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On stability of Boussinesq equations without thermal conduction
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Abstract. We investigate the stability of a specific stationary solution to Boussinesq equations without thermal conduction
in the flat strip Ω = T × (0, 1). Explicit decay rates of the vorticity/velocity are given as well as the limit state of the
temperature. Our method is based on time-weighted energy estimates.
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1. Introduction

1.1. Presentation of the problem

In the mathematical study of fluid dynamics, the Boussinesq approximation is one of important models
among various simplified ones to the Navier–Stokes–Fourier system. In such an approximation, both
temperature and density of the flow are assumed to vary small so that the variation of temperature is
(inversely) proportional to that of density. Hence, the fluid is assumed to be divergence free and only the
action of gravity is considered. In a general 3D setting, the Boussinesq equations read as

⎧
⎪⎨

⎪⎩

∂tv + v · ∇v − νΔv + ∇p = gϑe3,

∇ · v = 0,

∂tϑ + v · ∇ϑ − κΔϑ = 0.

(1.1)

Here v, p and ϑ are the velocity, pressure and temperature of the fluid, respectively, while ν is the
viscosity, κ is the thermal conductivity, g is the constant of gravity and e3 is the inverse direction of
the gravity. Note that the term gϑe3 on the right-hand side of momentum Eq. (1.1)1 is nothing but
the effect of gravity/buoyancy. In case of ν, κ > 0, the Boussinesq equations is an elliptic–parabolic
coupled nonlinear PDE system which plays a key role in the study of hydrodynamic instability problems,
especially the Rayleigh-Bénard convection, see [3,10] among others. When the thermal conductivity is
neglected, the temperature variation ϑ can be considered as the inverse of density variation. This explains
the physical significance of the transport equation in (1.1), which now becomes an elliptic–parabolic–
hyperbolic coupled system.

The present paper is concerned with Boussinesq equations
⎧
⎪⎨

⎪⎩

∂tv + v · ∇v − Δv + ∇p = ϑe2,

∇ · v = 0,

∂tϑ + v · ∇ϑ = 0
(1.2)

in the two-dimensional domain Ω = T × (0, 1) ⊂ R
2. Here the vector field v = (v1(x, t), v2(x, t)) is the

velocity describing the motion of viscous fluid under the action of buoyancy force, while the temperature
ϑ is transported by the fluid motion. The fluid viscosity ν and the constant of gravity g are assumed to
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be 1, which are irrelevant in the following analysis. We use x to denote the space variable (x, y) ∈ R
2 and

e2 := ∇y = (0, 1) the direction of buoyancy force.
We supplement system (1.2) with the following initial and (slip) boundary conditions.

{
v(x, 0) = v0(x), ϑ(x, 0) = ϑ0(x) in Ω,

(v · n) (x, t) = 0, (S(∇v)n · τ) (x, t) = 0 on ∂Ω, t > 0,
(1.3)

where n (τ) is the outward unit normal (unit tangential direction) to ∂Ω = T× {y = 0, 1} and the stress
tensor S(∇v) is the symmetric part of ∇v. Since the boundary ∂Ω is flat, (1.3)2 is equivalent to

v2(x, t) = 0, ∂2v1(x, t) = 0 on ∂Ω, t > 0. (1.4)

By setting v = 0 in (1.2), we immediately obtain that

vs = 0, ps = ps(y), ϑs = p′
s(y), y ∈ [0, 1] (1.5)

is a stationary solution (hydrostatic equilibrium) to (1.2), where ps(·) is an arbitrary smooth function.
It is well known that when ϑ′

s(y0) < 0 for some y0 ∈ [0, 1], such a stationary solution is unstable—the
Rayleigh–Taylor instability happens. In the present work, we are interested in the opposite case ϑ′

s(y) > 0
for all y ∈ [0, 1], which implies that fluid with lower temperature (higher density) lies below the fluid
with higher temperature (lower density). Specifically we choose ϑs(y) = y and succeed to show that this
steady solution is stable in the sense of Lyapunov, meaning that the solution to (1.2)-(1.3) starting from
initial data close to this stationary solution is close to it for all time t > 0 in a suitable sense. Moreover,
we obtain that the velocity v and ∂1ϑ converge to zero in H2 with explicit decay rates (1+t)−1 as t → ∞,
see Theorem 1.1.

1.2. Related results on the Boussinesq equations

Boussinesq equations have rich physical background and mathematical features. In particular, the two-
dimensional model keeps some key features of the 3D Navier–Stokes/Euler equations, see [20,23]. Over
the past years, there have been many works devoted to Boussinesq equations. For the reason of brevity,
we only review some related results on the two-dimensional Boussinesq system (1.2).

First result on global well-posedness of Cauchy problem to (1.2) has been obtained in [6] and [15]
with arbitrary large initial data. Since then, other kinds of initial (boundary) value problems to (1.2)
have been investigated by many authors under different settings, see [1,7,13,14,16,19], among others.
It is then natural to study the large-time behavior of solutions to (1.2). In [17], N. Ju has obtained the
global-in-time uniform boundedness of v in H2 and the exponential growth ect2 of ‖∇ϑ(t)‖L2 . It is then
improved by I. Kukavica and W. Wang in [18] that the growth of ‖∇ϑ(t)‖L2 is at most ect. In [8], for
general initial data it is shown that v converges in H1 to zero and ‖∇2v(t)‖L2 is uniformly bounded. Very
recently, by using spectral analysis, the authors in [24] have investigated the global asymptotic stability of
the specific hydrostatic equilibrium (1.6). Besides analysis for the linearized system, they also give explicit
decay rate (1 + t)−1/2 of ‖v(t)‖L2 under certain assumptions on the solution (v, ϑ) to (1.2) on periodic
domain T

2. In the most relevant work [26], R. Wan has obtained asymptotic behavior and explicit decay
rates for solutions to the perturbed system (1.7) in R

2 by using spectral analysis. Finally we refer the
reader to [4,5,25] for works on the global existence and stability of the 2D Boussinesq equations with a
velocity damping term (without viscosity) near the hydrostatic equilibrium (1.6).
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1.3. Main result

Choosing ϑs(y) = y, we infer from (1.5) that

vs = 0, ps =
1
2
y2, ϑs = y, y ∈ [0, 1]. (1.6)

Perturbing this specific stationary solution, we have

v = u, p = q +
1
2
y2, ϑ = y + θ.

