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Abstract. In this paper, a variable-coefficient symbolic computation approach is proposed to solve the multiple rogue
wave solutions of nonlinear equation with variable coefficients. As an application, a (2 + 1)-dimensional variable-coefficient
Kadomtsev–Petviashvili equation is investigated. The multiple rogue wave solutions are obtained and their dynamic features
are shown in some 3D and contour plots.
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1. Introduction

In this paper, the following (2+1)-dimensional variable-coefficient Kadomtsev–Petviashvili (vcKP) equa-
tion is investigated [1]

α(t)u2
x + α(t)uuxx + β(t)uxxxx − γ(t)uyy + uxt = 0, (1)

where u = u(x, y, t) describes amplitude of the long wave of two-dimensional fluid domain on varying
topography or in turbulent flow over a sloping bottom. α(t), β(t) and γ(t) are arbitrary real functions.
The solitonic solution [1], Wronskian and Gramian solutions [2], Bäcklund transformation [3], breather
wave solutions [4], lump and interactions solutions [5,6] of Eq. (1) have been studied.

Rogue wave has important applications in ocean’s waves [7], optical fibers [8], Bose–Einstein con-
densates [9] and other fields. Rogue wave solutions of many integrable equations have been investigated
[10–17]. Recently, a symbolic computation approach to obtain the multiple rogue wave solutions is pro-
posed by Zhaqilao [18]. But the main application of this method is constant-coefficient integrable equation
[19–21], which is not suitable for variable-coefficient integrable equation. So, we give an improved method
named variable-coefficient symbolic computation approach (vcsca) to solve this problem and apply this
method to Eq. (1), which will be the main work of our paper.

The organization of this paper is as follows. Section 2 proposes a vcsca; Sect. 3 gives the 1-rogue wave
solutions; Sect. 4 obtains the 3-rogue wave solutions; Sect. 5 presents the 6-rogue wave solutions; and
Sect. 6 gives this conclusions.
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2. Modified symbolic computation approach

Here, we present a vcsca to find the multiple rogue wave solutions of variable-coefficient integrable equa-
tion

Step 1. Instead of the traveling wave transformation in Ref. [18], we make a non-traveling wave
transformation υ = x − ω(t) in the following nonlinear system with variable coefficients

Ξ(u, ut, ux, uy, uxy, . . .) = 0, (2)

and Eq. (2) is reduced to a (1+1)-dimensional equation

Ξ(u, uυ, uy, uυy, . . .) = 0. (3)

Step 2. By Painlevé analysis, we make the following transformation

u(υ, y) =
∂n

∂υm
lnξ(υ, y). (4)

m can be derived by balancing the order of the highest derivative term and nonlinear term.
Step 3. Assuming

ξ(υ, y) = Fn+1(υ, y) + 2νyPn(υ, y) + 2μυQn(υ, y) + (μ2 + ν2)Fn−1(υ, y), (5)

with

Fn(υ, y) =
n(n+1)/2∑

k=0

k∑

i=0

an(n+1)−2k,2iy
2iυn(n+1)−2k,

Pn(υ, y) =
n(n+1)/2∑

k=0

k∑

i=0

bn(n+1)−2k,2iυ
2iyn(n+1)−2k,

Qn(υ, y) =
n(n+1)/2∑

k=0

k∑

i=0

cn(n+1)−2k,2iy
2iυn(n+1)−2k,

F0 = 1, F−1 = P0 = Q0 = 0, where am,l, bm,l and cm,l(m, l ∈ [0, 2, 4, . . . , n(n + 1)]) are unknown
constants, μ and ν are the wave center.

Step 4. Substituting Eqs. (4) and (5) into Eq. (3) and equating all the coefficients of the different
powers of υ and y to zero, we can know am,l, bm,l and cm,l(m, l ∈ [0, 2, 4, . . . , n(n + 1)]). The corresponding
multiple rogue wave solutions can be presented.

