhĉaĉc, (57)

B
r
ijab = 2L2

∫

S1,2

krdĉiĉj ĉk ĉl. (58)

3.3. Nonlinear 3D isotropic case in the absence of micro-deformation mnp

Let us assume that the micro-deformation mnp do not have a role in contributing to the elastic defor-
mation energy (47). In this case, we can see from (31) that the micro-relative displacement rnp does not
contribute to the elastic deformation energy (47). The consequence is that micro-relative displacement
rη and rτ play no role in the elastic energy expression (47), as seen from (33) and (43). Therefore, we
assume that the corresponding stiffness constants with subscript r, are null, that is

krη = krτ = kur = krd = 0,
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Thus from (52), (53), (54)2, (55)2, (56), (57) and (58), we have that the corresponding stiffness tensors
with superscripts r,

D
r = 0, D

rr = 0, F
r = 0, G

r = 0, C
r = 0, A

r = 0, B
r = 0,

are null and therefore the elastic energy (47) is reduced to be in a form that is the analogous of that in
eq. (5.1) in Mindlin [1],

U =
1
2
CijklGijGkl +

1
2
BijabΥijΥab +

1
2
AijhabcΛijhΛabc

+DijklmΥijΛklm + FijklmΛijkGlm + GijklΥijGkl. (59)

We will prove in Sect. 3.4 that (59) is nothing else than a possible nonlinear geometric generalization of
eq. (5.1) in Mindlin [1]. Besides, in the isotropic case Mindlin [1] in eq. (5.4) has given, among the isotropic
identification D = 0 and F = 0 (at the end of page 15 in Mindlin [1]), the following representations

Cijkl = λδijδkl + μ1δikδjl + μ2δilδjk, (60)
Bijkl = b1δijδkl + b2δikδjl + b3δilδjk, (61)
Gijkl = g1δijδkl + g2δikδjl + g3δilδjk, (62)

Aijklmn = a1δijδklδmn + a2δijδkmδnl + a3δijδknδlm

+ a4δjkδilδmn + a5δjkδimδnl + a6δjkδinδlm

+ a7δkiδjlδmn + a8δkiδjmδnl + a9δkiδjnδlm

+ a10δilδjmδkn + a11δjlδkmδin + a12δklδimδjn

+ a13δilδjnδkm + a14δjlδknδim + a15δklδinδjm, (63)

with those conditions that are made explicit at the end of page 16 in Mindlin [1], i.e.,

μ1 = μ2 = μ, g2 = g3, a1 = a6, a2 = a9, a5 = a7, a11 = a12. (64)

Insertion of (64) into (60), (61), (62) and (63) into the compact form of the strain energy (59), we have

U =
1
2
λδijδklGijGkl +

1
2
μδikδjlGijGkl +

1
2
μδilδjkGijGkl

+
1
2
b1δijδklΥijΥkl +

1
2
b2δikδjlΥijΥkl +

1
2
b3δilδjkΥijΥkl

+
1
2
a1δijδklδmnΛijkΛlmn +

1
2
a2δijδkmδnlΛijkΛlmn +

1
2
a3δijδknδlmΛijkΛlmn

+
1
2
a4δjkδilδmnΛijkΛlmn +

1
2
a5δjkδimδnlΛijkΛlmn +

1
2
a1δjkδinδlmΛijkΛlmn

+
1
2
a5δkiδjlδmnΛijkΛlmn +

1
2
a8δkiδjmδnlΛijkΛlmn +

1
2
a2δkiδjnδlmΛijkΛlmn

+
1
2
a10δilδjmδknΛijkΛlmn +

1
2
a11δjlδkmδinΛijkΛlmn +

1
2
a11δklδimδjnΛijkΛlmn

+
1
2
a13δilδjnδkmΛijkΛlmn +

1
2
a14δjlδknδimΛijkΛlmn +

1
2
a15δklδinδjmΛijkΛlmn

+g1δijδklΥijGkl + g2δikδjlΥijGkl + g2δilδjkΥijGkl

or, expanding the Kronecker symbols, it yields a geometrical nonlinear generalization of eq. (5.5) in
Mindlin [1],

U =
1
2
λGiiGjj + μGijGij +

1
2
b1ΥiiΥjj +

1
2
b2ΥijΥij

+
1
2
b3ΥijΥji + g1ΥiiGjj + g2 (Υij + Υji) Gij
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+a1ΛiikΛkmm + a2ΛiikΛjkj +
1
2
a3ΛiikΛjjk +