Then (u, q, θ) satisfies the perturbed equations as follows.
⎧
⎪⎨

⎪⎩

∂tu + u · ∇u − Δu + ∇q = θe2,

∂tθ + u · ∇θ = −u2,

∇ · u = 0
(1.7)

with initial and boundary conditions
{

(u, θ)(x, 0) = (u0, θ0)(x) in Ω,

u2(x, t) = 0, ∂2u1(x, t) = 0 on ∂Ω, t > 0.
(1.8)

Since ∇ · u = 0, there exists a stream function ψ such that u = ∇⊥ψ = (∂2ψ,−∂1ψ). Here we choose ψ
satisfying { − Δψ = ω,

ψ|∂Ω = 0,
(1.9)

where ω = ∂1u2 − ∂2u1. By denoting ψ = (−Δ)−1ω,

u = ∇⊥(−Δ)−1ω.

Hence, the equations for (ω, θ) are written as
⎧
⎪⎨

⎪⎩

∂tω + u · ∇ω − Δω = ∂1θ,

∂tθ + u · ∇θ = −u2,

u = ∇⊥(−Δ)−1ω,

(1.10)

together with initial and boundary conditions
{

(ω, θ)(x, 0) = (ω0, θ0)(x) in Ω,

ω(x, t) = 0 on ∂Ω, t > 0.
(1.11)

In the following we focus on the analysis of (1.10)-(1.11) instead of considering (1.2)-(1.3) directly.
Assume that

ω0 ∈ Hm(Ω) and ∂n
2 ω0 = 0 on ∂Ω, for n = 0, 2, · · · , 2[(m − 1)/2], (1.12)

θ0 ∈ Hm+1(Ω) and ∂n
2 θ0 = 0 on ∂Ω, for n = 0, 2, · · · , 2[m/2], (1.13)

where [m/2] = k if m = 2k or 2k + 1, k = 0, 1, 2, · · · . We remark that assumptions (1.12) and (1.13) on
initial data are motivated by [5]. According to (1.10)2 and u2(t)|∂Ω = 0, we get the transport equation

∂tθ(t)|∂Ω + u1(t)∂1θ(t)|∂Ω = 0.

Then θ0|∂Ω = 0 implies θ(t)|∂Ω = 0. Taking ∂2 on ∇ · u = 0 and using ∂2u1(t)|∂Ω = 0 yield

∂2
2u2(t)|∂Ω = −∂2∂1u1(t)|∂Ω = 0.

Now operating ∂2
2 on (1.10)2 and restricting to the boundary, one gets

∂t∂
2
2θ(t)|∂Ω + u1(t)∂1∂

2
2θ(t)|∂Ω + 2∂2u2(t)∂2

2θ(t)|∂Ω = 0.
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This implies that ∂2
2θ0|∂Ω = 0 is preserved in time. Furthermore, from the evolution Eq. (1.10)1, it follows

that

−Δω(t)|∂Ω = ∂1θ(t)|∂Ω − ∂tω(t)|∂Ω − u1(t)∂1ω(t)|∂Ω − u2(t)∂2ω(t)|∂Ω.

Then ∂2
2ω(t)|∂Ω = 0. By using this fact and the incompressibility condition for u,

∂3
2u1(t)|∂Ω = 0, ∂4

2u2(t)|∂Ω = 0.

Similarly, from ∂n
2 θ0|∂Ω = 0 for n = 2, 4 · · · , we conclude that the sufficiently smooth function (ω, θ,u)

satisfies
∂n
2 θ(t)|∂Ω = 0, ∂n+2

2 ω(t)|∂Ω = 0, ∂n+3
2 u1(t)|∂Ω = 0, ∂n+4

2 u2(t)|∂Ω = 0. (1.14)
Hence, we assume that the initial data (ω0, θ0) satisfies the special setting (1.12)-(1.13).

We now state the main result of this paper as follows.

Theorem 1.1. Let m ≥ 5 be a fixed integer and (ω0, θ0) satisfy (1.12)-(1.13). There exists a constant
ε0 > 0 such that if

‖ω0‖2
Hm + ‖θ0‖2

Hm+1 ≤ ε20, (1.15)
then (1.10)-(1.11) admits a unique global smooth solution

(ω, θ) ∈ C([0,∞);Hm) × C([0,∞),Hm+1)

satisfying

‖ω(t)‖2
Hm + ‖θ(t)‖2

Hm+1 � ε20, for all t > 0.

Moreover,

‖ω(t)‖H1 + ‖∂1ω(t)‖H1 � (1 + t)−1, ‖∂1θ(t)‖H2 � (1 + t)−1.

Remark 1.1. It follows from Theorem 1.1 that the solution to (1.2)-(1.3) satisfies

‖v(t)‖L∞ � ‖v(t)‖H2 � (1 + t)−1,

‖ϑ(x, y, t) − ϑ(y, t)‖L∞ � ‖ϑ(x, y, t) − ϑ(y, t)‖H2 � ‖∂1ϑ(x, y, t)‖H2 � (1 + t)−1.

This means that ϑ(y, t) determines the large-time asymptotics of ϑ(x, y, t). Furthermore, we deduce from
(1.2)3 that

ϑ(y, t) = ϑ0(y) + ∂2

∫ t

0

v2ϑ(y, τ)dτ,

which has been proved in [24]. Here the bar denotes the horizontal average, that is,

f(y, t) =
∫

T

f(x, y, t)dx.

The method of the proof of Theorem 1.1 is motivated by [22]. To prove Theorem 1.1, it is necessary
to show the global uniform estimates of the solution (ω, θ) to (1.10)-(1.11). However, we have to face the
difficulty arising from the absence of thermal conduction. By making full use of the structure of (1.10),
we obtain the only partial dissipation of θ. This partial dissipation implies that it is difficult to control
the growth of u · ∇θ. In the estimate process of E(T ) defined in (3.4), we find that the key point is
to obtain L1 estimate of ‖∂u(t)‖L∞ in time and L1 estimate of ‖∂2

2u2(t)‖L∞ in time. Using a carefully
designed time-weighted energy F(T ) defined in (3.5) and applying Poincaré inequality in the x-direction,
we overcome these above challenges and prove uniform estimates of E(T ) and F(T ).

The structure of this paper is as follows. In Sect. 2, we give some notations and lemmas which are
used in the sequel. Section 3 is devoted to the proof of Theorem 1.1. In Sect. 4, we present some remarks.
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2. Preliminaries

The following notations and results will be used in the paper. For simplicity, we set ∂1 = ∂x, ∂2 = ∂y and
use 〈·, ·〉 as the inner product in L2. Here A � B means that A ≤ CB, where C is a generic constant.
Throughout this paper, ∇ = (∂1, ∂2), Δ = ∇·∇ = ∂11 +∂22 is the 2D Laplacian operator. For m ∈ N, the
inhomogeneous Sobolev space with derivatives up to order m in L2(Ω) is denoted by Hm(Ω). Moreover,
we use Ḣm(Ω) to denote the homogeneous Sobolev space with the mth-order derivatives in L2(Ω). For
f ∈ Hm(Ω), ‖f‖Hm(Ω) = ‖f‖L2(Ω) + ‖f‖Ḣm(Ω). In this paper, we may use Lp, Ḣm and Hm to stand for
Lp(Ω), Ḣm(Ω) and Hm(Ω), respectively, in some places.

