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Abstract. In this paper, we present a general method to derive the explicit constitutive relations for isotropic elastic 6-
parameter shells made from a Cosserat material. The dimensional reduction procedure extends the methods of the classical
shell theory to the case of Cosserat shells. Starting from the three-dimensional Cosserat parent model, we perform the
integration over the thickness and obtain a consistent shell model of order O(h5) with respect to the shell thickness h. We
derive the explicit form of the strain energy density for 6-parameter (Cosserat) shells, in which the constitutive coefficients
are expressed in terms of the three-dimensional elasticity constants and depend on the initial curvature of the shell. The
obtained form of the shell strain energy density is compared with other previous variants from the literature, and the
advantages of our constitutive model are discussed.
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1. Introduction

The theory of shells is an important branch of solid mechanics, since it investigates the behavior of thin
(shell-like) bodies, which are widely used in civil and mechanical engineering, automotive and aircraft
industry, etc.

One of the main issues of the shell theory (which is not yet completely solved) is the derivation of
an appropriate two-dimensional continuum model for shells, using a dimensional reduction procedure
starting from the parent three-dimensional continuum. Such a shell model should be simple enough to be
amenable for engineering applications, but also it should be complex enough to capture the important
features of shell deformation, such as stretching, bending, transverse shear deformation or drill. Therefore,
one can find in the literature several proposed shell models, which have different degrees of complexity.
For instance, in the classical theory of shells, the transverse shear deformation and drilling deformation
are not taken into account. Thus, the elastically stored strain energy density W (ε,ρ) in the Koiter model
can be decomposed additively in two parts: the membrane part Wmemb(ε), which is of order O(h) and
depends on the change of metric tensor ε, and the bending part Wbend(ρ), which is of order O(h3) and
depends on the change of curvature tensor ρ (see, e.g., [14,20,36]).

One of the most general kinematical models for shells is given by the theory of 6-parameter shells, which
was initially proposed by Reissner [30] and developed subsequently in many works, such as [12,17,21,27].
This kinematical model coincides with the kinematical model of Cosserat shells, see also [4,6,9]. The
deformation is described by means of the translation (3 parameters) and the orientation (or rotation: 3
additional parameters) of material points. In order to obtain an useful model for 6-parameter shells, which
can be applied in practical problems, one needs to adjoin specific constitutive relations and to determine
the expression of the shell strain energy density in terms of the three-dimensional elasticity constants of
the material. In this respect, we mention that the strain energy density which is usually employed for
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6-parameter shells has a relatively simple expression of order O(h3), in which the constitutive coefficients
are constant, i.e., they are independent of the initial curvature of the shell (see Sect. 2.3 and the references
[12,13]).

The goal of the present paper is to derive a refined form of the strain energy density of order O(h5) for
isotropic 6-parameter shells, starting from the three-dimensional Cosserat parent model. The dimensional
reduction procedure is similar to that used in the classical shell theory, as presented systematically by
Steigmann in [34–36]. In this way, we obtain the explicit form of the constitutive relations, including
all the terms up to the order O(h5), where the constitutive coefficients are expressed in terms of the
elastic material constants and depend on the initial curvature of the shell. The present work generalizes
the results obtained in [5], where the corresponding shell model of order O(h3) has been presented. The
constitutive model derived in our paper is very close to the model presented in [7], but we employ a simpler
derivation method, which is also more general. Moreover, this new dimensional reduction procedure allows
us to adjust the transverse shear coefficients (in accordance with those obtained by a Γ-convergence
analysis) and to improve a higher-order term in the strain energy density. In Sect. 5.3, we discuss these
improvements in detail and show that the model in [7] can be regarded as a special case of our present
result.
Outline of the paper. In Sect. 2, we review the kinematical model of 6-parameter shells and present the
governing equations of the mechanical theory. Section 3 presents the dimensional reduction procedure:
We start with the three-dimensional Cosserat model, which is described in Sect. 3.1. Then, we perform
the integration over the thickness in Sect. 3.2 and use the method inspired by the classical shell theory
[36]. In Sect. 4, we obtain the reduced (simplified) form of the strain energy density of order O(h5) by
adopting some simplifying assumptions for thin shells. The main result of the paper is the final form of
the areal strain energy density given by (119). Finally, we write in Sect. 5 some alternative useful forms of
the constitutive relations in terms of strain measures with clear mechanical significance. We also discuss
the special case of the quadratic ansatz in Sect. 5.3 and present a detailed comparison with the previous
models in [5,7].
Summary of notations. Let us present next some useful notations which will be used throughout this
paper. The Latin indices i, j, k, . . . range over the set {1, 2, 3}, while the Greek indices α, β, γ, . . . range
over the set {1, 2}. The Einstein summation convention over repeated indices is used. A subscript comma
preceding an index i (or α) designates partial differentiation with respect to the variable xi (or xα ,

respectively), e.g. f,i =
∂f

∂xi
. We denote by δj

i the Kronecker symbol, i.e., δj
i = 1 for i = j, while δj

i = 0

for i �= j.
We employ the direct tensor notation. Thus, ⊗ designates the dyadic product, 13 = gi ⊗ gi is the

unit second-order tensor in the 3-space, and axl(W ) stands for the axial vector of any skew-symmetric
tensor W .

Let tr(X) denote the trace of any second-order tensor X. The symmetric part, skew-symmetric part
and deviatoric part of X are defined by

sym X =
1
2
(
X + XT

)
, skew X =

1
2
(
X − XT

)
, dev3X = X − 1

3
(
trX

)
13.

The scalar product between any second-order tensors A = Aijgi⊗gj = Aij gi⊗gj and B = Bklgk⊗gl =
Bkl g

k ⊗ gl is denoted by

A : B = tr
(
AT B

)
= AijBij = AklB

kl.

If C = Cijklgi ⊗ gj ⊗ gk ⊗ gl is a fourth-order tensor, then we use the corresponding notations

C : B = CijklBkl gi ⊗ gj , A : C = CijklAij gk ⊗ gl, A : C : B = CijklAij Bkl.

For any vector v = vigi = vi gi, we write as usual

Av = Aijvj gi = Aijv
j gi and vA = AT v = Aijvi gj = Aijv

i gj .
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2. The governing equations of elastic six-parameter elastic shells

Let us denote with Sc the deformed (current) configuration of a shell and with Sξ its reference configu-
ration. We designate the midsurface of the reference configuration with ωξ ⊂ R

3, which is determined by
the parametric representation y0(x1, x2), where y0 : ω ⊂ R

2 → ωξ is a vector mapping. The curvilinear
coordinates (x1, x2) are assumed to be convected coordinates on the surface ωξ .

