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Stability conditions for thermodiffusion Timoshenko system with second sound
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Abstract. In this paper, we consider a new Timoshenko beam model with thermal and mass diffusion effects where heat
and mass diffusion flux are governed by Cattaneo’s law. Necessary and sufficient conditions for exponential stability are
provided in terms of the physical parameters of the model. Firstly, by the Cy-semigroup theory, we prove the well-posedness
of the considered problem. Then, we prove the lack of exponential stability of the system when one of these conditions is
not valid. Finally, we prove in this case that the semigroup decays to zero polynomially as 1/v/t. Moreover, we show that
the rate is optimal.
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1. Introduction

Beams represent the most common structural element in engineering and mechanics structures. Because
of their ubiquity, they are widely studied, from mechanical and mathematical points of view. In materials
mechanics, vibration has been known for a long time for a source of disturbance, discomfort, damage and
destruction. However, the requirement for a more precise control of its vibrations has led to consider all
the possible effects that a beam can undergo in a structure. One might perhaps think that the classical
theory of thermoelasticity is a good model for explaining thermal conduction in this kind of problem.
For a long time, the effects of diffusion have been ignored in the frame of the classical linear theory of
thermoelasticity. Maybe we can think that the classical theory of thermoelasticity is a good model to
explain the thermal conduction in contact problems. However, the research conducted in the development
of high technologies after the second world war, confirmed that the fields of temperature and diffusion in
solids cannot be ignored. So, the obvious question is what happens when the diffusion effect is considered
with the thermal effect in contact problems. Diffusion can be defined as the random walk of a set of
particles from regions of high concentration to regions of lower concentration. Thermodiffusion in an
elastic solid is due to coupling of the fields of strain, temperature and mass diffusion. The processes of
heat and mass diffusion play an important role in many contact engineering applications, such as satellites
problems, returning space vehicles and aircraft landing on water or land.

Recently, Aouadi et al. [3] have considered the effect of mass diffusion effect in a thermo-Timoshenko
beam. If the mass diffusion is taken into account in the Timoshenko equations, the evolution equations
are given by

P19t = Se, Pty =My — 5, V= —q,, Cp= -1, (1.1)

where ¢ is the transverse displacement and 1 is the rotation of the neutral axis due to bending. Here,
p1 = pA and py = pl, where p > 0 is the density, A is the cross-sectional area and [ is the second
moment of the cross-sectional area. By S, we denote the shear force and M is the bending moment, ¥
is the entropy, ¢ is the heat flux, C' is the concentration of the diffusive material in the elastic body, and

 Birkhiuser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-021-01580-0&domain=pdf
https://orcid.org/0000-0003-3400-5670
http://orcid.org/0000-0002-2803-3248
https://orcid.org/0000-0003-2240-026X

151 Page 2 of 32 M. Aouadi, A. Ramos and A. Castejn ZAMP

7 is the mass diffusion flux. In this case, the constitutive equations with temperature and mass diffusion
are given by [3]

S =k(pe +v), M=0bls+10+BC, ¥=—y+p30+wC,

P = B, + 0C — @b, (1.2)
where b and k stand for b = ET and kK = kyGA where E, G and k; represent the Young’s modulus,
the modulus of rigidity and the transverse shear factor, respectively. Here, P is the chemical potential,
w is a measure of the thermodiffusion effect, p is a measure of the diffusive effect, and v and (§ are the
coefficients of thermal and mass diffusion expansions, respectively. Substituting (1.2) into (1.1), we get
the Timoshenko equations with thermodiffusion effects

prps — (g +¥)e =0,
p2¢tt - bwzz + K/(QDI + ¢) - ’Vez - ﬂCz =0,
p30t + WCt + qx — ’thz = 07
where (z,t) € (0,1) x RT. We shall now formulate a different alternative form where the chemical potential
P is considered as a state variable instead of the concentration C. This alternative form is obtained by
substituting the last equation of (1.2) into (1.3)2_4
prpee — K(pz +9)x =0,
ptht - awm:p + KJ(@:U + ?ﬁ) - 7191 - ’72P:v = 07
ety +dP; + ¢z — NP1z = 0,

dby + 1P + 1y — Y21 = 0, (1.4)
where
2 w w? w 1
a:b_ﬁia 7127—"_677 ,YQZé, c=p3+ —, d:*; r=-
0 0 0 0 0 0

are physical positive constants.
Aouadi et al. [3] proved the well posedness of (1.4) with Dirichlet or Neumann boundary conditions
when the temperature and the mass diffusion follow the Fourier’s law and the Fick’s law, respectively,

q=—Kb,, n = —hP,. (1.5)

Then, they showed, without assuming the well-known equal wave speeds condition, the lack of exponential
stability for the Neumann problem; meanwhile, one linear frictional damping is strong enough to guarantee
the exponential stability for the Dirichlet problem.

The drawback of the Fourier law lies in the physical paradox of infinite propagation speed of (thermal)
signals, a typical side-effect of parabolicity. A different model, removing this paradox, is the Cattaneo’s
law [8], namely the differential perturbation of (1.5)

Toqt +q = —K0,, TN +1n = —hP,, (1.6)

where the relaxation time 7y describes the time lag in the response of the heat flux to a gradient in the
temperature, while 7y is the diffusion relaxation time, which will ensure that the equation satisfied by the
concentration will also predict finite speeds of propagation of matter from one medium to the other. In
[2,6], Cattaneo’s law is applied instead to Fick’s law in order to remove the physical paradox that affects
such a model.

Inserting (1.6) into (1.4), we get the thermodiffusion Timoshenko beam equations with second sound
n (z,t) € (0,1) x RT

prowe — Kz + )z =0, (1.7)
,027/}tt - Oﬂ/}mr + H((PI + 7/}) - ’Yloz - 72Px = Oa (18)
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cly + dP; + gz — 1% = 0, (1.9)
Togt +q+ K6, =0, (1.10)
rPy + df; + 1y — Y2, = 0, (1.11)
T +1m+ hPy =0, (1.12)

with the initial conditions

@(I70) = 300(1')7 @t(xvo) = 901(93)3 7/}(1'70) = 7/}0(35)3 Qlit(I,O) = 1;[}1(55);
9(3370) = 90(96)’ P(Q?,O) = PO(x)v q(x,O) = QQ(ﬂf), 77(%0) = 770(3?) (113)

and the boundary conditions

(P(Oat) = Sp(lvt) = wx(oat) = ¢m(lat) =0,
0(0,) = 0(1,1) = P(0,£) = P(Lt) =0, > 0. (1.14)

A natural question is under what necessary and sufficient conditions, the semigroup generated by
Timoshenko systems is exponentially stable. Since there is not much literature on Timoshenko system
with mass diffusion, the answer is known only in the case of Timoshenko systems with or without thermal
effect. Indeed, in the case where the thermal effect is absent, the Timoshenko system is uniformly stable
for weak solutions if

F_2 o (1.15)

X = =
p1 o P2
Consequently, the number y plays an important role in the asymptotic behavior of solutions to Timo-
shenko systems with or without thermal effect. Of course, since the Timoshenko system is a two by two
system hyperbolic equations, many authors showed that the dissipation given by some damping terms is
strong enough to stabilize the system exponentially regardless of whether the propagation velocities are
equal or not (see, e.g., [10,11,14-16,21]).