In this section, we give some necessary lemmas.

Lemma 2.1. ([2]) Let 0 ≤ m1 ≤ m ≤ m2. If f ∈ Hm2(Ω), then

‖f‖Hm(Ω) � ‖f‖s
Hm1 (Ω)‖f‖1−s

Hm2 (Ω), with m = sm1 + (1 − s)m2, 0 ≤ s ≤ 1. (2.1)

The following estimates are classical, see [11,21], among others.

Lemma 2.2. For m ∈ N, we have

• If f, g ∈ Hm(Ω) ∩ L∞(Ω), then

‖fg‖Hm(Ω) � ‖f‖Hm(Ω)‖g‖L∞(Ω) + ‖f‖L∞(Ω)‖g‖Hm(Ω). (2.2)

• If f ∈ Hm(Ω) ∩ W 1,∞(Ω) and g ∈ Hm−1(Ω) ∩ L∞(Ω), then for |α| � m,

‖∂α(fg) − f∂αg‖L2(Ω) � ‖f‖W 1,∞(Ω)‖g‖Hm−1(Ω) + ‖f‖Hm(Ω)‖g‖L∞(Ω). (2.3)

The following lemma related to Poincaré inequality in the x-direction is important. The proof of this
lemma is standard, see [2,22], among others.

Lemma 2.3. Let m ∈ N. If f ∈ H1+m(Ω),
∥
∥
∥
∥f(x, y) −

∫

T

f(x, y)dx

∥
∥
∥
∥

Hm(Ω)

� ‖∂1f‖Hm(Ω). (2.4)

Furthermore, if f satisfies
∫

T
f(x, y)dx = 0, then

‖f‖Hm(Ω) � ‖∂1f‖Hm(Ω). (2.5)

The following result is well known, see [12], among others.

Lemma 2.4. Let m ∈ N. Consider the elliptic equations
{ − ΔU = f,

U |∂Ω = 0.

If f ∈ Hm(Ω), then

‖U‖Hm+2(Ω) � ‖f‖Hm(Ω).

From (1.9) and Lemma 2.4, we obtain

Corollary 2.1. Let m ∈ N. Assume that v ∈ Hm(Ω), ∇ · v = 0 in Ω and v · n = 0 on ∂Ω. Then

‖v‖Hm(Ω) � ‖∇ × v‖Hm−1(Ω).
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3. Proof of the main result

The local existence of solution to (1.10)-(1.11) for general smooth initial data in a bounded domain Ω can
be proved by the classical methods, see [5,21] and references therein. We omit the proof of the following
result for brevity.

Proposition 3.1. Let m ≥ 2 be an integer and (ω0, θ0) satisfy (1.12)-(1.13). Then there exists T0 > 0 such
that (1.10)-(1.11) admits a unique solution

(ω, θ) ∈ C([0, T0];Hm(Ω)) × C([0, T0];Hm+1(Ω))

satisfying

∂s
2ω|∂Ω = 0, for s = 0, 2, ..., 2[(m − 1)/2], (3.1)

∂n
2 θ|∂Ω = 0, for n = 0, 2, ..., 2[m/2]. (3.2)

Moreover, if T ∗ is the lifespan to the solution (ω, θ) and T ∗ < ∞, then
∫ T ∗

0

(‖∇u(t)‖L∞ + ‖∇θ(t)‖L∞) dt = ∞. (3.3)

Based on Proposition 3.1, it is enough to show global a priori bounds for the smooth solution (ω, θ).
To this end, we define for m ∈ N,

E(T ) = sup
0≤t≤T

(‖θ(t)‖2
Hm+1 + ‖ω(t)‖2

Hm

)
+

∫ T

0

‖∂1θ(t)‖2
Hm−1dt +

∫ T

0

‖ω(t)‖2
Hm+1dt, (3.4)

F(T ) = sup
0≤t≤T

(1 + t)2
(‖∂1θ(t)‖2

H2 + ‖∂1ω(t)‖2
H1 + ‖ω(t)‖2

H1

)

+
∫ T

0

(1 + t)2
(‖∂11θ(t)‖2

L2 + ‖∂1ω(t)‖2
H2 + ‖ω(t)‖2

H2

)
dt. (3.5)

The estimates of E(T ) and F(T ) will be given, respectively, in the following two sections.

3.1. A priori estimate of E(T )

To begin, we set

E1(T ) = sup
0≤t≤T

(‖θ(t)‖2
Hm+1 + ‖ω(t)‖2

Hm

)
+

∫ T

0

‖ω(t)‖2
Hm+1dt, (3.6)

E2(T ) =
∫ T

0

‖∂1θ(t)‖2
Hm−1dt. (3.7)

Then E(T ) = E1(T ) + E2(T ).
We start with controlling the bound of E1(T ) by the combination of energies defined in (3.4)-(3.5).

Lemma 3.1. Let m ≥ 2. Then
E1(T ) � E(0) + E 3

2 (T ) + F 3
2 (T ). (3.8)

Proof. Multiplying (1.10)1 by ω and testing (1.10)2 by −Δθ,

1
2

d
dt

(‖∇θ‖2
L2 + ‖ω‖2

L2

)
+ ‖∇ω‖2

L2 = −〈∇u · ∇θ,∇θ〉 + 〈−∇u2,∇θ〉 + 〈∂1θ, ω〉. (3.9)

Due to u2 = −∂1(−Δ)−1ω, we use integrations by parts to obtain

〈−∇u2,∇θ〉 + 〈∂1θ, ω〉 = 〈∇∂1(−Δ)−1ω,∇θ〉 + 〈∂1θ, ω〉 = 0. (3.10)
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By integrating (3.9) in time from 0 to T and using (3.10),

sup
0≤t≤T

(‖∇θ(t)‖2
L2 + ‖ω(t)‖2

L2

)
+

∫ T

0

‖∇ω(t)‖2
L2dt

� ‖∇θ0‖2
L2 + ‖ω0‖2

L2 +
∫ T

0

‖∇u(t)‖L∞dt sup
0≤t≤T

‖∇θ(t)‖2
L2

� ‖∇θ0‖2
L2 + ‖ω0‖2

L2 +

(∫ T

0

(1 + t)2‖ω(t)‖2
H2dt

) 1
2

(∫ T

0

(1 + t)−2dt

) 1
2

sup
0≤t≤T

‖θ(t)‖2
H1

� E(0) + F 1
2 (T )E(T ) � E(0) + E 3

2 (T ) + F 3
2 (T ), (3.11)

where Young’s inequality is used in the last inequality. Moreover, we get for m ≥ 1,

