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Global multiplicity for very-singular elliptic problems with vanishing non-local terms

Willian Cintra, Carlos Alberto Santos and Lais Santos

Abstract. In this paper, we deal with issues related to global multiplicity of W 1,p
loc (Ω)-solutions for the very-singular and

non-local μ-problem

−g

⎛
⎝
∫

Ω

uq

⎞
⎠Δpu = μu−δ + uβ in Ω, u > 0 in Ω and u = 0 on ∂Ω,

where Ω ⊂ R
N is a smooth bounded domain, δ > 0, q > 0, 0 < β ≤ p − 1 and g: [0, ∞) → [0, ∞) is a continuous function

that achieves critical values for the class of non-local problems (i.e., the level zero if β < p − 1 and 1/λ1 if β = p − 1,
where λ1 stands for the principal eigenvalue of the p-Laplacian in Ω under homogeneous Dirichlet boundary conditions).
To overcome the difficulties arising from the geometry of g and the presence of very-singular term combined with a (p − 1)-

sublinear/asymptotically linear ones, we take advantage of a comparison principle for sub-supersolutions in W 1,p
loc (Ω)-sense

proved in Santos and Santos (Z Angew Math Phys 69:Art. 145, 2018), together with sub-supersolutions techniques and
bifurcation theory.
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1. Introduction

In this paper, we deal with issues about global multiplicity of W 1,p
loc (Ω)-solutions for the problem

(Pμ)

⎧⎪⎪⎨
⎪⎪⎩

−g

⎛
⎝
∫

Ω

uq

⎞
⎠Δpu = μu−δ + uβ in Ω,

u > 0 in Ω, u = 0 on ∂Ω,

where Ω ⊂ R
N (N ≥ 2) is a smooth bounded domain, −Δpu = −div(|∇u|p−2∇u) is the p-Laplacian

operator, 1 < p < N , q > 0, δ > 0, 0 < β ≤ p − 1, μ > 0 is a real parameter and g: [0,∞) → [0,∞) is a
continuous function that achieves the levels

υ =
{

0 if 0 < β < p − 1,
λ−1

1 if β = p − 1,

where λ1 > 0 stands for the principal eigenvalue of the p-Laplacian in Ω under homogeneous Dirichlet
boundary conditions. Throughout this work, we will call υ as a critical value for the non-local problem
(Pμ) due to the statements in Theorems 1.2 and 1.3. Besides this, we set the meaning of global multiplicity
when there exists a threshold parameter in such way the problem admits at least two solutions before
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it, at least one solution on it and no solution beyond these threshold whose solutions have Lq(Ω)-norms
controlled by two consecutive solutions of the equation g(s) = υ, s ≥ 0.

Non-local problems have caught a lot attention of a number of researchers in last years principally
for non-local terms that do not achieve the critical values. Recently, some problems involving degenerate
non-local terms (that is, υ = 0) were dealt in [13,16,22] under smooth nonlinearities in the context of
semilinear problems.

The kind of problem (Pμ) arises in various situations of practical interest such as systems of particles
in thermodynamical equilibrium via gravitational (Coulomb) potential [1], 2−D fully turbulent behavior
of real flow [4], plasma physics, among others. In population dynamics, for instance, systems of equations
with non-local and singular terms arise in problems that model prey–predator interactions in a fragile
environment, where the crowding at each point is associated with the distribution of the whole population
in the habitat (see [12,14,15] and references therein).

Although the literature on non-local problems is vast, few authors have considered this class of prob-
lems in the presence of very(or strong)-singular nonlinearities. In [18,21] were considered such nonlinear-
ities combined with ones that include the case 0 < β < p − 1. Furthermore, in both papers, the case in
which g assumes the critical value υ was not possible to be considered because of the approach and tools
used there.

The principal aim of this paper is to prove global multiplicity of positive solutions in the loc-sense for
the problem (Pμ) under the assumptions:

(g1) there exist 0 ≤ s1 < s2 such that g(si) = 0, i = 1, 2 and g(s) �= 0 for s ∈ (s1, s2),
(g2) there exist 0 ≤ s1 < s2 such that g(si) = 1/λ1, i = 1, 2 and 0 < g(s) �= 1/λ1 for s ∈ (s1, s2)

if β < p − 1 and β = p − 1, respectively.
The main difficulty in treating the problem (Pμ) is due to the lack of variational structure that results

from the presence of non-local terms and very-singular nonlinearities; however, we highlight that some
variational approaches for some classes of non-local singular problems have been recently developed. See,
for instance, [5–7].

Another difficulty comes from the fact that a priori estimates may become impracticable because of
the geometry of g that is permitted by the assumptions (g1) or (g2). To overcome these difficulties, we take
advantage of a comparison principle together with sub-supersolutions technique in W 1,p

loc (Ω) to establish a
relationship between the branch of solutions of (Pμ) and the unbounded connected Σ ⊂ R× C(Ω) (given
by Theorem 1.1) of positive W 1,p

loc (Ω)-solutions for the local problem

(Qλ)

{
−Δpu = λ

(
u−δ + uβ

)
in Ω,

u > 0 in ∂Ω, u > 0 on Ω.

After these, by establishing estimates on solutions of (Qλ) and exploring geometric properties of the
unbounded connected Σ, we are able to prove our results of global multiplicity for the problem (Pμ). In
this sense, the description of the structure of Σ is essential in our approach.

Before stating our first theorem, let us make clear our understanding on Dirichlet boundary condition
and solution in this context.

Definition 1.1. We say that u ≤ 0 on ∂Ω if (u− ε)+ ∈ W 1,p
0 (Ω) for every ε > 0 given. Furthermore, u ≥ 0

if −u ≤ 0 and u = 0 on ∂Ω if u is non-negative and non-positive on ∂Ω.

About solutions.

Definition 1.2. We say that u is a W 1,p
loc (Ω)-solution for the problem (Pμ) if u ∈ Lq(Ω), ‖u‖q

q �= si for all
i ∈ {1, 2}, u > 0 in Ω (for each K ⊂⊂ Ω given there exists a positive constant cK such that u ≥ cK > 0
in K) and
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g

⎛
⎝
∫

Ω

uq

⎞
⎠

∫

Ω

|∇u|p−2∇u∇ϕdx =
∫

Ω

(
μu−δ + uβ

)
ϕdx for all ϕ ∈ C∞

c (Ω).

We note that the condition ‖u‖q
q �= si for i ∈ {1, 2} is necessary due to the fact that any solution u of

(Pμ) must satisfy

g(‖u‖q
q) = 1/λ for some λ ∈ Proj

R
Σ,

see discussions above Lemma 4.1.
Besides these, we need to set that ϕ1 ∈ W 1,p

0 (Ω) stands for the positive normalized (‖ϕ1‖∞ = 1)
eigenfunction associated with the first eigenvalue λ1 > 0, that is,

−Δpϕ1 = λ1ϕ
p−1
1 in Ω, ϕ1|∂Ω = 0,

and by φ ∈ W 1,p
0 (Ω) the unique positive solution of

−Δpu = 1 in Ω, u|∂Ω = 0.

Now, we are ready to state our first result for the local problem (Qλ).

Theorem 1.1. (Local case, existence) Suppose δ > 0 and 0 < β ≤ p − 1. Then there exists an unbounded
connected Σ ⊂ R × C(Ω)) of W 1,p

loc (Ω)-solutions for the problem (Qλ) such that (0, 0) ∈ Σ and Σ is an
increasing curve (i. e., if (λ′, u′), (λ, u) ∈ Σ with λ′ < λ, then u′ < u). Moreover, if:

(i) 0 < β < p − 1, then Proj
R
Σ = (0,∞), Σ bifurcates from infinity at infinity and

max

{(
λ

λ1

) 1
p−1+δ

,

(
λ

λ1

) 1
p−1−β

}
ϕ1 ≤ u ≤ K max

{
λ

1
p−1+δ , λ

1
p−1−β

}
φt, (1.1)

for any (λ, u) ∈ Σ, where t = (p − 1)/(p − 1 + δ) and K > 0 is the unique solution of the equation

tp−1Kp−1 = K−δ + ‖φ‖t(β+δ)
∞ Kβ ,

(ii) β = p − 1, then Proj
R
Σ = (0, λ1), Σ bifurcates from infinity at λ = λ1 and

u ≥ (λ1 − λ)
−1

p−1+δ λ
1

p−1+δ ϕ1, (1.2)

for any (λ, u) ∈ Σ.