2.1. Geometry of the reference midsurface

In order to present the two-dimensional field equations of 6-parameter shells, we review first some basic
relations pertaining to the geometry of the midsurface ωξ . We define as usual the covariant base vectors
aα and the contravariant base vectors aα in the tangent plane of ωξ by

aα =
∂y0

∂xα
, aα · aβ = δα

β (α, β = 1, 2) (1)

and we also denote by

a3 = a3 = n0, where n0 =
a1 × a2

‖a1 × a2‖
(2)

is the unit normal vector to the surface ωξ . The first fundamental tensor a and the second fundamental
tensor b of the midsurface ωξ are given by

a := Grads y0 = aα ⊗ aα = aαβaα ⊗ aβ = aαβaα ⊗ aβ ,

b := −Grads n0 = −n0,α ⊗ aα = bαβ aα ⊗ aβ = bα
β aα ⊗ aβ , (3)

where aαβ = aα · aβ , bαβ = −aα · n0,β and Grads is the surface gradient operator defined by

Grads f :=
∂f

∂xα
⊗ aα = f ,α ⊗aα (4)

for any vector field f(x1, x2). Moreover, let Divs designate the surface divergence operator given by

Divs T := T ,α aα (5)

for any second-order tensor field T (x1, x2). The so-called alternator tensor c in the tangent plane is
defined by

c :=
1√
a

εαβ aα ⊗ aβ =
√

a εαβ aα ⊗ aβ , with a := det
(
aαβ

)
2×2

> 0, (6)

where εαβ is the two-dimensional alternator (ε12 = −ε21 = 1, ε11 = ε22 = 0). We note that the fundamen-
tal tensors a and b are symmetric, while the alternator tensor c is skew-symmetric and fullfils c2 = −a
and axl(c) = −n0 , since we have

c = −n0 × a = −n0 × 13 (and c = −a × n0 = −13 × n0). (7)

Moreover, the fundamental tensor a can be viewed as the projection tensor in the tangent plane, since
av = a(via

i) = vαaα = v − (v · n0)n0 . The following relation of Cayley–Hamilton type holds

b2 − 2Hb + Ka = 0, (8)

where H = 1
2 tr b = 1

2bα
α is the mean curvature and K = det b = det

(
bα
β

)
2×2

is the Gauß curvature of the
midsurface ωξ .
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2.2. Kinematical variables and strain measures

Let us refer the shell to the Cartesian coordinate frame Ox1x2x3 with origin O and unit vectors {e1,e2,e3}
along the coordinate axes Oxi . The kinematical structure of 6-parameter shells coincides with that of
Cosserat shells. Thus, the reference configuration of the shell is described by the position vector y0 and
the initial microrotation tensor Q0 given by

y0 : ω ⊂ R
2 → ωξ ⊂ R

3, y0 = y0(x1, x2),
Q0 : ω ⊂ R

2 → SO(3), Q0 = d0
i (x1, x2) ⊗ ei,

(9)

where the parameter domain ω is assumed to be a bounded open domain with Lipschitz boundary ∂ω in
the Ox1x2 plane. The vectors {d0

1,d
0
2,d

0
3} represent the orthonormal triad of directors, which is attached

to every point and describes the structure (orientation) of the reference configuration. The third director
d0

3 is chosen to coincide with the unit normal in the reference configuration, i.e.,

d0
3 = n0. (10)

The deformation of the shell is characterized by the deformation function m and the microrotation tensor
Qe given by

m : ω → ωc, m = m(x1, x2),
Qe : ω → SO(3), Qe = Qe(x1, x2) = di ⊗ d0

i ,
(11)

where {d1,d2,d3} is the orthonormal triad of directors which describes the orientation of points in the
deformed configuration. Thus, the model has 6 degrees of freedom (3 for the translation m and 3 for the
rotation Qe) assigned to every point of the shell.

The strain measures of 6-parameter shells are usually defined in terms of m and Qe as follows [12,16,
21]: the shell strain tensor

Ee := QT
e Gradsm − a (12)

and the shell bending-curvature tensor

Ke := axl
(
QT

e Qe,α

)
⊗ aα. (13)

Remark 2.1. In view of the decomposition 13 = a + n0 ⊗ n0 , one can decompose the shell strain tensor
Ee into its ‘planar’ part aEe and its ‘transversal’ part n0E

e according to

Ee = aEe + n0 ⊗ (n0E
e) = εe + n0 ⊗ γe, with εe := aEe, γe := n0E

e, (14)

where the tensor εe characterizes the in-plane deformation of the shell, while the vector

γe = n0E
e = n0Q

T
e Gradsm = d3Gradsm (15)

describes the transverse shear deformation. Similarly, in view of a = −c2, we can decompose the shell
bending-curvature tensor as

Ke = aKe + n0 ⊗ (n0K
e) = c ρe + n0 ⊗ νe, with ρe := −cKe, νe := n0K

e, (16)

where the planar tensor ρe ist the bending tensor given by (see f. (70) in [7])

ρe = −cKe = −QT
e Gradsd3 − b = −QT

e Gradsd3 + Gradsn0. (17)

Further, the transversal part νe in (16) is also called the vector of drilling bendings [29] and is given by

νe = n0K
e =

[
n0 · axl

(
QT

e Qe,α

)]
aα =

1√
a

[(
Qe,αa1

)
· (Qea2)

]
aα. (18)
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Indeed, the last relation can be proved as follows

n0 · axl
(
QT

e Qe,α

)
=

1√
a

(a1 × a2) · axl
(
QT

e Qe,α

)
=

1√
a

[
axl

(
QT

e Qe,α

)
× a1

]
· a2

=
1√
a

(
QT

e Qe,αa1

)
· a2 =

1√
a

(
Qe,αa1

)
· (Qea2).

Remark 2.2. In the literature on nonlinear shells of Cosserat type, one can find also other variants of
the shell strain measures. For instance, Altenbach and Zhilin [2,3,38] have employed the following strain
tensor

E =
1
2
[
(Gradsm)T (Gradsm) − a

]
,

i.e., in view of (12),

E =
1
2

(Ee)T Ee + sym(aEe),

which accounts for the extensional and in-plane shear deformations in the theory of simple elastic shells.
As an alternative to the shell bending-curvature tensor Ke given in (13), one can use the so-called

shell dislocation density tensor defined by

De := QT
e Curls Qe, (19)

which was defined in [10] and employed in [11] to investigate the deformation of Cosserat elastic shells.

2.3. Balance equations and constitutive relations

Let N be the internal surface stress tensor and M the internal surface couple tensor (of the first Piola–
Kirchhoff type). Also, we designate by

F s := Gradsm = m,α ⊗aα (20)

the surface gradient of the midsurface deformation m, also called the shell deformation gradient. The
equilibrium equations for 6-parameter shells are

DivsN + f = 0, DivsM + axl
(
NF T

s − F sN
T
)

+ l = 0, (21)

where f and l stand for the external body forces and body couples, respectively. The balance equations
(21) can be justified via the principle of virtual work (see, e.g., [16]) or from the condition that the
equilibrium state is a stationary point of the energy functional (see Sect. 4.3 in [5]). To the equilibrium
equations (21), we adjoin boundary conditions of mixed type prescribed on the boundary curve ∂ωξ (see,
e.g., [8,15,27])

Nν = N∗, Mν = M∗ along ∂ωf ,
m = m∗, Qe = Q∗ along ∂ωd,

(22)

where ∂ωf ∪∂ωd = ∂ωξ is a disjoint partition of the boundary curve. Here, N∗ and M∗ are the external
boundary force and couple vectors, respectively, applied along the deformed boundary curve, but measured
per unit length of ∂ωf . On the portion of the boundary ∂ωd, we have Dirichlet-type boundary conditions
for the deformation vector m and the microrotation tensor Qe .

Under hyperelasticity assumptions, the stress and couple stress tensors N and M satisfy the following
constitutive relations

QT
e N =

∂ Wshell

∂Ee , QT
e M =

∂ Wshell

∂Ke , (23)

where the elastically stored areal energy density Wshell for 6-parameter shells is given by

Wshell = Wshell(Ee,Ke). (24)
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The question is: Which is the appropriate expression of the energy density Wshell in (24) for isotropic
shells? The main goal of our paper is to give a good answer to this question, by proposing a new
expression for the energy density Wshell(Ee,Ke), which generalizes and improves many previous results
in the literature.

