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1. Introduction

Consider the following 3D generalized Navier–Stokes equations:
⎧
⎨

⎩

ut + (−�)αu + (u · ∇)u + ∇P = f,

div u = 0,
in QT := R

3 × [0, T ), (1.1)

where u : QT → R
3 is the flow velocity vector and P : QT → R is the magnetic pressure. We consider

the initial value problem of (1.1), which requires initial conditions

u(x, 0) = u0(x), x ∈ R
3. (1.2)

The fractional power of Laplace operator (−�)α is defined as in [28]

̂(−�)αf(ξ) = |ξ|2αf̂(ξ).

where f̂ denotes the Fourier transform of f . For notational convenience, we write (−Δ)1/2 as Λ. Before
we take a further look, let’s recall the definition of Leray–Hopf (weak) solution to (1.1)–(1.2) which is
given in [6].

Definition 1.1. Let α > 0 and u0 ∈ L2(R3) divergence-free. A Leray–Hopf solution is a distributional
solution (u, P ) of (1.1)–(1.2) on R

3 × (0, T ) such that

I. u ∈ L∞((0, T ), L2(R3)) ∩ L2((0, T ),Hα(R3)),
II. P is the potential-theoretic solution of −ΔP = divdiv u ⊗ u,

III. For every t ∈ (0, T ), for s = 0 and for almost every 0 < s < t there holds the global energy inequality

‖u(t)‖2L2(R3) + 2

t∫

s

‖(−Δ)α/2u‖2L2(R3) dτ ≤ ‖u(s)‖2L2(R3).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-021-01549-z&domain=pdf
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Recently, in the authors in [6, Theorem 2.2] construct the existence of Leray–Hopf solution in the
sense of Definition 1.1 on R

3 × (0, T ) to (1.1)–(1.2). Let u(x, t) be a solution to system (1.1), then uλ(x, t)
with any λ > 0 is also a solution, where uλ(x, t) = λ2α−1u(λx, λ2αt). It is worth pointing that Ḣ

5−4α
2 is a

critical space, that is, Ḣ
5−4α

2 norm is scaling invariant. By Sobolevs embedding theorem, we also obtain
Ḣ

5−3α
2 ↪→ L

6
3−2α . Then

‖u‖
L4(0,T ;L

6
3−2α (R3))

≤ C‖u‖2
L∞(0,T ;Ḣ

5−4α
2 )

‖u‖2
L2(0,T ;Ḣ

5−2α
2 )

,
2α

4
+

3
6

3α−2

= 2α − 1.

It is well-known that the local and global-in time existence of strong solutions (i.e., pointwise sense
solutions) to the system (1.1)–(1.2) were established for α ≥ 5

4 using Galerkin approximation method
with the energy estimate (see e.g., [35] and [18]). About the uniqueness, very recently, Colombo et al.
[5] proved the ill-posedness in the case α < 1

5 . After that, Rosa [9], proving the non-uniqueness of such
solutions in the range α < 1

3 . That is, there exist infinitely many Leray solutions u of (1.1) in T
3 × [0,∞)

based on the convex integration theory in the limelight recently. As Rosa mentioned, the method given
by Colombo et al. [5] also would give us infinitely many weak solutions bounded in L∞(0, T ;L2(T3)) in
the range 1

3 ≤ α < 1
2 .

On the other hand, we list only some results relevant to the regularity. The authors in [37] and [14]
showed the following the integral conditions, typically referred to as Serrin’s condition for 3

4 < α ≤ 3
2

u ∈ Lq(0, T ;Lp(R3)) with
3
p

+
2α

q
≤ 2α − 1,

3
2α − 1

< p ≤ ∞.

On the other hand, in [2] for a vorticity w = ∇ × u, for 0 < α < 2,

w ∈ Lq(0, T ;Lp(R3)) with
3
p

+
2
q

≤ α,
6
α

< p ≤ ∞,

After that the authors in [14] shown that for 0 < α < 5
4 ,

∇u ∈ L
2rα

2rα−3 (0, T ;Lr),
3
2α

< r ≤ ∞, 0 < T < ∞.

