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Analysis of a malaria epidemic model with age structure and spatial diffusion
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Abstract. This paper aims to provide the complete analysis on the threshold dynamics of an age-space structured malaria
epidemic model. We formulate the model in a spatially bounded domain by assuming that: (i) the density of susceptible
humans at space x stabilizes at H(x); (ii) the force of infection between human population and mosquitoes is given by
the mass action incidence. By appealing to the theory of fixed point problem and Picard sequences and iteration, the
well-posedness of the model is shown by verifying that the solution exists globally and the model admits a global attractor.
In the spatially homogeneous case, we establish the explicit formula for the basic reproduction number, which governs the
malaria extinction and persistence. The local and global stability of equilibria is achieved by studying the distribution of
characteristic roots of characteristic equation and constructing the suitable Lyapunov functions, respectively.
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1. Introduction

It is well known that malaria is a parasitic infections in humans, caused by the genus Plasmodium. In
general, humans acquire malaria through effective biting by several species of infectious female anopheles
mosquitoes [23,25]. Susceptible mosquitoes acquire malaria through effective bites of infectious human
host. It has been reported in [15] that about more than one hundred countries are under prevalence of
malaria. Every year, two billion people are at risk affected by Plasmodium falciparum.

Reaction–diffusion model frameworks have been proved to be a powerful tool to generalize the classical
Ross–Macdonald malaria models [4,6,11,20–22,32,34]. For a spatial transmission dynamics of malaria,
it is usually assumed that human and mosquitoes are confined in a bounded domain Ω. Laplacian oper-
ator ∂/∂x2, x ∈ Ω ⊂ R

n(n ≥ 1) are introduced to reflect the spatial random movement of humans and
mosquitoes. Recent publications [13,14,21] demonstrated that the spatial heterogeneity is a more mean-
ingful and important factor in disease transmission. In reality, as environmental conditions vary spatially,
for example, temperature and humidity, etc., it comes natural to demonstrate spatial heterogeneity for
disease transmission parameters. It is also argued in [26] that “the non-random distribution of humans
and mosquitoes across the landscape can generate spatially heterogeneous biting patterns”.

In typical and pioneering work of malaria transmission model [1,18–20,23,25], humans are categorized
into susceptible and infected class. The adult female mosquitoes (termed as vector) are categorized into
susceptible and infected mosquito classes. The mosquitoes have to breed in water, and the adult female
mosquitoes emerge from aquatic mosquitoes. The adult female mosquitoes transmit malaria to human
hosts. The infected mosquitoes may spend a incubation period of 10 to 14 days (termed as extrinsic
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incubation period (EIP)) to survive (during which the infected mosquitoes cannot transmit malaria
to human hosts) and transmit malaria to human hosts [18]. Taking EIP and mobility of human and
mosquitoes in a spatial domain into account, Lou and Zhao [21] generalized the model in [25] and proposed
a nonlocal and time-delayed diffusive malaria model, for x ∈ Ω, t > 0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂Sm(t, x)
∂t

− DmΔSm(t, x) = μ(x) − bβ(x)
H(x)

Sm(t, x)Ih(t, x) − dmSm(t, x),

∂Im(t, x)
∂t

− DmΔIm(t, x) = e−dmτ

∫

Ω

Γ(τ, x, y)
bβ(y)
H(y)

Sm(t − τ, y)Ih(t − τ, y)dy − dmIm(t, x),

∂Ih(t, x)
∂t

− DhΔIh(t, x) =
cβ(x)
H(x)

(H(x) − Ih)Im(t, x) − (dh + ρ)Ih(t, x),

(1.1)

with
∂Sm(t, x)

∂n
=

∂Im(t, x)
∂n

=
∂Ih(t, x)

∂n
= 0, x ∈ ∂Ω, t > 0.

Here, Sm(t, x), Im(t, x) and Ih(t, x) denote the density of susceptible, infected adult female mosquitoes
and infected humans at space x and time t, respectively, which are equipped with diffusion rates Dm,
Dm and Dh, respectively. The total population stabilizes at H(x). β(x) and μ(x) stand for the space-
dependent biting rate and recruitment rate of adult female mosquitoes, respectively. dm represents the
natural death rate of mosquitoes. b and c stand for the transmission probabilities per bite from Ih to Sm

and from Im to H(x)− Ih, respectively. dh and ρ represent the death rate and recovery rate of humans. Γ
is the Green function corresponding to the operator DmΔ subject to the Neumann boundary condition.
τ represents the fixed incubation period constant.

Since the latent mosquitoes in one location can fly around during EIP, and arrive at any location
in the domain when they can transmit malaria to human hosts, the spatial movement of mosquitoes in
EIP will result in non-local infection [3,13,14]. In model (1.1), the nonlocal time delay term is obtained
by introducing an infection age variable a. At time t and space x, denote by im(t, a, x) the density
of the mosquitoes with infection age a. Suppose that τ is a fixed latent period. It then follows that

Em(t, x) =
τ∫

0

im(t, a, x)da and Im(t, x) =
∞∫

τ

im(t, a, x)da are the density of latent and infected mosquitoes,

respectively. Then, the evolution of im(t, a, x) satisfies
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂im(t, a, x)
∂t

+
∂im(t, a, x)

∂a
− DmΔim(t, a, x) = −dmim(t, a, x), x ∈ Ω, t > 0, a ≥ 0,

im(t, 0, x) =
bβ(x)
H(x)

SmIh, x ∈ Ω, t > 0,

∂im(t, a, x)
∂n

= 0, x ∈ ∂Ω, a ≥ 0,

(1.2)

where im(t, 0, x) is the newly infected mosquitoes. The nonlocal time delay term in (1.1) comes from the
key point that im(t, τ, x) can be determined by the integration along characteristics line t − a = const.,

im(t, a, x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

Ω

Γ1(a, x, y)im(t − a, 0, y)dyΠ(a), t ≥ a,

∫

Ω

Γ1(t, x, y)im0(a − t, y)dy
Π(a)

Π(a − t)
, t < a,

(1.3)

where im0 is initial condition, and Π(a) = e−dma. Hence,

im(t, τ, x) = Π(τ)
∫

Ω

Γ1(τ, x, y)im(t − τ, 0, y)dy, ∀t ≥ τ.
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From the standpoint of mathematical analysis, the authors in [21] confirmed that the threshold dynamics
of (1.1) is governed by the sign of the principle eigenvalue of the associated linear and nonlocal eigenvalue
problem. Subsequently, a typical feature of malaria termed as vector-bias, was introduced to describe the
difference between the probability (denote by p and l) of a mosquito picking the human when he/she is
infected and susceptible (see, e.g., [8,29,33,34]). To explore the seasonal patterns of malaria epidemics
(may be caused by annual temperature and rainfall variation (see, e.g., [12])), Bai et al. [4] further
extended the models in [21,33] by incorporating the seasonality, vector-bias, EIP and the spatial het-
erogeneity, and formulated a time-delayed periodic reaction-diffusion model. Their results suggest that
the sharp threshold results can be achieved by defining the basic reproduction number. They also con-
firmed the existence of a periodic solution for the proposed models, which built an interesting biological
implication: Seasonal patterns of malaria epidemics will occur. It is important to mention that recent
studies on diffusive Zika epidemic models (see, e.g., [11,22,32]) can also be regarded as a generalization
of the classical model in [25]. Like other vector-borne disease models, Zika epidemic models share the
same cross-infection mechanism between humans and mosquitoes.

Our goal of this paper is to perform an original analysis of (1.1). A more complete understanding of
(1.1) can help to get better understanding of the malaria transmission in regions. As in studies of Zika
outbreak in Rio De Janerio, Bastos et al. [28] argued that compared to the total population, infected
human density takes a fairly small number [28]. Subsequently, Fitzgibbon et al. [11], Magal et al. [22]
and Wang and Chen [32] proposed the diffusive vector-borne disease model by assuming the density of
susceptible humans to be H(x), which depends only on space x, and will not be altered within a short time.
On the other hand, in (1.1), the force of infection for humans and mosquitoes is described by adopting
standard infection mechanism, bβ(x)

H(x) SmIh and cβ(x)
H(x) (H(x)−Ih)Im, respectively, where H(x)−Ih represents

the density of susceptible humans. It comes naturally to wonder what happens if standard incidence is
replaced by the mass action. In this work, we continue to borrow the idea in [11,22,32] that the density
of susceptible humans is H(x) and adopt the mass action incidence, which result in the force of infection
for humans and mosquitoes at space x and time t given by bβ(x)SmIh and cβ(x)H(x)Im, respectively.

This work is also inspired by some recent works on diffusive disease models with age structure (see,
for example, [5,9,10,35,36], aiming to understand the effects of the spatial heterogeneity and infection
age on disease transmission. For the standard age-space structured susceptible–infective–recovered (SIR)
model, Chekroun and Kuniya [5] reformulated the model by a hybrid system of one diffusive equation
and one Volterra integral equation, and studied the threshold dynamics for the disease extinction and
persistence in one-dimensional domain. Further, the global stability problem of a constant equilibrium
was achieved by constructing Lyapunov function. In another works, the existence of travelling wave
solutions of age-space structured SIR model with or without birth and death processes was established
in a spatially unbounded domain [9,10]. For a age-space structured SIR model with seasonality, Zhang
and Wang [36] established the threshold dynamics that basic reproduction number more than one or
less than one determines whether or not disease extinction. Yang et al. [35] made an attempt to extend
the methods and ideas in [5] to propose a model for the spatial spreading of brucellosis in a continuous
bounded domain. Some basic mathematical arguments, including the existence and uniqueness of the
solution and threshold dynamics, were successfully addressed.