Our second result can be stated as follows.

Theorem 1.2. (Non-local, non-existence) Assume δ > 0, 0 < β ≤ p − 1 and

g(s)s(p−1−β)/q <
‖ϕ1‖(p−1−β)

q

λ1
for all s > 0. (1.3)

Then there is no W 1,p
loc (Ω)-solution for the problem (Pμ), for any μ > 0.

The main result of this paper concerning existence of positive solution is the next one.

Theorem 1.3. (Non-local, existence) Assume δ > 0 and one of the below assumptions:
(a) 0 < β < p − 1, (g1) and

g(s∗)s
(p−1−β)/q
∗ > (K‖φt‖q)(p−1−β) for some s∗ ∈ (s1, s2), (1.4)

where t,K > 0 are as in Theorem 1.1,
(b) β = p − 1, (g2) and

g(s∗) > 1/λ1 for some s∗ ∈ (s1, s2). (1.5)

Then there exists 0 < μ∗
1 < ∞ such that the problem (Pμ):

(i) admits at least two solutions satisfying ‖u‖q
q ∈ (s1, s2), for any 0 < μ < μ∗

1;
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(ii) at least one solution satisfying ‖u‖q
q ∈ (s1, s2), for μ = μ∗

1;
(iii) no solution satisfying ‖u‖q

q ∈ (s1, s2), for any μ > μ∗
1.

As an immediate consequence of the above theorem, we have the next result.

Corollary 1.1. Let δ > 0 and assume that for some k ∈ N, there exist 0 ≤ s1 < s2 < · · · < sk+1 such that
(a) either 0 < β < p − 1, (1.4) holds on each (si, si+1) and

(g1)′: g(si) = 0, i = 1, 2, . . . , k and g(s) �= 0 for s ∈ (s1, s2) ∪ (s2, s3) ∪ · · · ∪ (sk−1, sk+1),

(b) or β = p − 1, (1.5) holds on each (si, si+1) and

(g2)′: g(si) = 1/λ1, i = 1, 2, . . . , k and 0 < g(s) �= 1/λ1 for s ∈ (s1, s2) ∪ (s2, s3) ∪ · · · ∪ (sk, sk+1).

Then there exist 0 < μ∗ ≤ μ∗ < ∞ such that problem (Pμ) admits:
(i) at least 2k solutions satisfying

0 ≤ s1 < ‖u1‖q
q < ‖u2‖q

q < s2 < ‖u3‖q
q < ‖u4‖q

q < s3 < · · · < sk < ‖u2k−1‖q
q < ‖u2k‖q

q < sk+1,

for any 0 < μ < μ∗,
(ii) at least two solutions satisfying ‖u‖q

q ∈ (s1, sk+1), for any 0 < μ < μ∗,
(iii) at least one solution satisfying ‖u‖q

q ∈ (s1, sk+1), for μ = μ∗,
(iv) no solution satisfying ‖u‖q

q ∈ (s1, sk+1), for any μ > μ∗.

Below, we draw Figs. 2 and 4 to represent two possible diagrams of solutions for the problem (Pμ)
depending on the geometry of the function g (Figs. 1, 3).

critical level

1/λµ

1/λ0

g

s1 s2ŝ1 ŝ2

Fig. 1. Graphic of g versus the smallest level of 1/λμ

μμ∗
10

uµ
q
q

ŝ1

ŝ2

s1

s2

Fig. 2. The vertical projection is connected
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critical level

1/λ0

1/λµ

g

s1 s2ŝ1 ŝ2 ŝ3 ŝ4

Fig. 3. Graphic of g versus the smallest level of 1/λμ

μμ∗
2μ∗

1

uµ
q
q

s1

s2
ŝ4

ŝ1

ŝ2

ŝ3

Fig. 4. The vertical projection is not connected

Let us highlight below some contributions of this paper to the literature.
(1) Theorem 1.1 is new even for the Laplacian operator principally by describing the structure of the

unbounded connected in R × C(Ω) of W 1,p
loc (Ω)-solutions for the (p − 1)-asymptotic linear case and

presenting a λ-behavior of such solutions,
(2) Theorem 1.3 is new by considering non-local terms g that vanishes and showing global multiplicity

results under assumptions on g constrained to the interval formed by two consecutive solutions of
g(s) = υ, s ≥ 0,

(3) Corollary 1.1 establishes a local multiplicity result whose number of solutions is connected with the
amount of solutions of the equation g(s) = υ, s ≥ 0,

(4) the arguments used by us complete some of those ones considered in [18,21], mainly by including
the (p − 1)-asymptotically linear case and vanishing non-local terms.

This work is organizing in the following way: In Sect. 2, we give a new proof of Theorem 2.1 in [21]
by including (p − 1)-asymptotic linear terms and correcting the test functions used there. In Sect. 3, we
prove the existence of an unbounded connected of W 1,p

loc (Ω)-solutions for a local problem together with
properties of such solutions. Finally, in Sect. 4 we take advantage of the information obtained in the
previous sections to prove Theorems 1.2 and 1.3, which concerns the non-local problem.

To end this section, we point out that throughout this paper, and we make use of the following
notations:

• The norm in Lp(Ω) is denoted by ‖ · ‖p.
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• W 1,p
0 (Ω) is the usual Sobolev space endowed with the norm ‖∇u‖p

p =
∫

Ω

|∇u|pdx.

• |U | stands for the Lebesgue measure of measurable set U ⊂ R
N .

• C∞
c (Ω) =

{
u: Ω → R: u ∈ C∞(Ω) and supp u ⊂⊂ Ω

}
.

• c, c1, c2, . . . denote positive constants.

2. Comparison principle for sub- and supersolutions in W 1,p
loc (Ω)

Below, let us define subsolution and supersolution to the problem{
−Δpu = λ

(
u−δ + uβ

)
in Ω,

u > 0 in ∂Ω, u > 0 on Ω.
(2.1)

Definition 2.1. A function v ∈ W 1,p
loc (Ω) is a subsolution of (2.1) if:

(i) there is a positive constant cK such that v ≥ cK in K for each K ⊂⊂ Ω given;
(ii) the inequality ∫

Ω

|∇v|p−2∇v∇ϕdx ≤
∫

Ω

(
a(x)
vδ

+ b(x)vβ

)
ϕdx (2.2)

holds for all 0 ≤ ϕ ∈ C∞
c (Ω). A function v ∈ W 1,p

loc (Ω) satisfying (i) and the reversed inequality in
(2.2) is called a supersolution to problem (2.1).

To state the comparison principle, let set the following assumptions:

(B1) β ∈ (0, p − 1), b ∈ L( p∗
β+1 )′

(Ω) and a + b > 0 in Ω,
(B2) β = p − 1, b ∈ Lr(Ω) for some r > N/p, a > 0 in Ω and 1 < λ1(b),
where λ1(b) > 0 is the principal eigenvalue of the problem

(EP )

{
−Δpu = λb(x)|u|p−2u in Ω,

u = 0 on ∂Ω, u > 0 in Ω.

Theorem 2.1. (W 1,p
loc (Ω)-Comparison Principle) Assume that either (B1) or (B2) holds. Moreover, suppose

one of the following assumptions:

(A1) a ∈ L( p∗
1−δ )′

(Ω), if 0 < δ < 1,
(A2) a ∈ L1(Ω), if δ > 1,
(A3) a ∈ Ls(Ω) for some s > 1, if δ = 1.
If v, v ∈ W 1,p

loc (Ω) are subsolution and supersolution of (2.1), respectively, with v ≤ 0 in ∂Ω, then v ≤ v

a.e. in Ω. Besides this, if in addition v, v ∈ W 1,p
0 (Ω) and (2.2) is satisfied for all 0 ≤ ϕ ∈ W 1,p

0 (Ω), then
the same conclusion holds even for a ∈ L1(Ω) in (A3).

Let us emphasize the proof of Theorem 2.1 under the assumption (B2), since the proof on the hypoth-
esis (B1) was already proved by the two last authors in [21]. However, there is a failure in the construction
of the test functions used there. Here, we redo such proof highlighting the correct construction of the test
functions.