1
2
a4ΛijjΛikk

+a5ΛijjΛkik +
1
2
a8ΛijiΛkjk +

1
2
a10ΛijkΛijk + a11ΛijkΛjki

+
1
2
a13ΛijkΛikj +

1
2
a14ΛijkΛjik +

1
2
a15ΛijkΛkji. (65)

The aim of this subsection is to identify the corresponding 18 isotropic micromorphic constitutive coeffi-
cients, i.e., λ, μ, b1, b2, b3, g1, g2, a1, a2, a3, a4, a5, a8, a10, a11, a13, a14 and a15. To do this, we impose the
isotropic condition by assuming no dependence of the five elastic stiffness kη, kτ , kdη, kdτ and kud with
respect to the orientation ĉ (or, in the present 3D case, to the co-latitude θ and to the longitude ϕ), i.e.,

kη (θ, ϕ) =
k̄η

4π
, kτ (θ, ϕ) =

k̄τ

4π
, kdη (θ, ϕ) =

k̄dη

4π
, kdτ (θ, ϕ) =

k̄dτ

4π
, (66)

kud (θ, ϕ) =
k̄ud

4π
, ĉ1 = cos θ cos ϕ ĉ2 = cos θ sin ϕ ĉ3 = sin θ, (67)

where k̄η, k̄τ , k̄dη, k̄dτ and k̄ud are the averaged stiffness over the unit sphere S2 that are defined in the
general anisotropic case as follows:

k̄η =

2π∫

0

⎡

⎣

π∫

0

kη (θ, ϕ) sin θdθ

⎤

⎦dϕ, k̄τ =

2π∫

0

⎡

⎣

π∫

0

kτ (θ, ϕ) sin θdθ

⎤

⎦dϕ,

k̄dη =

2π∫

0

⎡

⎣

π∫

0

kdη (θ, ϕ) sin θdθ

⎤

⎦ dϕ, k̄dτ =

2π∫

0

⎡

⎣

π∫

0

kdτ (θ, ϕ) sin θdθ

⎤

⎦dϕ,

k̄ud =

2π∫

0

⎡

⎣

π∫

0

kud (θ, ϕ) sin θdθ

⎤

⎦dϕ.

Insertion of (66–67) into (48), (61), (62) and (63) yields the following and desired identification:

λ = C1122 =
L2

15
(

k̄η − 4k̄τ

)

, μ = C1212 =
L2

15
(

k̄η + 6k̄τ

)

(68)

b1 = B1122 = B1221 = b3 =
L2

15
(

k̄dη − k̄dτ

)

, B1212 = b2 =
L2

15
(

k̄dη + 4k̄dτ

)

, (69)

G1122 = g1 = G1212 = g2 =
L2

15
k̄ud, (70)

A112233 = a1 = A112323 = a2 = A112332 = a3 =
L4

105
(

k̄dη − k̄dτ

)

, (71)

A122133 = a4 = A122313 = a5 = A121323 = a8 =
L4

105
(

k̄dη − k̄dτ

)

, (72)

A123231 = a11 = A123132 = a13 = A123213 = a14 =
L4

105
(

k̄dη − k̄dτ

)

(73)

A123123 = a10 = A123321 = a15 =
L4

105
(

k̄dη + 6k̄dτ

)

. (74)

3.4. Linear 3D isotropic case for general micro-deformation mnp

From the definition of the deformation gradient F = ∇χ in (9)1 and of the micromorphic deformation
gradient P in (8), we define the displacement gradient H and the transpose micromorphic displacement
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gradient Ψ,

F = I + H, P = I + ΨT. (75)

Thus, the first nonlinear micro-deformation gradient, for small displacement approximations, is simplified
from (13),

Λijh = F−1
ha Paj,i

∼= (δha − Hha) Paj,i
∼= δhaPaj,i = Phj,i = Ψjh,i = κijh, (76)

and the second nonlinear micro-deformation gradient, for small displacement approximations, is simplified
from (14),

Λr
ijh = PahPaj,i = (δah + Ψha) Paj,i

∼= δahPaj,i = Phj,i = Ψjh,i = κijh, (77)

that means that in the linear approximation, the first Λ and the second Λr nonlinear micro-deformation
gradients are the same third-order tensor κ, that is called the micro-deformation gradient. Besides, the
Green–Saint-Venant tensor G (or nonlinear macro-strain), the micromorphic Green–Saint-Venant tensor
M and the micro–macro-Green–Saint-Venant tensors Υ (or nonlinear relative deformation), for small
displacement approximations, are simplified from (10) and (11)