When we consider the thermal effect in Timoshenko beam according to Fourier’s law, 79 = 0, Fernandez
Sare et al. [12] proved that the exponential stability can never occur when y = 0. Mufioz Rivera and Racke
[17] proved several exponential decay results for the linearized system and a non-exponential stability
result for the case of different wave speeds. Moreover, when x # 0, the authors showed the polynomial
stability. Aouadi and Soufyane [5] showed that the dissipation product by the memory effect working at
the boundary is sufficiently strong to produce a general decay obtained without imposing the condition
(1.15). In [1], Almeida Junior et al. considered a Timoshenko beam acting on shear force and proved that
the resulting model is exponentially stable if and only if (1.15) holds.

Another option to remove the infinity speed of propagation is to consider the Cattaneo’s law for the
heat flux. In this case, the Timoshenko system is given by

p1e — K(Pe + 1)z =0,

p2se — Dy + K(‘Pw + ¢) + 90, =0,

pBHt +qx + 'ywact =0,
Togr + g+ 0, = 0. (1.16)
The above model was studied by several authors, see, for example, [12,20,22] to quote a few. Ferndndez
Sare and Racke [12] showed that, in the absence of the extra frictional damping, the coupling via Catta-
neo’s law causes loss of the exponential decay usually obtained in the case of coupling via Fourier’s law.

Precisely, it has been shown that (1.18) is no longer exponentially stable even if (1.15) holds. However,
Santos et al. [22] proved that (1.18) is exponentially stable if and only if

b 2

K Kp3
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Note that when 75 = 0, the Cattaneo’s law (1.6); turns into the Fourier’s law (1.5); and the condition
(1.17) is equivalent to (1.15), which tells at once that

X =0 <= x =0.
It is worth noting that Aouadi and Boulehmi [4] designed one feedback controller to make the solutions to
non-uniform Timoshenko beam acting on shear force within Cattaneo’s law decay exponentially regardless

the value of x,.
Later, Dell’Oro and Vittorino Pata [9] studied the same problem for the system

1o — k(e + 1)z =0,
p2wtt - bd)xz + K(@m + w) + ’791 =0,

p3by — ;O/Q(S)Qam(t — 8)ds + Yt = 0, (1.18)

describing a Timoshenko beam coupled with Gurtin—Pipkin heat conduction law for the heat flux. Then,
they introduced the stability number

_ (B, \(p_m _LPWQ
Xo = (9(0) Hpg) ( b /4;) g(0) Kkbps (1.19)

They proved that the corresponding semigroup is exponentially stable if and only if x, = 0. In particular,
they showed that the corresponding semigroup remains stable (although not exponentially stable) also
when x4 # 0. Moreover, they generalized previously known results on the Fourier-Timoshenko and the
Cattaneo—Timoshenko beam models.

In this present work, we consider the Timoshenko system with mass diffusion and second sound effects,
given by (1.7)—(1.14). We introduce some new numbers by the physical coefficients that characterize the
exponential decay

K
Xo := (dy2 —rm) — — (dy1 — ¢72) —,
To1 T172
2 2
ap1 7071 | T172
= -—) = 1-
aim gl - 22 - (B D) (1,
where £ =1 — %, §=cr—d*>0and T = (dvg _T’Yl)% = (d’h - C’Yz)n’i”yz if xo = 0. If xo =0,

we prove that the semigroup associated with (1.7)—(1.14) is exponentially stable if and only if x; = 0.
Otherwise, there is a lack of exponential stability. In this case, we prove that the semigroup decays as

1/Vt.
The method we use to show the lack of exponential stability is based on Gearhart—Herbst—Priiss—
Huang theorem to dissipative systems. See also [13,19].

Theorem 1.1. Let S(t) = et be a Cy-semigroup of contractions on Hilbert space. Then, S(t) is exponen-
tially stable if and only if iR C o(A) and

sy ooliA T = A) Ly < 00, (1.20)
where o(A) is the resolvent set of the linear operator A.
On the other hand, to show the polynomial stability we use Theorem 2.4 in [7].

Theorem 1.2. Let S(t) = et be a Cy-semigroup of contractions on a Hilbert space with generator A such

that iR C g(A). Then,
1 . _ _
WQH(M I=A)7 g <O, VAER < [SA |20 <

Throughout the paper, C' will always stand for a generic positive constant.

. (1.21)

~~
:\H‘ Q
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2. Well-posedness of the problem

In this section, we prove the existence and uniqueness of solutions for (1.7)—(1.14) using semigroup theory.
Introducing the vector function U = (¢, v,1,$,0,q, P,n)T, where v = ¢; and ¢ = 1);, we consider the
following Hilbert space

H = Hy(0,1) x L*(0,1) x HL(0,1) x L2(0,1) x L*(0,1) x L(0,1) x L*(0,1) x L2(0,1),

where
l
L2(0,1) := {f € L*(0,1); /f(m)d:z: = 0} and H(0,1) := H'(0,1) N L2(0,1),
0

provided with the following inner product

l

! I
<U1,U2>H = P1/0152d$+/02/¢1$2d$+a/¢1,xizmdx

0 0

l
+l<:/<,01z+¢1 <,02x+¢2)dx+(c—d2/r /Glﬁzdx
0

[ G

l l
T
/ql@dm—k %/nlﬁzdx

0 0

with ¢r — d? > 0 for all Uy = (p1,v1,91, ¢1,01,q1, P1,m1)T and
Us = (p2,v2,02, ¢2,02,q2, P2,m2)" in H and norm given by

U113 = <U1,U1>H. (2.1)

In order to prove the existence and uniqueness of solutions, we will use the semigroup theory [18].
Then, the system (1.7)—(1.12) can be rewritten as follows:

N\o

U, = AU, t>0,
U(0) = Uy, (2:2)

T T .
where U = (Wa@tawa¢t7eaQ7Pa 77) ) Up = (@07@17¢07w15907q0aP07770) and A : D(A) CH — H is the
operator defined by

0o I() 0 0

k07 (Ve O O 0

0 0 0 I()

Aoe | 702 Oa 0yt (aw — rpy () 0
' 0 0 0 =07 (y2d — 117)(:)

0 0 0 0
0 0 0 =07 md = y20)(")

0 0 0 0
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0 0 0 0

0 0 0 0

0 0 0 0
ey (e 0 ypy () O

0 O d61()z
K75 (e =1 ()0 0

0 ds1("), 0 —e5 (),

0 0 =hr (e =7 ()

where 0 := cr — d? > 0 and I(-) is the identity operator. The domain of A is given by

D(A) = {U e H; e HL0,1) N H2(0,1),

¥ € HA0,) N H2(0,1), v,0,P € HY(0,0), a,n,0 € HI(0,D)}.

Clearly, D(A) is dense in H. We have the following existence and uniqueness result.

Theorem 2.1. Let Uy € ‘H, then there exists a unique solution U € C(RT,H) of problem (2.2). Moreover,
if Uy € D(A), then U € C(RT, D(A)) N CHR*, H).

Proof. The result follows from Lumer—Phillips Theorem provided we prove that A is a maximal monotone
operator. In what follows, we prove that A is monotone. For any U € D(A), and using the inner product,

we obtain
l l
/ / (2.3)
0 0

Since K > 0 and % > 0, it follows that (AU,U)» < 0, which implies that A4 is dissipative. Next, we
prove that the operator I — A is surjective. Given G = (g1, 92, 93, 94, g5, g6, 97, 98 ). € H, we prove that
there exists U € D(A) satisfying

(AU, U)

N\
m\H

U— AU =G, (24)
that is,

—v+p=g1 € Ho

—K(pz + 1)z + p1v = p1gs € L?