Unlike in [13,21] where disease transmission is modeled with a fixed incubation period in a spatial
bounded domain, here we intend to incorporate an infection age to be a continuous variable and the
fixed incubation period is ignored. This work can be considered as a continuation of the work [21]. For
convenience, we shall adopt some notations used in [21], as proceeded below. With these considerations,
we propose the following age-space-structured malaria model:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sm(t, x)
∂t

− DmΔSm(t, x) = μ(x) − β(x)Sm(t, x)Ih(t, x) − dmSm(t, x), x ∈ Ω, t > 0,

∂im(t, a, x)
∂t

+
∂im(t, a, x)

∂a
− DmΔim(t, a, x) = −dmim(t, a, x), x ∈ Ω, t > 0, a ≥ 0,

∂Ih(t, x)
∂t

− DhΔIh(t, x) = H(x)

∞∫

0

β1(a)im(t, a, x)da − (dh + ρ)Ih(t, x), x ∈ Ω, t > 0,

im(t, 0, x) = β(x)SmIh, x ∈ Ω, t > 0,

(1.4)

with the following initial condition

Sm(0, x) = φ1(x) ≥ 0, im(0, a, x) = φ2(a, x) ∈ L1
+(R+;C(Ω)), Ih(0, x) = φ3(x) ≥ 0, x ∈ Ω, (1.5)

and boundary condition

∂Sm(t, x)
∂n

=
∂im(t, a, x)

∂n
=

∂Ih(t, x)
∂n

= 0, x ∈ ∂Ω, t > 0. (1.6)

Here, β(x) and β1(a) ∈ L∞
+ (R+) are the age-dependent disease transmission rate. All the location-

dependent parameters are continuous, strictly positive and uniformly bounded functions on Ω.
We point here that the main difficulty lies in that (1.4) is formulated in a non-uniform Banach space.

The existence and positivity of the solution should be carefully verified, to which adopt the methods used
in [5,35]. Comparing to [5,35], we need to turn the existence of global nonnegative classical solution into
a fixed point problem by inserting the first and third equation to the second equation due to the cross-
infection mechanism. On the other hand, the cross-infection mechanism brings us difficulties in obtaining
the explicit formula for the basic reproduction number through defining the next generation operator.
Finally, in a homogeneous case, the local stability of equilibria achieved by studying the distribution of
characteristic roots of characteristic equation, the strong persistence result and the global stability of
equilibria achieved by Lyapunov functions in different cases are indeed not trivial, as proceed below.

We proceed the paper as follows: In section 2, we present the preliminary results on (1.4) with (1.5)
and (1.6), and the well-posedness of the model is shown by verifying that the solution exists globally and
the model admits a global attractor. Section 3 is spent on giving the basic reproduction number for (1.4)
by appealing to the theories of the next generation operator and renewal equations. In section 4, the local
and global stability problem for space-independent equilibria of (1.4) is studied in a homogeneous case.
A brief conclusion section ends the paper.

2. Preliminaries

Denote by X = C(Ω,R) the Banach space endowed with the norm ‖φ‖X = sup
x∈Ω

{|φ(x)|}, and let X+ be

its positive cone. Denote by Y = L1(R+,X) the space of Lebesgue integrable functions endowed with the

norm ‖ϕ‖Y =
∞∫

0

|ϕ(a)|Xda. The positive cone of Y is Y+.

Suppose that T1(t), T2(t) : X → X, t ≥ 0 are the strongly continuous semigroups corresponding to the
operators, DmΔ and DhΔ, subject to (1.6), respectively. Clearly,

(Ti(t)φ)(x) =
∫

Ω

Γi(t, x, y)φ(y)dy, t ≥ 0, φ ∈ X, (2.1)

where Γi(t, x, y), i = 1, 2 is the Green function associated with Dm� and Dh� subject to (1.6). It then
follows from [27, Corollary 7.2.3] (see also in [24, Theorem 1.5]) that Ti(t) : X → X, t ≥ 0, i = 1, 2, is
strongly positive and compact. Further, T (t) = (T1(t), T1(t), T2(t)) : X3 → X

3, t ≥ 0 forms a strongly
continuous semigroup.
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We place our problem on the state space X × Y × X. For convenience, in what follows, we denote

β1 = ess. sup
a∈R+

β1(a), χ∗ = max
x∈Ω

χ(x) and χ∗ = min
x∈Ω

χ(x),

where χ = μ, β,H, respectively.
We next aim to prove that the solution of (1.4) exists globally and (1.4) admits a global attractor.

For simplicity, we denote by X̃ = X×Y ×X and X̃+ = X+ × Y+ × X+. We first present the main result.

Theorem 2.1. For any φ = (φ1, φ2, φ3) ∈ X̃, (1.4) admits a unique global nonnegative classical solution.
Further, the solution semiflow, i.e.,

Φ(t)φ := u(t, x;φ) = (Sm(t, x;φ1), im(t, a, x;φ2), Ih(t, x;φ3)), a ≥ 0,

possesses a global attractor in X̃+.

We shall first introduce the following lemmas and then combine with them to prove Theorem 2.1. For
convenience, we always denote

B(t, x) := im(t, 0, x) = β(x)SmIh. (2.2)

For positive T , we define the space

YT = C([0, T ],X) with ‖ψ‖YT
= sup

0≤t≤T
‖ψ(t, ·)‖X, ψ ∈ YT .

Lemma 2.2. For any φ ∈ X̃+, (1.4) admits a unique nonnegative solution defined on [0, T ]×Ω with T > 0.

Proof. In view of the Sm equation of (1.4), direct calculation yields

Sm = F1(t, x) +

t∫

0

e−dm(t−s)

∫

Ω

Γ1(t − s, x, y)[μ(y) − B(s, y)]dyds, (t, x) ∈ [0, T ] × Ω, (2.3)

where F1(t, x) = e−dmt
∫

Ω

Γ1(t, x, y)φ1(y)dy. Similarly, in view of the Ih equation of (1.4), we get

Ih = F2(t, x) +

t∫

0

e−(dh+ρ)(t−s)

∫

Ω

Γ2(t − s, x, y)H(y)

∞∫

0

β1(a)im(s, a, y)dadyds, (t, x) ∈ [0, T ] × Ω,

(2.4)

where F2(t, x) = e−(dh+ρ)t
∫

Ω

Γ2(t, x, y)φ3(y)dy. It follows from (1.3) that

∞∫

0

β1(a)im(t, a, x)da =

t∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, x, y)B(t − a, y)dyda + F3(t, x), (2.5)

where F3(t, x) =
∞∫

0

β1(a + t)Π(a+t)
Π(a)

∫

Ω

Γ1(t, x, y)φ2(a, y)dyda.

Plugging (2.5) into (2.4) and then substituting (2.3) and (2.4) in (2.2) yield

B(t, x) = β(x)

⎛

⎝F1 +

t∫

0

e−dm(t−s)

∫

Ω

Γ1(t − s, x, y)[μ(y) − B(s, y)]dyds

⎞

⎠× (F2 + F4

+

t∫

0

e−(dh+ρ)(t−s)

∫

Ω

Γ2(t − s, x, y)H(y)

s∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, y, z)B(s − a, z)dzdadyds

⎞

⎠

:= F(B)(t, x), (2.6)
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where F4(t, x) =
t∫

0

e−(dh+ρ)(t−s)
∫

Ω

Γ2(t − s, x, y)H(y)
∞∫

0

β1(a + s)Π(a+s)
Π(a)

∫

Ω

Γ1(s, y, z)φ2(a, z)dzdadyds.

Next, we claim that the nonlinear operator F has a fixed point, which in turn ensures that (1.4) admits
a unique solution on [0, T ]. For ease of notations, we denote

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F2(t, x) := F2(t, x) + F4(t, x),

G1(B) :=

t∫

0

e−dm(t−s)

∫

Ω

Γ1(t − s, x, y)[μ(y) − B(s, y)]dyds,

G2(B) :=

t∫

0

e−(dh+ρ)(t−s)

∫

Ω

Γ2(t − s, x, y)H(y)

s∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, y, z)B(s − a, z)dzdadyds.

(2.7)

It then follows that the nonlinear operator F can be rewritten as:

F(B) = β(x)(F1 + G1(B))(F2 + G2(B)).

By appealing the Banach–Picard fixed point theorem, we only need to verify that the nonlinear operator
F is a strict contraction in YT . To this end, we choose any B1,B2 ∈ YT and let B̃ = B1 − B2 such that

F(B1) − F(B2) = β(x)(F1G2(B̃) − F2Ĝ1(B̃) + G1(B1)G2(B̃) − G2(B2)Ĝ1(B̃))

≤ β∗ ∣∣F1G2 − F2G1 + G1G2 − G1G2

∣
∣ B̃,

where

Ĝ1(B) :=

t∫

0

e−dm(t−s)

∫

Ω

Γ1(t − s, x, y)B(s, y)dyds,

G1 =

t∫

0

e−dm(t−s)

∫

Ω

Γ1(t − s, x, y)dyds,

and

G2 =

t∫

0

e−(dh+ρ)(t−s)

∫

Ω

Γ2(t − s, x, y)H(y)

s∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, y, z)dzdadyds.

Putting

h̃(T ) = β∗ sup
0≤s≤T

∣
∣F1(s, x)G2(s, x) − F2(s, x)G1(s, x) + G1(s, x)G2(s, x) + G1(s, x)G2(s, x)

∣
∣
X

,

which leads to

|F(B1) − F(B2)| ≤ h̃(T ) |B1 − B2| .
Choosing sufficiently small T > 0 such that h̃(T ) < 1. We arrive at the conclusion that F is a strict
contraction in YT , that is, the nonlinear operator F has a unique fixed point. This proves Lemma 2.2.

