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Variable-coefficient symbolic computation approach for finding multiple rogue wave
solutions of nonlinear system with variable coefficients
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Abstract. In this paper, a variable-coefficient symbolic computation approach is proposed to solve the multiple rogue
wave solutions of nonlinear equation with variable coefficients. As an application, a (2 4 1)-dimensional variable-coefficient
Kadomtsev—Petviashvili equation is investigated. The multiple rogue wave solutions are obtained and their dynamic features
are shown in some 3D and contour plots.
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1. Introduction

In this paper, the following (2+1)-dimensional variable-coefficient Kadomtsev—Petviashvili (vcKP) equa-
tion is investigated [1]

a(t)u2 + a(t)utiey + Bt Upzzr — V() Uyy + Uz = 0, (1)

where v = u(z,y,t) describes amplitude of the long wave of two-dimensional fluid domain on varying
topography or in turbulent flow over a sloping bottom. a(t), 3(t) and ~(¢) are arbitrary real functions.
The solitonic solution [1], Wronskian and Gramian solutions [2], Bécklund transformation [3], breather
wave solutions [4], lump and interactions solutions [5,6] of Eq. (1) have been studied.

Rogue wave has important applications in ocean’s waves [7], optical fibers [8], Bose-Einstein con-
densates [9] and other fields. Rogue wave solutions of many integrable equations have been investigated
[10-17]. Recently, a symbolic computation approach to obtain the multiple rogue wave solutions is pro-
posed by Zhaqilao [18]. But the main application of this method is constant-coefficient integrable equation
[19-21], which is not suitable for variable-coefficient integrable equation. So, we give an improved method
named variable-coefficient symbolic computation approach (vesca) to solve this problem and apply this
method to Eq. (1), which will be the main work of our paper.

The organization of this paper is as follows. Section 2 proposes a vcsca; Sect. 3 gives the 1-rogue wave
solutions; Sect. 4 obtains the 3-rogue wave solutions; Sect. 5 presents the 6-rogue wave solutions; and
Sect. 6 gives this conclusions.
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2. Modified symbolic computation approach

Here, we present a vesca to find the multiple rogue wave solutions of variable-coefficient integrable equa-
tion

Step 1. Instead of the traveling wave transformation in Ref. [18], we make a non-traveling wave
transformation v = & — w(t) in the following nonlinear system with variable coefficients

S (U, U, Ugy Uy, Ugy, - - -) = 0, (2)
and Eq. (2) is reduced to a (1+1)-dimensional equation
E(u, Uy, Uy, Uy, - ..) = 0. (3)

Step 2. By Painlevé analysis, we make the following transformation

(v, 9)- (4)

m can be derived by balancing the order of the highest derivative term and nonlinear term.
Step 3. Assuming

g(U, y) = Fn+1(Ua y) + 2Vypn(v, y) + QM'UQR(Uv y) + (/1’2 + VQ)Fn—l(Ua y)7 (5)

o
u(v,y) = S

with
n(n+1)/2 k

F, (U y Z Zan (nb1)—2k,2i yQZ,Un(n+1) 2k
k=0 =0

n(n+1)/2 k

Z an(nﬂ)—%z iyt =2k,

n n+1)/2 k

Z Zc"(n+l) ok 2y on (M D=2k

Fy = 1,F1 = Py = Qo = 0, where a1, by, and ¢, (m,l € [0,2,4,...,n(n+1)]) are unknown
constants, ¢ and v are the wave center.

Step 4. Substituting Eqgs. (4) and (5) into Eq. (3) and equating all the coefficients of the different
powers of v and y to zero, we can know G, ;, by, ; and ¢, ;(m, 1 € [0,2,4,...,n(n + 1)]). The corresponding
multiple rogue wave solutions can be presented.

3. 1-Rogue wave solutions

Based on the vcsca, set

=2 —w(t),u=2600[InE(V,y)]vu, (6)

and Eq. (1) can be changed as

6£2[E13B(1)Evvun — 20" (1) Eu] + 3B()EL,] + 25% 20 ()€vow
=3B8(t)Evvvvn] + EE[=3BE) Evvvvbon + 2B(t)E2,, + 3w/ (£)E2,)]
+E[B) Evvvvve — W' (E)Evvu] — 68()ES,] — 24B(1)Evuuts
FY()[[6€2 — 26€00]E] + 26[E€uuy — 4uuylly + ElEyy[E€un — 267
+E[262, + 2600y — ECvuyyll] + 6w (1), (7)
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Fi1G. 1. Rogue wave (10) with p=v =0, ©g =1, (o = —10, ¢1 = 2, a 3D graphic, b contour plot

According to Eq. (5), we have

£(v,y) = (v =)+ Gy =) + o, (8)
where p, v, (o and (3 are unknown real constants. Substituting Eq. (8) into Eq. (7) and equating the
coefficients of all powers v and y to zero, we obtain

10 = 29,00 = o), )
(161
Substituting Eqgs. (8) and (9) into Eq. (6), the 1-rogue wave solutions for Eq. (1) can be read as
o = 260[=(n— v)* + Gy —v)* + Gl
(=) + Gy —v)* + G]?
When ¢y > 0, rogue wave (10) has three extreme value points (u, v), (u4v/3v/Co, ). When ¢y < 0,¢; > 0,
rogue wave (10) has three extreme value points (u, v), (u, v+ 750 ). Figures 1 and 2 describe the dynamic

Vi
features of rogue wave (10) when (o and ¢; select different values.