In [16], the general form of a quadratic energy density for isotropic shells is presented, but the con-
stitutive coefficients are not determined in terms of the three-dimensional material constants. Thus, for
instance, the following simplified expression of the energy density is proposed in [16]

2 Ŵshell(Ee,Ke) = α1

[
tr(aEe)

]2 + α2 tr
[
(aEe)2

]
+ α3 ‖aEe‖2 + α4 ‖n0Ee‖2

+β1

[
tr(aKe)

]2 + β2 tr
[
(aKe)2

]
+ β3 ‖aKe‖2 + β4 ‖n0Ke‖2,

or equivalently, in view of the relation tr(X2) = ‖sym(X)‖2 − ‖skew(X)‖2,

2 Ŵshell(Ee,Ke) = (α2 + α3)‖sym(aEe)‖2 + (α3 − α2)‖skew(aEe)‖2 + α1

[
tr(aEe)

]2 + α4 ‖n0Ee‖2

+(β2 + β3)‖sym(aKe)‖2 + (β3 − β2)‖skew(aKe)‖2 + β1

[
tr(aKe)

]2 + β4 ‖n0Ke‖2,

(25)

where αk and βk are constant (general) constitutive coefficients. To use the energy density (25) in ap-
plications, the following values of the coefficients αk and βk have been chosen in [12,13] for an isotropic
Cauchy material with Poisson ratio ν and Young modulus E :

α1 = C ν, α2 = 0, α3 = C (1 − ν), α4 = αs C (1 − ν),
β1 = D ν, β2 = 0, β3 = D (1 − ν), β4 = αt D (1 − ν), (26)

where C = E h
1−ν2 is the stretching (membrane) stiffness of the shell, D = E h3

12(1−ν2) is the bending stiffness,
and αs = 5

6 and αt = 7
10 are two shear correction factors. By virtue of (25) and (26), we see that the

concrete form of the strain energy density commonly used in the literature is

Ŵshell(Ee,Ke) = h
[
μ ‖sym(aEe)‖2 + μ ‖skew(aEe)‖2 +

λμ

λ + 2μ

[
tr(aEe)

]2 + μ αs ‖n0Ee‖2
]

+
h3

12

[
μ ‖sym(aKe)‖2 + μ ‖skew(aKe)‖2 +

λμ

λ + 2μ

[
tr(aKe)

]2 + μ αt ‖n0Ke‖2
]
,

(27)

where λ and μ are the Lamé constants of the isotropic and homogeneous elastic material. We observe in
(27) that the constitutive coefficients do not depend on the initial curvature of the shell.

In [5], we have presented a more elaborate expression of the strain energy density Wshell of order O(h3)
for shells made of an isotropic Cosserat material with Cosserat couple modulus μc . This refined form can
be written as (see f. (68) in [5])

W̄shell(Ee,Ke) =
(
h − K

h3

12

)[
WCoss

(
Ee

)
+ Wcurv

(
Ke

)]
+

h3

12

[
WCoss

(
Eeb + cKe

)

+2WCoss

(
Ee, cKeb

)
− 4HWCoss

(
Ee, cKe

)
+ Wcurv

(
Keb

)]
, (28)
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where the bilinear form WCoss is defined for any second-order tensors X = Xiαai ⊗ aα, Y = Yiαai ⊗ aα

by

WCoss(X,Y ) := μ sym(aX) : sym(aY ) + μc skew(aX) : skew(aY ) +
λ μ

λ + 2μ
tr(aX) tr(aY )

+
2μ μc

μ + μc

(
n0X

)
·
(
n0Y

)
and (29)

WCoss(X) := WCoss(X,X) = μ ‖sym(aX)‖2 + μc‖skew(aX)‖2 +
λ μ

λ + 2μ

[
tr(aX)

]2 +
2μ μc

μ + μc
‖n0X‖2.

(30)

The quadratic form Wcurv is defined in the sequel by (59). Compare the energy density (28)–(30) with
(27). We remark in (28) the coupling between the in-plane deformation aEe = εe and the bending tensor
cKe = −ρe, as well as the occurrence of the mean curvature H, the Gauß curvature K and the tensor
b, which characterize the initial curvature of the shell.

In the present paper, we shall generalize the model (28) to include all the terms up to the order O(h5)
and obtain thus an improved shell model, see Eq. (119) for the final result.

3. Derivation of the constitutive model for shells

In order to obtain the areal strain energy density Wshell(Ee,Ke) defined on the midsurface of the shell,
we start from the energy density of the three-dimensional Cosserat shell-like body and perform the
integration over the thickness. Let us present first the nonlinear three-dimensional model for Cosserat
elastic continua.

3.1. The parent three-dimensional Cosserat model

Consider a Cosserat elastic continuum occupying the domain Ωξ ⊂ R
3 in its reference configuration. The

reference configuration Ωξ is characterized by the parametric representation Θ(x1, x2, x3) with Θ : Ωh →
Ωξ . For the curvilinear coordinates (x1, x2, x3) on Ωξ, we denote as usual the covariant base vectors by
gi := Θ,i and the contravariant base vectors by gi, with gi · gj = δi

j . The parameter domain Ωh ⊂ R
3

is referred to the Cartesian coordinate frame Ox1x2x3 with othonormal vector basis {e1,e2,e3} and
position vector x = (x1, x2, x3) = xiei . The gradient of the mapping Θ is

∇xΘ = Θ,i ⊗ei = gi ⊗ ei. (31)

Let Ωc ⊂ R
3 be the deformed configuration of the Cosserat body and let {d1,d2,d3} be the orthonor-

mal triad of directors attached to every point of Ωc . The deformation of the Cosserat continuum is
characterized by the deformation function

ϕ : Ωh → Ωc, ϕ = ϕ(x1, x2, x3) (32)

and the elastic microrotation

Qe : Ωh → SO(3), Qe = Qe(x1, x2, x3) = di ⊗ d0
i , (33)

where {d0
1,d

0
2,d

0
3} is the orthonormal triad of directors in the reference configuration Ωξ . The initial

directors d0
i and the initial microrotation tensor Q0 are chosen such that (see [7])

Q0 = d0
i ⊗ ei and Q0 = polar(∇xΘ), (34)
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i.e., Q0 ∈ SO(3) is the orthogonal tensor from the polar decomposition of ∇xΘ. The deformation gradient
F ξ and the (non-symmetric) strain tensor E for nonlinear micropolar media are given by

F ξ := ϕ,i ⊗ gi and E := QT
e F ξ − 13, (35)

while the strain measure for curvature (orientation change) is the so-called wryness tensor (see, e.g.,
[11,28])

Γ := axl
(
QT

e Qe,i

)
⊗ gi. (36)

In the three-dimensional Cosserat model for isotropic materials presented in [25], the strain energy
density W (E,Γ) is expressed as the sum of two parts

W (E,Γ) = Wmp(E) + Wcurv(Γ), where (37)

Wmp(E) = μ ‖ sym E ‖2 + μc ‖ skew E ‖2 +
λ

2
(
trE

)2

= μ ‖dev3 sym E ‖2 + μc ‖ skew E ‖2 +
κ

2
(
tr E

)2 and (38)

Wcurv(Γ) = μ L2
c

[
b1 ‖ symΓ‖2 + b2 ‖ skew Γ‖2 +

(
b3 − b1

3
)(

trΓ
)2

]

= μ L2
c

[
b1 ‖dev3 symΓ‖2 + b2 ‖ skew Γ‖2 + b3

(
trΓ

)2
]
. (39)