G =
1
2

(

H + HT + HTH
) ∼= 1

2
(

H + HT
)

= ε, (78)

Υ ∼= I − (I + Ψ)
(

I − HT
) ∼= HT − Ψ = γ, (79)

M =
1
2

(

Ψ + ΨT + ΨΨT
) ∼= 1

2
(

Ψ + ΨT
)

=
1
2

(

HT − γ + H − γT
)

= ε − 1
2

(

γ + γT
)

, (80)

that means from (80) that in the linear approximation, the micromorphic Green–Saint-Venant tensor M
depends upon the Green–Saint-Venant tensor G and upon the micro–macro-Green–Saint-Venant tensor Υ
and it is not anymore an independent strain measure. Besides, the nonlinear macro-strain G is simplified
from (78) in the macro-strain ε and the nonlinear relative deformation Υ is simplified from (79) in the
relative deformation γ. Thus, the three strain measure from (78), (79) and (76) are the same defined in
Mindlin [1], respectively, in eqns. (1.10), (1.11) and (1.12), viz.,

εij =
1
2

(ui,j + uj,i) , γij = uj,i − Ψij , κijk = Ψjk,i (81)

Insertion of the linear approximations (76–80) into the general form of the elastic energy (47) yields

U =
1
2
C

n
ijklεijεkl +

1
2
B

n
ijklγijγkl +

1
2
A

n
ijhabcκijhκabc (82)

+D
n
ijklmγijκklm + F

n
ijklmκijkεlm + G

n
ijklγijεkl (83)

where new constitutive tensors (with the super-script n) are defined in terms of that defined in (48–58),

C
n
ijkl = Cijkl + C

r
ijkl + 2Gr

ijkl, (84)

B
n
ijkl = Bijkl + C

r
(ij)(kl) + 2Br

(ij)kl, (85)

A
n
ijhabc = Aijhabc + A

r
ijhabc, (86)

D
n
ijklm = Dijklm + D

r
(ij)klm + D

rr
[ij]klm, (87)

F
n
ijklm = Fijklm + D

r
lmijk − D

rr
lmijk + F

r
ijklm, (88)

G
n
ijkl = Gijkl + C

r
ij(kl) + G

r
(ij)kl + B

r
ijkl, (89)

where the symmetrization and skew-symmetrization rules

A(ij) =
1
2

(Aij + Aji) , A[ij] =
1
2

(Aij − Aji) ,
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have been used in (84–89). Insertion of (48–58) into (84–89) yields the explicit identification of the new
constitutive tensors,

C
n
ijkl = L2

∫

S2

(kη − 4kτ + 4krη − 4krτ + 2kur) ĉiĉj ĉk ĉl (90)

+L2

∫

S2

(kτ + krτ ) (δik ĉj ĉl + δilĉj ĉk + δjk ĉiĉl + δjlĉiĉk) ,

B
n
ijkl = L2

∫

S2

[(kdη − kdτ + 4krη − 4krτ + 4krd) ĉiĉk ĉj ĉl] (91)

+L2

∫

S2

(krτ + kdτ ) (δik ĉj ĉl) + krτ (δilĉj ĉk + δjk ĉiĉl + δjlĉiĉk) ,

A
n
ijhabc = L4

∫

S2

[(

kdη − kdτ +
1
2
krη − 1

2
krτ − krd

)

ĉj ĉb +
(

kdτ +
1
2
krτ

)

δjb

]

ĉiĉhĉaĉc, (92)

D
n
ijabc = L3

∫

S2

[(−kdη + kdτ + 2krη − 2krτ ) ĉiĉbĉj + (krτ − kdτ ) δibĉj + krτ ĉiδjb] ĉaĉc, (93)

F
n
ijklm = L3

∫

S2

(kur − kud + 2krη − 2krτ − krd) ĉiĉj ĉk ĉlĉm + krτ [(ĉjδib + ĉiδjb)] ĉaĉc, (94)

G
n
ijkl = L2

∫

S2

(kud + kur + 4krη − 4krτ + 2krd) ĉiĉj ĉk ĉl, (95)

In the isotropic case, among (66) and (67), we assume also the independence of the remaining stiffness
with respect to the unit vector ĉ, i.e.,

krη (θ, ϕ) =
k̄rη

4π
, krτ (θ, ϕ) =

k̄rτ

4π
, kur (θ, ϕ) =

k̄ur

4π
, krd (θ, ϕ) =

k̄rd

4π
. (96)

In this case the Lame’s constant in (68) are differently identified from insertion of (66–67–96) into (90)