Also, other types of regularity criteria can be referred to, for example, [10,13,21,23,30], and the related
references therein. Our study is motivated by these direction; we obtain the regularity conditions for a
local solution to 3D generalized Navier–Stokes equations (1.1)–(1.2) in Lorentz space.

Our results reads as follows:

Theorem 1.2. Let u0 ∈ Hm(R3) with div u0 = 0 and m > 5
2 and 3

4 < α ≤ 5
4 . There exists a sufficient

constant ε > 0 such that if u satisfies

‖u‖
L

2rα
2rα−r−3 ,∞

(0,T ;Lr,∞)
≤ ε,

3
2α − 1

< r ≤ ∞, 0 < T < ∞. (1.3)

Then the solution u can be extended beyond T > 0.

Theorem 1.3. Let u0 ∈ Hm(R3) with div u0 = 0 and m > 5
2 and 0 < α < 5

4 . There exists a sufficient
constant ε > 0 such that if

‖S‖
L

2rα
2rα−3 ,∞

(0,T ;Lr,∞)
≤ ε,

3
2α

< r ≤ ∞, 0 < T < ∞. (1.4)

Then the solution u can be extended beyond T > 0. Here, S = (Sij) = 1
2

(
∂uj

∂xi
+ ∂ui

∂xj

)
.

Remark 1.4. The result in Theorem 1.3 is more weaker condition to that in [2] or [14]. More speaking,
the strain tensor S in Theorem 1.3 is replaced by ∇u or ω := ∇ × u due to

‖S‖Lz(R3) ≤ ‖∇u‖Lz(R3) ≤ ‖ω‖Lz(R3) (1.5)

for 1 < z < ∞.
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Remark 1.5. The result in Theorem 1.2 and Theorem 1.3 don’t hold for the 3D generalized MHD equa-
tions, which is Navier–Stokes equation coupled with the simplified Maxwell equations (3D MHD equa-
tions). Instead, the condition in Theorem (1.3) can be replaced by

u ∈ L
2rα

2rα−r−3 (0, T ;Lr,∞) < ∞,
3

2α − 1
< r ≤ ∞, 0 < T < ∞.

and the condition in Theorem (1.4) can be substituted by

S ∈ L
2rα

2rα−3 (0, T ;Lr,∞) < ∞,
3
2α

< r ≤ ∞, 0 < T < ∞,

since we don’t apply Lemma 2.2. However, according the argument in [20], the result in Theorem 1.2 and
Theorem 1.3 may be hold for the 3D generalized micro-polar fluid, which are fluids with microstructure
containing the velocity of rotation of the fluid particles. For these models, we refer to [11,13,17,18,25] for
the fractional diffusion and [12,13,15,16,24,31,32,36,38] for the viscous fluids, and the related references
therein.

Motivated by the papers [3,19], we give a geometric regularity condition for the volume of paral-
lelepiped type in viewpoint of u and ω.

Theorem 1.6. Let 3
r + 2α

s ≤ 2α − 1, 3
2α−1 < r ≤ ∞ and 1 ≤ α ≤ 3

2 . Suppose that u be a solution of 3D
generalized Navier–Stokes equations (1.1)–(1.2) with initial condition u0 ∈ Hm(R3) with m ≥ 5

2 . There
exists a sufficient constant ε > 0 such that if

∥
∥
∥
∥

[(
u × ω

|ω|
)]

· ∇ × ω

|∇ × ω|
∥
∥
∥
∥

Ls,∞(0,T ;Lr,∞(R3))

< ε.

then a regular solution u exists beyond T .

As mentioned in [33], geometric-analytic regularity criterion expressed as a balance between the vortic-
ity direction and the vorticity magnitude, key geometric and analytic descriptors of the flow, respectively.
For this, define a pointwise measure of the coherence of the vorticity direction in in turbulence by

ργ(x, t) := sup
y �=x

| sin ϕ(ξ(x + y, t), ξ(x, t))|
|y|γ .