〈∂t∂
mω, ∂mω〉 + 〈∂m(u · ∇ω), ∂mω〉 − 〈Δ∂mω, ∂mω〉 = 〈∂m∂1θ, ∂

mω〉, (3.12)
〈∂t∂

m∇θ, ∂m∇θ〉 + 〈∂m∇(u · ∇θ), ∂m∇θ〉 = 〈−∂m∇u2, ∂
m∇θ〉. (3.13)

Adding (3.12) to (3.13) yields
1
2

d
dt

(‖θ‖2
Ḣm+1 + ‖ω‖2

Ḣm

)
+ ‖ω‖2

Ḣm+1 = I1 + I2 + I3 (3.14)

with

I1 = −〈∂m(u · ∇ω), ∂mω〉,
I2 = −〈∂m∇(u · ∇θ), ∂m∇θ〉,
I3 = 〈−∂m∇u2, ∂

m∇θ〉 + 〈∂m∂1θ, ∂
mω〉.

According to (2.3) in Lemma 2.2, together with Corollary 2.1 and the Sobolev imbedding theorem,
we have

I1 = − 〈∂m(u · ∇ω) − u · ∇∂mω, ∂mω〉 = − 〈∂mdiv(uω) − u · ∇∂mω, ∂mω〉
� ‖u‖W 1,∞‖ω‖2

Hm + ‖ω‖L∞‖u‖Hm+1‖ω‖Hm � ‖ω‖H2‖ω‖2
Hm ,

where we use the fact that 〈u · ∇∂mω, ∂mω〉 = 0. Hence, for m ≥ 2,
∫ T

0

|I1(t)|dt � sup
0≤t≤T

‖ω(t)‖Hm

∫ T

0

‖ω(t)‖2
Hmdt � E 3

2 (T ). (3.15)

Note that

I2 = −
∫

Ω

∂m∂1(u · ∇θ)∂m∂1θdxdy −
∫

Ω

∂m∂2(u · ∇θ)∂m∂2θdxdy

=: I21 + I22.

For I21, using the fact that 〈u · ∇∂m∂1θ, ∂
m∂1θ〉 = 0 and applying integration by parts together with the

boundary conditions (1.14),

I21 = −
∑

1≤α≤m+1

Cα
m+1

∫

Ω

∂αu · ∇∂m+1−αθ∂m∂1θdxdy

=
∑

2≤α≤m+1

Cα
m+1

∫

Ω

∂α+1u · ∇∂m+1−αθ∂m−1∂1θdxdy

+
∑

2≤α≤m+1

Cα
m+1

∫

Ω

∂αu · ∇∂m+2−αθ∂m−1∂1θdxdy

−(m + 1)
∫

Ω

∂u · ∇∂mθ∂m∂1θdxdy,
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where ∂m∂1 is denoted by ∂m+1 which has at least one derivative on x. Then

I21 � ‖u‖Hm+2‖θ‖Hm+1‖∂1θ‖Hm−1

+‖u‖Hm+1‖θ‖Hm+1‖∂1θ‖Hm−1 + ‖∂u‖L∞‖θ‖2
Hm+1

� ‖ω‖Hm+1‖θ‖Hm+1‖∂1θ‖Hm−1 + ‖ω‖H2‖θ‖2
Hm+1 .

With the help of Hölder inequality and Young’s inequality,

∫ T

0

|I21(t)|dt �
(∫ T

0

‖ω(t)‖2
Hm+1dt

) 1
2

(∫ T

0

‖∂1θ(t)‖2
Hm−1dt

) 1
2

sup
0≤t≤T

‖θ(t)‖Hm+1

+

(∫ T

0

(1 + t)2‖ω(t)‖2
H2dt

) 1
2

(∫ T

0

(1 + t)−2dt

) 1
2

sup
0≤t≤T

‖θ(t)‖2
Hm+1

� E 3
2 (T ) + F 1

2 (T )E(T ) � E 3
2 (T ) + F 3

2 (T ). (3.16)

For I22, we analyze the case, namely ∂m has only derivative on y. Other cases can be estimated by the
method as employed in the proof of I21. Since 〈u · ∇∂m∂2θ, ∂

m∂2θ〉 = 0,

I22 = −
∑

1≤α≤m+1

Cα
m+1

∫

Ω

∂α
2 u · ∇∂m+1−α

2 θ∂m+1
2 θdxdy

= I221 + I222

with

I221 = −
∑

1≤α≤m+1

Cα
m+1

∫

Ω

∂α
2 u1∂1∂

m+1−α
2 θ∂m+1

2 θdxdy,

I222 = −
∑

1≤α≤m+1

Cα
m+1

∫

Ω

∂α
2 u2∂

m+2−α
2 θ∂m+1

2 θdxdy.

Note that

I221 = −
∑

2≤α≤m+1

Cα
m+1

∫

Ω

∂α
2 u1∂

m+1−α
2 ∂1θ∂

m+1
2 θdxdy

−(m + 1)
∫

Ω

∂2u1∂
m
2 ∂1θ∂

m+1
2 θdxdy.

Similarly,

I221 � ‖u‖Hm+1‖∂1θ‖Hm−1‖θ‖Hm+1 + ‖∂2u1‖L∞‖θ‖2
Hm+1

� ‖ω‖Hm‖∂1θ‖Hm−1‖θ‖Hm+1 + ‖ω‖H2‖θ‖2
Hm+1 .

Then
∫ T

0

|I221(t)|dt � E 3
2 (T ) + F 1

2 (T )E(T ) � E 3
2 (T ) + F 3

2 (T ). (3.17)
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Using the fact that ∂2u2 = −∂1u1 and integrating by parts yield

I222 = −
∑

3≤α≤m+1

Cα
m+1

∫

Ω

∂α−1
2 u1∂

m+2−α
2 ∂1θ∂

m+1
2 θdxdy

−
∑

3≤α≤m+1

Cα
m+1

∫

Ω

∂α−1
2 u1∂

m+2−α
2 θ∂1∂

m+1
2 θdxdy

−(m + 1)
∫

Ω

∂2u2∂
m+1
2 θ∂m+1

2 θdxdy − C2
m+1

∫

Ω

∂2
2u2∂

m
2 θ∂m+1

2 θdxdy

= −
∑

3≤α≤m+1

Cα
m+1

∫

Ω

∂α−1
2 u1∂

m+2−α
2 ∂1θ∂

m+1
2 θdxdy

−
∑

3≤α≤m+1

Cα
m+1

∫

Ω

∑

0≤β≤2

Cβ
2 ∂α−1+β

2 u1∂
m+2−α+2−β
2 θ∂1∂

m−1
2 θdxdy

+(m + 1)
∫

Ω

∂1u1∂
m+1
2 θ∂m+1

2 θdxdy + C2
m+1

∫

Ω

∂2∂1u1∂
m
2 θ∂m+1

2 θdxdy.