—¢p+1=gs€H]

g + K + 1) — V16 — V2 Pr + p2d = pags € LY

2.5
(dyz — 1) ¢ + 1qe — dne + 00 = dgs € L2 (25)
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Suppose @, ¥, ¢ and 7 are found with the appropriate regularity. Then, (2.5)1, (2.5)3, (2.5)¢ and (2.5)g
yield

v=¢—g € Hy(0,0),

¢ =1 —gs € HI(0,),

70 1+1 2 (2.6)
0, = —9g6 — L#(0,1),
76 K 1€ (0,1)
T1 1 + 71 2
Py= e — L2(0,1).
T B gs B ne (Oa l)
From (2.6)3 4, we have
1 x x 1 x
?/ +TO /qu, P(z) = %/ggdxf ;Tl /ndz, (2.7)
0 0 0 0

then 6(0) = 6(1) = 0 and P(0) = P(1) = 0. By using (2.6) and (2.7), it can easily be shown that ¢, ¥, ¢
and 7 satisfy
—i(pa +¥)a + p1 = p1(g1 + g2) € L*(0,1)
1+ 1+7
g+~ yen = b € L2(0,0)

xX

£ / (5)dy = ha € L2(0,1), (2.8)

— e + k(P2 + V) + p2tp +

—(dy2 —r1)the — 1y + dne

—(dv1 = ev2)e +dgy — cn y)dy = hy € L*(0,1),

where

70 T1
h = —_ —_
1= p2(93 +94) + 70196 T+ 77298

-
hy = —(dya — 1791)g3.0 — 695 + 6 — /ge(y)dy,
K (2.9)

T

-
hs = —(dv1 — ¢y2)93,2 — 097 + 5% /gg(y)dy.
0

To solve (2.8) we consider the variational formulation

B((p, 40,1, (84,4, 7) = F(8,9,d,7), (2.10)
where B : [HE(0,1) x HL(0,1) x L2(0,1) x L%(0,1)]* — R is the bilinear form defined by

l

B((e, ¥, q.n), ($,%,4,7) = K / (pz +¥)(Ps + 1) da
0
l l

ry1(1 4 79) e (l+ 1) -
bl A n) 71 ( 0) /q p(l+m) /7777d17+P1/ o A dz

K(dy —rm1) h(dy — cyz)
0 0
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l

l l
- - 14+ -
+a/¢www dx+p2/¢wdx— KTovl/qwdx
0 0

0

l l

I
L+ - L+ - dyi(1 + 7o)
_2ltn) 3 1)/nwdx+771( e 0)/wqu— n . /77

K(dy2 — 1)
0 0
5 1 ) l T x
+ -
+ n TO / / / q(y)dy) dz
V2 — 7"'71
0 0
l

1 + T1 / d")/g 1 + 7'1)

- q
h(dy: — cy2)

l x

0 1 2
L0 + T 1 / / y)dy
dy, — C'yg )

0

l
/ ndx
0 0
/ﬁ(y)dy) dz
and F: [H{(0,1) x HE(0,1) x L(0,1) x L(0,1)] — R is the linear form

l l

F(@,d,d,7) = / pr(g1 + ga)pdn + / B de
0
l l

1 1
R /h2/ Jdyde + - ——— A /hS/ ) dy da.
K(dy —rm1) ) h(dy — cyz) )

Now, for V = H}(0,1) x H(0,1) x L2(0,1) x L2(0,1), one can easily see that B and F are bounded and
B is coercive. Consequently, by Lax—Milgram Lemma, system (2.8) has a unique solution

¢ € Hy(0,1), ¢ € HI(0,1), ¢ neL(0,1).
Substituting ¢, ¥, g and n in (2.5)1, (2.5)3, (2.5)s, and (2.5)s, respectively, we obtain
ve Hg(0,1), ¢e HLH0,1), 6, PcHy0,1).
Now, if (¢,q,7) = (0,0,0) € H}(0,1) x L2(0,1) x L2(0,1), then (2.10) reduces to

l

f«u/ o+ ¢d$+a/¢m¢wdm+02/¢¢dx— 1}';%1/[@13

0 0

l l (2.11)
1 _ . -
_ —;iﬁ'yg/mpdx _ /hlwdx, Vi € HY(0,1),
0 0
which implies
1+ 7 1+7
— ayr = —K(pz + ) — p2tp + e qu + 7 1727] +h; € LQ(O,Z). (2.12)

Consequently, by the regularity theory for the linear elliptic equations, it follows that
Y e H*(0,1) N HX0,1).
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Moreover, (2.11) is also true for any u € C1([0,1]) C H}(0,1). Hence, we have

l l
1+ 7 1+7
a/wxuzdm+/(ﬁ(<pz+¢)+pzt/}— 7 O g — 5 17277—h1)udx=0
0

0

for all u € C'*(]0,1]). Thus, using integration by parts and bearing in mind (2.12), we obtain
Ya(Du(l) = ¥ (0)u(0) = 0, Vu e C*([0,1]).
Therefore, ,(0) = 1, (1) = 0. In the same way, if (¢, §,7) = (0,0,0) € H(0,1) x L2(0,1) x L2(0,1), then
we obtain
© e H*(0,1)N H(0,1).
Recalling § = cr — d? > 0, the resolution of the system

/q(y)dy + hy € L*(0,1),

0
T

/ n(y)dy + hs € L2(0,1),
0

1479

—7Qy + dny = (dy2 — r71)e — 0

1+7’1
h

dqy — cne = (dyr — ey2)the — 0

gives
g, n € Hy(0,1).

Finally, the application of the regularity theory for the linear elliptic equations guarantees the existence
of a unique U € D(A) such that (2.4) is satisfied. Consequently, A is a maximal operator. Hence, the
result of Theorem 2.1 follows from Lumer—Phillips Theorem (see [18]). O

The previous lemmas lead to the next theorem.
Theorem 2.2. The operator A generates a Cy-semigroup of contractions on the phase-space H.

Proof. Since the operator A is maximal dissipative in H and D(A) is densely defined in H, the proof
follows from the Lumer—Phillips Corollary to the Hille-Yosida Theorem [18]. O
3. Exponential stability

We introduced the total energy of the system (1.7)—(1.14) given by

l l l l
« K
B0 =% [loPdo+ 2 [lufdos 5 [loPao+ 5 [lo+upPda
0 0 0 0
l

2

l
1 ) ) 1 [|d
0 0

l 1
7o 2 1 2
+2K/\q| dx + 2h/|n| dz, (3.1)
0 0
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which is positive definite since d? < cr and satisfies the dissipation law

l l

d 1 ) 1 )

— = —— - — > 0. .