Let us begin the proof of Theorem 2.1 defining for each ε > 0, the functional Jε: W
1,p
0 (Ω) → R given

by

Jε(ω) =
1
p

∫

Ω

|∇ω|pdx −
∫

Ω

Fε(x, ω)dx,
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where Fε(x, t) =

t∫

0

fε(x, s)ds, with

fε(x, s) =

{
a(x)(s + ε)−δ + b(x)(s + ε)β if s ≥ 0

a(x)ε−δ + b(x)εβ if s < 0

and denote by C the convex and closed set

C =
{

ω ∈ W 1,p
0 (Ω): 0 ≤ ω ≤ v

}
,

where v ∈ W 1,p
loc (Ω) is the supersolution to problem (2.1).

Lemma 2.1. Assume either (B1) or (B2) and that one of the hypotheses (A1), (A2) or (A3) holds. Then,
the functional Jε is coercive and weakly lower semicontinuous on C .

Proof. The proof has been done in [21] when (B1) holds. Let us assume (B2). So, it follows from (EP )
that

1
p

∫

Ω

b

(
τ

w

τ
+ (1 − τ)

ε

(1 − τ)

)p

dx ≤ 1
p

τ1−p

λ1(b)
‖∇w‖p

p +
1
p
(1 − τ)1−pεp

∫

Ω

b(x)dx,

for τ ∈ (λ1(b)−1/(p−1), 1), whence

Jε(ω) ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
p

(
1 − τ1−p

λ1(b)

)
‖∇ω‖p

p − C
[
‖a‖( p∗

1−δ )′‖ω‖1−δ
p∗ + 1

]
if 0 < δ < 1,

1
p

(
1 − τ1−p

λ1(b)

)
‖∇ω‖p

p − C
[‖a‖s‖ω‖t

p∗ + 1
]

if δ = 1,

1
p

(
1 − τ1−p

λ1(b)

)
‖∇ω‖p

p − C if δ > 1,

which leads to the coerciveness of Jε.
The proof that Jε is weakly lower semicontinuous on C under (B2) is the same as done in [21] for the

case (B1). This finishes the proof of Lemma. �

As a consequence of C being convex and closed in the W 1,p
0 (Ω)-topology, we conclude by Lemma 2.1

that there exists a ω0 ∈ C such that

Jε(ω0) = inf
ω∈C

Jε(ω)

and from this, by redoing the same steps as done in [21], we obtain the inequality∫

Ω

|∇ω0|p−2∇ω0∇ϕdx ≥
∫

Ω

[
a(ω0 + ε)−δ + b(ω0 + ε)β

]
ϕdx (2.3)

for all ϕ ≥ 0 in C∞
c (Ω).

Proof of Theorem 2.1-Conclusion. For each ε > 0 and n ∈ N, let us set vn := min{v, n},

Ωε := {x ∈ Ω: v(x) > ω0(x) + ε} , Ωn
ε := {x ∈ Ω: vn(x) > ω0(x) + ε}

and the functions

ξ1 :=
[
vp

n − (ω0 + ε)p
]+

v1−p and ξ2 := [vp
n − (ω0 + ε)p]+ (ω0 + ε)1−p.

We claim that |Ωε| = 0. On the contrary, there would exist some n0 ∈ N such that |Ωn
ε | > 0 for all

n > n0. In this case, ξ1 �≡ 0 and ξ2 �≡ 0. Moreover,

∇ξ1 =
[
p
vp−1

n

vp−1
∇vn − p

(ω0 + ε)p−1

vp−1
∇ω0 + (p − 1)

(ω0 + ε)p

vp
∇v − (p − 1)

vp
n

vp
∇v

]
χΩn

ε
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and

∇ξ2 =
[

pvp−1
n

(ω0 + ε)p−1
∇vn − ∇(ω0 + ε) − (p − 1)

vp
n

(ω0 + ε)p
∇(ω0 + ε)

]
χΩn

ε
.

Since v ≤ 0 on ∂Ω, we have (v − ε)+ ∈ W 1,p
0 (Ω), that is, |∇v| ∈ Lp(Oε), where

Oε := {x ∈ Ω: v ≥ ε}.

By combining this information with the facts that Ωn
ε ⊂ Oε and 0 ≤ ω0 ∈ W 1,p

0 (Ω), we conclude that

|∇ξ1| ≤ [p|∇vn| + p|∇ω0| + 2(p − 1)|∇v|] χΩn
ε

∈ Lp(Ω) (2.4)

and

|∇ξ2| ≤
[
pnp−1

εp−1
|∇vn| +

(
1 +

(p − 1)np

εp

)
|∇ω0|

]
χΩn

ε
∈ Lp(Ω). (2.5)

Moreover, for each x ∈ Ω, there exist θ1, θ2 ∈ (0, 1) such that

0 ≤ ξ1(x) ≤ p [θ1vn + (1 − θ1)(ω0 + ε)]p−1 (vn − ω0 − ε)+

vp−1
≤ np−1p

εp−1
(vn − ω0 − ε)+ ∈ W 1,p

0 (Ω) (2.6)

and

0 ≤ ξ2(x) ≤ p [θ2vn + (1 − θ2)(ω0 + ε)]p−1 (vn − ω0 − ε)+

(ω0 + ε)p−1
≤ np−1p

εp−1
(vn − ω0 − ε)+ ∈ W 1,p

0 (Ω) (2.7)

Therefore, we conclude from (2.4)–(2.7) that ξ1 and ξ2 ∈ W 1,p
0 (Ω) ∩ L∞(Ω). Let (φk), (ψk) ⊂ C∞

c (Ω)
be sequences satisfying

φk → ξ1 and ψk → ξ2 in W 1,p
0 (Ω)

and set φ̃k = min{ξ1, φ
+
k } and ψ̃k = min{ξ2, ψ

+
k }. Then, φ̃k, ψ̃k ∈ W 1,p

0 (Ω) ∩ L∞
c (Ω) and exploring that

v is a subsolution of (2.1) and the inequality (2.3), one has
∫

Ω

|∇v|p−2∇v∇φ̃kdx ≤
∫

Ω

(
a(x)v−δ + b(x)vβ

)
φ̃kdx (2.8)

and
∫

Ω

|∇ω0|p−2∇ω0∇ψ̃kdx ≥
∫

Ω

[
a(x)(ω0 + ε)−δ + b(x)(ω0 + ε)β

]
ψ̃kdx. (2.9)

Since v ≥ ε in supp φ̃k, one obtains from Lebesgue theorem, (2.8) and (2.9) that
∫

Ω

|∇v|p−2∇v∇ξ1dx ≤
∫

Ω

(
a(x)v−δ + b(x)vβ

)
ξ1dx (2.10)

and
∫

Ω

|∇ω0|p−2∇ω0∇ξ2dx ≥
∫

Ω

[
a(x)(ω0 + ε)−δ + b(x)(ω0 + ε)β

]
ξ2dx. (2.11)
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Therefore, by combining (2.10) and (2.11), we get

∫

[v≤n]

|∇v|p−2∇v
[vp + (ω0 + ε)p

vp−1

]+

dx +
∫

[v>n]

|∇v|p−2∇v∇
[np − (ω0 + ε)p

vp−1

]+

dx

−
∫

[v≤n]

|∇ω0|p−2∇ω0∇
[vp − (ω0 + ε)p

(ω0 + ε)p−1

]+

dx −
∫

[v>n]

|∇ω0|p−2∇ω0∇
[np − (ω0 + ε)p

(ω0 + ε)p−1

]+

dx

≤
∫

Ω

a(x)
[ v−δ

vp−1
− (ω0 + ε)−δ

(ω0 + ε)p−1

]
[vp

n − (ω0 + ε)p]+dx

+
∫

Ω

b(x)
[ vβ

vp−1
− (ω0 + ε)β

(ω0 + ε)p−1

]
[vp

n − (ω0 + ε)p]+dx.