�

We next to prove that the local solution of (1.4) remains positive for any φ ∈ X̃+.

Lemma 2.3. For any φ ∈ X̃+, we have that ∀t ∈ [0, T ] and x ∈ Ω,

Sm(t, x) > 0, B(t, x) > 0 and Ih(t, x) > 0.
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Proof. It is easily seen that due to the positivity of μ(x) and φ1,

Sm(t, x) = F̂1 +

t∫

0

e
−

t∫

s
(dm+ B(τ,y)

Sm(τ,y) )dτ
μ(x)

∫

Ω

Γ1(t − s, x, y)dyds > 0,

where F̂1 = e
−

s∫

s−t
(dm+ B(τ,y)

Sm(τ,y) )dτ ∫

Ω

Γ1(t, x, y)φ1(y)dy.

We next to prove the positivity of B(t, x) by the method of Picard sequences. We first set

B0(t, x) = β(x)Sm(t, x)F2(t, x) > 0,

where F2(t, x) is defined in (2.7). Assume that Bn(t, x) > 0 (n ∈ N). We then directly get

Bn+1(t, x) = B0(t, x) + β(x)Sm(t, x)

t∫

0

e−(dh+ρ)(t−s)

∫

Ω

Γ2(t − s, x, y)H(y)

×
s∫

0

β1(s − a)Π(s − a)
∫

Ω

Γ1(s − a, y, z)Bn(a, z)dzdadyds

> 0.

It remains to show that the sequence {Bn(t, x)}∞
0 converges to B(t, x) in the sense that lim

n→∞ Bn(t, x) =

B(t, x). To achieve this, we introduce

B̂n(t, x) = e−λtBn(t, x), for λ ∈ R+.

Hence,

B̂n+1(t, x) = e−λtB0(t, x) + β(x)Sm(t, x)

t∫

0

e−(dh+ρ)(t−s)

∫

Ω

Γ2(t − s, x, y)H(y)

×
s∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, y, z)e−λtBn(s − a, z)dzdadyds

= e−λtB0(t, x) + β(x)Sm(t, x)

t∫

0

e−(dh+ρ)s

∫

Ω

Γ2(s, x, y)H(y)

×
t−s∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, y, z)e−λtBn(t − s − a, z)dzdadyds

= e−λtB0(t, x) + β(x)Sm(t, x)

t∫

0

e−(dh+ρ)s

∫

Ω

Γ2(s, x, y)H(y)

×
t−s∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, y, z)e−λ(a+s)e−λ(t−a−s)Bn(t − s − a, z)dzdadyds

= e−λtB0(t, x) + β(x)Sm(t, x)

t∫

0

e−(dh+ρ)s

∫

Ω

Γ2(s, x, y)H(y)



74 Page 8 of 27 C. Wang and J. Wang ZAMP

×
t−s∫

0

β1(a)Π(a)e−λa

∫

Ω

Γ1(a, y, z)e−λsB̂n(t − s − a, z)dzdadyds.

Note that both sides of above equality always hold. It allows us to choose x̃ ∈ Ω such that B∗(t, x̃) =
max

t∈[0,T ],x∈Ω
B̂(t, x). Hence, for any n ∈ N,

∥
∥B∗

n+1 − B∗
n

∥
∥

∞ ≤ β∗S∗
m

∞∫

0

e−(dh+ρ)s

∫

Ω

Γ2(s, x, y)H(y)

×
∞∫

0

β1(a)Π(a)e−λa

∫

Ω

Γ1(a, y, z)e−λsdzdadyds
∥
∥B∗

n − B∗
n−1

∥
∥

∞

≤ β∗S∗
mβ1H

∗

λ2

∥
∥B∗

n − B∗
n−1

∥
∥

∞ ,

where H∗ = max
x∈Ω

{H(x)} and S∗
m = max

t∈[0,T ]
‖Sm(t, ·)‖

X
. By repeating the iteration, it is easily seen that

∥
∥B∗

n+1 − B∗
n

∥
∥

∞ ≤ Lλ

∥
∥B∗

n − B∗
n−1

∥
∥

∞ ≤ Ln
λ ‖B∗

1 − B∗
0‖∞ ,

where Lλ = β∗S∗
mβ1H∗

λ2 . Hence, for any m,n ∈ N,

‖B∗
m − B∗

n‖∞ ≤ Ln
λ

1 − Lλ
‖B∗

1 − B∗
0‖∞ .

Choose λ large enough that Lλ < 1. Consequently, as n → ∞, ‖B∗
m − B∗

n‖∞ → 0, implying that
lim

n→∞ Bn(t, x) = B(t, x), ∀t ∈ [0, T ] and x ∈ Ω. The positivity of Bn(t, x) directly implies that B(t, x)
is positive.

We next to show that Ih(t, x) > 0 by contradiction. Assume to the contrary that there exist x∗ ∈ Ω
and t1 ∈ (0, T ) such that

⎧
⎨

⎩

Ih(t, x) ≥ 0, t ∈ [0, t1] and x ∈ Ω;
Ih(t, x∗) = 0, t = t1 and x∗ ∈ Ω;
Ih(t + ε, x∗) < 0, t = t1, x∗ ∈ Ω and 0 < ε � 1.

By (2.4), together with the positivity of B(t, x), we can easily obtain

Ih(t1 + ε, x∗) = F2 +

t1+ε∫

0

e−(dh+ρ)(t1+ε−s)

∫

Ω

Γ2(t1 + ε − s, x, y)H(y)

×
s∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, y, z)B(s − a, z)dzdadyds + F4 > 0,

which results in a contradiction with Ih(t1+ε, x∗) < 0. Hence, Ih(t, x) > 0 directly follows. This completes
the proof. �

Next, we confirm that the solution of (1.4) exists globally by extending solution existence interval
from [0, T ] × Ω to [0,+∞) × Ω.

Lemma 2.4. For any φ ∈ X̃+, (1.4) admits a unique nonnegative solution defined on [0,∞) × Ω.
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Proof. In view of Sm equation of system (1.4), we know that Sm is governed by
⎧
⎪⎨

⎪⎩

∂Ŝm

∂t
− DmΔŜm = μ(x) − dmŜm, x ∈ Ω, t > 0,

∂Ŝm

∂n
= 0, x ∈ ∂Ω, t > 0.

(2.8)

According to [21, Lemma 1] and comparison principle, Sm is bounded above by the upper solution μ∗

dm
,

i.e., Sm ≤ μ∗

dm
= MS for all t > 0 and x ∈ Ω.

We now claim that for all t > 0 and x ∈ Ω, B(t, x) < ∞ by contradiction. Assume to the contrary
that there exist t∗ > 0 and x∗ ∈ Ω such that limt→t∗ B(t, x∗) = +∞. In view of Sm equation of system
(1.4), we get limt→t∗ ∂tSm(t, x∗) = −∞, i.e., Sm(t, x∗) < 0 in near of t∗. This leads to a contradiction
to the positivity of Sm (see Lemma 2.3). Hence, B(t, x) < ∞. Based on this fact, we assume that there
exists MB > 0 such that B(t, x) < MB .

Finally, we determine the boundedness of Ih(t, x). Let Ĩ =
∞∫

0

im(t, a, x)da, then it satisfies

Ĩ =

t∫

0

Π(a)
∫

Ω

Γ1(a, x, y)B(t − a, y)dyda +

∞∫

0

Π(a + t)
Π(a)

∫

Ω

Γ1(t, x, y)φ2(a, y)dyda

≤
∞∫

0

Π(a)
∫

Ω

Γ1(a, x, y)dydaMB +

∞∫

0

∫

Ω

Γ1(t, x, y)φ2(a, y)dyda := MI .

It then follows that

Ih(t, x) ≤ H∗β1

∞∫

0

e−(dh+ρ)(t−s)

∫

Ω

Γ2(t − s, x, y)Ĩ(t, y)dyds +
∫

Ω

Γ2(t, x, y)φ3(y)dy

≤ H∗β1MI

dh + ρ
+ ‖φ3‖X := MIh

. (2.9)

Therefore, the solution of (1.4) exists globally. This proves Lemma 2.4. �

By utilizing the previous lemmas, we shall give the proof of Theorem 2.1.

Proof of Theorem 2.1. By the assertions in Lemmas 2.2, 2.3 and 2.4, we know that the solution of (1.4)
with initial condition φ = (φ1, φ2, φ3) ∈ X̃+ exists globally. Let Φ(t) : X̃+ → X̃+, t ≥ 0, be the semiflow
generated by the solution of (1.4), i.e.,

Φ(t)φ := u(t, x;φ) = (Sm(t, x;φ1), im(t, a, x;φ2), Ih(t, x;φ3)).

From Lemma 2.4, solution semiflow Φ(t) is ultimately bounded. Hence, we can apply [16, Theorem 2.4.6]
to confirm that (1.4) possesses a global attractor. This proves Theorem 2.1.

Throughout of the paper, we define the following positively invariant set, at which the dynamics of
(1.4) are confined.

Letting M(t) :=
∫

Ω

Smdx+
∫

Ω

Ĩdx. Integrate the im equation from 0 to ∞, and integrating the Sm and

im equation of system (1.4) over Ω and then adding them up, yield

dM(t)
dt

≤ μ∗|Ω| − dmM(t).