3. 1-Rogue wave solutions

Based on the vcsca, set

α(t) =
6β(t)
Θ0

, υ = x − ω(t), u = 2Θ0 [lnξ(υ, y)]υυ, (6)

and Eq. (1) can be changed as

6ξ2υ[ξ[3β(t)ξυυυυ − 2ω′(t)ξυυ] + 3β(t)ξ2υυ] + 2ξ2ξυ[2ω′(t)ξυυυ

−3β(t)ξυυυυυ] + ξ[ξ[−3β(t)ξυυυυξυυ + 2β(t)ξ2υυυ + 3ω′(t)ξ2υυ]
+ξ2[β(t)ξυυυυυυ − ω′(t)ξυυυυ] − 6β(t)ξ3υυ] − 24β(t)ξυυυξ3υ

+γ(t)[[6ξ2υ − 2ξξυυ]ξ2y + 2ξ[ξξυυy − 4ξυξυy]ξy + ξ[ξyy[ξξυυ − 2ξ2υ]

+ξ[2ξ2υy + 2ξυξυyy − ξξυυyy]]] + 6ω′(t)ξ4υ. (7)
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Fig. 1. Rogue wave (10) with μ = ν = 0, Θ0 = 1, ζ0 = −10, ζ1 = 2, a 3D graphic, b contour plot

According to Eq. (5), we have

ξ(υ, y) = (υ − μ)2 + ζ1(y − ν)2 + ζ0, (8)

where μ, ν, ζ0 and ζ1 are unknown real constants. Substituting Eq. (8) into Eq. (7) and equating the
coefficients of all powers υ and y to zero, we obtain

γ(t) =
3β(t)
ζ0ζ1

, ω′(t) = ζ1γ(t). (9)

Substituting Eqs. (8) and (9) into Eq. (6), the 1-rogue wave solutions for Eq. (1) can be read as

u =
4Θ0[−(μ − υ)2 + ζ1(y − ν)2 + ζ0]

[(μ − υ)2 + ζ1(y − ν)2 + ζ0]2
. (10)

When ζ0 > 0, rogue wave (10) has three extreme value points (μ, ν), (μ±√
3
√

ζ0, ν). When ζ0 < 0, ζ1 > 0,
rogue wave (10) has three extreme value points (μ, ν), (μ, ν±

√−ζ0√
ζ1

). Figures 1 and 2 describe the dynamic
features of rogue wave (10) when ζ0 and ζ1 select different values.

4. 3-Rogue wave solutions

In order to look for the 3-rogue wave solutions, we set

ξ(υ, y) = μ2 + ν2 + υ6 + y6ζ17 + y4ζ16 + 2μυ
(
y2ζ23 + υ2ζ24 + ζ22

)

+2νy
(
y2ζ20 + υ2ζ21 + ζ19

)
+ υ4y2ζ11 + y2ζ15

+υ2
(
y4ζ14 + y2ζ13 + ζ12

)
+ υ4ζ10 + ζ18, (11)

where ζi(i = 10, . . . , 24) is unknown real constant. Substituting Eq. (11) into Eq. (7) and equating the
coefficients of all powers υ and y to zero, we get

γ(t) =
90β(t)

ζ13
, ω′(t) =

30ζ11β(t)
ζ13

, ζ14 =
ζ211
3

, ζ16 =
17ζ11ζ13

270
,

ζ20 = −1
9
ζ11ζ21, ζ17 =

ζ311
27

, ζ15 =
19ζ213
108ζ11

, ζ23 = −ζ11ζ24,



154 Page 4 of 12 J.-G. Liu, W.-H. Zhu, and Y. He ZAMP

Fig. 2. Rogue wave (10) with μ = ν = 0, Θ0 = 1, ζ0 = 1, ζ1 = 2, a 3D graphic, b contour plot

Fig. 3. Rogue wave (13) with μ = ν = 0, Θ0 = 1, ζ11 = ζ13 = ζ21 = ζ24 = 1, a 3D graphic, b contour plot

ζ22 = −ζ13ζ24
30ζ11

, ζ12 = − 5ζ213
36ζ211

, ζ10 =
5ζ13
6ζ11

, ζ19 =
ζ13ζ21
18ζ11

,

ζ18 = −μ2 − ν2 + μ2ζ224 +
ν2ζ221
3ζ11

+
5ζ313
72ζ311

. (12)

Substituting Eqs. (11) and (12) into Eq. (6), the 3-rogue wave solutions for Eq. (1) can be read as

u = [24Θ0ζ11[5[12y4ζ411 + 36ζ211
(
15υ4 + y2ζ13 + 2νyζ21 + 6μυζ24

)

+216υ2y2ζ311 + 180υ2ζ13ζ11 − 5ζ213][40y6ζ611 + 360υ2y4ζ511

+2ζ211[95y2ζ213 + 6ζ13
(
75υ4 + 10νyζ21 − 6μυζ24

)
+ 180ν2ζ221]

+4y2ζ411[y (17yζ13 − 60νζ21) + 270υ
(
υ3 − 2μζ24

)
] + 1080ζ311[υ

2y2ζ13
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Fig. 4. Rogue wave (13) with μ = 10, ν = 0, ζ11 = ζ13 = ζ21 = ζ24 = 1, Θ0 = 1, a 3D graphic, b contour plot