Here, μ > 0 is the shear modulus, λ is the Lamé constant, κ = 1
3 (3λ + 2μ) > 0 is the bulk modulus of

classical isotropic elasticity, μc ≥ 0 is the so-called Cosserat couple modulus, the coefficients b1, b2, b3 >
0 are dimensionless constitutive coefficients and the parameter Lc > 0 introduces an internal length
(characteristic for the material). Under hyperelasticity assumptions, the stress tensor T and the couple
stress tensor M (of the first Piola–Kirchhoff type) satisfy the following constitutive equations

QT
e T =

∂W (E,Γ)
∂E

=
∂Wmp(E)

∂E
and QT

e M =
∂W (E,Γ)

∂Γ
=

∂Wcurv(Γ)
∂Γ

. (40)

In view of Eqs. (38)–(40), we see that the tensors T and M are linear functions of the strain measures
E and Γ. They are given explicitly by the constitutive relations

QT
e T = 2μdev3 sym E + 2μc skew E + κ(tr E)13 = 2μ sym E + 2μc skew E + λ(tr E)13, (41)

QT
e M = 2μ L2

c

[
b1 dev3 symΓ + b2 skew Γ + b3

(
trΓ

)
13

]

= 2μ L2
c

[
b1 symΓ + b2 skew Γ +

(
b3 − 1

3
b1

)(
trΓ

)
13

]
. (42)

These explicit constitutive relations can be written in the compact form

QT
e T = C : E and QT

e M = G : Γ, (43)

where we define the fourth-order tensors of the elastic moduli C and G as follows

C = Cijklgi ⊗ gj ⊗ gk ⊗ gl, G = Gijklgi ⊗ gj ⊗ gk ⊗ gl, with
Cijkl = μ

(
gikgjl + gilgjk

)
+ μc

(
gikgjl − gilgjk

)
+ λ gijgkl,

Gijkl = μ L2
c

(
b1

(
gikgjl + gilgjk

)
+ b2

(
gikgjl − gilgjk

)
+ 2

(
b3 − b1

3
)
gijgkl

)
,

(44)

and gij = gi · gj . Note that the major symmetries Cijkl = Cklij , Gijkl = Gklij are satisfied. Using these
notations, the energy densities (38) and (39) can be expressed in the form

Wmp(E) =
1
2
(
QT

e T
)

: E =
1
2

E : C : E, Wcurv(Γ) =
1
2
(
QT

e M
)

: Γ =
1
2

Γ : G : Γ. (45)

Thus, we see from the above relations that the model is physically linear, but it is geometrically nonlinear.
The existence of minimizers for this three-dimensional Cosserat model has been proved under convexity
assumptions in [23,25].
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3.2. Dimensional reduction procedure

Let us present the derivation method which allows us to obtain a Cosserat shell model of order O(h5).
This procedure is inspired by the classical theory of shells, see, e.g., [36].

For a shell-like body, we assume as usual the parametric representation Θ of the following form

Θ(x1, x2, x3) = y0(x1, x2) + x3 n0(x1, x2), Θ : Ωh → Ωξ, (46)

where y0(x1, x2) is the parametrization of the midsurface and n0(x1, x2) is the unit normal given by (2).
Here, the parameter domain Ωh is a right cylinder of the form

Ωh =
{

(x1, x2, x3)
∣
∣
∣ (x1, x2) ∈ ω ⊂ R

2, x3 ∈
(

− h

2
,
h

2

) }
⊂ R

3,

where h is the thickness of the shell, assumed to be small, and x3 is the coordinate in thickness direction.
For the three-dimensional shell-like body, the elastically stored energy is given by the volume integral

I =
∫∫∫

Ωξ

W
(
E,Γ

)
dV,

where W
(
E,Γ

)
is defined by (37). Now, we define the areal strain energy density for shells Wshell by the

relation

I =
∫∫

ωξ

Wshell da =
∫∫∫

Ωξ

W
(
E,Γ

)
dV, (47)

where ωξ = y0(ω) is the midsurface. Thus, on the basis of relation (47), we determine Wshell by integrating
the three-dimensional strain energy density W

(
E,Γ

)
over the thickness. For the elemental area da and

the elemental volume dV in (47), we have the formulas (see, e.g., [7])

da =
√

det
(
aαβ

)
dx1dx2 =

√
a(x1, x2) dx1dx2 and

dV = det
(
∇xΘ

)
dx1dx2dx3 = b(x1, x2, x3)

√
a(x1, x2) dx1dx2dx3,

(48)

where we denote

b(x1, x2, x3) := 1 − 2Hx3 + Kx2
3. (49)

Substituting (48) into (47), we obtain the relation

I =
∫∫

ω

Wshell

√
a dx1dx2 =

∫∫

ω

(∫ h/2

−h/2

W
(
E,Γ

)
b dx3

) √
a dx1dx2, (50)

which holds also for any subset of ω. Thus, by virtue of (37) and (50), we have

Wshell =
∫ h/2

−h/2

W
(
E,Γ

)
b dx3 =

h/2∫

−h/2

Wmp(E) b dx3

+
∫ h/2

−h/2

Wcurv(Γ) b dx3. (51)

We shall compute the two integrals in the right-hand side of (51) separately. To calculate the first integral,
let us write the Taylor expansion of the integrand Wmp(E) b with respect to x3 ∈

(
− h

2 , h
2

)
about the

point x3 = 0 in the following form

Wmpb =
(
Wmpb

)
0

+ x3

(
Wmpb

)′
0

+
(x3)2

2
(
Wmpb

)′′
0

+
(x3)3

6
(
Wmpb

)′′′
0

+
(x3)4

24
(
Wmpb

)(4)

0
+ O(x5

3),

(52)
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where the argument E has been omitted for convenience. Also, we employ the notations f ′ :=
∂f

∂x3
for the derivative with respect to x3 , as well as f0 := f(x1, x2, 0), for any function f(x1, x2, x3). By
integration of the relation (52) with respect to x3, we find

∫ h/2

−h/2

Wmpb dx3 = h
(
Wmpb

)
0

+
1
2

· h3

12
(
Wmpb

)′′
0

+
1
24

· h5

80
(
Wmpb

)(4)

0
+ o(h5). (53)

In view of (49), we obtain b0 = 1 , b′
0 = −2H , b′′

0 = 2K , b′′′
0 = b

(4)
0 = 0 and the derivatives appearing in

(53) are given by
(
Wmpb

)
0

=
(
Wmp

)
0
b0 =

(
Wmp

)
0
,(

Wmpb
)′′
0

= 2K
(
Wmp

)
0

− 4H
(
Wmp

)′
0

+
(
Wmp

)′′
0
,

(
Wmpb

)(4)

0
= 12K

(
Wmp

)′′
0

− 8H
(
Wmp

)′′′
0

+
(
Wmp

)(4)

0
.

(54)

If we insert the expressions (54) into (53) and neglect the terms of order o(h5), then we find the relation

∫ h/2

−h/2

Wmp(E) b dx3 =
(
h + K

h3

12

)(
Wmp(E)

)
0

+
1
2

· h3

12

[(
Wmp(E)

)′′
0

− 4H
(
Wmp(E)

)′
0

]

+
1
24

· h5

80

[
12K

(
Wmp(E)

)′′
0

− 8H
(
Wmp(E)

)′′′
0

+
(
Wmp(E)

)(4)

0

]
.