Hence, we obtain the a priori estimate

M(t) ≤ M(0)e−dmt +
μ∗|Ω|
dm

(1 − e−dmt) ≤ max
{

M(0),
μ∗|Ω|
dm

}

.
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This implies

lim sup
t→∞

M(t) ≤ μ∗|Ω|
dm

.

Hence, there exists t0 > 0 such that for any t > t0, M(t) ≤ μ∗|Ω|
dm

.
Denote by Îh(t) =

∫

Ω

Ih(t, x)dx. We directly have

dÎh(t)
dt

≤ H∗β1μ
∗|Ω|

dm
− (dh + ρ)Îh(t).

We integrate this differential inequality to obtain that for t1 > t0,

Îh(t) ≤ H∗β1μ
∗|Ω|

dm(dh + ρ)
, for t > t1.

Consequently, we can define the following positively invariant set

D =
{

φ ∈ X̃+| 0 < M(t) < μ∗|Ω|
dm

, 0 < Îh(t) < H∗β1μ∗|Ω|
dm(dh+ρ)

}
. (2.10)

�

3. The basic reproduction number

Obviously, (1.4) has a disease-free steady state E0 = (μ(x)
dm

, 0, 0). Assuming that both humans and
mosquitos are near E0. Following the standard procedures as those in [30] and [7], this section is spent
on defining basic reproduction number of model (1.4).

Linearizing system (1.4) at E0 for infectious components yields
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂im(t, a, x)
∂t

+
∂im(t, a, x)

∂a
− DmΔim(t, a, x) = −dmim(t, a, x), x ∈ Ω, a ≥ 0,

im(t, 0, x) = β(x)
μ(x)
dm

Ih := B(t, x), x ∈ Ω,

∂Ih

∂t
− Dh�Ih = H(x)

∞∫

0

β1(a)im(t, a, x)da − (dh + ρ)Ih, x ∈ Ω, a ≥ 0,

∂im(t, a, x)
∂n

=
∂Ih

∂n
= 0, x ∈ ∂Ω.

(3.1)

We integrate the im equation of (3.1) along the characteristic line t − a = const.

im(t, a, x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

Ω

Γ1(a, x, y)B(t − a, y)dyΠ(a), t > a, x ∈ Ω,

∫

Ω

Γ1(t, x, y)φ2(a − t, y)dy
Π(a)

Π(a − t)
, a ≥ t, x ∈ Ω.

(3.2)

We substitute (3.2) in Ih (defined in (2.4)) resulting in

B(t, x) = β(x)
μ(x)
dm

(

F2 + F4 +

t∫

0

e−(dh+ρ)(t−s)

∫

Ω

Γ2(t − s, x, y)H(y)

×
s∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, y, z)B(s − a, z)dzdadyds

)
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= β(x)
μ(x)
dm

(

F2 + F4 +

t∫

0

e−(dh+ρ)s

∫

Ω

Γ2(s, x, y)H(y)

×
t−s∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, y, z)B(t − s − a, z)dzdadyds

)

, (3.3)

where F2 and F4 are defined in (2.4) and (2.6), respectively. Since (3.3) is a renewal equation, we can
make Laplace transformation to (3.3)

∞∫

0

e−λtB(t, x)dt = β(x)
μ(x)
dm

∞∫

0

e−λt

t∫

0

e−(dh+ρ)s

∫

Ω

Γ2(s, x, y)H(y)

×
t−s∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, y, z)B(t − s − a, z)dzdadydsdt.

Interchanging the order of integration (t and s) and letting t − s = t̃ (for simplicity, still denote t̃ by t)
yield

∞∫

0

e−λtB(t, x)dt = β(x)
μ(x)
dm

∞∫

0

e−(dh+ρ)s

∞∫

s

e−λt

∫

Ω

Γ2(s, x, y)H(y)

×
t−s∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, y, z)B(t − s − a, z)dzdadydtds

= β(x)
μ(x)
dm

∞∫

0

e−(dh+ρ)s

∞∫

0

e−λ(t+s)

∫

Ω

Γ2(s, x, y)H(y)

×
t∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, y, z)B(t − a, z)dzdadydtds.

Interchanging the order of integration (t and a) and letting t − a = t̄ (for simplicity, still denote t̄ by t)
yield

∞∫

0

e−λtB(t, x)dt = β(x)
μ(x)
dm

∞∫

0

e−(dh+ρ)se−λs

∞∫

0

β1(a)Π(a)
∫

Ω

Γ2(s, x, y)H(y)

×
∞∫

a

e−λt

∫

Ω

Γ1(a, y, z)B(t − a, z)dzdtdydads

= β(x)
μ(x)
dm

∞∫

0

e−(dh+ρ)se−λs

∞∫

0

β1(a)Π(a)e−λa

∫

Ω

Γ2(s, x, y)H(y)

×
∞∫

0

e−λt

∫

Ω

Γ1(a, y, z)B(t, z)dzdtdydads.
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Consequently, interchanging the order of integration (t and z) yields
∞∫

0

e−λtB(t, x)dt = β(x)
μ(x)
dm

∞∫

0

e−(dh+ρ)se−λs

∞∫

0

β1(a)Π(a)e−λa

∫

Ω

Γ2(s, x, y)H(y)

×
∫

Ω

Γ1(a, y, z)

∞∫

0

e−λtB(t, z)dtdzdydads. (3.4)

Setting λ = 0 leads to
∞∫

0

B(t, x)dt

= β(x)
μ(x)
dm

∞∫

0

e−(dh+ρ)s

∞∫

0

β1(a)Π(a)
∫

Ω

Γ2(s, x, y)H(y)
∫

Ω

Γ1(a, y, z)

∞∫

0

B(t, z)dtdzdydads. (3.5)

Hence, the following operator L is termed as the next generation operator

L[ψ](x) = β(x)
μ(x)
dm

∞∫

0

e−(dh+ρ)s

∞∫

0

β1(a)Π(a)
∫

Ω

Γ2(s, x, y)H(y)
∫

Ω

Γ1(a, y, z)ψ(z)dzdydads. (3.6)

The following result indicates that L defined in (3.6) is strictly positive and compact.

Lemma 3.1. Let L be defined in (3.6). Then, L is strictly positive and compact.

Proof. It is easily seen that the operator L is positive. Due to the properties of Γ1 and Γ2, we can select
a bounded sequence {φn}n∈N in X such that for M > 0 and ∀x ∈ Ω,

|φn| ≤ M, where M > 0.

Hence,

L[φn](x) ≤ MH∗β∗μ∗

dm

∞∫

0

e−(dh+ρ)s

∞∫

0

β1(a)Π(a)
∫

Ω

Γ2(s, x, y)
∫

Ω

Γ1(a, y, z)dzdydads,

that is, L is uniformly bounded. According to the Arzelà–Ascoli theorem, it remains to confirm that L is
equicontinuous. In fact, for any x, x̄ ∈ Ω with |x − x̄| < δ and y ∈ Ω,

L[φn](x) − L[φn](x̄)

≤ MH∗β∗μ∗

dm

∞∫

0

e−(dh+ρ)s

∞∫

0

β1(a)Π(a)
∫

Ω

|Γ2(s, x, y) − Γ2(s, x̄, y)|
∫

Ω

Γ1(a, y, z)dzdydads. (3.7)

Due to the compactness of the operator Δ and the uniform continuity of Γ2(s, x, y), finding ε0 > 0
ensures

|Γ2(a, x, y) − Γ2(a, x̄, y)| ≤ dmε0

MH∗β∗μ∗M ,

where M = |Ω|
∞∫

0

e−(dh+ρ)sds
∞∫

0

β1(a)Π(a)da and |Ω| is the volume of Ω. Using this δ and ε0, we know

that |L[φ](x) − L[φ](x̄)| < ε0, for all |x − x̄| < δ. Consequently, the compactness of L directly follows (as
L is uniformly bounded and equicontinuous). This proves Lemma 3.1. �
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According to the general results as those in [30] and [7], we define the basic reproduction number as:

�0 = r(L),

where r(·) is the spectral radius of the operator L. As usual, it is difficult to obtain spectral radius of the
next-generation operator L, if not impossible, so that we cannot get further information on dynamical
properties of (1.4). To proceed further, we will consider the homogeneous case that

μ(x) ≡ μ, β(x) ≡ β,H(x) ≡ H.

4. Global stability problem of space-independent steady states

This section is spent on exploring the global stability problem of the space-independent equilibria of the
following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sm

∂t
− DmΔSm = μ − βSmIh − dmSm, x ∈ Ω, t > 0,

∂im(t, a, x)
∂t

+
∂im(t, a, x)

∂a
− DmΔim(t, a, x) = −dmim(t, a, x), x ∈ Ω, t > 0, a ≥ 0,

∂Ih

∂t
− DhΔIh(t, x) = H

∞∫

0

β1(a)im(t, a, x)da − (dh + ρ)Ih, x ∈ Ω, t > 0,

im(t, 0, x) = βSmIh, x ∈ Ω, t > 0,
∂Sm

∂n
=

∂im(t, a, x)
∂n

=
∂Ih

∂n
= 0, x ∈ ∂Ω, t > 0.

(4.1)

Note that the assertions of model (1.4) in previous sections, including the existence and uniqueness of
the solution, existence of global attractor, and definition of the basic reproduction number, still hold for
(4.1). Obviously, (4.1) has a space-independent disease-free equilibrium Ẽ0 = (S0

m, 0, 0), where S0
m = μ

dm
.