(see refer to [27] for the coherence structure of the vorticity and [8] for effect of vorticity coherence).
In this connection, our result reads as follows:

Theorem 1.7. Let w ∈ C([0, T ), Lp(R3)) be a solution to the 3D generalized Navier–Stokes equations
(1.1)–(1.2) for some p > 3

2 . Assume that w satisfies

T∫

0

[ ∫

R3

(
ργ(x, t)|w(x, t)|a

)p

dx
] 2

p

dt ≤ ∞, (1.6)

where the parameters γ, p and a conform to the scaling-invariant condition p(γ + 2a) − 3 = αp. Then T
is not a blow-up time.

Remark 1.8. The results in Theorem 1.6 and Theorem 1.7 don’t hold for the 3D generalized MHD
equations(or 3D generalized micro-polar fluid). In order to achieve these kind of results, it may need
additional assumption for a magnetic field (or the velocity of rotation of the fluid particles).
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2. Preliminaries

In this section, we introduce notations and definitions used throughout this paper. We also recall the
well-known results for our analysis. For 1 ≤ q ≤ ∞, W k,q(R3) indicates the usual Sobolev space with
standard norm ‖·‖k,q, i.e.,

W k,q(R3) = {u ∈ Lq(R3) : Dαu ∈ Lq(R3), 0 ≤ |α| ≤ k}.

In case that q = 2, we write W k,q(R3) as Hk. All generic constants will be denoted by C, which may
vary from line to line. In particular, A � B means for A ≤ CB.

2.1. Lorentz spaces

Let m(ϕ, t) be the Lebesgue measure of the set {x ∈ R
3 : |ϕ(x)| > t}, i.e.,

m(ϕ, t) := m{x ∈ R
3 : |ϕ(x)| > t}.

We denote by the Lorentz space Lp,q(R3) with 1 ≤ p, q ≤ ∞ with the norm [29]

‖ϕ‖Lp,q(R3) =

⎧
⎨

⎩

( ∞∫

0

tq(m(ϕ, t))q/p dt
t

)1/q

< ∞, for 1 ≤ q < ∞,

supt≥0{t(m(ϕ, t))
1
p } < ∞, for q = ∞

Followed in [29], Lorentz space Lp,q(R3) is defined by real interpolation methods

Lp,q(R3) = (Lp1(R3), Lp2(R3))α,q,

with 1
p = 1−α

p1
+ α

p2
, 1 ≤ p1 < p < p2 ≤ ∞. In particular, we note that

L
2p

p−1 ,2(R3) =
(
L2(R3), L6(R3)

)

3
2p ,2

.

We mention the Hölder inequality in Lorentz spaces (see [22]).

Lemma 2.1. Assume 1 ≤ p1, p2 ≤ ∞, 1 ≤ q1, q2 ≤ ∞ and u ∈ Lp1,q1(R3), v ∈ Lp2,q2(R3). Then
uv ∈ Lp3,q3(R3) with 1

p3
= 1

p1
+ 1

p2
and 1

q3
≤ 1

q1
+ 1

q2
, and moreover,

‖uv‖Lp3,q3 (R3) ≤ C‖u‖Lp1,q1 (R3)‖v‖Lp2,q2 (R3)

is valid.

Also, we recall the following nonlinear Gronwall-type inequality established in [26] (see also [1]).

Lemma 2.2. Let T > 0 and ϕ ∈ Lloc([0, T )) be nonnegative function. Assume further that

ϕ(t) ≤ C0 + C1

t∫

0

μ(s)ϕ(s) ds + κ

t∫

0

λ(s)1−εϕ(s)1+A(ε) ds, ∀ 0 < ε < ε0.

Where κ, ε0 > 0 are constants, μ ∈ L1(0, T ) and A(ε) > 0 satisfies limε→0
A(ε)

ε = c0 > 0. Then ϕ is
bounded on [0, T ] if ‖λ‖L1,∞(0,T ) < c−1

0 κ−1.