GEO = [laPdo— 5 [nPda. t=0 (32)
0 0

Here, we will provide the necessary conditions on the coefficients ensuring the exponential stability of
our model. From [19], we have to show that the resolvent is uniformly bounded over the imaginary axes.
Note that, for any U = (¢, v,%,¢,0,q, P,n)T € D(A), the resolvent of our model is given by the equation
(N[ — AU =F, ie.,

iAo —v = fi, (3.3)
iIAp1V — K(0z + ) e = p1fo, (3.4)
N — ¢ = fs, (3.5)
iAp2d — QP + K(pr + V) — 1102 — 72 P = p2fa, (3.6)
iNO + rqe — dne + (dyz2 — 171) ¢z = 0f5, (3.7)
iANToq +q+ K0, = 10 fs, (3.8)
IANOP + ey — dgz + (dyi — ¢y2)¢z = 6 f7, (3.9)
AT +n+ hP, = 1 fs, (3.10)
where F' = (f1, fo, f3, f1, f5, fo, f7, fs)T € H and X € R. From (2.3), it is easy to see that we have
1 1
Re((iA - AUU) = %/|q\2dx + % / In[2da. (3.11)
0 0
Furthermore,
1 1
[laPaz+ [Pz < IOl Fle (312)
0 0

Our starting point is to show that iR C o(A). Note that from Theorem 2.1, one can deduce that
0 € o(A), therefore A~! is bounded and it is a bijection between # and the domain D(A). Since
D(A) has compact embedding into H, it follows that A~! is a compact operator, which implies that the
spectrum of A is discrete.

Lemma 3.1. Under the above notations, we have that iR C o(A).

Proof. Let us suppose that A has an imaginary eigenvalue. Then, we have that AU = iAU, A € R. From
(2.3), we get ¢ = n = 0, which implies that § = P = 0. From Egs. (3.5) and (3.7), we conclude that
1 = ¢ = 0. Therefore, from (3.7) we get ¢ = 0. This implies that U = 0. But this is a contradiction,
therefore there are not imaginary eigenvalues. O

Before we prove the technical lemmas that will support our propositions, we present the following
definition.

Definition 3.1. Let U = (U17U27U3,’U/4,U5,UG, 7’LL7,’LL8)T S D(A) and I’ = (fla f27f37f47f57f6a f77f8)T S
‘H. Then, we define the functional class R given by

l
R - R:/fiujdx; R| < O[Tl Fllre, i € {1,....8} b (3.13)
0
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Lemma 3.2. Let (p,v,9,0,0,q, P,n) be a solution of system (1.7)—(1.14). There is a positive constant C
independent of A such that

l l
[162as -+ [ 1PPas < clioll (llalls + lallz2) + ClIONpel e (319
0 0

1
Proof. Integrating Eq. (3.7) over [z,1] C [0,!] and multiplying by [gdz, we get
0

l

! l
R = i)\é/HdS/de—F [rq(1) — dn(l) + (dy2 — ry1)e(1)] /ﬁdm

—rq/@dx—}-dn/qu— (dy2 —171) qi)/ qdz, (3.15)
0

0 0
1
where R € R. Now integrating Eq. (3.8) and multiplying by % J ods

l l

l
i/\é/ﬁds/ﬁdx = i/ﬁds/@dx—&—R. (3.16)
70

l l l

[rq(l) —dn(l) + (dya — ry1)o / qgde = —— [ 0ds /qu + rq/qu

0 T 0 0

From there, it follows that

l
fdn/qu + (dye —rm1 d)/@dx +R.
0 0

Integrating over [0,!] and using (3.12), we can conclude that

l
[ra(l) = dn(l) + (dy2 — ry1)(1)] /6013: < Cl0]]z2llqll L2 + Cll¢ll > [lgl |22
0

+CU | [F [ (3.17)
Similarly, integrating over [0,z] C [0,!] Eq. (3.8), after multiplying by 6 and integrating over [0,1] we

obtain
l Il =z l
fmo// sedx+//quodx+K/\9|2dx:R. (3.18)
0 0 0
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x

l
.
_ —FO /WS[%—dm (dy2 = 171)¢2 — 0 f5]dx
0

l

l
=2 ra() — do@) + (@2 = o] [ qde+ B [laPda

0

l

d
L /qndx + (v — ) /wdx LR
0 0

Substituting I in (3.18), we have

l

l
K / 02dz = —%0 [rq(l) — dn(l) + (dya — r71)0(0)] / qdz
0
I l

l
+ 2 [lqp dx——/ aids+ 2 {ava — ) [ 700z

0 0
Il =z
— / /quﬁdx +R.
0 0

From (3.17) and (3.12), we have

/I9l2dw < Cl10llz2llgllL2 + CllollL2llallz2 + ClinllL2llgllze + CUI [F 2

which reads

/I9l2dw < Cllglle2llgllz> + ClU el [F 2 (3.19)

On the other hand, combining Eqs. (3.7) and (3.9), we have

iAcO + iAdP + g — 7102 = cfs + df7. (3.20)

Similarly, one can get
[ PPz < Clielze (llllzs + lnllzs) + CIU el Fle (3:21)
This concludes the proof. O

Lemma 3.3. Let (,v,v,0,0,q, P,n) be a solution of system (1.7)—(1.14). There is a positive constant C
independent of A such that for all e >0

l
[ 162w < S0l (10122 + 11Pl12) + CI Il Pl (3:22)
0
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and
1 c 1
2 £ 2
[ talde < S0l (1l + 1Ple) + 55 [l + P
0 0
+CUI[w|[E[2- (3.23)
Proof. Combining Eqs. (3.7) and (3.9), we have
iNO + NP 4 1 — Yadhe = dfs + 1 f. (3.24)

Multiplying by [ ¢ds, we get
0

x

l l x 1
72/|¢|2dx:/nm/$dsdx+i>\/(d@—krP)/Edsdx—kR, (3.25)
0 0 0 0

0
where R € R. From (3.6), we have
1

!
1
72/\¢|2dx:——/(d9+rP)
) P2

0

( @ w_/f(@w+¢)+’}/1§z

O\a

+v9 Py + p2f4> dsdx + / / dsdr + R
0

/ng:/asdxf— F)d)dzf— Pd)dx
P2
0 0
l l
+ 2 d9+rP gpdx+—/(d9+rp /wdsda:
on P )

l

+220/(d0+rP)9d:v+Z§ (d9+rp)ﬁdx+7z.

By using Cauchy—Schwarz inequality, we have

2 [ lofdz < Cligllalnllzs +C (10l + [1Pllzs) 1]z
0

l
C(1Il: +1P1E=) + = [ (a8+ rP) s
r 0

no

(a0 +rP) /Edsdx + Ul [ e
0
From Egs. (3.3) and (3.5), we infer that

2 [ 16Pde < Cllglzelinlze +C (lellzs + 1Pl1z2) 1]z
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l

C (1611t +I1PIIE:) = = [ (a0+rP)oa

0
l

K —
—Z_)\p2/(d9+rP)/¢dsdx+C||U||H||F||H
0

and

l
%/| o < WHUHH(HeHLz 1Pz )+ C (1161122 + 1Plls ) 1l
0
C (0112 +11PI2) + CINU Il Fllac

Now using Young’s inequality, Lemma 3.2 and the estimate (3.12) we obtain

l
C
[ 16w < S0 (1011 + 11P.2)
0

+C (110112 + 1Pl )l 22 + CIT eI Pl (3.20)

On the other hand, multiplying Eq. (3.6) by ¥
1 1

l 1
o 0/ o Pde = —irps O/ 60— [ o+ 0)0de =, [ 07,0

0 0

—Y2 /P@wdm +R. (3.27)