Fig. 5. Rogue wave (13) with μ = 0, ν = 10, ζ11 = ζ13 = ζ21 = ζ24 = 1, Θ0 = 1, a 3D graphic, b contour plot

+2νυ2yζ21 +
(
υ3 + μζ24

)
2] − 150υ2ζ213ζ11 + 75ζ313] − 12ζ11[60υy4ζ411

+180υζ211
(
3υ4 + y2ζ13 + 2νyζ21 + 3μυζ24

)
+ 180y2ζ311

(
2υ3 − μζ24

)

+6ζ13ζ11
(
50υ3 − μζ24

) − 25υζ213]
2]]/[[40y6ζ611 + 360υ2y4ζ511

+2ζ211[95y2ζ213 + 6ζ13
(
75υ4 + 10νyζ21 − 6μυζ24

)
+ 180ν2ζ221]

+4y2ζ411[y (17yζ13 − 60νζ21) + 270υ
(
υ3 − 2μζ24

)
] + 1080ζ311[υ

2y2ζ13

+2νυ2yζ21 +
(
υ3 + μζ24

)
2] − 150υ2ζ213ζ11 + 75ζ313]

2], (13)

where ζ11, ζ13, ζ21 and ζ24 are unrestricted. Dynamic features of 3-rogue wave solutions are displayed in
Figs. 3, 4, 5 and 6 when (μ, ν) selects different values, we can see that three rogue waves break apart and
form a set of three 1-rogue waves in Figs. 3, 4, 5 and 6.
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Fig. 6. Rogue wave (13) with μ = ν = 10, ζ11 = ζ13 = ζ21 = ζ24 = 1, Θ0 = 1, a 3D graphic, b contour plot

Fig. 7. Rogue wave (16) with μ = ν = 0, Θ0 = 1, ζ0 = ζ1 = ζ28 = 1, ζ26 = 2, a 3D graphic, b contour plot

5. 6-Rogue wave solutions

To present the 6-rogue wave solutions, we assume

ξ(υ, y) = υ12 + y8ζ48 + y6ζ47 + y4ζ46 + υ10
(
y2ζ26 + ζ25

)

+y2ζ45 + υ8
(
y4ζ29 + y2ζ28 + ζ27

)
+ 2μυ[υ6 + y6ζ64 + y4ζ63

+υ4
(
y2ζ69 + ζ68

)
+ y2ζ62 + υ2

(
y4ζ67 + y2ζ66 + ζ65

)
+ ζ61]

+2νy[y6 + y4
(
υ2ζ57 + ζ56

)
+ y2

(
υ4ζ55 + υ2ζ54 + ζ53

)
+ υ6ζ60

+υ4ζ59 + υ2ζ58 + ζ52] + υ6
(
y6ζ33 + y4ζ32 + y2ζ31 + ζ30

)
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Fig. 8. Rogue wave (16) with μ = 10, ν = 0, Θ0 = 1, ζ0 = ζ1 = ζ28 = 1, ζ26 = 2, a 3D graphic, b contour plot

Fig. 9. Rogue wave (16) with μ = 0, ν = 10, Θ0 = 1, ζ0 = ζ1 = ζ28 = 1, ζ26 = 2, a 3D graphic, b contour plot

+υ4
(
y8ζ38 + y6ζ37 + y4ζ36 + y2ζ35 + ζ34

)
+ υ2(y10ζ44 + y8ζ43

+y6ζ42 + y4ζ41 + y2ζ40 + ζ39) + ζ51 + y12ζ50 + y10ζ49

+
(
μ2 + ν2

)
[υ2 + y2ζ1 + ζ0], (14)

where ζi(i = 25, . . . , 69) is unknown real constant. Substituting Eq. (14) into Eq. (7) and equating the
coefficients of all powers υ and y to zero, we obtain
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Fig. 10. Rogue wave (16) with μ = ν = 30, Θ0 = 1, ζ0 = ζ1 = ζ28 = 1, ζ26 = 2, a 3D graphic, b contour plot

Fig. 11. Rogue wave (17) with μ = ν = Θ0 = 1, x = 0, ζ0 = −1, ζ1 = 2, β(t) = 1 in a, d, β(t) = t in b, e and β(t) = cos t

in c, f
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γ(t) =
690β(t)