(10)

4. 3-Rogue wave solutions

In order to look for the 3-rogue wave solutions, we set
Ev,y) = 1 + 12 + 0 + 4% + ¥ Cie + 200 (y2Cos + 07 (o + (o2)
+2vy (y%C0 + v2Ca1 + C19) + v Y2 Cu1 + Y215
+0* (y* ¢ + ¥ Cis + Ci2) + 0" Go + Gis, (11)

where (;(i = 10,...,24) is unknown real constant. Substituting Eq. (11) into Eq. (7) and equating the
coefficients of all powers v and y to zero, we get

_908(@) ., _ 30¢118(t) ¢ 176G
v(t) = s Y (t) = TaCM = ?7@6 =9
3 2
oo =~ nan, 7 = S, G = g G =~
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-5 ¢

Fic. 2. Rogue wave (10) with pu =v =0, ©g =1, (o = 1, {1 = 2, a 3D graphic, b contour plot

(@ (b)

F1G. 3. Rogue wave (13) with p=v =0, ©g =1, (11 = (13 = {21 = (24 = 1, a 3D graphic, b contour plot

5¢Hs

~ Gi3Go4 B
36¢7

<22 = 30<11 aCl? =

ST
CIO - 6411 )

V2C221 + 5(?3
3Cu - T20
Substituting Egs. (11) and (12) into Eq. (6), the 3-rogue wave solutions for Eq. (1) can be read as
U= [249()(11[5[1294({11 + 36(121 (157)4 + 423 + 2vyCor + 6#“@4)
+2160%y2 ) + 18002 Cr3Cn — 5CE5][40y°¢C, + 36007y ¢y
+2¢31[95y% (T + 6¢13 (T5v* + 10vyCar — 6pvas) + 18002(3)]
+4y* Gl [y (1TyCus — 600Ca1) + 2700 (0 = 20Ca4)] + 1080¢F [0*y*Cis

_ s
18¢11

C1o

Gis = —p° — V2 + pPGy + (12)
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(@) (b)
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FIG. 4. Rogue wave (13) with y1 = 10, = 0, C11 = C13 = C21 = Co4 = 1, ©g = 1, a 3D graphic, b contour plot

@ (b)

-5

F1G. 5. Rogue wave (13) with p = 0,v = 10, (11 = (13 = {21 = {24 = 1, ©g = 1, a 3D graphic, b contour plot

2002y Cor + (V3 + pCaa) 2] — 15002CE G + 75¢] — 12¢11[60vy ¢

+1800v(Ty (30" + ¥ (i3 + 2vyCor + 3pvlas) + 180y°CFy (20° — plos)

+6C13¢11 (500® — pas) — 250(75]%]1/[[405°CP) + 3600y (T,

+2¢71[95y°(T5 + 6Ci3 (750" 4+ 10vyCor — 6pvCas) + 1800°(3 ]

+y* ¢l [y (17yCis — 600Car) + 2700 (0 = 241Ca4)] + 1080¢7 [07y% Crs

+200%yCor + (v + plaa) ) = 15007560 + T5¢H5)), (13)
where (11, (13, (o1 and (o4 are unrestricted. Dynamic features of 3-rogue wave solutions are displayed in

Figs. 3, 4, 5 and 6 when (u, v) selects different values, we can see that three rogue waves break apart and
form a set of three 1-rogue waves in Figs. 3, 4, 5 and 6.
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(b)

=5

FIG. 6. Rogue wave (13) with = v =10, (11 = (13 = (21 = (24 = 1, ©g = 1, a 3D graphic, b contour plot

(@) (b)

F1G. 7. Rogue wave (16) with p =v =0, ©g =1, (o = (1 = C28 = 1, {26 = 2, a 3D graphic, b contour plot

5. 6-Rogue wave solutions

To present the 6-rogue wave solutions, we assume

E(v,y) = v + y8Cs + y°Cr + y* s + 0" (Y Ca6 + (o5)
+42Cas + U8 (¥ Coo + ¥ Cas + Cor) + 20000 + y¥Coa + 1" (o3

+0* (y2Coo + Cos) + y°Coz2 + v? (¥ Cor + y2Cos + Cos) + Co1)
+2uy[y® + y* (V3¢ + Gss) + ¥ (v Css + v2C5a + Gs3) + 1860

+0 g + 02Css + Cro) + 10 (y°Cas + ¥ G2 + ¥7Ga1 + Gao)

ZAMP
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(@) - (b)