Substituting ¢ by Eq. (3.5) and using the Cauchy-Schwarz and Young inequalities, we get

l l

l l
00/¢z|2d$§p20/¢|2d$+ " [+ )3 - [ 67,4

0 0

_WQ/PEIdx-I-CHUHHHFHH
0

l l
3 [e%
< ClIoIEs + 5 [ loa+vPao+ S [ o Pas
0 0

+C (118112 + P12 ) + ClIU el F e

for all £ > 0. Finally, using Lemma 3.2 and Young’s inequality we obtain

9
[ 10aPdo < Ul + 55 [ lea + vPda+ CIIU |l (3.25)
0
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Substituting (3.28) in (3.26) and using Lemma 3.2, we have

A

1/2
(10l + 1P (/mw i)

1/2
(16022 + 1P1z2) (10111l )+ CIT e e

l
JERE S0l (61122 +11P1122) + € (16112 +11P1122 ) 10]1z2
0

Note that
C
15 (18l + 1Pl (/%Jﬂbzdm) < 157 (1l + 1Pz 0

Using the two estimates above with Young’s inequality, we get (3.23). O

Now, we introduce two important stability numbers, associated with our model (1.7)—(1.14):

K h
Xo = (dy2 —rm) o (dm1 —ex2) . (3.29)
2 2
o _ap Tovr |, 172 _
xii=E(p2——=) - ( 7 )(1 £); (3.30)
where £ =1 — ﬂ d=cr—d>>0and T = (d’yg — r'yl) o (d’yl — c'yg) = = 0. Otherwise, if

Xo # 0, then x3 does not exist.

Lemma 3.4. Let (p,v,v,¢,0,q, P,n) be a solution of system (1.7)—(1.14). Assuming that xo = 0, there
exists a positive constant C' independent of \ such that

l l
C
el (1= 53 ) [ los+ wiae < 2| [ omas
0 0

+C[|U | [ F ]2 (3.31)
where & # 0 and for |\| large enough. Otherwise, if £ = 0, then we have

l 1
/ v dx
0

i / |0e + 2 < 2ci]
0
APl F e + CINU el F e (3.32)

C
+ 10l (11011 + 1171122

C
+ o0l (1101 + 121122

Proof. Multiplying Eq. (3.6) by ¢, + ¢ and integrating by parts over [0,1], we get

/I% +¢[Pde = —idp, / x—Mpz/de—a/wm (¢ +¢),d

l

*%/9(%+w) dsz/P(%«+¢) dz + R,

0 0
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where R € R. Substituting @,, ¥ and (¢, + 1), respectively, by (3.3), (3.5) and (3.4), we get

l
"/‘% +yPde = (02— ap1> /¢vxdx+ﬁ)2/|¢| da:—l—z/\%p1 /9 dz
0

Hy=
l
Fin 22 / Pudx +R. (3.33)
" 0
Ho:=

Here, our aim is to obtain an expression for H; and Hy. For this, we multiply Eq. (3.7) by 2% and
integrating by parts we get

l
H, = zﬂl:l /%dx

! ! l
”
NP /q ’y1p1 /n@wdx—l— (T—d’yg/wl)fylzg—;/(bmﬁdx-i-R.
0 0

ok
0

Substituting 7, by Eq. (3.3), we have

l l
Hi= —i\ W’ / dz 1 ix P /n@dx
KZ
0 0
I Ipi=
+(rfd72/71)'yf§—;/¢mﬁdx+7€. (3.34)

Analogously defining Hy := A2+ f Podz. Multiplying Eq. (3.9) by #4227 and using Eq. (3.3), we have

l l
.\ C72pP1 dryap1 _
H, = _Z/\W /m@xdx +IA—— 5r /q(pxdz
0 0

l
+ (c —dm /72)73(% / ¢, 7dz + R. (3.35)
0
From here, the proof is divided into two steps to help the reader follow the arguments and the calculations.

. I
Step 1. By adding and subtracting the terms i\ ™2 f qpdx and i)\% g mpdz in (3.34) we get

l 1
H, = —i)\m/q(s% T o)de + i %p /77
0

oKk
0

!
drys — — d —
_(dy2 = %pl/@vderz)\ ’YlPl/qdeii)\ 71p1/77,¢)dx+R'
0K o 0K
0 0
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Then, substituting Eq. (3.5) in 1 we get

Similarly, we have for Eq. (3.35)

!
Hy = (c—d’yl/’y ’72P1/¢wx — i\ ’yzp /77 Y +¥)d
0

l l

d S d _
FiX g’fl /q(%+¢)dx— CW“/ nda + 1201 /ngdz-i—’R.

ok ok
0 0 0

Substituting Hy and Hs in (3.33), we have

! 1 !
H/|50z+1/}|2d$201/ vzd$+Pz/|¢| di’?‘f'* (dy2 —rm1) / qpdz
0 0

l l

g—(dvl—cvg)/ ¢dx+l)\ d72—7“71 /q (pz +9)d
0

l
Jrz)\p (dy1 — ¢2) /77 Y +¥)dz + R,
0

Page 17 of 32 151

(3.36)

where ¢ 1= <p2 — o ) [(r — d’“) Y2+ (c d”’l) 722} £-. By using the Young’s inequality and estimate

(3.12), we get

l
5 / |0e + 92z < |
0

1
/ v dx
0

422 [ (1af + 1nl?)dz + YU 171l

l l
K
2 [1oPdo+ 5 [ loa vz
0 0

and then

l
K
5 [ loavde <o
0

1
/ v, dx
0

HAPCU sl |[F 1l + ClIU el | Fl -

l
2, / 6 2da
0

By using Lemma 3.3, (3.32) follows immediately.
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Step 2. We aim to obtain the expressions of H; and Hs. Bearing in mind [; in Eq. (3.34), we multiply
Eq. (3.8) by 1225, to get

l l l

L TY1P1 _ rY1P1 _ Kryip1 _

I =1\ doe = — dx — 0,2 d R.

L= /qwx x . qpdx - / P, AT +
0 0

0

l —
Now, we add and subtract the term “1£t of q¥dz to get

l l

K
__™p /q ot 0)dz + lel/ gidz — TP /%@zdx—i—R.
To0K ToOK
0 0

Performing the same procedure in Iy in Eq. (3.34), we have

l
Igz—d%pl/( F)dz + Wl/ nibda dhw’l/ Bode +R.

Tl(SIﬁJ
0

Substituting I; and I3 in (3.34), we obtain

! l
/17 « +)da — 7:216[: /q@d:c
0

d%pl/ odz LT 71p1/9 dh%pl/Pfdx

drve —
~(dy2 —ry)nip /(ﬁﬂdx—kR.
0K
0
Performing the same procedure in Hj in Eq. (3.35), we have

l l l

d _
H2=%/ e _+¢)dm_ﬂ (%W)dm_%/wdx
T10K To0K 710K

0

!
ch dK
7201/ godz + 72p1/P*d 72/51/%@10196
0

d —
_(dn1 —cy2)y2p1 /(;Szﬁdx—l—??,.
0K
0

Adding the simplifications H; and Hs, we get
1

H1+H2=<r'yl—d'yg /qgom-i-i/i
ToOK
0

!
+(cvz - d% (s +¥)dz — (7"’71 - dw) Pl gpda
To0K
O
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l l

_<cfyg—d’yl) ,05 /n¢dx+ /710 + Y2 Pr)g,dx
0 0

J:=
l
+[(ev2 = dn ) + (rn = drz) ] & / $oudz + R. (3.37)
0

where I' := (r'yl d’)’z) T = (c'yg — d’yl) o7 since xo = 0. From J and (3.6), we obtain

J:i)\plml“/lq’)d +— /ww%w /\%Idw

plf/|90m+¢|2dx—* /%er Jdz +R.