Furthermore, one gets

I222 � ‖u‖Hm‖∂1θ‖Hm−1‖θ‖Hm+1 + ‖u‖Hm+2‖∂1θ‖Hm−1‖θ‖Hm+1

+‖∂1u1‖L∞‖θ‖2
Hm+1 + ‖∂2∂1u1‖L∞‖θ‖2

Hm+1

� ‖ω‖Hm+1‖∂1θ‖Hm−1‖θ‖Hm+1 + ‖∂1ω‖H2‖θ‖2
Hm+1 .

Thus,
∫ T

0

|I222(t)|dt � E 3
2 (T )

+

(∫ T

0

(1 + t)2‖∂1ω(t)‖2
H2dt

) 1
2

(∫ T

0

(1 + t)−2dt

) 1
2

sup
0≤t≤T

‖θ(t)‖2
Hm+1

� E 3
2 (T ) + F 1

2 (T )E(T ) � E 3
2 (T ) + F 3

2 (T ). (3.18)

Putting (3.17) and (3.18) together,
∫ T

0

|I22(t)|dt � E 3
2 (T ) + F 3

2 (T ). (3.19)

Moreover, the preceding estimates (3.16) and (3.19) show that
∫ T

0

|I2(t)|dt � E 3
2 (T ) + F 3

2 (T ). (3.20)

To handle the last term, substituting u2 = −∂1(−Δ)−1ω into I3 and then integrating by parts give

I3 = 〈∂m∇∂1(−Δ)−1ω, ∂m∇θ〉 + 〈∂m∂1θ, ∂
mω〉 = 0. (3.21)

Integrating (3.14) in time from 0 to T and summing up (3.15), (3.20), one has

sup
0≤t≤T

(‖θ(t)‖2
Ḣm+1 + ‖ω(t)‖2

Ḣm

)
+

∫ T

0

‖ω(t)‖2
Ḣm+1dt � E(0) + E 3

2 (T ) + F 3
2 (T ). (3.22)

Finally adding (3.11) to (3.22), we get by Poincaré inequality that

E1(T ) � E(0) + E 3
2 (T ) + F 3

2 (T ). (3.23)

�
In the following lemma, we proceed to deal with the estimate of E2(T ).
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Lemma 3.2. Let m ≥ 2. Then
E2(T ) � E(0) + E 3

2 (T ) + F 3
2 (T ). (3.24)

Proof. Applying ∂m−1 on (1.10)1 and taking inner product with ∂1∂
m−1θ, one gets

‖∂1θ‖2
Ḣm−1 = 〈∂m−1∂tω, ∂1∂

m−1θ〉 + 〈∂m−1(u · ∇ω), ∂1∂
m−1θ〉 − 〈∂m−1Δω, ∂1∂

m−1θ〉

=
d
dt

〈∂m−1ω, ∂1∂
m−1θ〉 − 〈∂m−1ω, ∂1∂

m−1∂tθ〉
+ 〈∂m−1(u · ∇ω), ∂1∂

m−1θ〉 − 〈∂m−1Δω, ∂1∂
m−1θ〉

=: N1 + N2 + N3 + N4. (3.25)

We need estimate Nj , j = 1, 2, 3, 4, respectively. For N1, by Hölder inequality,
∫ T

0

|N1(t)|dt � sup
0≤t≤T

‖θ(t)‖Hm sup
0≤t≤T

‖ω(t)‖Hm−1 � E1(T ). (3.26)

Substituting ∂tθ = −u · ∇θ − u2 into N2 and using (2.2) in Lemma 2.2 give

N2 = 〈∂m−1ω, ∂1∂
m−1(u · ∇θ)〉 + 〈∂m−1ω, ∂1∂

m−1u2〉
� ‖ω‖2

Hm+1‖θ‖Hm+1 + ‖ω‖2
Hm+1 .

Then
∫ T

0

|N2(t)|dt � E 3
2 (T ) +

∫ T

0

‖ω(t)‖2
Hm+1dt � E 3

2 (T ) + E1(T ). (3.27)

Similarly for N3,
∫ T

0

|N3(t)|dt �
∫ T

0

‖ω(t)‖2
Hm+1‖∂1θ(t)‖Hm−1dt � E 3

2 (T ). (3.28)

By Hölder inequality and Young’s inequality,

N4 ≤ Cε‖ω‖2
Hm+1 + ε‖∂1θ‖2

Ḣm−1 ,

where Cε is a constant depending on ε. Thus,
∫ T

0

|N4(t)|dt ≤ Cε

∫ T

0

‖ω(t)‖2
Hm+1dt + ε

∫ T

0

‖∂1θ(t)‖2
Ḣm−1dt

≤ CεE1(T ) + ε

∫ T

0

‖∂1θ(t)‖2
Ḣm−1dt. (3.29)

Integrating (3.25) in time from 0 to T , summing up (3.26)-(3.29) and then taking ε small enough, we
infer from Lemma 3.1 that

∫ T

0

‖∂1θ(t)‖2
Ḣm−1dt � E 3

2 (T ) + E1(T ) � E(0) + E 3
2 (T ) + F 3

2 (T ). (3.30)

Similarly,
∫ T

0

‖∂1θ(t)‖2
L2dt � E(0) + E 3

2 (T ) + F 3
2 (T ). (3.31)

Finally, the desired estimate (3.24) follows from (3.30) and (3.31). �

From Lemma 3.1-3.2, we obtain

Lemma 3.3. Let m ≥ 2. Then
E(T ) � E(0) + E 3

2 (T ) + F 3
2 (T ). (3.32)
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3.2. A priori estimate of F(T )

Here we set

F1(T ) = sup
0≤t≤T

(1 + t)2
(‖∂1θ(t)‖2

H2 + ‖∂1ω(t)‖2
H1

)
+

∫ T

0

(1 + t)2‖∂1ω(t)‖2
H2dt, (3.33)

F2(T ) =
∫ T

0

(1 + t)2‖∂11θ(t)‖2
L2dt, (3.34)

F3(T ) = sup
0≤t≤T

(1 + t)2‖ω(t)‖2
H1 +

∫ T

0

(1 + t)2‖ω(t)‖2
H2dt. (3.35)

To obtain a priori estimate of F(T ), we shall estimate F1(T ), F2(T ) and F3(T ), respectively.