(2.12)

Since

−
∫

[v>n]

|∇ω0|p−2∇ω0∇
[np − (ω0 + ε)p

(ω0 + ε)p−1

]
dx =

∫

[v>n]

|∇ω0|p
[
1 +

np(p − 1)
(ω0 + ε)p

]
dx ≥ 0,

by (2.12) and the classical Picones’s inequality, we have

0 ≤
∫

[v≤n]

|∇v|p−2∇v∇
[vp − (ω0 + ε)p

vp−1

]+

dx −
∫

[v≤n]

|∇ω0|p−2∇ω0∇
[vp − (ω0 + ε)p

(ω0 + ε)p−1

]+

dx

≤ −
∫

[v>n]

|∇v|p−2∇v∇
[np − (ω0 + ε)p

vp−1

]+

dx +
∫

Ω

a(x)
[ v−δ

vp−1
− (ω0 + ε)−δ

(ω0 + ε)p−1

]
[vp

n − (ω0 + ε)p]+dx

+
∫

Ω

b(x)
[ vβ

vp−1
− (ω0 + ε)β

(ω0 + ε)p−1

]
[vp

n − (ω0 + ε)p]+dx. (2.13)

Below, let us estimate the integrals in (2.13). For the last two integrals, we can deduce by the assump-
tion either (B1) or (B2) that there exists ε′ > 0 such that

∫

Ω

a(x)
[

v−δ

vp−1
− (ω0 + ε)−δ

(ω0 + ε)p−1

]
[vp

n − (ω0 + ε)p]+dx

+
∫

Ω

b(x)
[

vβ

vp−1
− (ω0 + ε)β

(ω0 + ε)p−1

]
[vp

n − (ω0 + ε)p]+dx < −2ε′,

(2.14)

for all n > n0.
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On the other hand, estimating the first integral in the second line, we have

−
∫

[v>n]

|∇v|p−2∇v∇
[np − (ω0 + ε)p

vp−1

]+

dx = np(p − 1)
∫

[v>n]

|∇v|pv−pχΩn
ε
dx

+ p

∫

[v>n]

|∇v|p−2∇v∇ω0
(ω0 + ε)p−1

vp−1
χΩn

ε
dx

− (p − 1)
∫

[v>n]

|∇v|p (ω0 + ε)p

vp
χΩn

ε
dx

≤ (p − 1)
∫

[v>n]

|∇v|pχOε
dx

+ p

∫

[v>n]

|∇v|p−1|∇ω0|χOε
dx.

Since |∇v| ∈ Lp(Oε), for all n > n0 large enough, one gets

−
∫

[v>n]

|∇v|p−2∇v∇
[np − (ω0 + ε)p

vp−1

]+

dx ≤ (p − 1)
∫

[v>n]

|∇v|pχOε
dx + p

∫

[v>n]

|∇v|p−1|∇ω0|χOε
dx < ε′.

(2.15)

Hence, getting back to the inequality (2.13) and using (2.14) and (2.15), we obtain

0 ≤
∫

[v≤n]

|∇v|p−2∇v∇
(vp − (ω0 + ε)p

vp−1

)
dx −

∫

[v≤n]

|∇ω0|p−2∇ω0∇
(vp − (ω0 + ε)p

(ω0 + ε)p−1

)
dx < 0,

which is an absurd. Therefore |Ωn
ε | = 0 for all n, which implies |Ωε| = 0 and so v ≤ ω0 + ε ≤ v + ε a.e in

Ω for all ε > 0, whence v ≤ v in Ω.
To finish the proof, let us assume that v, v ∈ W 1,p

0 (Ω) and (2.2) is satisfied for all 0 ≤ ϕ ∈ W 1,p
0 (Ω).

By supposing (v − v)+ �= 0, defining vε
n(x) := min{v(x)+ ε, n}, vε

n(x) := min{v(x)+ ε, n} and testing the
differential inequalities for v and v against

ξ1 =
[
(vε

n)p − (vε
n)p

]+

(vε
n)1−p and ξ2 =

[
(vε

n)p − (vε
n)p

]+

(vε
n)1−p,

respectively, we obtain∫

[v+ε>n,v+ε≤n]

(
−|∇v|p−2∇v∇v

(v + ε)p−1p

np−1
+ |∇v|p +

(p − 1)np|∇v|p
(v + ε)p

)
dx

+
∫

[v+ε≤v+ε≤n]

(
|∇v|p − p

(v + ε

v + ε

)p−1

|∇v|p−2∇v∇v + (p − 1)
(v + ε

v + ε

)p

|∇v|p

+ |∇v|p − p
(v + ε

v + ε

)p−1

|∇v|p−2∇v∇v + (p − 1)
(v + ε

v + ε

)p

|∇v|p
)

dx

=
∫

Ω

|∇v|p−2∇v∇ξ1dx −
∫

Ω

|∇v|p−2∇v∇ξ2dx

≤
∫

Ω

a
[ v−δ

(vε
n)p−1

− v−δ

(vε
n)p−1

]
[(vε

n)p − (vε
n)p]+dx +

∫

Ω

b
[ vβ

(vε
n)p−1

− vβ

(vε
n)p−1

]
[(vε

n)p − (vε
n)p]+dx.
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Denoting by

I =
∫

[v+ε≤v+ε≤n]

(
|∇v|p − p

(v + ε

v + ε

)p−1

|∇v|p−2∇v∇v + (p − 1)
(v + ε

v + ε

)p

|∇v|p

+ |∇v|p − p
(v + ε

v + ε

)p−1

|∇v|p−2∇v∇v + (p − 1)
(v + ε

v + ε

)p

|∇v|p
)
dx,

and using the previous inequality along with the Picone’s inequality, we have

0 ≤ I ≤
∫

[v+ε>n,v+ε≤n]

p|∇v|p−1|∇v|dx +
∫

Ω

a

[
v−δ

(vε
n)p−1

− v−δ

(vε
n)p−1

]
[(vε

n)p − (vε
n)p]+dx

+
∫

[v+ε>n,v+ε≤n]

b
[ vβ

np−1
− vβ

(v + ε)p−1

]
[np − (v + ε)p]+dx

+
∫

[v+ε≤v+ε≤n]

b
[ vβ

(v + ε)p−1
− vβ

(v + ε)p−1

]
[(v + ε)p − (v + ε)p]+dx. (2.16)

Let us consider each one of the integrals in (2.16). The dominated convergence theorem implies that∫

[v+ε>n,v+ε≤n]

|∇v|p−1|∇v|dx
n→∞−→ 0. (2.17)

By manipulating the second integral in (2.16), we obtain
∫

Ω

a
[ v−δ

(vε
n)p−1

− v−δ

(vε
n)p−1

]
[(vε

n)p − (vε
n)p]+dx ≤ 0 (2.18)

for all n ∈ N and ε > 0. To the second last one, the dominated convergence theorem implies again∫

[v+ε>n,v+ε≤n]

b
[ vβ

np−1
− vβ

(v + ε)p−1

]
[np − (v + ε)p]dx

≤
∫

[v+ε>n,v+ε≤n]

b
[
vβ(v + ε) + vβ(v + ε)

]
dx

n→∞−→ 0. (2.19)

For the last integral, since

b

[
vβ

(v + ε)p−1
− vβ

(v + ε)p−1

]
[(v + ε)p − (v + ε)p]+ ≤ b

[
vβ(v + ε) + vβ(v + ε)

] ∈ L1(Ω),

it follows from Fatou’s lemma that

lim sup
ε→0

∫

[v+ε≤v+ε≤n]

b
[ vβ

(v + ε)p−1
− vβ

(v + ε)p−1

]
[(v + ε)p − (v + ε)p]dx

≤
∫

[v≤v≤n]

b
[ vβ

vp−1
− vβ

vp−1

]
[vp − vp]dx ≤ 0, for all n ∈ N. (2.20)

Hence, going back to (2.16) and using (2.17)–(2.20), we get

0 ≤ lim sup
ε→0+

lim inf
n→∞ I ≤ lim sup

ε→0+
lim inf
n→∞

⎛
⎝
∫

Ω

a
[ v−δ

(vε
n)p−1

− v−δ

(vε
n)p−1

]
[(vε

n)p − (vε
n)p]+dx
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+
∫

[v+ε>n,v+ε≤n]

b
[ vβ

np−1
− vβ

(v + ε)p−1

]
[np − (v + ε)p]dx

+
∫

[v+ε≤v+ε≤n]

b
[ vβ

(v + ε)p−1
− vβ

(v + ε)p−1

]
[(v + ε)p − (v + ε)p]dx

⎞
⎟⎠ .