Similar to (1.3) and (3.2), im(t, a, x) takes the following form:

im(t, a, x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

Ω

Γ1(a, x, y)B(t − a, y)dyΠ(a), t − a > 0, x ∈ Ω,

∫

Ω

Γ1(t, x, y)φ2(a − t, y)dy
Π(a)

Π(a − t)
, a − t ≥ 0, x ∈ Ω,

(4.2)

with B(t − a, y) := im(t − a, 0, y) = βSm(t − a, y)Ih(t − a, y).
Lemma 3.1, together with Krein–Rutman theorem (see, e.g., [2, Theorem 3.2]), implies that the basic

reproduction number is the only positive eigenvalue of L, with a positive eigenvector. Substituting φ(x) ≡
1 > 0 in (3.6) and using

∫

Ω

Γi(·, x, y)dy = 1(i = 1, 2), one gets

L[1] = β
μ

dm
H

∞∫

0

e−(dh+ρ)s

∞∫

0

β1(a)Π(a)dads[1].

In this setting, the basic reproduction number of (4.1), [�0], is

[�0] = β
μ

dm
H

∞∫

0

e−(dh+ρ)sds

∞∫

0

β1(a)Π(a)da. (4.3)
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Denote by E∗ = (S∗
m, i∗m(·), I∗

h) the space-independent endemic equilibrium of (4.1), if it exists. Then,
it satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

μ − βS∗
mI∗

h − dmS∗
m = 0,

∂i∗m(a)
∂a

= −dmi∗m(a),

i∗m(0) = βS∗
mI∗

h,

H

∞∫

0

β1(a)i∗m(a)da − (dh + ρ)I∗
h = 0.

(4.4)

Direct calculation gives

S∗
m =

dh + ρ

βHK
, i∗m(a) = i∗m(0)Π(a), and I∗

h =
KHi∗m(0)

dh + ρ
, (4.5)

where K =
∞∫

0

β1(a)Π(a)da and i∗m(0) = dm(dh+ρ)([�0]−1)
HKβ .

Obviously, we have the following assertion.

Lemma 4.1. If [�0] > 1, (4.1) has a space-independent endemic equilibrium E∗ = (S∗
m, i∗m(0)Π(a), I∗

h),
which is unique and defined by (4.5).

4.1. Local dynamics

This subsection is spent on the local stability problem of Ẽ0 and E∗. To this end, letting E =
(S̄m, īm(·), Īh) be any equilibrium of (4.1). We linearize (4.1) around E

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sm

∂t
− DmΔSm = −βS̄mIh(t, x) − βSm(t, x)Īh − dmSm(t, x),

∂im(t, a, x)
∂t

+
∂im(t, a, x)

∂a
− DmΔim(t, a, x) = −dmim(t, a, x),

im(t, 0, x) = βS̄mIh + βSmĪh,

∂Ih

∂t
− DhΔIh = H

∞∫

0

β1(a)im(t, a, x)da − (dh + ρ)Ih,

∂Sm

∂n
=

∂im(t, a, x)
∂n

=
∂Ih

∂n
= 0.

(4.6)

We proceed to determine the characteristic equation of E. Since the linear system contains Laplacian
term, we introduce the related theory from [6]. Denote by λj(j = 1, 2, . . .) the eigenvalues of operator
−Δ on a bounded set Ω with boundary condition (1.6), that is, Δν(x) = −ζiν(x). Hence,

0 = λ0 < λ1 < λ2 < · · ·,
corresponding to which there is the space of eigenfunctions in C1(Ω), denoted by E(λi).

Denote by {φij | j = 1, 2, . . . ,dim E(λi)} the orthogonal basis of E(λi). Further, let Xij = {cφij | c ∈
R

3} such that

X̃ =
∞⊕

i=0

Xi, where Xi =
dim E(λi)⊕

j=1

Xij .

It is well known that the parabolic problem ∂u(t,x)
∂t = Δu(t, x) with ∂u(t,x)

∂n = 0, admits the exponential
solution u(t, x) = eηtν(x), where ν(x) ∈ Xi. Substituting (Sm, im(t, a, x), Ih) = eηt(ψ(x), ξ(a, x), φ(x)) in



ZAMP Analysis of a malaria epidemic model with age structure Page 15 of 27 74

(4.1) gets
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ηψ(x) + Dmλiψ(x) = −βS̄mφ(x) − βĪhψ(x) − dmψ(x),

ηξ(a, x) +
∂ξ(a, x)

∂a
+ Dmλiξ(a, x) = −dmξ(a, x),

ξ(0, x) = βS̄mφ(x) + βĪhψ(x),

ηφ(x) + Dhλiφ(x) = H

∞∫

0

β1(a)ξ(a, x)da − (dh + ρ)φ(x).

(4.7)

Combined with the second and third equation of (4.7), we get that

ξ(a, x) = ξ(0, x)e−ηaΠ̃(a), where Π̃(a) = e−DmλiaΠ(a).

We prove the following claim.

Claim. η �= −(Dmλi + dm) and η �= −(Dhλi + dh + ρ).

In fact, if η = −(Dmλi +dm), together with the first equation of (4.7), implies that ξ(0, x) = 0. Hence,
from the fourth equation of (4.7), we directly have η = −(Dhλi +dh +ρ), which results in a contradiction.
η �= −(Dhλi + dh + ρ) < 0 can be proved in a similar way.

This claim together with the first and fourth equation of (4.7) implies that

ψ(x) = − ξ(0, x)
η + Dmλi + dm

and φ(x) =
ξ(0, x)f(η)

η + Dhλi + dh + ρ
, (4.8)

where f(η) = H
∞∫

0

β1(a)e−ηaΠ̃(a)da. Plugging (4.8) into the third equation of (4.7) and canceling ξ(0, x),

we get
(

1 +
1

η + Dmλi + dm
βĪh

)

= βS̄m

(
f(η)

η + Dhλi + dh + ρ

)

. (4.9)

Hence, (4.9) indeed admits a principal eigenvalue η∗ (see, for example, [17, Lemma 2.2]).
The following result indicates that both Ẽ0 and E∗ are locally asymptotically stable (LAS) under

threshold conditions, which is achieved by studying the distribution of characteristic roots of (4.9).

Theorem 4.2. Let [�0] be defined by (4.3).
(i) If [�0] < 1, then Ẽ0 is LAS;
(ii) If [�0] > 1, then E∗ is LAS.

Proof. Let us first prove (i). For Ẽ0, that is, S̄m = μ
dm

and Īh = 0, (4.9) can be reduced to

1 = β
μ

dm

f(η)
η + Dhλi + dh + ρ

. (4.10)

Suppose, by contradiction, (4.10) admits a real root η > 0. We estimate (4.10)

1 =
∣
∣
∣
∣

μ

dm

βf(η)
η + Dhλi + dh + ρ

∣
∣
∣
∣ ≤ β

μ

dm(dh + ρ)
H

∞∫

0

β1(a)Π(a)da = [�0],

which leads to a contradiction with [�0] < 1. Hence, all the real roots of (4.10) are negative. On the other
hand, if (4.10) admits a pair of complex roots, denote by η = c ± di with c ≥ 0 and d > 0, we then have

1 = β
μ

dm
H

⎛

⎜
⎜
⎝

(c + Dhλi + dh + ρ)
∞∫

0

β1(a)e−ca cos(da)Π̃(a)da − d
∞∫

0

β1(a)e−ca sin(da)Π̃(a)da

(c + Dhλi + dh + ρ)2 + d2

⎞

⎟
⎟
⎠ ≤ [�0],

(4.11)
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again a contradiction with [�0] < 1. This proves (i).
We next prove (ii). For E∗, that is, S̄m = S∗

m and Īh = I∗
h, (4.9) can be reduced to

(

1 +
1

η + Dmλi + dm
βI∗

h

)

= βS∗
m

(
f(η)

η + Dhλi + dh + ρ

)

. (4.12)

With η = c + di with c ≥ 0, we estimate the left-hand side (4.12),
∣
∣
∣
∣1 +

1
η + Dmλi + dm

βI∗
h

∣
∣
∣
∣ =

√
(c + Dmλi + dm + βI∗

h)2 + d2

√
(c + Dmλi + dm)2 + d2

> 1. (4.13)

The right-hand side (4.12) can be estimated as

βS∗
m

∣
∣
∣
∣

f(η)
η + Dhλi + dh + ρ

∣
∣
∣
∣ = βS∗

m

|f(η)|
|η + Dhλi + dh + ρ| < βS∗

m

HK

dh + ρ
= 1, (4.14)

which is a contradiction. Consequently, if [�0] > 1, all roots of (4.12) have negative real parts. This proves
(ii). �

4.2. Global dynamics

This subsection is spent on the global stability problem of Ẽ0 and E∗. Combined with local asymptotic
stability (in subsection (4.1)) and global attractivity of equilibria, we shall confirm that both Ẽ0 and E∗

are globally asymptotically stable (GAS).

Theorem 4.3. If [�0] < 1 and φ = (φ1, φ2, φ3) ∈ D, then Ẽ0 is GAS.

Proof. It is well known that function

G(u, v) = u − v − v ln
u

v
≥ 0, for u, v ∈ R+, (4.15)

and G(u, u) = 0. By using this function, we define

L[Sm, im, Ih](t) =
∫

Ω

[LSm
(t, x) + Lim

(t, x) + LIh
(t, x)]dx,

where LSm
= G(Sm(t, x), S0

m), Lim
=

∞∫

0

Θ1(a)im(t, a, x)da, LIh
= S0

mβ
dh+ρIh(t, x) and Θ1(a) ∈ L1(∞) will

be determined later.
We take the derivative of LSm

,

∂LSm

∂t
= Dm

(

1 − S0
m

Sm

)

ΔSm − dm
(Sm − S0

m)2

Sm
+ S0

mβIh − βIhSm. (4.16)

With the help of (4.2), we rewrite Lim

Lim
=

t∫

0

Θ1(t − a)
∫

Ω

Γ1(t − a, x, y)B(a, y)dyΠ(t − a)da +

∞∫

0

Θ1(a + t)
∫

Ω

Γ1(t, x, y)φ2(a, y)dyΠ(t)da.