To control the fractional diffusion term, we recall the following result (see e.g., [4] or [34]).

Lemma 2.3. With 0 < α < 2, v,Λαv ∈ Lp(R3) with p = 2k, k ∈ N, we obtain
∫

|v|p−2vΛαv dx ≥ 1
p

∫

|Λα
2 v

p
2 |2 dx.
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3. Proofs of Theorems

Proof of Theorem 1.2. A. Case 1 ≤ α ≤ 3
2 : Multiplying −Δu to the first equation of (1.1), integrating

over R
3, we have

1
2

d
dt

‖∇u(t)‖2L2 +
∥
∥Λα+1u

∥
∥2

L2 ≤
∣
∣
∣

∫

R3

(u · ∇)u · Δu dx
∣
∣
∣. (3.1)

Using Hölder inequality, Lemma 2.1, interpolation inequality for Lorentz space and Young’s inequal-
ity, the right-hand side term in (3.1) is estimated as follows:

∫

R3

|u||∇u||∇2u|dx � ‖u‖Lr,∞ ‖∇u‖Lm,2‖∇2u‖Lq,2

� ‖u‖Lr,∞ ‖∇u‖θ
L2,2‖Λα+1u‖1−θ

L2,2‖∇u‖δ
L2,2‖Λα+1u‖1−δ

L2,2

≤ ‖u‖
2

θ+δ

Lr,∞ ‖∇u‖2L2 +
1
4

∥
∥Λα+1u

∥
∥2

L2 ,

where for 1 < s, q < ∞ and 0 ≤ θ, δ ≤ 1

1
r

+
1
m

+
1
q

= 1,

1
m

− 1
3

= θ

(
1
2

− 1
3

)

+ (1 − θ)
(1

2
− α + 1

3

)
,

and

1
q

− 2
3

= δ

(
1
2

− 1
3

)

+ (1 − δ)
(1

2
− α + 1

3

)
.

This implies θ = 1 + 3
mα − 3

2α , δ = 1 + 3
qα − 5

2α . Thus, we set m = 6r
2r−3 and q = 6r

4r−3 , and then,
we obtain

d
dt

∫

R3

|∇u|2 dx +
∥
∥Λα+1u

∥
∥2

L2 � ‖u‖
2rα

2rα−r−3
Lr,∞ ‖∇u‖2L2

Note that
3
r

+
2α

s
=

3
r

+ α(θ + δ) = 2α − 1,

and α ≤ 3
2 implies q > 3

2 .
Now, we use an argument similar to the one used in the work of Bosia et al. [1]. For ε > 0,

Choose sε = s + ε( 4α
2α−1 − αs) and rε :=

3s+3ε( 4α
2α−1−αs)

(2α−1)(s+ε( 4α
2α−1−αs))−2α

with 3
rε

+ 2α
sε

= 2α − 1. Then we
have

‖u‖sε
rε,∞ ≤ C(ε)‖u‖s(1−αε)

r,∞ ‖∇u‖4αε
L2 , (3.2)

where we use the interpolation and Sobolev inequalities. Then, we know

d
dt

φ(t) ≤ C(ε)‖u‖s(1−ε)
r,∞ φ(t)1+2ε, φ(t) := ‖∇u‖2L2(R3)

By Lemma 2.2 with λ(s) := ‖u‖
2rα

2rα−r−3

Lr,∞(R3), μ(s) = 0 and C0 = 0 under the assumption (1.3), we obtain
the desired result (see e.g., [20] for a detail proof).
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B. Case 3
4 < α ≤ 1: Note that

∫

R3

(u · ∇)u · Δu dx =
∫

R3

∇ · (u ⊗ u) · Δu dx =
∫

R3

Λ1−α∇ · (u ⊗ u) · Λ1+αu dx. (3.3)

From (3.1) with (3.3), we have
1
2

d
dt

‖∇u(t)‖2L2 +
∥
∥Λα+1u

∥
∥2

L2 ≤ −
∫

R3

(u · ∇)u · Δu dx.