Since (v − v)+ �= 0 and a + b > 0 holds, we obtain from the previous inequality that

0 ≤ lim sup
ε→0+

lim inf
n→∞ I < 0,

which is an absurd. Therefore (v − v)+ = 0 and this ends the proof. �

3. Unbounded connected for a local very-singular problem

In this section, let us consider the local problem

(Qλ)

{
−Δpu = λ

(
u−δ + uβ

)
in Ω,

u = 0 on ∂Ω, u > 0 in Ω,

where δ > 0, 0 < β ≤ p − 1 and λ > 0 is a real parameter. The main goal is to establish results about
existence, non-existence and uniqueness of W 1,p

loc (Ω)-solutions and their λ-behavior.
This kind of problem has been widely considered in the literature to answer issues about existence

and uniqueness of solutions by using different techniques in a variety of environments, principally in the
context of finite energy. The interested reader may consult, for instance, [2,3,8–11,17] and references
therein for more information on these issues. In particular, Rabinowitz et al. [10] considered Problem
(Qλ) for the case p = 2, and recently the last two authors in [18] complemented some results of [10] for
the case p > 1 with solutions in loc-sense, but excluding nonlinearities that have (p − 1)-asymptotically
linear behaviors.

To deal problem (Qλ) for arbitrary δ > 0, we are going to approach it via the approximate ε-problems

(Qλ,ε)

{
−Δpu = λ

[
(u + ε)−δ + (u + ε)p−1

]
in Ω,

u|∂Ω = 0 on ∂Ω; u > 0 in Ω,

ε > 0.
In order to get an unbounded continuum Σ ⊂ R × C(Ω) of positive solution of (Qλ), we will prove

in this section the existence of an unbounded ε-continuum of W 1,p
0 (Ω)-solutions, denoted by Σε, for the

problem (Qλ,ε) and establish the limit behavior of Σε as ε goes to zero.

Proposition 3.1. For each ε > 0, the problem (Qλ,ε) admits an unbounded continuum Σε ⊂ R
+ ×C(Ω) of

W 1,p
0 (Ω)-solutions emanating from (0, 0).

Proof. Let ε > 0. We know from the classical theory of existence and regularity for elliptic equations
that {

−Δpu = λ
[
(|v| + ε)−δ + (|v| + ε)p−1

]
in Ω,

u|∂Ω = 0,
(3.1)

admits a unique solution u ∈ C1,γ(Ω), γ ∈ (0, 1), for any (λ, v) ∈ R
+ × C(Ω) fixed. Thus, the operator

T :R+ × C(Ω) → C(Ω), which associates each pair (λ, v) ∈ R
+ × C(Ω) to the unique weak solution of

(3.1), is well-defined.
By following standard arguments, we are able to prove that T is a compact operator so that Theorem

3.2 of [20] can be applied to produce an unbounded ε-continuum Σε ⊂ R
+×C(Ω) of solutions of T (λ, u) =
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u. Moreover, since T (0, v) = 0 for all v ∈ C(Ω) and T (λ, 0) = 0 implies λ = 0, we can conclude that
Σε \ {(0, 0)} consists of nontrivial solutions of (Qλ,ε).

Besides this, by using that 0 < λ
(
(|v| + ε)−δ + |v| + ε)β

) ∈ L∞(Ω), for each v ∈ C(Ω), and the
classical strong maximum principle, we obtain that T

(
(R+\{(0, 0)}) × C(Ω)

) ⊂ C(Ω)+, where C(Ω)+ =
{u ∈ C(Ω): u > 0 in Ω}. Therefore, Σε is an unbounded ε-continuum which consists of nontrivial solutions
of (Qλ,ε), for any ε > 0 fixed. �

Lemma 3.1. Let ε > 0. Then Proj
R+Σε ⊂ (0, λ1).

Proof. Let (λ, uε) ∈ Σε. Since ϕ1, uε ∈ C(Ω), there exists c > 0 such that
∫

Ω

((cϕ1 + ε)p − (uε + ε)p)+ > 0.

Defining

ψ1 =
[(cϕ1 + ε)p − (uε + ε)p]+

(cϕ1 + ε)p−1
and ψ2 =

[(cϕ1 + ε)p − (uε + ε)p]+

(uε + ε)p−1
,

we have that ψ1, ψ2 are non-trivial functions and belongs to W 1,p
0 (Ω) ∩ C(Ω). Since

⎧⎪⎨
⎪⎩

−Δpuε = λ
[
(uε + ε)−δ + (uε + ε)p−1

]
in Ω,

−Δp(cϕ1) ≤ λ1(cϕ1 + ε)p−1 in Ω,

cϕ1, u > 0 in Ω; cϕ1, u = 0 on ∂Ω,

we obtain from Picone’s inequality that

0 ≤
∫

Ω

|∇(cϕ1)|p−2∇(cϕ1)∇ψ1dx −
∫

Ω

|∇uε|p−2∇uε∇ψ2dx

< (λ1 − λ)
∫

Ω

((cϕ1 + ε)p − (uε + ε)p)+dx.

Therefore, λ < λ1, which ends the proof. �

The next result completes the description of Σε.

Lemma 3.2. For each ε > 0, Σε bifurcates from infinity at λ = λ1.

Proof. As a consequence of Proposition 3.1 and Lemma 3.1, there must exist λ∗ ∈ (0, λ1] and a sequence
(λn, un) ⊂ Σε such that

{
λn → λ∗

‖un‖∞ → ∞.

By contradiction, assume λ∗ < λ1. In this case, by taking an η > 0 such that λ∗ + η < λ1 and testing
(Qλn,ε) against un, we obtain

∫

Ω

|∇un|pdx ≤ (λ∗ + η)
∫

Ω

[
(un + ε)−δun + (un + ε)p

]
dx,

for all n large enough. Since λ1 > 0 is the first eigenvalue, we get

[λ1 − (λ∗ + η)]‖un‖p
p ≤ (λ∗ + η)

∫

Ω

[
(un + ε)−δun + (un + ε)p − up

n

]
dx
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≤ (λ∗ + η)
∫

Ω

[
(un + ε)−δun + pε(un + ε)p−1

]
dx

≤ cε

(‖un‖p + ‖un‖p−1
p + 1

)
,

which implies ‖un‖p ≤ c1, for some c1 > 0 independent of n. By combining this fact with Lemma A.1 in
[19], we conclude that ‖un‖∞ ≤ c2, for some c2 > 0 independent of n, which contradicts ‖un‖∞ → ∞.
This ends the proof. �

3.1. Proof of Theorem 1.1

Here, we are going to complete the proof of Theorem 1.1 by using the results proved in the previous
section and some results of [18].

Proof of Theorem 1.1-completed. Proof of (i) The existence of the unbounded connected Σ with the
properties stated is a consequence of Theorem 1.1 in [18] and Theorem 2.1. It remains to prove estimate
(1.1). For this purpose, let us consider (λ, u) ∈ Σ and construct appropriate sub- and supersolutions for
the problem (Qλ) to obtain the desired estimates by using Theorem 2.1 . To construct a such subsolution,
let us set u1 = γϕ1 with γ = (λ/λ1)

1
p−1+δ to infer that

γp−1λ1‖ϕ1‖p−1+δ
∞ = γp−1λ1 = γ−δλ,

whence

−Δpu1 = γp−1λ1ϕ
p−1
1 ≤ λγ−δϕ−δ

1 = λu−δ
1 ≤ λ

(
u−δ

1 + uβ
1

)
,

that is, u1 is a subsolution of Problem (Qλ), which implies by Theorem 2.1 that
(

λ

λ1

) 1
p−1+δ

ϕ1 ≤ u in Ω. (3.2)

Proceeding in a similar way, we are able to prove that

u2 =
(

λ

λ1

) 1
p−1−β

ϕ1

is a subsolution of the problem (Qλ) as well. Thus, again by Theorem 2.1 we obtain
(

λ

λ1

) 1
p−1−β

ϕ1 ≤ u in Ω, (3.3)

which leads to the first inequality in (1.1) after gathering the information in (3.2) and (3.3).
To show the second inequality in (4.7), we will prove that u = Kλτφt is a supersolution of the problem

(Qλ) for appropriate values of K > 0 and t ∈ (0, 1). Indeed, Kλτφt is a supersolution of (Qλ) if∫

Ω

(Kλτ )p−1φ(t−1)(p−1)tp−1|∇φ|p−2∇φ∇ϕ ≥ λ

∫

Ω

[
(Kλτ )−δφ−tδ + (Kλτ )βφtβ

]
ϕ,

for all ϕ ≥ 0, ϕ ∈ C∞
0 (Ω), which is equivalent to

(Kλτ t)p−1

∫

Ω

[
ϕφ(t−1)(p−1) − (t − 1)(p − 1)φ(t−1)(p−1)−1|∇φ|pϕ

]