(4.17)

We take the derivative of Lim

∂Lim

∂t
= Θ1(0)

∫

Ω

Γ1(0, x, y)B(t, y)dy +

t∫

0

d
dt

Θ1(t − a)
∫

Ω

Γ1(t − a, x, y)B(a, y)dyΠ(t − a)da



ZAMP Analysis of a malaria epidemic model with age structure Page 17 of 27 74

+

t∫

0

Θ1(t − a)
∫

Ω

∂

∂t
Γ1(t − a, x, y)B(a, y)dyΠ(t − a)da

− dm

t∫

0

Θ1(t − a)
∫

Ω

Γ1(t − a, x, y)B(a, y)dyΠ(t − a)da (4.18)

+

∞∫

0

d
dt

Θ1(a + t)
∫

Ω

Γ1(t, x, y)φ2(a, y)dyΠ(t)da

+

∞∫

0

Θ1(a + t)
∫

Ω

∂

∂t
Γ1(t, x, y)φ2(a, y)dyΠ(t)da

− dm

∞∫

0

Θ1(a + t)
∫

Ω

Γ1(t, x, y)φ2(a, y)dyΠ(t)da.

Collecting the terms with the form of (4.17), together with the fact that ∂Γ1(t,x,y)
∂t = DmΔΓ1(t, x, y) a.e.

for x ∈ Ω, we get

∂Lim

∂t
= Θ1(0)B(t, x) +

∞∫

0

[
d
da

Θ1(a) − (dm − DmΔ)Ψ(a)
]

im(t, a, x)da. (4.19)

We take the derivative of LIh
(t, x)

∂LIh

∂t
= β

S0
m

dh + ρ
DhΔIh + β

S0
m

dh + ρ
H

∞∫

0

β1(a)im(t, a, x)da − S0
mβIh. (4.20)

With the help of (4.16), (4.19) and (4.20), we get the derivation of L(t)

∂L(t)
∂t

=
∫

Ω

Dm

(

1 − S0
m

Sm

)

ΔSmdx − dm

∫

Ω

(Sm − S0)2

Sm
dx +

∫

Ω

(Θ1(0) − 1)B(t, x)dx

+
∫

Ω

∞∫

0

[

β
S0

m

dh + ρ
Hβ1(a) +

d
da

Θ1(a) − (dm − DmΔ)Θ1(a)
]

im(t, a, x)dadx.

(4.21)

Setting

Θ1(a) =
1

Π(a)

∞∫

a

β
S0

m

dh + ρ
Hβ1(θ)Π(θ)dθ.

Then, it satisfies
⎧
⎨

⎩

d
da

Θ1(a) = −β
S0

m

dh + ρ
Hβ1(a) + dmΘ1(a),

Θ1(0) = [�0],

Hence, (4.21) becomes

∂L(t)
∂t

= −Dm

∫

Ω

|∇Sm|2
S2

m

dx −
∫

Ω

dm
(Sm − S0)2

Sm
dx + ([�0] − 1)

∫

Ω

B(t, x)dx.
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Hence, the global attractiveness of Ẽ0 holds in D when [�0] < 1 (see, e.g., [31, Theorem 4.2 ]). This
together with Theorem 4.2 indicates that the Ẽ0 is GAS. This proves Theorem 4.3. �

Define

D0 =
{

(φ1, φ2, φ3) ∈ X̃+| φ3 > 0, for some x ∈ Ω
}

. (4.22)

In the following, we pay attention to the persistence problem of system (4.1) when [�0] > 1. We first give
the following lemma.

Lemma 4.4. Let D0 be defined by (4.22). If [�0] > 1, then there exists ε1 > 0 such that

lim sup
t→∞

|B(t, ·)|X > ε1, ∀φ ∈ D0.

Proof. Due to [�0] > 1, we can select ε1 > 0 such that

β
(μ − ε1)

dm
H

∞∫

0

e−(dh+ρ)sds

∞∫

0

β1(a)Π(a)da > 1. (4.23)

We will prove the assertion by contradiction. Assume, by contradiction, that there exists T1 > 0 such
that for all t ≥ T1 and x ∈ Ω, we have B(t, x) ≤ ε1. By the inequality in (4.23), choosing T2 > T1 (denote
by h = T2 − T1) and λ > 0 small enough that

⊙
= β

(μ − ε1)
dm

H(1 − e−dmh)

∞∫

0

e−(dh+ρ)se−λsds

∞∫

0

β1(a)Π(a)e−λada > 1, (4.24)

Note that Sm satisfies
⎧
⎪⎨

⎪⎩

∂Sm

∂t
− DmΔSm ≥ μ − ε1 − dmSm, x ∈ Ω, t ≥ T2,

∂Sm

∂n
= 0, x ∈ ∂Ω, t ≥ T2.

(4.25)

Hence, direct integrating (4.25) yields

Sm ≥ μ − ε1
dm

(1 − e−dm(t−T1)) ≥ μ − ε1
dm

(1 − e−dmh), ∀t ≥ T2.

Further from (2.4),

Ih ≥ H

t∫

0

e−(dh+ρ)(t−s)

∫

Ω

Γ2(t − s, x, y)

∞∫

0

β1(a)im(s, a, y)dadyds

≥ H

t∫

0

e−(dh+ρ)s

∫

Ω

Γ2(s, x, y)

t−s∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, y, z)B(t − s − a, z)dzdadyds.

Combined with the above two inequalities, we have

B(t, x)

≥ β
μ − ε1

dm
H(1 − e−dmh)

t∫

0

e−(dh+ρ)s

∫

Ω

Γ2(s, x, y)

t−s∫

0

β1(a)Π(a)
∫

Ω

Γ1(a, y, z)B(t − s − a, z)dzdadyds.

(4.26)
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Note that
∞∫

0

e−λtB(t, x)dt < ∞ for all x ∈ Ω. Choose x̃ ∈ Ω that B(t, x̃) = minx∈Ω B(t, x). By (4.26), we

have
∞∫

0

e−λtB(t, x̃)dt ≥ β
μ − ε1

dm
H(1 − e−dmh)

∞∫

0

e−λt

t∫

0

e−(dh+ρ)s

∫

Ω

Γ2(s, x̃, y)

t−s∫

0

β1(a)Π(a)

×
∫

Ω

Γ1(a, y, z)B(t − s − a, z)dzdadydsdt.

Interchanging the order of integration (t and s) and letting t − s = t̄ (for simplicity, still denote t̄ by t)
yield

∞∫

0

e−λtB(t, x̃)dt ≥ β
μ − ε1

dm
H(1 − e−dmh)

∞∫

0

e−(dh+ρ)s

∞∫

s

e−λt

∫

Ω

Γ2(s, x̃, y)

t−s∫

0

β1(a)Π(a)

×
∫

Ω

Γ1(a, y, z)B(t − s − a, z)dzdadydtds

= β
μ − ε1

dm
H(1 − e−dmT1)

∞∫

0

e−(dh+ρ)se−λs

∞∫

0

e−λt

∫

Ω

Γ2(s, x̃, y)

t∫

0

β1(a)Π(a)

×
∫

Ω

Γ1(a, y, z)B(t − a, z)dzdadydtds.

Interchanging the order of integration (t and a) and letting t − a = t̄ (for simplicity, still denote t̄ by t)
yield

∞∫

0

e−λtB(t, x̃)dt ≥ β
μ − ε1

dm
H(1 − e−dmh)

∞∫

0

e−(dh+ρ)se−λs

∞∫

0

β1(a)Π(a)
∫

Ω

Γ2(s, x̃, y)

∞∫

a

e−λt

×
∫

Ω

Γ1(a, y, z)B(t − a, z)dzdtdydads

= β
μ − ε1

dm
H(1 − e−dmh)

∞∫

0

e−(dh+ρ)se−λs

∞∫

0

β1(a)Π(a)e−λa

∫

Ω

Γ2(s, x̃, y)

∞∫

0

e−λt

×
∫

Ω

Γ1(a, y, z)B(t, z)dzdtdydads.

Consequently, we have
∞∫

0

e−λtB(t, x̃)dt ≥ β
μ − ε1

dm
H(1 − e−dmh)

∞∫

0

e−(dh+ρ)se−λs

∞∫

0

β1(a)Π(a)e−λa

∫

Ω

Γ2(s, x̃, y)

×
∫

Ω

Γ1(a, y, z)

∞∫

0

e−λtB(t, z)dtdzdydads

≥
⊙

∞∫

0

e−λtB(t, x̃)dt,
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which results in a contradiction with (4.24). This proves Lemma 4.4. �

Lemma 4.5. If [�0] > 1, then lim inft→∞ |B(t, ·)|X > ε1, ∀φ ∈ D0.