= −
∫

R3

Λ1−α∇ · (u ⊗ u) · Λ1+αu dx ≤ ‖Λ2−α(u ⊗ u)‖L2‖Λ1+αu‖L2

� ‖u‖Lr‖Λ2−αu‖
L

2r
r−2

‖Λ1+αu‖L2

� ‖u‖Lr‖∇u‖1−θ
L2 ‖Λ1+αu‖θ

L2‖Λ1+αu‖L2

� ‖u‖
2

1−θ

Lr ‖∇u‖2L2 +
1
8
‖Λ1+αu‖2L2 , θ =

1 − α + 3
r

α
.

Hence, we get
d
dt

‖∇u(t)‖2L2 +
∥
∥Λα+1u

∥
∥2

L2 � ‖u‖
2rα

2rα−r−3
Lr ‖∇u‖2L2 .

In the same manner as the previous technique (the proof in case A), we obtain the desired result.
�

Following [7], the symmetric part S, which we will refer to as the strain tensor and he anti-symmetric
part A will be given by

S = (Sij) =
1
2

(∂uj

∂xi
+

∂ui

∂xj

)
, and A = (Aij) =

1
2

(∂uj

∂xi
− ∂ui

∂xj

)
,

respectively. Then, we rewrite the vorticity equation:

ωt + ν(−Δ)αω + (u · ∇)ω = Sω. (3.4)

The vortex stretching term Sω is often written (ω ·∇)u, but it is clear from (1.7) that Aω = 0; therefore,

(ω · ∇)u = (S + A)ω = Sω.

Proof of Theorem 1.3. Multiplying ω to the first equation of (3.4), integrating over R
3, we have

1
2

d
dt

‖ω(t)‖2L2 + ‖Λαω‖2L2 ≤
∫

R3

|S||ω|2 dx (3.5)

Using Hölder inequality, Lemma 2.1, interpolation inequality for Lorentz space and Young’s inequality,
the right-hand side term of (3.5) is estimated as follows:

∫

R3

|S||ω|2 dx ≤ ‖S‖Lr,∞ ‖ω‖2
L

2r
r−1 ,1

� ‖S‖Lr,∞ ‖ω‖2(1− 3
2rα )

L2,2 ‖Λαω‖ 3
rα

L2,2 � ‖S‖
2rα

2rα−3

Lr,∞(R3) ‖ω‖2L2 +
1
8
‖Λαω‖2L2 ,

and thus we obtain
d
dt

∫

R3

|w|2 dx + ‖Λαw‖2L2 � ‖S‖
2rα

2rα−3
Lr,∞ ‖ω‖2L2 � ‖S‖

2rα
2rα−3 (1−ε)

Lr,∞ ‖ω‖2(1+
rα

2rα−3 )

L2 ,

where we use (1.5). By Lemma 2.2 under the assumption (1.4), we obtain the desired result. �
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Proof of Theorem 1.6. For a proof, ‖u‖Lr,∞(R3) in the proof of Theorem 1.2 is only replaced by
∥
∥
∥

[(
u × ω

|ω|
)]

· ∇×ω
|∇×ω|

∥
∥
∥

Lr,∞(R3)
. Indeed, from (3.1), we have

d
dt

‖∇u(t)‖2L2 +
∥
∥Λα+1u

∥
∥2

L2 ≤
∫

R3

|u||∇u||∇2u|dx

≤
∫

R3

∣
∣
∣

(
u × ω

|ω|
)

· ∇ × ω

|∇ × ω|
∣
∣
∣|∇u||∇2u|

≤
∥
∥
∥
∥

[(
u × ω

|ω|
)]

· ∇ × ω

|∇ × ω|
∥
∥
∥
∥

Lr,∞
‖∇u‖Lm,2‖∇2u‖Lq,2

�
∥
∥
∥
∥

[(
u × ω

|ω|
)]

· ∇ × ω

|∇ × ω|
∥
∥
∥
∥

Lr,∞)

‖∇u‖θ
L2,2‖Λα+1ω‖1−θ

L2,2‖∇u‖δ
L2,2‖Λα+1u‖1−δ

L2,2

�
∥
∥
∥
∥

[(
u × ω

|ω|
)]

· ∇ × ω

|∇ × ω|
∥
∥
∥
∥

2rα
2rα−r−3

Lr,∞
‖∇u‖2L2 .