F1G. 8. Rogue wave (16) with 4 =10, =0, @9 = 1, o = ¢1 = 28 = 1, (26 = 2, a 3D graphic, b contour plot

(@ (b)

-10

-10

F1G. 9. Rogue wave (16) with = 0,v =10, ©g =1, (o = (1 = C28 = 1, (26 = 2, a 3D graphic, b contour plot

+ut (y¥¢as + ¥°Csr + ¥ a6 + ¥2Css + Caa) + 02 (¥ Cua + ¥5Cus

+9%Ca2 + y*Car + y?Cao + Ca9) + Go1 + ¥ 2 Cs0 + ¥ a0
+ (1 +v2) [0* + 2+ Gl

154

(14)

where (;(i = 25,...,69) is unknown real constant. Substituting Eq. (14) into Eq. (7) and equating the

coeflicients of all powers v and y to zero, we obtain
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-10 _4o

F1G. 10. Rogue wave (16) with p=v =30, ©g =1, (o = (1 = {28 = 1, {26 = 2, a 3D graphic, b contour plot

(a) (b) (0

10

-10
-10

Fic. 11. Rogue wave (17) with pu=v =609 =1,2=0, (o = —1,¢1 =2, 8() =1ina, d, 3(t) =t in b, e and B(t) = cost
inc, f
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6903(t 1 53 . _ 5G
A/(t) = ( )7w/(t) = 7(26’7(t)7 29 = 267< =26
(28 54 °
(= TTCasCas 18622 ¢ 73C35Cs oo = 749C3,
827 7007 S T 70350, YT T T 1242 0% T T9522
G 180 BGh o 294GK | 19GiGs
TR T a3 T 12167¢2, M T T 4968
Cin = T7¢26(3s c 49¢3s Con = 2716565
27 76210 M T T 1825050 77 3041755,
(o — 1308 CSs L 3773¢4
o 23¢3, M T 120677 T G oM T 6996025¢3,
oo = 36 Cio = 29G56G2s ¢ 289¢36¢3s
507 466567 °% T 447120 7> T 1142640
(o= O 399G TG
047 2167 T 492763507777 2645¢2,
5
C67 = 426 5 C CQGCQS 3 CG ngv
s = 98¢28 s = 42g28 ¢ 655669C,
2T 150y ™ T T 115¢2, " T 75557070002,
R _1764¢5 Coo = 1080 Coo = 3426 R 49(3g
53 — 2645(367 60 — <236 5§69 — — s 665 = 2645<226
oo = 15092¢3, oo — 1 27993612 6391462(5
%0 912525¢3, Y s 2413628625¢3;
o= — 41503¢4, (o = 130 287283
ST T A197615¢E % T 11500 " 2645¢3,
2 2 5
o oy, KGs | 466561 1203587¢5
G = =G (p" 407 + =07+ =+ Trrscr
oy = 107¢Z ¢ 2401¢3 Gy — 1536Gas
62 7 T5870C5s "™ T 912525¢3, % T 23¢L;
3Cas (27993612 + 12Clg) , 35153041¢5,
- - . 15
o1 115¢3, G (i +v7) + 8327018756255, (15)
Substituting Eqgs. (14) and (15) into Eq. (6), the 6-rogue wave solutions for Eq. (1) can be written as
2
u =260, (52“ - 2;) , (16)

where ¢ satisfies Eq. (14) and Eq. (15), (26 and (os are unrestricted. Dynamic features of 6-rogue wave
solutions are shown in Figs. 7, 8, 9 and 10 when (p, ) selects different values, we can see that sixrogue
waves break apart and form a set of six 1-rogue waves in Figs. 7, 8, 9 and 10.

6. Conclusion

In the paper, a variable-coefficient symbolic computation approach is proposed. The main difference
between this method and the previous one in Ref. [18] is that we replace the traveling wave transformation
with the non-traveling wave transformation, making it suitable for solving the multiple rogue wave solution
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of the nonlinear system with variable coefficients. This change has not been seen in other literatures.
Applied the vesca to the (241)-dimensional veKP equation, the 1-rogue wave solutions, 3-rogue wave
solutions and 6-rogue wave solutions are present. By setting different values of (u,v), their dynamic
features are displayed in Figs. 1, 2, 3,4, 5,6, 7, 8, 9 and 10. All the obtained solutions have been verified
to be correct.

Substituting v = & — w(t) in rogue wave solution (10), we have

16y [~ [+ LLEOL — 5] 24 ¢y (y - 1) + Go|
Hqu 73]6(?)& *IE} + Gy —v)? JFCO} 2

When variable-coefficient (¢) chooses different function, the rogue wave (17) shows different dynamic
features in Fig. 11.

In addition to this (2+1)-dimensional vc¢KP equation, this vesca can also be applied to the (3+1)-
dimensional generalized KP equation with variable coefficients [22], the generalized (3 + 1)-dimensional
variable-coefficient nonlinear wave equation [23] based on the symbolic computation [24-36].

u(z,y, z,t) =

(17)
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