Proof. Suppose, by contradiction, that lim inft→∞ |B(t, ·)|X < ε1. This together with Lemma 4.4 allows
us to choose increasing sequences {t1j}∞

j=1, {t2j}∞
j=1, {t3j}∞

j=1 and a decreasing sequence {t4j}∞
j=1 such

that t1j > t2j > t3j , lim
j→+∞

t4j = 0 that

⎧
⎨

⎩

|B(t, ·)|X > ε1, t = t3j ;
|B(t, ·)|X = ε1, t = t2j ;
|B(t, ·)|X < t4j < ε1, t = t1j ;

(4.27)

It is easy to see that |B(t, ·)|X < ε1, for all t ∈ (t2j , t1j). When t = t2j , we denote by {Smj}∞
j=1, {Bj}∞

j=1

and {Ihj}∞
j=1 be functional sequences in X, which satisfies Smj = Sm(t2j , ·) ∈ X, Bj = B(t2j , ·) ∈ X and

Ihj = Ih(t2j , ·) ∈ X, respectively. From the expressions in (2.2)-(2.4), we can conclude that there exist
(S̆m, B̆, Ĭh) ∈ X

+ × Y
+ × X

+ such that

lim
j→+∞

Smj = S̆m, lim
j→+∞

Bj = B̆, lim
j→+∞

Ihj = Ĭh.

In this setting, for all a ≥ 0 and x ∈ Ω, denote by (S�
m, i�m(t, a, x), I�

h) the solution of (4.1) with

φ1(x) = S̆m(x), φ2(a, x) =
∫

Ω

Γ2(a, x, y)B̆(y)dyΠ(a), φ3(x) = Ĭh(x).

Here, the choice of φ2 is based on (1.3). According to Lemma 4.4, there exists τ∗ > 0 and � > 0 such that

|B�(τ∗, ·)|X > ε1, and |B�(t, ·)|X > �, ∀t ∈ (0, τ∗).

Denote by B�
j (t, ·) = B(t + θj , ·). The above inequalities imply that for sufficiently large j that

{ |B�
j (t, ·)|X > ε1, t = τ∗;

|B�
j (t, ·)|X > � > ej , t ∈ (0, τ∗). (4.28)

Corresponding to this, however, by letting t̃j := t1j − t2j , (4.27) indicates that
{ |B�

j (t, ·)|X < ej < ε1, t = t̃j ;
|B�

j (t, ·)|X < ε1, t ∈ (0, t̃j).
(4.29)

For the cases where τ∗ < t̃j and τ∗ > t̃j , it is easily seen that (4.28) and (4.29) contradict each other.
This proves Lemma 4.5. �

Combined with Lemmas 4.4 and 4.5, we directly have:

Theorem 4.6. If [�0] > 1, system (4.1) is uniformly strongly persistent, that is, there exists ε0 > 0 such
that for x ∈ Ω and a ≥ 0,

lim inf
t→∞,x∈Ω

U > ε0, (4.30)

where U = Sm, im(t, a, x), Ih, respectively.

Proof. For all a ≥ 0, x ∈ Ω, Lemma 4.5 implies that there exist ε1 > 0 and t2 > 0 such that im(t, a, x) >
ε1Π(a) := εim

for all t > t2. By using this estimate, the Ih equation of (4.1) satisfies
⎧
⎪⎨

⎪⎩

∂Ih

∂t
> DhΔIh + ε1HK − (dh + ρ)Ih, x ∈ Ω, t ≥ t2,

∂Ih

∂n
= 0, x ∈ ∂Ω, t ≥ t2.
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By a comparison principle, we have

lim inf
t→∞,x∈Ω

Ih(t, x) >
ε1HK

dh + ρ
:= εIh

.

where ε2HK
dh+ρ is the unique positive steady state of the following system

⎧
⎪⎨

⎪⎩

∂Ih

∂t
= DhΔIh + ε1HK − (dh + ρ)Ih, x ∈ Ω, t ≥ t2,

∂Ih

∂n
= 0, x ∈ ∂Ω, t ≥ t2.

In view of Sm equation of (4.1) and (2.9), there exists t3 > 0 such that
⎧
⎪⎨

⎪⎩

∂Sm

∂t
≥ DmΔSm + μ − (βMIh

+ dm)Sm x ∈ Ω, t ≥ t3,

∂Sm

∂n
= 0, x ∈ ∂Ω, t ≥ t3.

Again, from comparison principle, we have

lim inf
t→∞,x∈Ω

Sm(t, x) >
μ

βMIh
+ dm

:= εSm
.

Consequently, the theorem is proved by letting ε0 = min{εSm
, εim

, εIh
}. �

Theorem 4.7. If [�0] > 1, then E∗ is GAS for φ ∈ D0.

Proof. Let us define

L[Sm, im, Ih](t) =
∫

Ω

[LSm
(t, x) + Lim

(t, x) + LIh
(t, x)]dx,

where
⎧
⎪⎪⎨

⎪⎪⎩

LSm
= G[Sm, S∗

m],

Lim
=

∞∫

0

Ψ1(a)G[im(t, a, x), i∗m(a)]da,

LIh
= S∗

mβ
dh+ρG[Ih, I∗

h)],

and G(u, v) = u − v − v ln u
v , for u, v > 0, and Ψ1(a) will be determined later. We next wish to calculate

the derivative of LSm
, Lim

, and LIh
, respectively.

We derivative LSm
along the solution of (4.1)

∂LSm

∂t
=
(

1 − S∗
m

Sm

)

(DmΔSm + μ − dmSm − im(t, 0, x))

=
(

1 − S∗
m

Sm

)

DmΔSm − dm

Sm
(Sm − S∗

m)2 + i∗m(0) − im(t, 0, x)

− i∗m(0)
S∗

m

Sm
+ im(t, 0, x)

S∗
m

Sm
. (4.31)

Here, the equality, μ = dmS∗
m + i∗m(0), is used. Using (4.2), rewriting Lim

as

Lim
=

t∫

0

Ψ1(t − r)G

⎡

⎣

∫

Ω

Γ1(t − r, x, y)im(r, 0, y)dyΠ(t − r), i∗m(t − r)

⎤

⎦dr

+

∞∫

0

Ψ1(t + r)G

⎡

⎣

∫

Ω

Γ1(t, x, y)φ2(r, y)dyΠ(t), i∗m(t + r)

⎤

⎦dr.
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For convenience, let

u1 =
∫

Ω

Γ1(t − r, x, y)im(r, 0, y)dyΠ(t − r), v1 = i∗m(t − r)

and

u2 =
∫

Ω

Γ1(t, x, y)φ2(r, y)dyΠ(t), v2 = i∗m(t + r).

It follows from the relations i∗(a) = i∗(0)e−dma and Π(0) = 1 that

∂Lim

∂t
= Ψ1(0)G

⎡

⎣

∫

Ω

Γ1(0, x, y)im(t, 0, y)dy, i∗m(0)

⎤

⎦

+

t∫

0

d
dt

Ψ1(t − r)G [u1, v1] dr +

∞∫

0

d
dt

Ψ1(t + r)G [u2, v2] dr

+

t∫

0

Ψ1(t − r)
{[∫

Ω

∂

∂t
Γ1(t − r, x, y)im(r, 0, y)dyΠ(t − r) − dmu1

]
∂

∂u1
G [u1, v1]

− dmi∗m(t − r)
∂

∂v1
G [u1, v1]

}

dr

+

∞∫

0

Ψ1(t + r)
{[∫

Ω

∂

∂t
Γ1(t, x, y)φ(r, y)dyΠ(t) − dmu2

]
∂

∂u2
G [u2, v2]

− dmi∗m(t + r)
∂

∂v2
G [u2, v2]

}

dr.

With the equality that u ∂
∂uG[u, v] + v ∂

∂v G[u, v] = G[u, v], we have

∂Lim

∂t
= Ψ1(0)G

⎡

⎣

∫

Ω

Γ1(0, x, y)im(t, 0, y)dy, i∗m(0)

⎤

⎦

+

∞∫

0

[
d
da

Ψ1(a) − dmΨ(a)
]

G[im(t, a, x), i∗m(a)]da

+

t∫

0

Ψ1(t − r)
[ ∫

Ω

∂

∂t
Γ1(t − r, x, y)im(r, 0, y)dyΠ(t − r)

]
∂

∂u1
G [u1, v1] dr

+

∞∫

0

Ψ1(t + r)
[ ∫

Ω

∂

∂t
Γ1(t, x, y)φ(r, y)dyΠ(t)

]
∂

∂u2
G [u2, v2] dr.

Note that ∂
∂tΓ1 = DmΔΓ1, ∂

∂uG[u, v] = 1 − v
u and semigroup (T (0)[φ])(x) =

∫

Ω

Γ1(0, x, y)φ(y)dy is an

unit semigroup. It follows that

∂Lim

∂t
= Ψ1(0)G [im(t, 0, x), i∗m(0)] +

∞∫

0

[
d
da

Ψ1(a) − dmΨ(a)
]

G[im(t, a, x), i∗m(a)]da
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+

∞∫

0

Ψ1(a)DmΔim(t, a, x)
[

1 − i∗m(a)
im(t, a, x)

]

da. (4.32)

Now we let

Ψ1(a) =
HS∗

mβ

dh + ρ

1
Π(a)

∞∫

a

β1(θ)e−dmθdθ. (4.33)

Then, it satisfies
⎧
⎪⎨

⎪⎩

d
da

Ψ1(a) = −HS∗
mβ

dh + ρ
β1(a) + dmΨ1(a),

Ψ1(0) = β
HS∗

m

dh + ρ
K = S∗

m

[�0]
S0

m

= 1.

Hence, (4.32) becomes

∂Lim

∂t
=

HS∗
mβ

dh + ρ

∞∫

0

β1(a)
[

i∗m(a) − im(t, a, x) + i∗m(a) ln
im(t, a, x)

i∗m(a)

]

da (4.34)

+ G[im(t, 0, x), i∗m(0)] +

∞∫

0

Ψ1(a)
[

1 − i∗m(a)
im(t, a, x)

]

DmΔim(t, a, x)da.