(55)

To express the derivatives of Wmp in a convenient form, let us introduce the bilinear form

Wmp(X,Y ) := μ (symX) : (symY ) + μc (skewX) : (skewY ) +
λ

2
(trX)(trY ), (56)

such that

Wmp(X) = Wmp(X,X),

according to (38). With this notation, we get
(
Wmp(E)

)
0

= Wmp(E0),
(
Wmp(E)

)′
0

= 2Wmp(E0,E
′
0),(

Wmp(E)
)′′
0

= 2Wmp(E0,E
′′
0) + 2Wmp(E′

0),(
Wmp(E)

)′′′
0

= 2Wmp(E0,E
′′′
0 ) + 6Wmp(E′

0,E
′′
0),

(
Wmp(E)

)(4)

0
= 2Wmp(E0,E

(4)
0 ) + 8Wmp(E′

0,E
′′′
0 ) + 6Wmp(E′′

0)

(57)

and the relation (55) becomes

∫ h/2

−h/2

Wmp(E) b dx3 =
(
h + K

h3

12

)
Wmp

(
E0

)
+

h3

12

[
Wmp

(
E′

0

)
+ Wmp

(
E0,E

′′
0 − 4HE′

0

)]

+
1
12

· h5

80

[
3Wmp

(
E′′

0

)
+ 4Wmp

(
E′

0,E
′′′
0 − 6HE′′

0 + 3KE′
0

)

+Wmp

(
E0,E

(4)
0 − 8HE′′′

0 + 12KE′′
0

)]
. (58)

In the same way as in (52)–(58), we can calculate the last integral in (51). Indeed, if we introduce the
bilinear form

Wcurv(X,Y ) := μ L2
c

[
b1(symX) : (symY ) + b2(skewX) : (skewY ) +

(
b3 − b1

3
)
(trX)(trY )

]
(59)
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with Wcurv(X) = Wcurv(X,X) according to (39), then we obtain analogously
∫ h/2

−h/2

Wcurv(Γ) b dx3 =
(
h + K

h3

12

)
Wcurv

(
Γ0

)
+

h3

12

[
Wcurv

(
Γ′

0

)
+ Wcurv

(
Γ0,Γ′′

0 − 4HΓ′
0

)]

+
1
12

· h5

80

[
3Wcurv

(
Γ′′

0

)
+ 4Wcurv

(
Γ′

0,Γ
′′′
0 − 6HΓ′′

0 + 3KΓ′
0

)

+Wcurv

(
Γ0,Γ

(4)
0 − 8HΓ′′′

0 + 12KΓ′′
0

)]
. (60)

Further, in order to compute the derivatives of the strain measures E
(k)
0 and Γ(k)

0 appearing in (58) and
(60), we need to compute first the derivatives of the deformation gradient F ξ .

3.2.1. Derivatives of the deformation gradient with respect to x3. Consider the set Tp of all tensors in
the tangent plane, i.e., the set of all second-order tensors S of the form S = Sαβaα ⊗ aβ . Note, for
instance, that the tensors a, b and c are elements of the linear space Tp . Moreover, the first fundamental
tensor a plays the role of the identity tensor in the space Tp , since we have aS = Sa = S for any S ∈ Tp .
For the second fundamental tensor b, we have by virtue of (8)

b b∗ = b∗b = Ka, where b∗ := 2Ha − b. (61)

Thus, b∗ is the cofactor of b in the space Tp . Further, let us introduce the tensors

μ := Grads Θ = a − x3 b ∈ Tp and μ−1 :=
1
b

(a − x3 b∗) ∈ Tp, (62)

which satisfy μ μ−1 = μ−1μ = a . With the help of the notation (62) we can express the base vectors gi

and gj in terms of ai and aj in a simple way, namely (see, e.g., [29])

gα = μ aα, gα = μ−1aα, g3 = g3 = n0. (63)

These relations show that μ and μ−1 admit the following representations

μ = gα ⊗ aα = aα ⊗ gα, μ−1 = gα ⊗ aα = aα ⊗ gα. (64)

Let us compute next the derivatives of the tensors μ and μ−1 with respect to x3 : From (62)1, we obtain
directly

μ′ = −b, μ′′ = 0, μ′′′ = 0, μ(4) = 0. (65)

By differentiating repeatedly the relation μ μ−1 = a with respect to x3 , we obtain successively
(
μ−1

)′ = μ−1b μ−1,
(
μ−1

)′′ = 2(μ−1b)2μ−1,
(
μ−1

)′′′ = 6(μ−1b)3μ−1
(
μ−1

)(4) = 24(μ−1b)4μ−1. (66)

If we write the relations (62), (65) and (66) on the midsurface (x3 = 0), then we get

μ0 = a,
(
μ−1

)
0

= a,
(
μ−1

)′
0

= b,
(
μ−1

)′′
0

= 2 b2,
(
μ−1

)′′′
0

= 6 b3,
(
μ−1

)(4)

0
= 24 b4. (67)

Notice that, on the basis of the Cayley–Hamilton relation (8), we can write the powers of b in the form

b2 = 2Hb − Ka, b3 = (4H2 − K)b − 2HKa, b4 = 4H(2H2 − K)b − K(4H2 − K)a. (68)

Using the relations (63) and (64), we can now express the deformation gradient as follows

F ξ a = (ϕ,i ⊗ gi)a = ϕ,α ⊗ gα = (ϕ,α ⊗aα)(aβ ⊗ gβ) = (Grads ϕ)μ−1,
F ξn0 = (ϕ,i ⊗ gi)n0 = ϕ,3 = ϕ′, (69)

and hence,

F ξ = F ξ(a + n0 ⊗ n0) = (Grads ϕ)μ−1 + ϕ′ ⊗ n0. (70)
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Further, we differentiate the relation (70) to obtain the higher derivatives of the deformation gradient
with respect to x3 :

F ′
ξ = (Grads ϕ′)μ−1 + (Grads ϕ)

(
μ−1

)′ + ϕ′′ ⊗ n0,

F ′′
ξ = (Grads ϕ′′)μ−1 + 2(Grads ϕ′)

(
μ−1

)′ + (Grads ϕ)
(
μ−1

)′′ + ϕ′′′ ⊗ n0,

F ′′′
ξ = (Grads ϕ′′′)μ−1 + 3(Gradsϕ

′′)
(
μ−1

)′ + 3(Gradsϕ
′)

(
μ−1

)′′

+(Gradsϕ)
(
μ−1

)′′′ + ϕ(4) ⊗ n0,

F
(4)
ξ = (Grads ϕ(4))μ−1 + 4(Grads ϕ′′′)

(
μ−1

)′ + 6(Grads ϕ′′)
(
μ−1

)′′ + 4(Grads ϕ′)
(
μ−1

)′′′

+(Grads ϕ)
(
μ−1

)(4) + ϕ(5) ⊗ n0, (71)

and putting x3 = 0 in (70) and (71), we find
(
F ξ

)
0

= Grads ϕ0 + ϕ′
0 ⊗ n0,

(
F ξ

)′
0

= Grads ϕ′
0 + (Grads ϕ0) b + ϕ′′

0 ⊗ n0,
(
F ξ

)′′
0

= Grads ϕ′′
0 + 2(Grads ϕ′

0) b + 2(Grads ϕ0) b2 + ϕ′′′
0 ⊗ n0,

(
F ξ

)′′′
0

= Grads ϕ′′′
0 + 3(Grads ϕ′′

0) b + 6(Grads ϕ′
0) b2

+6(Grads ϕ0) b3 + ϕ
(4)
0 ⊗ n0,

(
F ξ

)(4)

0
= Grads ϕ

(4)
0 + 4(Grads ϕ′′′

0 ) b + 12(Grads ϕ′′
0) b2 + 24(Grads ϕ′

0) b3

+24(Grads ϕ0) b4 + ϕ
(5)
0 ⊗ n0. (72)

These relations will be useful in the sequel.