Lemma 3.4. Let m ≥ 5. Then

F1(T ) � F(0) + E 3
2 (T ) + F 3

2 (T ) + E 1
2 (T )F 1

2 (T ). (3.36)

Proof. Taking ∂∂1 on (1.10)1 and testing by ∂∂1ω yield

〈∂t∂∂1ω, ∂∂1ω〉 + 〈∂∂1(u · ∇ω), ∂∂1ω〉 − 〈Δ∂∂1ω, ∂∂1ω〉 = 〈∂∂11θ, ∂∂1ω〉. (3.37)

Applying ∂∂1∇ to (1.10)2 and taking inner product with ∂∂1∇θ give

〈∂t∂∂1∇θ, ∂∂1∇θ〉 + 〈∂∂1∇(u · ∇θ), ∂∂1∇θ〉 = 〈−∂∂1∇u2, ∂∂1∇θ〉. (3.38)

By adding (3.37) to (3.38) and multiplying the time weight (1 + t)2,

1
2

d
dt

(1 + t)2
(‖∂1θ‖2

Ḣ2 + ‖∂1ω‖2
Ḣ1

)
+ (1 + t)2‖∂1ω‖2

Ḣ2 = J1 + J2 + J3 + J4, (3.39)

where

J1 = −(1 + t)2〈∂∂1(u · ∇ω), ∂∂1ω〉,
J2 = −(1 + t)2〈∂∂1∇(u · ∇θ), ∂∂1∇θ〉,
J3 = −(1 + t)

(‖∂1θ‖2
Ḣ2 + ‖∂1ω‖2

Ḣ1

)
,

J4 = −(1 + t)2 (〈∂∂11θ, ∂∂1ω〉 + 〈−∂∂1∇u2, ∂∂1∇θ〉) .

Estimate of J1. Note that

J1 = −(1 + t)2〈∂∂1u · ∇ω, ∂∂1ω〉 − (1 + t)2〈∂u · ∇∂1ω, ∂∂1ω〉
−(1 + t)2〈∂1u · ∇∂ω, ∂∂1ω〉 − (1 + t)2〈u · ∇∂∂1ω, ∂∂1ω〉.

By the incompressibility condition for u,

〈u · ∇∂∂1ω, ∂∂1ω〉 = 0.

Then the Sobolev imbedding theorem implies that

J1 � (1 + t)2‖∂∂1u‖L2‖∇ω‖L∞‖∂1ω‖H1

+(1 + t)2‖∂1ω‖2
H1‖∂u‖L∞ + (1 + t)2‖∂1u‖L∞‖ω‖H2‖∂1ω‖H1

� (1 + t)2‖∂1ω‖2
H1‖ω‖Hm .

Thus, by Young’s inequality,
∫ T

0

|J1(t)|dt �
∫ T

0

(1 + t)2‖∂1ω(t)‖2
H2dt sup

0≤t≤T
‖ω(t)‖Hm

� F(T )E 1
2 (T ) � F 3

2 (T ) + E 3
2 (T ). (3.40)
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Estimate of J2. We divide J2 into six parts as follows.

J2 = −(1 + t)2〈∂2∂1(u · ∇θ), ∂2∂1θ〉 = J21 + J22 + J23 + J24 + J25 + J26

with

J21 = −(1 + t)2〈∂2∂1u · ∇θ, ∂2∂1θ〉, J22 = −(1 + t)2〈∂2u · ∇∂1θ, ∂
2∂1θ〉,

J23 = −2(1 + t)2〈∂∂1u · ∇∂θ, ∂2∂1θ〉, J24 = −(1 + t)2〈∂1u · ∇∂2θ, ∂2∂1θ〉,
J25 = −2(1 + t)2〈∂u · ∇∂∂1θ, ∂

2∂1θ〉, J26 = −(1 + t)2〈u · ∇∂2∂1θ, ∂
2∂1θ〉.

For J21, we calculate that

J21 = −(1 + t)2〈∂2∂1u1∂1θ, ∂
2∂1θ〉 − (1 + t)2〈∂2∂1u2∂2θ, ∂

2∂1θ〉
= −(1 + t)2〈∂2∂1u1∂1θ, ∂

2∂1θ〉 + (1 + t)2〈∂2u2∂2∂1θ, ∂
2∂1θ〉 + (1 + t)2〈∂2u2∂2θ, ∂

2∂11θ〉
=: J211 + J212 + J213.

From Lemma 2.3, we find that

J211 � (1 + t)2‖∂1ω‖H1‖∂1θ‖L2‖θ‖H5 � (1 + t)2‖∂1ω‖H1‖∂11θ‖L2‖θ‖H5 . (3.41)

Integrating by parts and using the fact that u = ∇⊥ψ = ∇⊥(−Δ)−1ω yield

J212 = (1 + t)2
∫

Ω

∑

0≤β≤2

∂2+βu2∂
2−β∂2∂1θ∂1θdxdy

= −(1 + t)2
∫

Ω

∑

0≤β≤2

∂2+β∂1ψ∂2−β∂2∂1θ∂1θdxdy.

From Lemma 2.3-2.4, it follows that

J212 � (1 + t)2‖∂1ψ‖H4‖∂1θ‖L2‖θ‖H5 � (1 + t)2‖∂1ω‖H2‖∂11θ‖L2‖θ‖H5 . (3.42)

In a similar way,

J213 = (1 + t)2
∫

Ω

∑

0≤β≤2

∂2+βu2∂
2−β∂2θ∂11θdxdy

= −(1 + t)2
∫

Ω

∑

0≤β≤2

∂2+β∂1ψ∂2−β∂2θ∂11θdxdy.

Then
J213 � (1 + t)2‖∂1ω‖H2‖∂11θ‖L2‖θ‖H5 . (3.43)

Summing up (3.41)-(3.43),
J21 � (1 + t)2‖∂1ω‖H2‖∂11θ‖L2‖θ‖H5 . (3.44)

Note that

J22 = −(1 + t)2〈∂2u1∂11θ, ∂
2∂1θ〉 − (1 + t)2〈∂2u2∂2∂1θ, ∂

2∂1θ〉
= −(1 + t)2〈∂2u1∂11θ, ∂

2∂1θ〉 + (1 + t)2〈∂2∂
2u2∂1θ, ∂

2∂1θ〉 + (1 + t)2〈∂2u2∂1θ, ∂
2∂2∂1θ〉.

This implies that
J22 � (1 + t)2‖ω‖H2‖∂11θ‖L2‖θ‖H5 . (3.45)

Similarly, we obtain

J23 � (1 + t)2‖∂1ω‖H2‖∂11θ‖L2‖θ‖H5 , (3.46)
J24 � (1 + t)2‖∂1ω‖H2‖∂11θ‖L2‖θ‖H5 , (3.47)

and
J25 � (1 + t)2‖ω‖H2‖∂11θ‖L2‖θ‖H5 . (3.48)



ZAMP On stability of Boussinesq equations. . . Page 13 of 18 128

Moreover, the incompressibility condition for u implies that

J26 = 0. (3.49)

We eventually deduce from (3.44)-(3.49) that

J2 � (1 + t)2‖ω‖H2‖∂11θ‖L2‖θ‖H5 + (1 + t)2‖∂1ω‖H2‖∂11θ‖L2‖θ‖H5 .