≥ λ

∫

Ω

[
(Kλτ )−δφ−tδ + (Kλτ )βφtβ

]
ϕ, for all 0 ≤ ϕ ∈ C∞

c (Ω).
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By taking t = (p − 1)/(p − 1 + δ) ∈ (0, 1), a sufficient condition for the above inequality to occur is

(Kλτ t)p−1φ(t−1)(p−1) ≥ λ
[
(Kλτ )−δφ−tδ + (Kλτ )βφtβ

]
,

and, for this inequality being true, it suffices that

(Kλτ )p−1tp−1 ≥ λ
[
(Kλτ )−δ + (Kλτ )β‖φt(β+δ)‖∞

]
. (3.4)

Let us consider two cases. If λ ≤ 1, by choosing τ = 1/(p − 1 + δ), the inequality (3.4) becomes

(Kt)p−1 ≥ K−δ + λ
β+δ

p−1+δ Kβ‖φt(β+δ)‖∞,

while (3.4) turns into

(Kt)p−1 ≥ λ− β+δ
p−1+δ K−δ + Kβ‖φt(β+δ)‖∞

if λ > 1 and τ = 1/(p − 1 − β).
In any case, by taking K as the unique solution of

(Kt)p−1 = K−δ + Kβ‖φt(β+δ)‖∞

and setting

τ =

{
1/(p − 1 + δ) if λ ≤ 1,

1/(p − 1 − β) if λ > 1,

we obtain that

u = Kλτφt

is a supersolution of (Qλ). Again, as a consequence of Theorem 2.1, we conclude u ≤ u, whence the
second inequality in (1.1) is true.
Proof of (ii) Consider the case β = p − 1. It follows from the results proved in the previous section and a
similar argument as done in the proof of Theorem 1.1 in [18] that there exists an unbounded connected
Σ of positive solutions of (Qλ) such that (0, 0) ∈ Σ. Moreover, such Σ is obtained as a result of a limit
process with ε converging to zero in (Qλ,ε). As consequences of this process and Lemma 3.1, we obtain
that Proj

R+Σ ⊂ (0, λ1), because Proj
R+Σε ⊂ (0, λ1) for any ε > 0.

Next, let us prove that Σ bifurcates from infinity at λ = λ1. Assume by contradiction that Σ bifurcated
at some 0 ≤ λ∗ < λ1. So, we could take a λ̂ ∈ (λ∗, λ1) and find a pair (λ̂, uλ̂,ε) ∈ Σε, for each ε > 0. That
is, (λ̂, uλ̂,ε) is such that

⎧⎨
⎩

−Δpuλ̂,ε = λ̂
[
(uλ̂,ε + ε)−δ + (uλ̂,ε + ε)p−1

]
in Ω,

uλ̂,ε|∂Ω = 0 on ∂Ω, uλ̂,ε > 0 in Ω,
(3.5)
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for each ε > 0 (see the figure below).

λλ∗
λ̂ λ10

‖u‖∞

Σε

As a consequence of (3.5), we have that uλ̂,ε is a supersolution of
{

−Δpu = λ̂(u + 1)−δ in Ω,

u = 0 on ∂Ω, u > 0 in Ω,
(3.6)

for any ε ∈ (0, 1). Besides this, u = λ̂tϕ1 is a subsolution of (3.6) as long as t ∈ R satisfies

‖ϕ1‖p−1
∞ λ̂t(p−1)−1λ1

[
λ̂t‖ϕ1‖∞ + 1

]δ

≤ 1,

which permits us to infer that λ̂tϕ1 ≤ uλ̂,ε in Ω by reducing t ∈ R, if it is necessary.
Finally, we claim that

uλ̂,ε + ε ≤ uλ̂,1 + 1 in Ω,

for all ε ∈ (0, 1). In fact, to prove this statement let us suppose, by contradiction, that∣∣∣{x ∈ Ω: uλ̂,ε + ε > uλ̂,1 + 1}
∣∣∣ > 0

and define

ψ1 =

[
(uλ̂,ε + ε)p − (uλ̂,1 + 1)p

]+

(uλ̂,ε + ε)p−1
and ψ2 =

[
(uλ̂,ε + ε)p − (uλ̂,1 + 1)p

]+

(uλ̂,1 + 1)p−1
.

Since 0 < uλ̂,ε, uλ̂,1 ∈ C1
0 (Ω), we obtain that ψ1, ψ2 ∈ W 1,p

0 (Ω). Hence, by testing (Qλ̂,ε) and (Qλ̂,1)
against ψ1, ψ2, respectively, applying Picone’s inequality and using the contradiction assumption, we get

0 ≤
∫

Ω

|∇uλ̂,ε|p−2∇uλ̂,ε∇Ψ1dx −
∫

Ω

|∇uλ̂,1|p−2∇uλ̂,1∇Ψ2dx

= λ̂

∫

Ω

[
1

(uλ̂,ε + ε)p−1+δ
− 1

(uλ̂,1 + 1)p−1+δ

] [
(uλ̂,ε + ε)p − (uλ̂,1 + 1)p

]+

dx < 0,
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which is impossible. Therefore, uλ̂,ε + ε ≤ uλ̂,1 + 1 in Ω, whence

λ̂tϕ1 ≤ uλ̂,ε ≤ uλ̂,1 + 1 ∈ L∞(Ω), (3.7)

for all ε ∈ (0, 1).
After (3.7) and following the same approach as used in the proof of Theorem 1.1 in [21], we conclude

that uλ̂,ε → vλ̂ in W 1,p
loc (Ω) as ε → 0, where vλ̂ is the unique solution of (Qλ̂). However, as we are assuming

that Σ bifurcates from infinity at λ∗ < λ̂, it is possible to find some λ < λ∗ < λ̂ such that ‖vλ‖∞ > ‖vλ̂‖∞,
which contradicts the monotonicity of λ �→ vλ that comes from Theorem 2.1. Therefore, λ̂ = λ1.

To end the proof, let us show (1.2). So, define u = (λ1 − λ)τ1λτ2ϕ1, where τ1 and τ2 will be chosen in
such a way that u happens to be a subsolution of (Qλ). For this, it is enough that the following inequality
holds

−Δpu = (λ1 − λ)τ1(p−1)λτ2(p−1)λ1ϕ
p−1
1 ≤ λ

[
((λ1 − λ)τ1λτ2ϕ1)

−δ + ((λ1 − λ)τ1λτ2ϕ1)
p−1

]
,

that is,

ϕp−1
1 λτ2(p−1)(λ1 − λ)τ1(p−1)+1 ≤ ϕ−δ

1 λ1−τ2δ(λ1 − λ)−δτ1

or equivalently

ϕp−1+δ
1 λτ2(p−1+δ)−1(λ1 − λ)τ1(p−1+δ)+1 ≤ 1 (3.8)

Since ‖ϕ1‖∞ = 1, by taking τ2 = 1/(p − 1 + δ) = −τ1 the inequality (3.8) holds, whence

u = (λ1 − λ)
−1

p−1+δ λ
1

p−1+δ ϕ1

is a subsolution of (Qλ). Hence, by Theorem 2.1 we obtain (λ1 − λ)
−1

p−1+δ λ
1

p−1+δ ϕ1 ≤ vλ in Ω. This ends
the proof of Theorem 1.1. �

4. Proof of non-local results

We will begin this section by establishing a connection between the solutions of the local problem

(Qλ)

{
−Δpu = λ

(
u−δ + uβ

)
in Ω,

u = 0 on ∂Ω, u > 0 in Ω,

for λ ∈ Proj
R
Σ, and solutions of the non-local problem (Pμ), where Σ is the unbounded connected of

W 1,p
loc (Ω)-solutions of (Qλ). Hereafter, we will denote by (λ, vλ) the unique solution of (Qλ), for each

λ ∈ Proj
R
Σ, assured by Theorem 1.1.