3.2.2. Integration of the curvature energy density Wcurv. To obtain a simple form of the shell curvature
energy in (60), we assume in this paper that the microrotation tensor Qe is independent of x3 , i.e.,

Qe = Qe(x1, x2). (73)

This condition means that the directors d0
i and di are functions of the surface coordinates (x1, x2) only,

which is in line with the assumed thinness of the shell. As a consequence of (73) and (36), we obtain for
the derivatives of the wryness tensor Γ the formula

Γ(k) = axl
(
QT

e Qe,α

)
⊗

(
gα

)(k) for k = 1, 2, 3, 4. (74)

In view of (63), the last relation reduces to

Γ(k) = axl
(
QT

e Qe,α

)
⊗

[
(μ−1)(k)aα

]
=

[
axl

(
QT

e Qe,α

)
⊗ aα

]
(μ−1)(k) = Ke(μ−1)(k), (75)

due to the symmetry of μ−1 and the definition of the shell bending-curvature tensor (13). We put x3 = 0
in (75), and using (67), we deduce

Γ0 = Ke, Γ ′
0 = Keb, Γ ′′

0 = 2Keb2, Γ ′′′
0 = 6Keb3, Γ(4)

0 = 24Keb4. (76)

Taking into account (76), we compute the following expressions which appear in the energy density (60):

Γ′′
0 − 4HΓ′

0 = 2Ke(b2 − 2Hb) = −2KKe,

Γ′′′
0 − 6HΓ′′

0 + 3KΓ′
0 = 3Ke(2b3 − 4Hb2 + Kb) = −3KKeb,

Γ(4)
0 − 8HΓ′′′

0 + 12KΓ′′
0 = 24Ke(b4 − 2Hb3 + Kb2) = 0. (77)



ZAMP Alternative derivation of the higher-order constitutive model Page 13 of 29 50

Thus, inserting (76) and (77) into (60), we obtain finally the form of the shell curvature energy density

Wbend,curv(Ke) :=
∫ h/2

−h/2

Wcurv(Γ) b dx3, with

Wbend,curv(Ke) =
(
h − K

h3

12

)
Wcurv(Ke) +

(h3

12
− K

h5

80

)
Wcurv(Keb) +

h5

80
Wcurv(Keb2). (78)

If we substitute here b2 = 2Hb − Ka in the last term, the relation (78) can be written in the alternative
equivalent form

Wbend,curv(Ke) =
(
h − K

h3

12
+ K2 h5

80

)
Wcurv(Ke) +

(h3

12
+ (4H2 − K)

h5

80

)
Wcurv(Keb)

−4HK
h5

80
Wcurv(Ke, Keb). (79)

3.2.3. Integration of the strain energy density Wmp. To proceed with the integration of the strain energy
density in (58), we need to compute the derivatives E

(k)
0 . In view of the definition of the strain tensor

(35) and the relation (73), we have

E0 = QT
e

(
F ξ

)
0

− 13, E
(k)
0 = QT

e

(
F ξ

)(k)

0
for k = 1, 2, 3, 4, (80)

where (F ξ)
(k)
0 are given by (72). In order to express the derivatives ϕ

(k)
0 appearing in (72), let us consider

the Taylor expansion of the deformation function ϕ with respect to x3 ∈ (−h
2 , h

2 ) about x3 = 0, which
reads

ϕ(x1, x2, x3) = m + x3 α +
1
2

(x3)2 β + +
1
6

(x3)3 γ +
1
24

(x3)4 δ + +
1

120
(x3)5 ε + · · · , (81)

where the vectors m,α,β,γ, δ and ε are functions of (x1, x2) such that

m = ϕ∣
∣x3=0

= ϕ0, α = ϕ′∣
∣x3=0

= ϕ′
0, β = ϕ′′

0 , γ = ϕ′′′
0 , δ = ϕ

(4)
0 , ε = ϕ

(5)
0 . (82)

Substituting (72) and (82) into (80), we obtain the derivatives of the strain tensor in the form

E0 = QT
e

(
Grads m + α ⊗ n0

)
− 13 = Ee + (QT

e α − n0) ⊗ n0,

E ′
0 = QT

e

[
Grads α +

(
Grads m

)
b + β ⊗ n0

]
,

E ′′
0 = QT

e

[
Grads β + 2

(
Grads α

)
b + 2

(
Grads m

)
b2 + γ ⊗ n0

]
,

E ′′′
0 = QT

e

[
Grads γ + 3

(
Grads β

)
b + 6

(
Grads α

)
b2 + 6

(
Grads m

)
b3 + δ ⊗ n0

]
,

E
(4)
0 = QT

e

[
Grads δ + 4

(
Grads γ

)
b + 12

(
Grads β

)
b2 + 24

(
Grads α

)
b3 + 24

(
Grads m

)
b4 + ε ⊗ n0

]
.

(83)

With the help of (83), we compute the following expressions appearing in relation (58):

E′′
0 − 4HE′

0 = QT
e

[
Grads β − 2(Grads α)b∗ − 2KGrads m + (γ − 4Hβ) ⊗ n0

]
,

E′′′
0 − 6HE′′

0 + 3KE′
0 = QT

e

[
Grads γ − 3(Grads β)b∗ − 3KGrads α − 3K(Grads m)b

+(δ − 6Hγ + 3Kβ) ⊗ n0

]
,

E
(4)
0 − 8HE′′′

0 + 12KE′′
0 = QT

e

[
Grads δ − 4(Grads γ)b∗ + (ε − 8Hδ + 12Kγ) ⊗ n0

]
. (84)
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Finally, we substitute (83) and (84) into the relation (58) and obtain the shell strain energy density
corresponding to Wmp in the form

∫ h/2

−h/2

Wmp(E) b dx3 =
(
h + K

h3

12

)
Wmp

(
Ee + (QT

e α − n0) ⊗ n0

)

+
h3

12

[
Wmp

(
QT

e

[
∇s α +

(
∇sm

)
b + β ⊗ n0

])

+Wmp

(
Ee + (QT

e α − n0) ⊗ n0, QT
e

[
∇sβ − 2(∇sα)b∗ − 2K∇sm + (γ − 4Hβ) ⊗ n0

])]

+
1
12

· h5

80

[
3Wmp

(
QT

e

[
(∇sβ − 2K∇sm) + 2(∇sα + 2H∇sm)b + γ ⊗ n0

])

+4Wmp

(
QT

e

[
∇sα +

(
∇sm

)
b + β ⊗ n0

]
, QT

e

[
∇sγ − 3(∇sβ)b∗ − 3K∇sα

−3K(∇sm)b + (δ − 6Hγ + 3Kβ) ⊗ n0

])

+Wmp

(
Ee + (QT

e α − n0) ⊗ n0, QT
e

[
∇sδ − 4(∇sγ)b∗ + (ε − 8Hδ + 12Kγ) ⊗ n0

])]
, (85)

where we have written here ∇s instead of Grads for brevity.
In conclusion, we have obtained the areal strain energy density Wshell in the representation (51), where

the two terms of the additive decomposition are given by (78) and (85).
In the next section, we show that the strain energy density (85) can be further reduced under appro-

priate assumptions for thin shells.