λ = C
n
1122 =

1
15

L2
(

k̄η − 4k̄τ + 4k̄rη − 4k̄rτ + 2k̄ur

)

(97)

μ = C
n
1212 =

1
15

L2
(

k̄η + 6k̄τ + 4k̄rη + 6k̄rτ + 2k̄ur

)

(98)

so that the Young’s modulus and the Poisson’s ratio,

Y = μ
3λ + 2μ

λ + μ
, ν =

λ

2 (λ + μ)
, (99)

are identified as

Y =
1
15

L2
(

k̄η + 6k̄τ + 4k̄rη + 6k̄rτ + 2k̄ur

)
(

5k̄η + 20k̄rη + 10k̄ur

)

2
(

k̄η + k̄τ + 4k̄rη + k̄rτ + 2k̄ur

) , (100)

ν =

(

k̄η − 4k̄τ + 4k̄rη − 4k̄rτ + 2k̄ur

)

4
(

k̄η + k̄τ + 4k̄rη + k̄rτ + 2k̄ur

) (101)

These expressions for the stiffness parameters in 90–95 provide an essential seed for an initial estimation
of all the elastic parameters that characterize a micromorphic continuum. It is remarkable that these
first estimates indicate that such materials are described by several characteristic lengths, which can
be multiples of relevant grain-size, and represent the influence of grain-scale micromechanisms on the
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emergent behavior at the macro-scale. These micromechanisms may include those that resemble the floppy
behavior of pantograph, best described by second-gradient macro-scale continua analyzed in [35,86], or
other mechanisms that require additional kinematical descriptors to capture the deformation energy
of grain-pair [7,17,51,71]. It is also noteworthy that it is possible to estimate the elastic parameters a
micromorphic continuum in terms of a few parameters that link to the micromechanisms without recourse
to ad hoc prescriptions or a priori (over) simplifications. For certain, relatively simple micromechanisms
and structures, such linkages can indeed be identified, synthesized and experimentally characterized as
discussed in [51,52]and [42–50,87–90].

4. Conclusion

For accurate and tractable description of the mechanical behavior of a large class of materials which at
some spatial scale possess granular microstructure, refined models, such as the micromorphic models, are
needed. Such models are particularly significant for bridging, in a heuristic way, across spatial scales rang-
ing from that at grain interactions to collective behavior of large numbers of grains. At meso-scales of few
grains to tens of thousands of grains, discrete simulations can be conceived that provide the trajectories
and distribution of grain-scale deformation energies. It is worthwhile to note here that although discrete
models have proliferated over the past several decades, their systematic validation through experimen-
tally measured particle trajectories and grain-scale energy distributions have been characteristically sparse
(absent to the knowledge of these authors). At the macro-scales consisting of large number of grains of
various sizes, interfaces/surfaces, composition and arrangement (collectively micromechano-morphology),
discrete models could be intractable. In these cases, micromorphic continuum models can serve as effective
reduced-order models that can capture many essential aspects of the grain-scale mechanisms. This paper
describes an approach to construct such micromorphic models in the framework of finite (geometrically
nonlinear) deformations using the concepts of granular micromechanics. The key aspect of the described
approach is the identification of the appropriate kinematic measures that describe the macro-deformation
and link it to the micro-deformation, formulation of the deformation energies in terms of these measures
and the application of energy methods to identify the constitutive relations. Such an approach permits
potential identification of inner deformation modes that store elastic energy contributing to the emergent
behavior at the macro-scale, and indicates the pathway to access these modes with the view of rational
design of (meta) materials.

Furthermore, we would like to identify a number of potential outlook of the presented approach. First,
the isotropic identification we have shown can be extended to an anisotropic one by the use of proper non
constant orientation distribution function instead of (66–67–96). Second, the truncation of the Taylor’s
series expansions (18–19) up to the first order in terms of the kinematic descriptors results in a first-grade
continuum theory. Such a limitation can be removed to obtain higher order gradient continuum theories
without unduly augmenting the number of the constitutive coefficients that need to be experimentally
identified. Third, the quadratic assumption (46) can be generalized, such as with Leonard–Jones-type
potential to take into account elastic-hardening effects and tension-compression asymmetry that can lead
to emergence of anisotropy. Fourth, dissipative phenomena such as damage [84] and plasticity [91] can be
included by using for example an hemivariational approach or by assuming dissipation energy in terms of
additional entropic irreversible kinematical descriptors. It is further remarkable that plastic deformation
in the present micromorphic form can give rise to inelastic microstructural rotation.
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