Substituting @,, (¢, + ), and 1, respectively, by (3.3), (3.4) and (3.5), and making some algebraic
manipulations, we get

l l
5==(p- )2 /qzr D [laPda+ BT [ loa+ 0o
0 0
l
M
—5 T [ (e +0)ddz +R.

0
Here, we replace J in (3.37) to get

Hy+Hy =—

o
(Pz - :1> L+ A7 + A3

l
5 /quId:c
0

l l

/qmdwwLAm /n po +)d
0

!
ap1 /|¢x| d:z:+p11“/|<px+w| dx — %1F/(<px+1/1)@da:
0

0

+Ar71 pl
To0K

l

l
AW ] p5 /qi/)dx p—d/m/)dx—i—R (3.38)
0 0
where A, :=r — dya/v1 and A, := ¢ — dvy1 /2. Substituting (3.38) in (3.33), we obtain

n£/|som+¢| dx—xl/mzdwm/wﬁdxmm - /Q(sDﬁ?/f)dff

l

0
l
/n pe 9}z — 2T /wﬂdx—%r/%w G

0

+Ac’}/2
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l l

m / qpdx — Apye p(g / mpde + R,

0

0
where § := 1 — £LT" and x; is given in (3.30). Taking the absolute value and using Young and Poincaré

inequalities, we get
1
/ PUdx
0

e / 2 + O[T | F .

l l

o / 0 + ¥Pdz + po / 62 de
0 0

l
lé] / oo+ ¥dz < il
0

From ¢ := k|£|/2C, we have

l l l
O/qbvzdx +C<O/|¢|2dm+o/|1/)x|2dx>

+ONUT# [ F] [

l
/ Qv dx| +
0

&
Sl / (0 + ¥ dz + ClIU || F .
0

l
e / o + 6Pdz < 2]
0

By using Lemma 3.3, we obtain

l
lé] / o + ¥Pdz < 2|
0

I 10 (Nl + 11Plz2)

Choosing, 1 := k||, (3.31) follows immediately. This completes the proof of the lemma. O

Lemma 3.5. Let (p,v,1,0,60,q, P,n) be a solution of system (1.7)—(1.14). Then, there exists a positive
constant C' such that

(c—)/9| dx—l—/‘\[ﬁ—i-fP

Proof. Multiplying Eqs. (3.24) and (3.20) by P and 6, respectively, we get
!

z)\d/Gde+z)\T/|P| da:—/nP dz + 72 / (3.40)

0 0

dz < |>\‘HUHH+CE||U||H

+CU ][ F ] (3.39)

and
l

M—/|0\2dx+z>\ (c— > /|9|2dx+z)\d/P9d:c—/q9 dx

0

l
0/ _ (3.41)
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where R € R. Adding Egs. (3.40) and (3.41), we have

l l
(c>/|0|2dz+z /‘ 0+ rP dx—/qézdx
0 0
- / By P / B,z — / ¢P,dz + R.
0 0

0

2

Substituting 0, and P,, respectively, by (3.8) and (3.9), we obtain

2 l 1
i\ <c—r>/0|2dx—|—1)\/‘
0

— A7)
i gh/lpldx——%

Taking the real part and using Eq. (3.6), we get

f:1+)\22/|9|dx+ )\22/|P|dx

~ref

= —e{ [6( = 38— T + W D))o h + R
0

0+rP

iATo)
d:z:+ )\2ZK/|0|dx

SN

+

o

P(110z + ’Ysz)dx} + R (use (3.6))

- O\N

l 1
—Re{oz ptp Az + K | (e + dx} +R.
[t

Adding and subtracting v, and using Poincaré inequality yields

l l

I = —Re{a/@cwzdx} —Re{ /Ux +¢) (o + ¥)da

0 0
l
“l‘H/U(SDx + 1/J)mdx} +R.
0

Substituting ¢, and (p, + 1), respectively, by (3.5) and (3.4), we get

l

151

¢0,dr — o / ¢P.dx + R. (3.42)
0

I = Re{n / (v + ¢)(<pm+1b)dx} +R. (3.43)
0

Combining Egs. (3.3) and (3.5) we obtain

Uy + ¢ =Nz + ) — (fr,2 + f3). (3.44)
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Substituting (3.44) into (3.43), we have

l
v = Re{m/ oa + wdz} LR < Ol
0

which leads to
l l
[16:Pas+ [ PPz < Uil (3.45)
0 0

On the other hand, taking the imaginary part we have

(c—)/|9|d +/’ o1 yip| d

T()K
1_|_)\2 2/|9|dl‘
l

_nh 29N V2;
+1+/\27_12 /|P$| dx )\Im{/qﬁe dx} 5 {/(bedx} +R.
0 0

0

By using the Young’s inequality, we obtain

<c—>/|0| dx+/‘ 6+ rpP dx<1+)\2 2K/|0 2da
+m /|P |2dz+—/\9 |*dx +71 0/|¢5|2d1:
0

l
h 2 ’Y27'1
ey L /|¢| ar,
0

Using 1+ A27¢ > A27¢ and 1 + A\27f > A\27f yields

2K 2h
<c—)/|92d +/’ 0+\/P /\0| . [2da
1 9370 | 737 / 2
- —_— d 4
(00 B0 [ jg2a, (3.46)
Substituting (3.45) in (3.46) and using Lemma 3.3, we obtain (3.39). O

Lemma 3.6. Let (o,v,v,¢,0,q,P,n) be a solution of system (1.7)—(1.14). There then exists a positive
constant € independent of \ such that

pl/”|2dx§0/|@x+¢|2dm+)\|||U||H+C€|U|H+O|U||H||F|Ha (3.47)
0 0

for || > 1 large enough.
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Proof. Multiplying Eq. (3.4) by —i\~'v, we have
I 1
9 K _
p1 [ |v)*dx — 5y (o +)Vzdr =R, (3.48)
0 0

where R € R. From (3.3) we have 7, = —(iAg, + f; ) and consequently,
l

l l
p1 / lv[2dx < Ii/ lor + 2 dx + H/(pr +)pdr +R. (3.49)

0 0 0
By using the Young’s inequality and Lemmas 3.3 and 3.5, we obtain (3.47). g

Theorem 3.1. If xo = 0, then system (1.7)—~(1.14) is exponentially stable if and only if x1 = 0.
Proof. (i) Sufficiency: From Lemmas 3.2-3.6 and estimate (3.12), we get if xo =0

[
. C
1B, < |xl|c] [ #vuca| + SV + eI + YU el Pl (3.50)
0
Since y; = 0 we have
C
(1 - - 05) UIB, < ClUl | Pl (351)

Choosing || large enough and ¢ sufficiently small, we concluded the sufficiency condition.