4. Simplifying assumptions for thin shells

Let us consider some assumptions and approximations valid for thin shells, which will lead us to a
simplified expression of the energy density (85) and to the final form of the shell model.

The stress vector Tn0 acting on the surfaces x3 = constant is assumed to be very small for thin shells,
so we can approximate Tn0 � 0 . Hence, from the Taylor expansion of Tn0 with respect to x3 we get

0 � T 0n0 + +x3 T ′
0n0 +

1
2

(x3)2 T ′′
0n0 + +

1
6

(x3)3 T ′′′
0 n0 +

1
24

(x3)4 T
(4)
0 n0 + · · · . (86)

In the above relation, we consider that the coefficients of (x3)k (for k = 0, 1, 2, 3, 4) are vanishing, i.e., we
assume

T 0n0 = 0, T ′
0n0 = 0, T ′′

0n0 = 0, T ′′′
0 n0 = 0, T

(4)
0 n0 = 0. (87)

These relations represent five vectorial equations which will allow us to determine the five vectors α,β,γ, δ
and ε of the expansion (81) in terms of m and Qe (and finally in terms of Ee and Ke).

As a direct consequence of the conditions (87), let us prove first the following helpful results.

Lemma 4.1. For any vector field v and order of differentiation k ∈ {0, 1, 2, 3, 4}, it holds

(i) T
(k)
0 = T

(k)
0 a,

(ii) T
(k)
0 : (v ⊗ n0) = 0,

(iii) Wmp(E(k)
0 , v ⊗ n0) = 0.

(88)

Proof. (i) In view of (87), we get

T
(k)
0 = T

(k)
0 13 = T

(k)
0 (a + n0 ⊗ n0) = T

(k)
0 a + (T (k)

0 n0) ⊗ n0 = T
(k)
0 a.

(ii) Using the definition of the scalar product and (87), we can write

T
(k)
0 : (v ⊗ n0) = tr

[
T

(k)
0 (v ⊗ n0)T

]
= tr

[
(T (k)

0 n0) ⊗ v
]

= 0.
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(iii) Taking into account the definition (56) and the relation (41), we deduce

Wmp(E(k)
0 , v ⊗ n0) = μ (symE

(k)
0 ) : sym(v ⊗ n0) + μc (skewE

(k)
0 ) : skew(v ⊗ n0) +

λ

2
tr(E(k)

0 ) tr(v ⊗ n0)

=
[
μ sym E

(k)
0 + μc skew E

(k)
0 +

λ

2
(tr E

(k)
0 )13

]
: (v ⊗ n0)

=
1
2
[
2μ sym E + 2μc skew E + λ(tr E)13

](k)

0
: (v ⊗ n0) =

1
2

QT
e T

(k)
0 : (v ⊗ n0)

=
1
2

tr
[
QT

e T
(k)
0 (v ⊗ n0)T

]
=

1
2

tr
[
QT

e (T (k)
0 n0) ⊗ v

]
= 0

and the relation (88) is proved. �

The determination of the five vectors α,β,γ, δ and ε will be pursued in five steps (a)–(e), respectively.
(a) Let us determine the vector α from the first equation in (87), i.e., from the condition T 0n0 = 0.

This equation can be written successively in the following equivalent forms: In view of (41), we get
[
2μ sym E0 + 2μc skew E0 + λ(tr E0)13

]
n0 = 0,

or, substituting here the relation (see (83)1)

E0 = Ee + u ⊗ n0 with u := QT
e α − n0,

we obtain
[
μ(u ⊗ n0 + n0 ⊗ u) + μc(u ⊗ n0 − n0 ⊗ u) + λ(u · n0)13

]
n0

= −
[
2μ sym Ee + 2μc skew Ee + λ(tr Ee)13

]
n0, (89)

which means

(μ + μc)u + (μ − μc)(u · n0)n0 + λ(u · n0)n0 = −
[
(μ + μc)Ee + (μ − μc)(Ee)T + λ

(
trEe

)
13

]
n0,

or, since u = au + (u · n0)n0 ,
[
(μ + μc)a + (λ + 2μ)n0 ⊗ n0

]
u = −

[
(μ − μc)

(
n0E

e
)

+ λ
(
trEe

)
n0

]
,

or, since μ + μc > 0 and λ + 2μ > 0 ,

QT
e α − n0 = −

[ 1
μ + μc

a +
1

λ + 2μ
n0 ⊗ n0

][
(μ − μc)

(
n0E

e
)

+ λ(trEe)n0

]
,

and since Qen0 = d3 , we obtain the result

α = d3 − Qe

[ μ − μc

μ + μc

(
n0E

e
)

+
λ

λ + 2μ

(
tr Ee

)
n0

]
. (90)

This expression of the vector α will be inserted in the strain energy density (85), which is equivalent to
(58). Indeed, if we substitute the solution (90) into (83)1 , we find

E0 = Ee −
[ μ − μc

μ + μc

(
n0E

e
)

+
λ

λ + 2μ

(
tr Ee

)
n0

]
⊗ n0 = Ln0

(
Ee

)
, (91)

where we have introduced the linear operator Ln0 defined by

Ln0(X) := X − μ − μc

μ + μc

(
n0X

)
⊗ n0 − λ

λ + 2μ

(
trX

)
n0 ⊗ n0 for any X = Xiαai ⊗ aα. (92)

In our model, we do not take into account the surface gradients of the strain measures Ee and Ke.
Therefore, when computing the gradient of α on the basis of relation (90), we make the approximation

Gradsα � Gradsd3. (93)

So, by virtue of (93) and the relation (see [7, f.(70)])

cKe = QT
e Gradsd3 + b, (94)
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we deduce

QT
e Gradsα = cKe − b. (95)

If we insert the last relation into (83)2 and use (12), then we get

E′
0 = (cKe − b) + (Ee + a)b + QT

e β ⊗ n0 = (Eeb + cKe) + QT
e β ⊗ n0. (96)

(b) To determine the vector β, we employ the second equation in (87), i.e., T ′
0n0 = 0. By virtue of

(41), this equation can be written successively in the following equivalent forms:
[
2μ sym E′

0 + 2μc skew E′
0 + λ(tr E′

0)13

]
n0 = 0,

or, inserting here (96),
[
μ(QT

e β ⊗ n0 + n0 ⊗ QT
e β) + μc(QT

e β ⊗ n0 − n0 ⊗ QT
e β) + λ(QT

e β · n0)13

]
n0

= −
[
2μ sym(Eeb + cKe) + 2μcskew(Eeb + cKe) + λ tr(Eeb + cKe)13

]
n0, (97)

which is an equation of the form (89) for the vector u = QT
e β and can be solved similarly to obtain the

solution

β = −Qe

[ μ − μc

μ + μc
n0

(
Eeb

)
+

λ

λ + 2μ
tr

(
Eeb + cKe

)
n0

]
, (98)

since n0(cKe) = 0. Then, substituting (98) into (96) and using the notation (92), we find

E′
0 =

(
Eeb+cKe

)
−

[ μ − μc

μ + μc
n0

(
Eeb

)
+

λ

λ + 2μ
tr

(
Eeb+cKe

)
n0

]
⊗ n0 = Ln0

(
Eeb + cKe

)
. (99)

From (98), we can compute the gradient Gradsβ in terms of the gradients of the strain measures Ee and
Ke. But, since we neglect the gradients of strain measures in our model, we shall approximate

Gradsβ � 0, (100)

on the basis of (98). Hence, using the relations (12), (95) and (100) into (83)3 , we find

E′′
0 = 2(cKe − b)b + 2(Ee + a)b2 + QT

e γ ⊗ n0 = 2(Eeb + cKe)b + QT
e γ ⊗ n0. (101)

(c) In the next step, we determine the vector γ from the equation T ′′
0n0 = 0, which is equivalent to(

QT
e T

)′′
0
n0 = 0. Substituting here the relation (41) and using the result (101) we deduce the equation
[
μ(QT

e γ ⊗ n0 + n0 ⊗ QT
e γ) + μc(QT

e γ ⊗ n0 − n0 ⊗ QT
e γ) + λ(QT

e γ · n0)13

]
n0

= −2
[
2μ sym

(
(Eeb + cKe)b

)
+ 2μcskew

(
(Eeb + cKe)b

)
+ λ tr

(
(Eeb + cKe)b

)
13

]
n0.