Let us define the map Φμ: Proj
R
Σ → R

+ by

Φμ(λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ
q

p−1−β

∫

Ω

Ψq if μ = 0 and 0 < β < p − 1,

μ
q

β+δ

∫

Ω

vq
λμ−(p−1−β)/(β+δ) if μ > 0 and 0 < β ≤ p − 1,

(4.1)

where (λμ−(p−1−β)/(β+δ), vq
λμ−(p−1−β)/(β+δ)) ∈ Σ and Ψ ∈ W p

0 (Ω) is the unique solution of
{

−Δpu = uβ in Ω,

u > 0 in, u = 0 on ∂Ω.
(4.2)
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Lemma 4.1. Let μ ≥ 0. Then u ∈ W 1,p
loc (Ω) is a solution of the problem (Pμ) if, and only if, there exists

a λ = λμ ∈ Proj
R
Σ such that

g (Φμ(λ)) =
1
λ

, (4.3)

and

u := uλ,μ =

{
λ

1
p−1−β Ψ if μ = 0 and 0 < β < p − 1,

μ
1

β+δ vλμ−(p−1−β)/(β+δ) if μ > 0 and 0 < β ≤ p − 1.
(4.4)

Proof. Let μ > 0 and u ∈ W 1,p
loc (Ω) be a solution of (Pμ). Then g

(∫
Ω

uq

)
�= 0 and so

g

⎛
⎝
∫

Ω

uq

⎞
⎠ =

1
λ

, (4.5)

for some λ = λμ > 0. In particular, we have that u is solution of the local problem{
−Δpu = λ

(
μu−δ + uβ

)
in Ω,

u > 0 in Ω, u = 0 on ∂Ω.
(4.6)

So, by rewriting (4.6), we get that u solves the problem⎧⎪⎨
⎪⎩

−Δp

(
μ

−1
β+δ u

)
= α

[(
μ

−1
β+δ u

)−δ

+
(
μ

−1
β+δ u

)β
]

,

u > 0 in Ω, u = 0 on ∂Ω,

with α := λμ− p−1−β
β+δ , which implies by Theorem 1.1 that (α, μ

−1
β+δ u) ∈ Σ, that is,

λμ− p−1−β
β+δ ∈ Proj

R
Σ and μ− 1

β+δ u = vα,

where vα is the unique solution of (Qα).
Hence, going back to (4.5), we obtain

g

⎛
⎝μ

q
β+δ

∫

Ω

vq

λμ
− p−1−β

β+δ

⎞
⎠ =

1
λ

.

For the case μ = 0, problem (4.6) reduces to{
−Δpu = λuβ in Ω,

u > 0 in Ω, u = 0 on ∂Ω,

whose unique W 1,p
0 (Ω)-solution is u = λ

1
p−1−β Ψ whenever 0 < β < p − 1, where Ψ ∈ W 1,p

0 (Ω) is the
unique solution of problem (4.2). Thus, by definition of Φμ and (4.5), relation (4.3) follows again.

On the other hand, let μ ≥ 0 and suppose {μ ≥ 0 and 0 < β < p − 1} or {μ > 0 and β = p − 1}.
Moreover, assume that there exists a λ = λμ ∈ Proj

R
Σ satisfying (4.3). So, by defining u as in (4.4), we

are able to show that u is a solution of (Pμ). This ends the proof. �

As a consequence of Lemma and Theorem 1.1, we have that for μ > 0, the problem{
−Δpu = μu−δ + uβ in Ω,

u > 0 in Ω, u = 0 on ∂Ω

admits a W 1,p
loc (Ω)∩C(Ω)-solution, say u, if, and only if, u = μ

1
β+δ vμ−(p−1−β)/(β+δ) and μ− p−1−β

β+δ ∈ Proj
R
Σ,

that is, μ > 0 if 0 < β < p − 1 and λ1 > 1 if β = p − 1.
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In the next result, we established a crucial information about Φμ.

Lemma 4.2. Assume δ > 0 and 0 < β ≤ p − 1. Then:
(a) the maps λ �→ Φμ(λ) and μ �→ Φμ(λ) are increasing.
(b) for λ, μ > 0 and 0 < β < p − 1, we have

‖ϕ1‖q
q max

{(
λμ

λ1

) q
p−1+δ

,

(
λ

λ1

) q
p−1−β

}
≤ Φμ(λ) ≤ Kq‖φt‖q

q max
{

(λμ)
q

p−1+δ , λ
q

p−1−β

}
, (4.7)

where t = (p − 1)/(p − 1 + δ) and K is the unique solution of the equation

tp−1Kp−1 = K−δ + ‖φ‖t(β+δ)
∞ Kβ .

Proof. of (a) As noted above, uλ,μ defined in (4.4) is a solution of (4.6). So the monotonicity claimed
follows directly from Theorem 2.1 by noting that for λ′ < λ′′ and μ′ < μ′′ the function uλ′,μ is a
subsolution of (4.6) with λ = λ′′ and uλ,μ′ is a subsolution of (4.6) with μ = μ′′.
Proof of (b) Since vα ∈ W 1,p

loc (Ω) is the unique solution of (Qα) with α = λμ− p−1−β
β+δ , the result follows

from definition of Φμ and estimates (1.1) by replacing λ with α = λμ− p−1−β
β+δ . �

Now, let us define the application R: Proj
R
Σ → R given by

R(λ) =
∫

Ω

vq
λdx,

where vλ ∈ W 1,p
loc (Ω) ∩ C(Ω) is the unique solution of the problem (Qλ). The estimate (1.1) and Lemma

3.3 in [21] provide the following result.

Lemma 4.3. Assume δ > 0 and 0 < β < p − 1. Then R is an increasing and continuous application
satisfying R(λ) → 0 as λ → 0 and R(λ) → ∞ as λ → ∞.

To state the next result, let us define the functions Gμ : Proj
R
Σ → R by

Gμ(λ) = g (Φμ(λ)) − 1
λ

(4.8)

and λμ: (0,∞) → Proj
R
Σ by

λμ(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ
p−1−β

β+δ R−1
(
sμ

−q
β+δ

)
if μ > 0 and β ≤ p − 1,

(
s∫

Ω
Ψq

) p−1−β
q

if μ = 0 and β < p − 1,

(4.9)

where Ψ ∈ W 1,p
0 (Ω) stands for the unique positive solution of problem (4.2) and the application Φμ was

defined in (4.1). For each s > 0, λμ(s) ∈ Proj
R
Σ is such that

Φμ(λ) = s if, and only if, λ = λμ(s),

that is, Φμ(λμ(s)) = s for s > 0. Since μ �→ Φμ(λ) and λ �→ Φμ(λ) are increasing, μ �→ λμ(s) is necessarily
decreasing.

Remark 4.1. Denoting by s = Φμ(λ), relation (4.8) can be rewritten as

Gμ(λμ(s)) = g(s) − 1
λμ(s)

, s > 0, (4.10)

that is, the problem (Pμ) admits a solution satisfying ‖u‖q
q ∈ (s1, s2) if, and only if, Gμ(λμ(s)) = 0 can

be solved, for some s ∈ (s1, s2).
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Below, we will establish an essential result to prove the existence of a positive solution for the problem
(Pμ), by solving the equation Gμ(λ) = 0.

Proposition 4.1. Assume δ > 0 and 0 < β ≤ p − 1. Then,
(i) the map Gμ is continuous,
(ii) Gμ(λμ(si)) < 0, for i = 1, 2, if (g1) or (g2) holds,
(iii) Gμ(λμ(s∗)) > 0 for all 0 ≤ μ < (s∗/R(1))(β+δ)/q if we assume (1.4) and 0 < β < p − 1,
(iv) there exists λ′ ∈ (λμ′(s1), λμ′(s2)) such that Gμ′(λ′) > 0 if μ′ < μ′′ and Gμ′′(λ′′) > 0 for some

λ′′ ∈ (λμ′′(s1), λμ′′(s2)).

Proof. of (i). For μ = 0 and 0 < β < p − 1, the result is obvious. For μ > 0 and 0 < β ≤ p − 1, we just
need to observe that

Gμ(λ) = g
(
μ

q
β+δ R

(
λμ− p−1−β

β+δ

))
− 1

λ
, λ > 0.

Thus, the continuity follows from the continuity of g and R, claimed in Lemma 4.3.
Proof of (ii) The proof of this item follows directly from the assumptions (g1) or (g2) and (4.10).
Proof of (iii) Let us consider initially μ = 0 and use (4.9) and (4.10) to conclude that

G0(λ0(s∗)) = g(s∗) −
⎛
⎝

∫
Ω

Ψq

s∗

⎞
⎠

p−1−β
q

.