In the same manner as the proof(case A) of Theorem 1.2, we obtain the desired result. �

Remark 3.1. Comparing to the result of Theorem 1.2, the range of α in Theorem 1.6 restrict to 1 ≤ α ≤ 3
2

since the argument in Theorem 1.2 hold for 3
4 ≤ α ≤ 1, in particular, do not work in this case.

Lastly, we consider the vorticity equation:

ωt + ν(−Δ)αω + (u · ∇)w = (w · ∇)u. (3.6)

Proof of Theorem 1.7. Multiplying the equations (3.6) by |w|p−2w and integrating over the whole space
yields

1
p

d
dt

∫

|w|p dx +
∫

(
√−Δ)2αw · |w|p−2w dx =

∫

(w · ∇)u · |w|p−2w dx =
∫

α|w|p,

where we use the fact the pointwise identity

(w · ∇)u = α|w|2.

Here, following [7], the strain matrix S(x, t) is given

S(x, t) ≡ 1
2

(
∇u(x, t) + ∇u(x, t)T

)
:=

3
4π

P.V.

∫

M(ŷ, w(x + y))
dy

|y|3 , ŷ =
y

|y| ,

where M(ŷ, w) = 1
2

[
ŷ ⊗ (ŷ × w) + (ŷ × w) ⊗ ŷ

]
with (a ⊗ b)ij = aibj . Denote

a(x) := S(x)ξ(x) · ξ(x), ξ(x) =
w(x)
|w(x)| .

By Lemma 2.3 implies a lower bound on the fractional diffusion term follow as
∫

(
√−Δ)2αw · |w|p−2w dx ≥ 2

p

∫ ∣
∣
∣(

√−Δ)α|w| p
2

∣
∣
∣
2

dx ≥ cα ‖w(t)‖p

L
3p

3−2α
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Using Holder and Young’s inequalities, the RHS is estimated as follows,

cp,α

∣
∣
∣

∫

α(x, t)|w(x, t)|2 dx
∣
∣
∣ ≤ cp,α

∣
∣
∣

∫ (
ργ ||w(x, t)|2

)( 1
|y|3−γ

||w(x + y, t)|dy
)
dx

∣
∣
∣

≤ cp,α

∥
∥ργ |w|2∥∥

Lp,∞

∥
∥
∥
∥

1
|y|3−γ

∗ |w|
∥
∥
∥
∥

L
p

p−1 ,1

≤ cp,α

∥
∥ργ |w|2∥∥

Lp,∞ ‖w‖Ls,1 ,
1
p2

+ 1 =
3 − γ

3
+

1
s

≤ cp,α

∥
∥ργ |w|2∥∥

Lp,∞ ‖w‖α
L2,2 ‖w‖1−α

L
6

3−2α
, 6
3−2α

,
1
s

= α
1
2

+ (1 − α)
3 − 2α

6

≤ cp,α

∥
∥ργ |w|2∥∥

2
α

Lp ‖w‖α
Lp +

cp,α

8
‖w‖1−α

L
3p

3−2α
,

where we use
∥
∥
∥ 1

|y|3−γ ∗ |w|
∥
∥
∥

L
p

p−1
≤ ‖w‖Ls in third inequality and Lemma 2.1 in fourth inequality. It yields

the final form of our differential inequality on (0, T),

d
dt

‖w(t)‖2L2 + cα ‖w(t)‖2
L

6
3−2α

≤ C
∥
∥ργ |w|2∥∥

2
α

Lp,∞ ‖w(t)‖2L2 (3.7)

Applying the Gronwall’s inequality to (3.7) under the assumption (1.6), we have the desired result. �
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