Consequently, by Hölder inequality and Young’s inequality,

∫ T

0

|J2(t)|dt �
(∫ T

0

(1 + t)2‖ω(t)‖2
H2dt

) 1
2

(∫ T

0

(1 + t)2‖∂11θ(t)‖2
L2dt

) 1
2

sup
0≤t≤T

‖θ(t)‖Hm

+

(∫ T

0

(1 + t)2‖∂1ω(t)‖2
H2dt

) 1
2

(∫ T

0

(1 + t)2‖∂11θ(t)‖2
L2dt

) 1
2

sup
0≤t≤T

‖θ(t)‖Hm

� F(T )E 1
2 (T ) � F 3

2 (T ) + E 3
2 (T ). (3.50)

Estimate of J3. By the interpolation inequality (2.1) in Lemma 2.1,

J3 � (1 + t)‖∂1θ‖2
H2 + (1 + t)‖∂1ω‖2

H2

� (1 + t)‖∂1θ‖L2‖∂1θ‖H4 + (1 + t)‖∂1ω‖2
H2 .

Hence, for m ≥ 5,

∫ T

0

|J3(t)|dt �
(∫ T

0

(1 + t)2‖∂11θ(t)‖2
L2dt

) 1
2

(∫ T

0

‖∂1θ(t)‖2
Hm−1dt

) 1
2

+

(∫ T

0

(1 + t)2‖∂1ω(t)‖2
H2dt

) 1
2

(∫ T

0

‖ω(t)‖2
Hm+1dt

) 1
2

� E 1
2 (T )F 1

2 (T ). (3.51)

Estimate of J4. Substituting u2 = −∂1(−Δ)−1ω into J4 and integrating by parts give

J4 = 0. (3.52)

Integrating (3.39) in time from 0 to T and putting (3.40), (3.50), (3.51), (3.52) together, we obtain

sup
0≤t≤T

(1 + t)2
(‖∂1θ(t)‖2

Ḣ2 + ‖∂1ω(t)‖2
Ḣ1

)
+

∫ T

0

(1 + t)2‖∂1ω(t)‖2
Ḣ2dt

� F(0) + E 3
2 (T ) + F 3

2 (T ) + E 1
2 (T )F 1

2 (T ). (3.53)

Similarly,

sup
0≤t≤T

(1 + t)2
(‖∇∂1θ(t)‖2

L2 + ‖∂1ω(t)‖2
L2

)
+

∫ T

0

(1 + t)2‖∂1∇ω(t)‖2
L2dt

� F(0) + E 3
2 (T ) + F 3

2 (T ) + E 1
2 (T )F 1

2 (T ). (3.54)

Hence, summing up (3.53)-(3.54) and using Poincaré inequality give

F1(T ) � F(0) + E 3
2 (T ) + F 3

2 (T ) + E 1
2 (T )F 1

2 (T ).

This completes the proof of Lemma 3.4. �

Lemma 3.5. Let m ≥ 5. Then

F2(T ) � F(0) + E 3
2 (T ) + F 3

2 (T ) + E 1
2 (T )F 1

2 (T ). (3.55)
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Proof. Taking ∂1 on (1.10)1 and testing by ∂11θ yield

‖∂11θ‖2
L2 = 〈∂t∂1ω, ∂11θ〉 + 〈∂1(u · ∇ω), ∂11θ〉 − 〈Δ∂1ω, ∂11θ〉

=
d
dt

〈∂1ω, ∂11θ〉 − 〈∂1ω, ∂11∂tθ〉 + 〈∂1(u · ∇ω), ∂11θ〉 − 〈Δ∂1ω, ∂11θ〉. (3.56)

Multiplying (3.56) by (1 + t)2, we have

(1 + t)2‖∂11θ‖2
L2 =

d
dt

(1 + t)2〈∂1ω, ∂11θ〉 − 2(1 + t)〈∂1ω, ∂11θ〉 − (1 + t)2〈∂1ω, ∂11∂tθ〉
+ (1 + t)2〈∂1(u · ∇ω), ∂11θ〉 − (1 + t)2〈Δ∂1ω, ∂11θ〉

=:K1 + K2 + K3 + K4 + K5. (3.57)

We now estimate K1,K2, · · · ,K5 one by one. For K1, by Hölder inequality,
∫ T

0

|K1(t)|dt � sup
0≤t≤T

(1 + t)‖∂1θ(t)‖H2 sup
0≤t≤T

(1 + t)‖∂1ω(t)‖H1 � F1(T ). (3.58)

For K2, one gets
∫ T

0

|K2(t)|dt �
(∫ T

0

‖∂1ω(t)‖2
L2dt

) 1
2

(∫ T

0

(1 + t)2‖∂11θ(t)‖2
L2dt

) 1
2

� E 1
2 (T )F 1

2 (T ). (3.59)

By substituting ∂tθ = −u · ∇θ − u2 into K3,

K3 = (1 + t)2〈∂1ω, ∂11(u · ∇θ)〉 + (1 + t)2〈∂1ω, ∂11u2〉
� (1 + t)2‖ω‖2

H2‖θ‖H3 + (1 + t)2‖∂1ω‖2
H2 .

Thus,
∫ T

0

|K3(t)|dt � E 1
2 (T )F(T ) +

∫ T

0

(1 + t)2‖∂1ω(t)‖2
H2dt

� E 3
2 (T ) + F 3

2 (T ) + F1(T ). (3.60)

Note that

K4 � (1 + t)2‖∂11θ‖L2‖∂1ω‖H2‖ω‖H1 .

Then ∫ T

0

|K4(t)|dt � E 1
2 (T )F(T ) � E 3

2 (T ) + F 3
2 (T ). (3.61)

For the last term, by Young’s inequality,

K5 � (1 + t)2‖∂1ω‖H2‖∂11θ‖L2

≤ Cε(1 + t)2‖∂1ω‖2
H2 + ε(1 + t)2‖∂11θ‖2

L2 .