(ii) Necessity: we show that the semigroup S(t) is not exponentially stable when the stability number
x1 is different from zero. The proof is based on Theorem 1.1. The strategy consists of verifying that
condition (1.20) fails to hold. To this end, let us assume that there exists U = (p,v,¢,¢,0,q, P,n) € H
such that ||U||xn # 0. Without loss of generality we can take f1 = fs = fa = f5 = foe = fr = fs = 0 and
choose fo(z) = p;'sin(B,2) in system (3.3)-(3.10) such that F = (0, f270,0,0,0,0,0) is limited in H.
Because of the boundary conditions (1.14), we can suppose that

p(z) = A\l sin(Bnx), P(r) = A\Z cos(fBnx), O(x) = A\S sin(8,z),
q(z) = Aycos(Bnzx), Plz) = Assin(Bnz), n(z) = Agcos(Buz),
where A; (i = 1,...,5) are constant and (3, := n /. Therefore, system (3.3)~(3.10) is equivalent to

(= N2p1 + kB2) Ay + KB Az = 1, (3.52)
KB A1 + (= Npa + a2 + k) Az — 11 B Az — 128,45 = 0, (3.53)
—iX(dy2 — r71)BpAg + iN6Ag — 1B, Ay + dB, Ag = 0, (3.54)
(1+iAmo) Ay + KB, A5 = 0, (3.55)
—iX(dy1 — ¢72)Bn Ao + dBy Ay + iNSAs — B Ag = 0, (3.56)
(14 iAm1)Ag + hB,As = 0. (3.57)
By using elementary row operation in (3.54) and (3.56), we obtain

(= A2p1 + KB2) Ay + KB, As = 1, (3.58)
mﬁngl + ( — Mo+ a2+ K/)A\Q - ’ylﬂn;{?, - 726,125 =0, (3.59)

IMAAE + An3) Buds + iy As — Apyi B As
+idyedAs — Ay BnAg = 0, (3.60)

(1+irmo) Ay + KB, As = 0, (3.61)
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MDA, + A) 17200 A + iX0Ya Az — (1 — dy1 /72) 2 BnAd

+i/\’}/15A\5 — (C — d’}/g/’}/l)’}/lﬁn;{(; =0, (362)
(1+iAmy)Ag + hB,As =0, (3.63)
where A, ;=7 —dyy/y1 and A, := ¢ — dy1 /2. So we have that
—~ KB, - ~ hB, -~
Ay = — A d Ag=-— As. .64
ST i e ) P (3:64)
Therefore, we can rewrite the above system as
p1<)‘) ”fﬁn 0 0 {1/:1 1
KBn P2(/\) _’71671 _'YQﬂn 42 _ 0 (365)
0 p3s(A) pa(N)  ps(N) As 0l
0 ps(A) pr(A)  ps(N) As 0

where

pr(A) == =Np1 + k6%, p2(N) = —Npa+ i +k,

poO) = A(Bn + BB pu(N) 5= irdm + AT 2,
p5(A) i= iAdye + 1A+CZ§\Z 2, pe(A) ==1iAB, (Ar + Ac) Y1725
pr(X) i= iAdye + r fffzigw{ .
ps(N) 1= iAOY + Wﬁi.

(32 — 2 which gives p;(\) = o, where o € R is going to be fixed later.

Now we choose \? = \2 = =

L
P1

The resolution of Eq. (3.65) gives us

~ w
A = g Hziﬁ%’ (3.66)
where
W )+ 8 4! (p3()\)p8()\) - p5(>\)p6(>\)) - 72 (p3()\)p7()\> - p4()\)p6()\)) 3 67)
= + n . .
b2 paNps(N) = ps(Vpr(V)
For this case, we consider the following asymptotic equivalences
ok dK
) - 30k 2 2 3 2 2 2 .2
ps(Np7(A) ~ =5, p (Am + AcVQ)’Yzf + 6, p (Am + Ac’h) (73 —7)
. d 2 2 oo 2 2
+Z>\ﬁn;0 (Ar'h + Ac'72>72 + IB”E (Ar’Vl + A672)72€7 (368)
ok dh
) o 30k 2 2 3 2 2 2 2
p3(N)ps(A) ~ =8, o (Am + Am)’nf + 6, e (Am + Acvz) (i =)
. ) oo
1 P1

oK )
pa(A)ps(A) ~ =35 — (Ar + Ac) VY98 + B (Ar + Ac) Yiv2€
P1 1

6 )
+Z>‘ﬂn;0 (Ar + Ac) Y1725 (370)
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et L 06(7F —73)dhm

MNps(A) ~ — 2
p4( )pS( ) n )\2p% g + n )\2p17172
4232 LRl €2 _ 32 0%k (10 + 71)7¢ 0%0 (10 + 71)7%
"oN2p? " Ap1ITOTL 1IAP1ITOTL
20(V—3)dhy  ,00(VE—3)dhyy . 020%3 , 0243
+ﬁn . - 677, 2 - 2 .2 ’
IATOTIV2 A2p1T172 A%pi ToT1
ok o
Ps(NPs(A) ~ =32 (Ar 4+ Ac )13 + Bu = (Ar + Ac)mr3e
P1 P1

A0 (8, + Ao

2,22 2 _ .2 2,2
w0 ~ i e g POy ot
—3? 8k (70 +71)73 + 80 (o +711)73 + 0295
T ApITOTL IAP1TOTL TOT1
+ﬂ25(7§._ 1)dEY: g2 do (73 —f)dKv2 02527352.
IANTOTIVL A2p1Tom A2p3

Because of this, note that the following asymptotic equivalences hold:
160 (Ps(NPs(N) = P (Nps(N) ) = 1280 (s (Ve (X) = Ps(Nps(N))
0K
~ fgﬂi (77 —3) (Ai + An3)¢

h’yl + Kﬁ/g
T172 ToV1

+ﬁ;td< ) (72 = 22) (A2 + A2) + O(V) = T,

and
p4(/\)p8(/\) - ps(A)m()\) ~ —A?5? (’Yf - ’722)52
(224 22) (2 - e+ 00 = T,

T172 T0V1

225
K

Suppose that xo =0, 71 # 72, £ # 0 and x1 # 0. Then, from (3.67), (3.74) and (3.75) we get

T,
T,
piﬁin, (A2 + AA2) +0(N)
=pa(N) + 06, 5
p2(A) + 06, N26%6T5 + O(N)

(Arﬁ + Aﬂ%) 2 ¢ 92

5—£5n5ﬁn

(Arri + A3)
6&

W ~ pg(/\)

o)
N2526W5 + O(N)

Br+0(N),

= pz()\) +
~ p2(A) +

where we have used 7, # 2 and T3 =

K O\T172  Tom

we have

W (_m+a+ (Ar? +A3)

2
o 5 >ﬁn+n+0()\).

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

d( Kk K
3 (“72)] (13-13). From pa(A) i= —X2pa+a2+x

(3.76)
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. Ar72+Ac’Y2 2
Taking —% +oa+ (15752) = = we have

I$2
W~ ;63; + K+ 0N,

where 0 := —p1k&/x1. From (3.66), we have

2
K 52 Xi 52 xa
g1 ~ ﬁn +H+O()\) — Pf’%zgn p1RE +O()\> ~ \ X%
or+ O\ 1+ 0N ir2E2

since £ # 0 and x; # 0. Therefore,
l l
WU = pr [ oo = APLAPor [ Jsin(8e)Pds
0 0

4 l X4
— \2lo2—XL_ " o4 1
APIOMP g = 1002

which implies that ||U||x — 00 as A — oo. O

Remark 3.1. One can also show the lack of exponential stability of system (1.7)—(1.14) under the con-
ditions xo = 0, £ = 0 and 1 # 2. In fact, if one chooses A? = A2 = %32 which gives p1()\) = 0. The

p1n

resolution of Eq. (3.65) gives us

n p2(N)
RE=T:2

1 (psps(N) = B (NP6 (N)) =22 (s (Wpr(A) = Pa(M)p6 (V)
2B, (P (Vps(N) = ps(Wpe(V)) |

+

Since A2 = p—”l 2 we consider the following asymptotic equivalences

1/2 dK
Papr (V) ~ =X 2 (A + A (9726 - 2= (13 = 0)).