Taking derivative of LIh
yields

∂LIh

∂t
=
[

1 − I∗
h

Ih

]
⎡

⎣
S∗

mβ

dh + ρ
DhΔIh +

HS∗
mβ

dh + ρ

∞∫

0

β1(a)im(t, a, x)da − S∗
mβIh

⎤

⎦ . (4.35)

For simplicity, we let

L̃(t, x) = LSm
(t, x) + Lim

(t, x) + LIh
(t, x).

With the help of (4.31), (4.34) and (4.35), we then have

∂L

∂t
= W + i∗m(0) − im(t, 0, x) − i∗m(0)

S∗
m

Sm
+ im(t, 0, x)

S∗
m

Sm

+ G[im(t, 0, x), i∗m(0)] +
HS∗

mβ

dh + ρ

∞∫

0

β1(a)
[

i∗m(a) − im(t, a, x) + i∗m(a) ln
im(t, a, x)

i∗m(a)

]

da

+
[

1 − I∗
h

Ih

]
⎡

⎣
HS∗

mβ

dh + ρ

∞∫

0

β1(a)im(t, a, x)da − S∗
mβIh

⎤

⎦ ,

where

W =
[

1 − S∗
m

Sm

]

DmΔSm − dm

Sm
(Sm − S∗

m)2

+

∞∫

0

Ψ1(a)
[

1 − i∗m(a)
im(t, a, x)

]

DmΔim(t, a, x)da +
[

1 − I∗
h

Ih

]
S∗

mβ

dh + ρ
DhΔIh.

Collecting terms with i∗m(0), im(t, 0, x) and HS∗
mβ

dh+ρ , respectively,

∂L

∂t
= W + i∗m(0)

[

1 − S∗
m

Sm

]

− im(t, 0, x)
[

1 − S∗
m

Sm

]
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+ G[im(t, 0, x), i∗m(0)] +
HS∗

mβ

dh + ρ

∞∫

0

β1(a)
[

i∗m(a) − im(t, a, x) + i∗m(a) ln
im(t, a, x)

i∗m(a)

]

da

+
HS∗

mβ

dh + ρ

∞∫

0

[

1 − I∗
h

Ih

]

β1(a)im(t, a, x)da − im(t, 0, x)
S∗

m

Sm
+ i∗m(0).

Here, we have used the fact that
[
1 − I∗

h

Ih

]
S∗

mβIh = im(t, 0, x)S∗
m

Sm
− i∗m(0). Canceling the zero terms,

together with i∗m(0) = HS∗
mβ

dh+ρ

∞∫

0

β1(a)i∗m(a)da, yields

∂L

∂t
= W + i∗m(0)

[

1 − S∗
m

Sm
− ln

im(t, 0, x)
i∗m(0)

]

+
HS∗

mβ

dh + ρ

∞∫

0

β1(a)i∗m(a)
[

1 + ln
im(t, a, x)

i∗m(a)
− I∗

him(t, a, x)
Ihi∗m(a)

]

da

= W +
HS∗

mβ

dh + ρ

∞∫

0

β1(a)i∗m(a)
[

2 + ln
im(t, a, x)

i∗m(a)
− I∗

him(t, a, x)
Ihi∗m(a)

− S∗
m

Sm
− ln

im(t, 0, x)
i∗m(0)

]

da.

By a zero trick that 1 − SmIhi∗
m(0)

S∗
mI∗

him(t,0,x) = 0, we have

∂L

∂t
= W − HS∗

mβ

dh + ρ

∞∫

0

β1(a)i∗m(a)
[

g

(
S∗

m

Sm

)

+ g

(
I∗
him(t, a, x)
Ihi∗m(a)

)

+ g

(
SmIhi∗m(0)

S∗
mI∗

him(t, 0, x)

)]

da,

where g(α) = α − 1 − ln α, α ∈ R+ possesses the properties that g(α) ≥ 0 when α ≥ 1 and g(1) = 0.
Hence,

∂L

∂t
= −DmS∗

m

∫

Ω

|∇Sm|2
S2

m

dx −
∞∫

0

DmΨ1(a)i∗m(a)
∫

Ω

|∇im(t, a, x)|2
i2m(t, a, x)

dxda

− DhS∗
mβ

dh + ρ

∫

Ω

|∇Ih|2
I2
h

dx −
∫

Ω

dm

Sm
(Sm − S∗

m)2dx

−
∫

Ω

HS∗
mβ

dh + ρ

∞∫

0

β1(a)i∗m(a)
[

g

(
S∗

m

Sm

)

+ g

(
I∗
him(t, a, x)
Ihi∗m(a)

)

+ g

(
SmIhi∗m(0)

S∗
mI∗

him(t, 0, x)

)]

dadx

≤ 0.

Hence, with the help of the property of g, ∂L(t,x)
∂t = 0 if and only if Sm = S∗

m, im(t, a, x) = i∗m(a) and
Ih = I∗

h. According to the invariance principle (see, e.g., [31, Theorem 4.2]), the global attractivity of E∗

directly follows. This together with the local stability of E∗, as stated in Theorem 4.2, implies that E∗

is GAS for all a ≥ 0, x ∈ Ω. This proves Theorem. �
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5. Conclusion and discussion

This paper provides the complete analysis on the threshold dynamics of an age-space structured malaria
epidemic model. Unlike in [21] where the spatial movement of mosquitoes in EIP will result in non-
local infection, here we intend to incorporate an infection age to be a continuous variable and the fixed
incubation period is ignored. We conducted a complete analysis of model (1.4) by adopting the density of
susceptible population to be H(x) and the mass action incidence, which can be regarded as a continuous
work of [21]. In Lemma 2.2, we confirmed that (1.4) admits a unique local solution through investigating
the fixed point problem, which is defined in (2.6). It is also proved that the local solution of (1.4) is
positive for initial conditions (see Lemma 2.3). The positivity of im(t, a, x) is implied by the positivity of
B(t, x), which is proved by the methods of Picard sequences and iteration. The proof of which is indeed
not trivial, as B(t, x) involves the product of Sm and Ih, as demonstrated in (2.6). In addition, we have
extended the interval of existence of the local solution to [0,+∞). To achieve this, we verified that in a
finite time interval, the solution does not blow up (see Lemma 2.4). Consequently, the solution semiflow
generated by the solution of (1.4) possesses a global attractor in X̃+.

By introducing the renewal equation and Laplace transformation, we identified that the next-
generation operator L defined in (3.6) is strictly positive and compact (see Lemma 3.1), which allow
us to define �0. It is important to mention that it is difficult to obtain spectral radius of L, if not impos-
sible, so that we cannot get further information on dynamical properties of (1.4). To proceed further,
we considered the special case where parameters are all independent of x. In such a setting, the Krein–
Rutman theorem ensures that [�0] can be explicitly obtained if the positive eigenvector (corresponding
to [�0]) is a constant. It is also identified that if [�0] < 1, then space-independent disease-free equilibrium
Ẽ0 = (S0

m, 0, 0), where S0
m = μ

dm
, is GAS (see Theorem 4.3); if [�0] > 1, then the model is uniformly

persistent (see Theorem 4.6) and the space-independent endemic equilibrium E∗ = (S∗
m, i∗m(0)Π(a), I∗

h)
is GAS (see Theorem 4.7). The local stability of E0 and E∗ is achieved by studying the distribution
of characteristic roots of characteristic equation (4.9) (see Theorem 4.2). The strong persistence result
is implied by the weak persistence (see Lemmas 4.4 and 4.5), which is achieved by making the Laplace
transformation and the way of contraction. Both Ẽ0 and E∗ are proved to be GAS by Lyapunov functions
in different cases (see Theorem 4.3 and 4.7).

If the average incubation period is fixed as τ , and

β1(a) =
{

0, 0 ≤ a < τ ;
β∗, A ≥ τ,

as standard arguments in [13,21], our model (1.4) can be reformulated into, for x ∈ Ω, t > 0,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂Sm

∂t
− DmΔSm = μ(x) − β2(x)SmIh − dmSm,

∂Im

∂t
− DmΔIm = e−dmτ

∫

Ω

Γ2(Dmτ, x, y)β2(y)Sm(t − τ, y)Ih(t − τ, y)dy − dmIm,

∂Ih

∂t
− DhΔIh = H(x)β∗I − (dh + ρ)Ih,

(5.1)

with

∂Sm

∂n
=

∂Im

∂n
=

∂Ih

∂n
= 0, x ∈ ∂Ω, t > 0,

where Im =
∞∫

τ

im(t, a, x)da. As studied in [21, Section 4], with additional conditions, the global attractivity

of endemic equilibrium in homogeneous case can be proved by using a fluctuation method.
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If we further take seasonality into account, by using the standard arguments as those in [4,36], our
model (1.4) can be reformulated by following system, for x ∈ Ω, t > 0,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂Sm

∂t
− DmΔSm = μ(t, x) − β2(t, x)SmIh − dm(t, x)Sm,

∂Im

∂t
− DmΔIm = e−dmτ

∫

Ω

Γ2(Dmτ, x, y)β2(t, y)Sm(t − τ, y)Ih(t − τ, y)dy − dm(t, x)Im,

∂Ih

∂t
− DhΔIh = H(x)β∗I − (dh + ρ)Ih,

(5.2)

with
∂Sm

∂n
=

∂Im

∂n
=

∂Ih

∂n
= 0, x ∈ ∂Ω, t > 0.

Here, μ(t, x), β2(t, x) and dm(t, x) are the recruitment rate, biting rate and mortality rate involving the
seasonality, respectively. The dynamics of (5.1) and (5.2) will be left for future investigation.
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