Then
∫ T

0

|K5(t)|dt ≤ Cε

∫ T

0

(1 + t)2‖∂1ω(t)‖2
H2dt + ε

∫ T

0

(1 + t)2‖∂11θ(t)‖2
L2dt

≤ CεF1(T ) + ε

∫ T

0

(1 + t)2‖∂11θ(t)‖2
L2dt. (3.62)

Finally, integrating (3.57) in time from 0 to T and summing up (3.58)-(3.62), we take ε small enough
to obtain

F2(T ) � E 3
2 (T ) + F 3

2 (T ) + F1(T ) + E 1
2 (T )F 1

2 (T )

� F(0) + E 3
2 (T ) + F 3

2 (T ) + E 1
2 (T )F 1

2 (T ),
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where we apply (3.36) in Lemma 3.4. �

Lemma 3.6. Let m ≥ 5. Then

F3(T ) � F(0) + E 3
2 (T ) + F 3

2 (T ) + E 1
2 (T )F 1

2 (T ). (3.63)

Proof. Testing (1.10)1 by −Δω yields

1
2

d
dt

‖ω‖2
Ḣ1 + ‖Δω‖2

L2 = −〈u · ∇ω,Δω〉 − 〈∂1θ,Δω〉. (3.64)

Furthermore, multiplying (3.64) by (1 + t)2 gives

1
2

d
dt

(1 + t)2‖ω‖2
Ḣ1 + (1 + t)2‖Δω‖2

L2 = R1 + R2 + R3, (3.65)

where

R1 = −(1 + t)2〈u · ∇ω,Δω〉,
R2 = −(1 + t)2〈∂1θ,Δω〉, R3 = (1 + t)‖ω‖2

Ḣ1 .

By Hölder inequality and Young’s inequality,
∫ T

0

|R1(t)|dt �
∫ T

0

(1 + t)2‖ω(t)‖2
H2dt sup

0≤t≤T
‖ω(t)‖Hm

� F(T )E 1
2 (T ) � F 3

2 (T ) + E 3
2 (T ). (3.66)

Similarly for R2, we deduce from Lemma 2.3 that
∫ T

0

|R2(t)|dt ≤ Cε

∫ T

0

(1 + t)2‖∂11θ(t)‖2
L2dt + ε

∫ T

0

(1 + t)2‖Δω(t)‖2
L2dt

≤ CεF2(T ) + ε

∫ T

0

(1 + t)2‖Δω(t)‖2
L2dt. (3.67)

For R3, we find that

∫ T

0

|R3(t)|dt �
(∫ T

0

(1 + t)2‖ω(t)‖2
H2dt

) 1
2

(∫ T

0

‖ω(t)‖2
H1dt

) 1
2

� E 1
2 (T )F 1

2 (T ). (3.68)

Integrating (3.65) in time from 0 to T and summing up (3.66)-(3.68), we take ε small enough to yield

sup
0≤t≤T

(1 + t)2‖ω(t)‖2
Ḣ1 +

∫ T

0

(1 + t)2‖Δω(t)‖2
L2dt

� F(0) + F2(T ) + F 3
2 (T ) + E 3

2 (T ) + E 1
2 (T )F 1

2 (T ).

Finally, we use Poincaré inequality, Lemma 2.4 and (3.55) in Lemma 3.5 to obtain

F3(T ) � F(0) + F2(T ) + F 3
2 (T ) + E 3

2 (T ) + E 1
2 (T )F 1

2 (T )

� F(0) + E 3
2 (T ) + F 3

2 (T ) + E 1
2 (T )F 1

2 (T ).

�

The next lemma gives estimate of F(T ).

Lemma 3.7. Let m ≥ 5. Then
F(T ) � E(0) + E 3

2 (T ) + F 3
2 (T ). (3.69)
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Proof. From Lemma 3.4-3.6, it follows that

F(T ) � F(0) + E 3
2 (T ) + F 3

2 (T ) + E 1
2 (T )F 1

2 (T ).

By virtue of Young’s inequality,

F(T ) � F(0) + E 3
2 (T ) + F 3

2 (T ) + CεE(T ) + εF(T ).

Then taking ε small enough and using (3.32) in Lemma 3.3 give

F(T ) � E(0) + F(0) + E 3
2 (T ) + F 3

2 (T ) + E(T ) � E(0) + E 3
2 (T ) + F 3

2 (T ),

where we use the fact F(0) � E(0). Hence, the proof of Lemma 3.7 is completed. �

3.3. Proof of theorem 1.1

From Lemma 3.3 and Lemma 3.7, there exists a constant C0 > 0 such that

E(T ) + F(T ) ≤ C0E(0) + C0

(
E 3

2 (T ) + F 3
2 (T )

)
. (3.70)

By denoting G(T ) = E(T ) + F(T ), one deduces from (3.70) that

G(T ) ≤ C0E(0) + C0G 3
2 (T ). (3.71)

Assume that

‖ω0‖2
Hm + ‖θ0‖2

Hm+1 ≤ ε20, (3.72)

with ε0 ∈ (0, 1) to be determined later. Then there exists a constant C1 > 0 such that

C0E(0) + G(0) = C0E(0) + E(0) + F(0)
≤ C0ε

2
0 + 3ε20 ≤ C1ε

2
0. (3.73)

According to Proposition 3.1, there exists a positive time T0 < T ∗ such that

G(T ) ≤ 4C1ε
2
0, for all T ∈ [0, T0]. (3.74)

Since T ∗ is the life span to the solution (ω, θ), we only need to show T ∗ = ∞ while completing the proof
of Theorem 1.1. Otherwise, if T ∗ < ∞, the solution (ω, θ) satisfies (3.3). Then we define

T̃ � sup{T < T ∗ : G(T ) ≤ 4C1ε
2
0}. (3.75)

Moreover, we take ε0 small enough to yield 8C0C
1
2
1 ε0 < 1. From (3.71) and (3.73), it follows that

G(T ) ≤ C0ε
2
0 + 8C0C

3
2
1 ε30 ≤ C1ε

2
0 + 8C0C

3
2
1 ε30 < 2C1ε

2
0, for all t ∈ [0, T̃ ).

By using a continuity argument,

G(T ) ≤ 2C1ε
2
0, for all t ∈ [0, T ∗),

which gives a contradiction with (3.75) if T̃ < T ∗ < ∞. This in turn implies that T̃ = T ∗ = ∞. Thus, we
finish the proof of Theorem 1.1.
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4. Concluding remarks

In this article, we show stability of the specific stationary solution ωs = 0, ϑs = y to Boussinesq equations
without thermal conduction in the two-dimensional domain T×(0, 1). For the vorticity/velocity, we obtain
asymptotic stability and explicit decay rate while for the temperature only the stability in the sense of
Lyapunov is given. One may expect the temperature ϑ converges to ϑs as time goes to infinity. However,
this is not true in general, once we realize that the stationary solution

ω̃s = 0, ϑ̃s = y + ε sin 2πy

is a small perturbation of (ωs, ϑs) if ε is small. Note that the existence of such a small perturbation is
due to the choice of our underlying domain T × (0, 1), which is periodic in the horizontal direction. In a
future paper [9], we will consider the underlying domain Ω = R × (0, 1), in which case it seems possible
to give the asymptotic stability of the temperature under suitable setting.
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