K Y1To
A A /\gp}m A2 LA~ (S pr dh 2
p3(M)ps(A) ~ — m( 1+ c’Yz)( ’Ylf*‘;%(%—’h)),
1/2 .
p i
PaVP6(N) ~ XA, + Ac)irtne Ty (M = ).
odhy, i
A 2) ~ —\282~2¢2 )\272/’17 o
P(Vps (V) HE A0 DB (- ),
p1/2 ;
2 2 M1
P5(A)ps(A) ~ =A"(A, + AC)MWQW(/\E - E)’
(5dK’}/2 )
Apr(N) ~ —A26%9262 — A(42 — 42) 22002 (e L .
Ps(Wpr(Y) HE A0 D E T (- ), (3.77)

Consequently, by setting

od h K od h K
Ty =% - A2 (” + 2 )f—i’” <“+”2 )}(vi—vé),
K V271 Y170 2 4!
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we get

A(Awf + Aw%) (55 a2k @D (7 —3)

Ay ~ 2/'? Y271 MTo
K T4
B 2.2
) T2 (AT+AC) (Tl—’To) 1 1
T0T1 4+ — P2 — % -
k2T, Kp1 K A2py’
P2 apr 1 O()\3)(’Yf - 7%)(5 +1)

s K2 o T OO) (7 = 3)(€ +€) + O0) (77 — )
ON) (7] —5)(E+1)

ON) (7 =13) (2 + & +0(N2) (7 —13)

Taking o = 0 and £ = 0, we have

SETARINRELIE e
Kp1 K A2pq O()\Q)(’h2 - 722) O(A\?) (712 - 7%) ’

+

(3.78)

since 71 # 2. Consequently,

~ 1 apy 1
1~ O+ Kp1 (,02 K ) A2py +ow)

Therefore,

l l
~ . l
VI = o1 [ oPde = NP [ [sinBa) s = NFIOOE 501
0 0

= o(\Y)],

which implies that ||U||x — 00 as A — oo.

4. Polynomial decay

In this section, we will show the solutions to system (1.7)-(1.14) decay to zero polynomially as 1/v/¢ by
using the Borichev and Tomilov’s result [7]:

Theorem 4.1. Let us suppose that xo =0, & # 0 and x1 # 0. Then, the semigroup associated with system
(1.7)~(1.14) is polynomially stable, i.e.,

C
1S(t)Uol |3 < mHUoHD(A), Vit >0, Uye D(A). (4.1)

In the particular case & =0, (4.1) holds as well. Moreover, this rate of decay is optimal.

Proof. Let us suppose that £ # 0 and y; # 0. It follows from Lemma 3.4 and Eq. (3.3) that

l
/ 6,z
0

O F] |-

@

+
A

l
c
rlEl(1 = +3) / o + ¥1*dz < 2A|x U1+ (10]] 2 + [|P[] 2)
0
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By using the Young’s inequality, Lemma 3.2 and the estimate (3.12), we get

l
/ 7, de
0

FONUNwIF - (4.2)
On the other hand, combining Lemmas 3.2, 3.3 and the estimate (3.12) yields

C
+ 32 10117 +ellgllz:

l
C
wlel(1= ) [ lea+vPde < 2l
0

l
Ce
[ 167ds < SR+ CoAUll Fll, Ve >0 (43)
0

From Lemmas 3.2, 3.3, 3.5 and 3.6 and by the inequalities (4.2), we have

<

C
U2

l
013, < A|c' [ %.s 10115 (161122 + 1Pl .2)
0

+Ce||U[3 + ClIU |1 F I

C
+ 32 1013 + CellUll5 + ClIU Il | Fllw

l
< AIC' /Wzdx
0

l l
c
<02C [ 1oPan+ < [ loa Pz + SlU1 + CelVR
0 0
e (4.4

! I I
Since [ |pz|?dz <2 [ |, + ¥[2dx + 2¢, [ | |*dz yields
0 0 0

1 1 1
U3, < /\20/|¢|2dx+Cs/|<pm+¢|2dx+Cs/|1/)x\2dx
0 0 0
C
+FIIUII%+C€HUII%+CIIU|IHIIFIIH

l
C
< A20/|¢I2dx+C€IIUII% + 32 1013 + CellUll5 + CllU Il | Fll
0

l
C
<X [ |9fda + I+ CellU1, + ClIUlbell Pl (4.5)
0

From (4.3), we obtain
2 2 2 ¢ 2 2
101l < CellU + ACel|U[n1Ell3 + 51U + CellUll3 + CU ]| £]]2
C
< 331U+ CellUl5 + N Ce|Ulll | Pl + ClU el [F (4.6)
Using the fact that C||U||x||F||x < A2C.||U||n]||F||2), the above estimation becomes

C
10113 < 3z 10117 + CellU1l5, + X Cel[U1al 1l
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V/N

A
A

Terjuouodxry

rerwoufjoq
retwoufjoq

0=1X

0# X
A 0#3
A 0=3

qum Q= 0X
qum Q= 0X
qm g = 0X

oger rewnndQ

sodAy) Aedo(

Aed9p JO Noer]

SUOIIpPUOd AN[IqeIq

(V/N) e1qeoridde jou pue (N) 10N ‘(A) SoA :suoneiaeiqqy ‘T d14v],
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C

< 331Ul + CellUll5 + A CII P[5,

Therefore,
1= C e iR < velF|
vz~ O Ul < X CIIFf3
Choosing || large enough and ¢ sufficiently small, we get
1
FHUHH < Cl|F|n,

which is equivalent to
GAT = )Yl gg) < CAZ

Then, using Theorem 1.2 (see (1.21)), we obtain

_ C
||S(t)-’4 1”[2(71) < W

_ C
= [IS(t) A F| ) < WHFHH-

From Theorem 2.1, we conclude that 0 € p(A), it follows that A is onto over H, then taking AUy = F,
we get

C
15@)Uollx < 7751 10ollpeay, ¥¢>0, Uo € D(A),

Therefore, the solution decays polynomially.

In case £ = 0, we use the same ideas as above. So the polynomial decay holds.

Finally, to show the optimality we follow the same ideas of the proof of Theorem 3.1 (ii) or Remark
3.1. Note that in case yg = 0 with € = 0 or in case xo = 0 with £ # 0 and x; # 0, we have the inequality

U3 = A*Co, (4.7)

for |A| large enough. If we assume that the rate of decay can be improved from 1/t/2 to 1/t*/(2=<) for
some ¢ > 0, then we will have that

1
eIl

must be bounded. But this is not possible because of the inequality (4.7). The proof is now complete.
O

5. Conclusion

(a) Note that when 79 = 71 = 0, Cattaneo’s law turns into the Fourier’s law for heat transmission and
Fick’s law for diffusion transmission. In that case the number xo does not exist and consequently I"' = 0
and the condition of exponential stability over the new number y; = 0 is equivalent to the one over
the old stability number xy = 0. That is, we get the same result as proved by Aouadi et al. [3] for a
Timoshenko system with thermodiffusion effects in the case 7o = 71 = 0.

(b) Table 1 summarizes the different types of decay obtained for the system (1.7)—(1.12) for different
numbers of stability.
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