ζ28
, ω′(t) =

1
6
ζ26γ(t), ζ29 =

5ζ226
12

, ζ33 =
5ζ326
54

,

ζ32 =
77ζ26ζ28

207
, ζ31 =

1862ζ228
7935ζ26

, ζ37 =
73ζ226ζ28

1242
, ζ36 =

749ζ228
9522

,

ζ55 = −180
ζ226

, ζ38 =
5ζ426
432

, ζ35 =
294ζ328

12167ζ226
, ζ43 =

19ζ326ζ28
4968

,

ζ42 =
77ζ26ζ

2
28

6210
, ζ41 = − 49ζ328

182505ζ26
, ζ52 =

271656ζ328
304175ζ626

,

ζ54 = −1368ζ28
23ζ326

, ζ44 =
ζ526

1296
, ζ57 = − 54

ζ26
, ζ40 =

3773ζ428
6996025ζ326

,

ζ50 =
ζ626

46656
, ζ49 =

29ζ426ζ28
447120

, ζ48 =
289ζ226ζ

2
28

1142640
,

ζ64 =
5ζ326
216

, ζ47 =
39949ζ328
49276350

, ζ27 =
147ζ228
2645ζ226

,

ζ67 = −5ζ226
36

, ζ63 =
ζ26ζ28

92
, ζ66 = −ζ28

3
,

ζ25 =
98ζ28
115ζ26

, ζ56 = − 42ζ28
115ζ226

, ζ46 =
655669ζ428

755570700ζ226
,

ζ53 = −1764ζ228
2645ζ426

, ζ60 =
1080
ζ326

, ζ69 = −3ζ26
2

, ζ65 = − 49ζ228
2645ζ226

,

ζ30 =
15092ζ328
912525ζ326

, ζ39 = −ν2 +
279936ν2

ζ726
+

6391462ζ528
2413628625ζ526

,

ζ34 = − 41503ζ428
4197615ζ426

, ζ68 =
13ζ28
115ζ26

, ζ58 = −28728ζ228
2645ζ526

,

ζ45 = −ζ1
(
μ2 + ν2

)
+

μ2ζ26
6

+
46656ν2

ζ626
+

1203587ζ528
1448177175ζ426

,

ζ62 =
107ζ228

15870ζ26
, ζ61 =

2401ζ328
912525ζ326

, ζ59 =
4536ζ28
23ζ426

,

ζ51 =
3ζ28

(
279936ν2 + μ2ζ726

)

115ζ826
− ζ0

(
μ2 + ν2

)
+

35153041ζ628
832701875625ζ626

. (15)

Substituting Eqs. (14) and (15) into Eq. (6), the 6-rogue wave solutions for Eq. (1) can be written as

u = 2Θ0

(
ξυυ

ξ
− ξ2υ

ξ2

)
, (16)

where ξ satisfies Eq. (14) and Eq. (15), ζ26 and ζ28 are unrestricted. Dynamic features of 6-rogue wave
solutions are shown in Figs. 7, 8, 9 and 10 when (μ, ν) selects different values, we can see that sixrogue
waves break apart and form a set of six 1-rogue waves in Figs. 7, 8, 9 and 10.

6. Conclusion

In the paper, a variable-coefficient symbolic computation approach is proposed. The main difference
between this method and the previous one in Ref. [18] is that we replace the traveling wave transformation
with the non-traveling wave transformation, making it suitable for solving the multiple rogue wave solution
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of the nonlinear system with variable coefficients. This change has not been seen in other literatures.
Applied the vcsca to the (2+1)-dimensional vcKP equation, the 1-rogue wave solutions, 3-rogue wave
solutions and 6-rogue wave solutions are present. By setting different values of (μ, ν), their dynamic
features are displayed in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. All the obtained solutions have been verified
to be correct.

Substituting υ = x − ω(t) in rogue wave solution (10), we have

u(x, y, z, t) =
4Θ0

[
−

[
μ + 3

∫
β(t) dt
ζ0

− x
]
2 + ζ1(y − ν)2 + ζ0

]

[[
μ + 3

∫
β(t) dt
ζ0

− x
]
2 + ζ1(y − ν)2 + ζ0

]
2

. (17)

When variable-coefficient β(t) chooses different function, the rogue wave (17) shows different dynamic
features in Fig. 11.

In addition to this (2+1)-dimensional vcKP equation, this vcsca can also be applied to the (3+1)-
dimensional generalized KP equation with variable coefficients [22], the generalized (3 + 1)-dimensional
variable-coefficient nonlinear wave equation [23] based on the symbolic computation [24–36].
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