Since Ψ is a positive subsolution of

−Δpu = uβ in Ω, u = 0 on ∂Ω,

if follows from Theorem 1.1 and 2.1 that Ψ ≤ Kφt, which implies by hypothesis (1.4) that G0(λ0(s∗)) > 0.
For 0 < μ < (s∗/R(1))(β+δ)/q, we obtain from the monotonicity of R that R−1

(
s∗μ

−q
β+δ

)
> 1, whence

α = μ− p−1−β
β+δ λμ(s∗) = μ− p−1−β

β+δ μ
p−1−β

β+δ R−1
(
s∗μ

−q
β+δ

)
= R−1

(
s∗μ

−q
β+δ

)
> 1

and from the second inequality in (4.7) we get

s∗ = μ
q

β+δ

∫

Ω

vq
λμ(s∗)μ−(p−1−β)/(β+δ) ≤ Kq‖φt‖q

q (λμ(s∗))
q

p−1−β ,

that is,

λμ(s∗) ≥
(

s∗
Kq‖φt‖q

q

) p−1−β
q

. (4.11)

Therefore, by (4.11) and hypothesis (1.4) one gets

Gμ(λμ(s∗)) = g

⎛
⎝μ

q
β+δ

∫

Ω

vq
λμ(s∗)μ−(p−1−β)/(β+δ)

⎞
⎠ − 1

λμ(s∗)
=

g(s∗)λμ(s∗) − 1
λμ(s∗)

> 0,

which concludes the proof of this item.
Proof of (iv) Denote by

s̃ = (μ′′)
q

β+δ

∫

Ω

vq
λ′′(μ′′)−(p−1−β)/(β+δ) ∈ (s1, s2)

and choose

λ′ = λμ′(s̃) = (μ′)
p−1−β

β+δ R−1
(
s̃(μ′)

−q
β+δ

)
.
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So, it follows from item a) of Lemma 4.2 that λ′ > λ′′. Moreover,

Gμ′(λ′) = g(s̃) − 1
λ′ > g(s̃) − 1

λ′′ = Gμ′′(λ′′) > 0,

as claimed, where the last inequality follows by assumption. This ends the proof of the Proposition. �
Now we are ready to conclude the proof of Theorems 1.2 and 1.3 .

Proof of Theorem 1.2. Suppose 0 < β < p − 1. For each μ ≥ 0 and λ > 0 given, let us denote by
s = Φμ(λ). According to the first estimate obtained in (4.7), we get

‖ϕ1‖q
q

(
λ

λ1

) q
p−1−β

≤ s,

which together with assumption (1.3) implies in

Gμ(λ) =
g(s)λ − 1

λ
<

g(s)s(p−1−β)/q‖ϕ1‖−(p−1−β)
q λ1 − 1

λ
< 0.

So, it is not possible to solve Gμ(λ) = 0 for any μ ≥ 0, that is, (Pμ) does not admit solution.
Now, assume β = p − 1 and u ∈ W 1,p

loc (Ω) be a solution of (Pμ). So, it follows from Lemma 4.1 that
there exists a λμ ∈ Proj

R
Σ such that (4.3) holds, that is,

g (Φμ(λμ)) =
1
λμ

>
1
λ1

.

However, this is impossible under assumption (1.3); hence, the problem (Pμ) does not admit any solution.
�
Proof of Theorem 1.3. First of all, let us define

μ∗
1 = sup

{
μ > 0: max

[λμ(s1),λμ(s2)]
Gμ(λ) ≥ 0

}

both for 0 < β < p − 1 and β = p − 1.
We begin by proving the item a). It follows from definition of μ∗

1 and Proposition 4.1(iii) that

μ∗
1 ≥ (s∗/R(1))(β+δ)/q

> 0.

Now, let us prove that

μ∗
1 ≤

(
s2

‖ϕ1‖q
q

) p−1+δ
q

g∗
1λ1, (4.12)

where

g∗
1 := max {g(s): s ∈ [s1, s2]} = g(s∗

1).

Indeed, by fixing

μ >

(
s2

‖ϕ1‖q
q

) p−1+δ
q

g∗
1λ1,

and applying the first inequality in (1.1) with λ = μ− p−1−β
β+δ /g∗

1 ∈ Proj
R
Σ = (0,∞), we obtain

s2μ
−q

β+δ < ‖ϕ1‖q
q

(
μ− (p−1−β)

(β+δ)

g∗
1λ1

) q
p−1+δ

≤ R

(
μ− p−1−β

β+δ

g∗
1

)
,

whence

R−1
(
s2μ

−q
β+δ

)
<

μ− (p−1−β)
β+δ

g∗
1

.
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Thus,

λμ(s2) = μ
p−1−β

β+δ R−1
(
s2μ

−q
β+δ

)
<

1
g∗
1

,

which implies

Gμ(λ) = g

⎛
⎝μ

q
β+δ

∫

Ω

vq
λμ−(p−1−β)/(β+δ)

⎞
⎠ − 1

λ
≤ g∗

1 − 1
λ

< g∗
1 − 1

λμ(s2)
< g∗

1 − g∗
1 = 0,

for all λ ∈ (λμ(s1), λμ(s2)) and this proves (4.12).
To finish the proof, we note that Proposition 4.1(iv) implies

max {Gμ(λ): λ ∈ [λμ(s1), λμ(s2)]} > 0,

for any μ ∈ (0, μ∗
1) given. Since Proposition 4.1(ii) implies Gμ(λμ(s1)), Gμ(λμ(s2)) < 0, we obtain from

the continuity of Gμ that there exist λ̃, λ̂ ∈ (λμ(s1), λμ(s2)), with λ̃ �= λ̂, such that Gμ(λ̃) = Gμ(λ̂) = 0.
Hence, from Lemma 4.1 we conclude that (Pμ) admits at least two solutions satisfying ‖u‖q

q ∈ (s1, s2).
For μ > μ∗

1, no solution satisfying ‖u‖q
q ∈ (s1, s2) is obtained, because Gμ(λ) < 0 for all λ ∈

[λμ(s1), λμ(s2)]. Finally, for μ = μ∗
1 the problem (Pμ) admits at least one solution satisfying ‖u‖q

q ∈
(s1, s2), because the max[λμ(s1),λμ(s2)] Gμ∗

1
(λ) ≥ 0.

Now we consider the item b). First, we will show that μ∗
1 > 0. We know from definition of λμ(s),

properties of the application R and assumption (1.5), that

lim inf
μ→0

⎛
⎝g

⎛
⎝μ

q
β+δ

∫

Ω

vq
λμ(s∗

1)dx

⎞
⎠ − 1

λμ(s∗
1)

⎞
⎠ = lim

μ→0

(
g (s∗

1) − 1
λμ(s∗

1)

)
= g∗

1 − 1
λ1

> 0,

where

g∗
1 = max {g(s): s ∈ [s1, s2]} = g(s∗

1).

So, there exists a μ∗ > 0 such that

Gμ∗(λμ∗(s∗
1)) = g

⎛
⎝μ

q
β+δ∗

∫

Ω

vq
λμ∗ (s∗

1)dx

⎞
⎠ − 1

λμ(s∗
1)

> 0,

whence we infer that μ∗
1 > 0 because λμ∗(s∗

1) ∈ [λμ∗(s1), λμ∗(s2)].
To prove that μ∗

1 < ∞, we just need observe that if μ is large enough such that λμ(s2) < 1/g∗
1 , then

for all λ ∈ [λμ(s1), λμ(s2)] one has Gμ(λ) ≤ g∗
1 − 1

λ < 0, so μ∗
1 < ∞.

Finally, by following the same approach as done in proof of Proposition 4.1(iv), we can check that
for any μ ∈ (0, μ∗

1) we have the max {Gμ(λ): λ ∈ [λμ(s1), λμ(s2)]} > 0. Besides this, we know from
Proposition 4.1 that Gμ(λμ(s1)), Gμ(λμ(s2)) < 0. Following the arguments as done in item a), we conclude
the proof of this item and the proof of Theorem 1.3. �

Remark 4.2. Some consequences of the proofs:
(i) if 0 < β < p − 1, then

(s∗/R(1))(β+δ)/q ≤ μ∗
1 ≤

(
s2

‖ϕ1‖q
q

) p−1+δ
q

g∗
1λ1,

(ii) if g: [0,∞) → R is a continuous function which is increasing in [s1, s
∗
1], decreasing in (s∗

1, s2] and
satisfies g(s1) = g(s2) = 0, then there exist just two solutions for 0 < μ < μ∗

1, exactly one solution for
μ = μ∗

1 and no solution for μ > μ∗
1. (This is consequence of the geometry of g and the monotonicity

properties of μ �→ λμ(s) and s �→ λμ(s).)
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