This is an equation of the same form as (89) for the vector u = QT
e γ and we can solve it similarly to

obtain the result

γ = −2Qe

[ μ − μc

μ + μc
n0

(
Eeb2

)
+

λ

λ + 2μ
tr

(
(Eeb + cKe)b

)
n0

]
. (102)

Inserting the vector γ given by (102) into (101) and using the notation (92), we derive

E′′
0 = 2Ln0

(
(Eeb + cKe)b

)
. (103)

Moreover, the relation (102) shows that we can approximate Gradsγ � 0 (since we neglect the gradients
of strain measures), and hence, the derivative E′′′

0 given by (83)4 reduces to

E′′′
0 = 6(cKe − b)b2 + 6(Ee + a)b3 + QT

e δ ⊗ n0 = 6(Eeb + cKe)b2 + QT
e δ ⊗ n0. (104)

(d) From the fourth equation T ′′′
0 n0 = 0 in (87), we can determine now the vector δ. We write this

equation in the equivalent form
(
QT

e T
)′′′
0

n0 = 0, and using here (41) and (104), we find
[
μ(QT

e δ ⊗ n0 + n0 ⊗ QT
e δ) + μc(QT

e δ ⊗ n0 − n0 ⊗ QT
e δ) + λ(QT

e δ · n0)13

]
n0

= −6
[
2μ sym

(
(Eeb + cKe)b2

)
+ 2μcskew

(
(Eeb + cKe)b2

)
+ λ tr

(
(Eeb + cKe)b2

)
13

]
n0.
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We solve this equation in the same manner as equation (89), and we obtain

δ = −6Qe

[ μ − μc

μ + μc
n0

(
Eeb3

)
+

λ

λ + 2μ
tr

(
(Eeb + cKe)b2

)
n0

]
. (105)

Inserting this in (104), we get

E′′′
0 = 6Ln0

(
(Eeb + cKe)b2

)
. (106)

Further, on the basis of (105) we can approximate Gradsδ � 0 and the relation (83)5 becomes

E
(4)
0 = 24(Eeb + cKe)b3 + QT

e ε ⊗ n0. (107)

(e) To solve the equation T
(4)
0 n0 = 0, we repeat the procedure from step (d) and determine the

vector

ε = −24Qe

[ μ − μc

μ + μc
n0

(
Eeb4

)
+

λ

λ + 2μ
tr

(
(Eeb + cKe)b3

)
n0

]
. (108)

Hence, the relation (107) can be written in the condensed form

E
(4)
0 = 24Ln0

(
(Eeb + cKe)b3

)
. (109)

By doing this, we have finished to determine the vectors α,β,γ, δ and ε from the system of equations
(87). Let us show next the following auxiliary results concerning the linear operator Ln0 defined in (92).

Lemma 4.2. (i) For any two tensors X = Xiαai ⊗aα and Y = Yiαai ⊗aα, the following equality holds

Wmp

(
Ln0(X),Y

)
= WCoss(X,Y ), (110)

where the bilinear form WCoss has been already defined in (29).
(ii) If the conditions (87) are satisfied, then the following relation holds

Wmp

(
Ln0(U), Ln0(V )

)
= WCoss(U ,V ) for all U ,V ∈ {Ee, (Eeb + cKe)bk ; k = 0, 1, 2, 3},

(111)

where we have denoted for convenience b0 = a.

Proof. (i) Using the decomposition X = aX + n0 ⊗ (n0X), we can rewrite the definition (56) in the
form

Wmp(X,Y ) = μ sym(aX) : sym(aY ) + μc skew(aX) : skew(aY ) +
λ

2
(trX)(trY )

+
μ + μc

2
(
n0X

)
·
(
n0Y

) (112)

for any tensors X = Xiαai ⊗ aα, Y = Yiαai ⊗ aα, and comparing with (29), we deduce

Wmp(X,Y ) = WCoss(X,Y ) +
λ2

2(λ + 2μ)
(trX)(trY ) +

(μ − μc)2

2(μ + μc)
(
n0X

)
·
(
n0Y

)
. (113)

Now, in view of (92) we get

Wmp

(
Ln0(X),Y

)
= Wmp

(
X −

[ μ − μc

μ + μc

(
n0X

)
+

λ

λ + 2μ

(
trX

)
n0

]
⊗ n0 , Y

)

and denoting for the moment the vector w :=
μ − μc

μ + μc

(
n0X

)
+

λ

λ + 2μ

(
trX

)
n0 , we find

Wmp

(
Ln0(X),Y

)
= Wmp(X,Y ) − Wmp(w ⊗ n0 ,Y )

= Wmp(X,Y ) −
[
μ sym(w ⊗ n0) + μc skew(w ⊗ n0) +

λ

2
tr(w ⊗ n0)13

]
: Y

= Wmp(X,Y ) −
[ μ + μc

2
(w ⊗ n0) +

μ − μc

2
(n0 ⊗ w) +

λ

2
(w · n0)13

]
: Y .
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Taking into account that Y n0 = 0 and substituting the vector w, we deduce

Wmp

(
Ln0(X),Y

)
= Wmp(X,Y ) −

[ (μ − μc)2

2(μ + μc)
n0 ⊗

(
n0X

)
+

λ2

2(λ + 2μ)
(
trX

)
13

]
: Y

= Wmp(X,Y ) −
[ (μ − μc)2

2(μ + μc)
(
n0X

)
·
(
n0Y

)
+

λ2

2(λ + 2μ)
(trX)(trY )

]

= WCoss(X,Y ),

in view of (113). Thus, the relation (110) is proved.
(ii) With the help of (110), we can prove now the relation (111). If we choose U = V = Ee in (111),

then using successively equations (91), (92), (88)3 (Lemma 4.1) and (110), we get

Wmp

(
Ln0(E

e)
)

= Wmp

(
E0, Ln0(E

e)
)

= Wmp

(
E0, Ee −

[ μ − μc

μ + μc

(
n0E

e
)

+
λ

λ + 2μ

(
trEe

)
n0

]
⊗ n0

)

= Wmp

(
E0, Ee

)
= Wmp

(
Ln0(E

e), Ee
)

= WCoss

(
Ee

)
. (114)

Further, if we take U = Ee and V = (Eeb + cKe)bk, then we can write similarly

Wmp

(
Ln0(E

e), Ln0

(
(Eeb + cKe)bk

))
= Wmp

(
E0, Ln0

(
(Eeb + cKe)bk

))

= Wmp

(
E0, (Eeb + cKe)bk

)

= Wmp

(
Ln0(E

e), (Eeb + cKe)bk
)

= WCoss

(
Ee, (Eeb + cKe)bk

)
. (115)

The last case U = (Eeb + cKe)bk and V = (Eeb + cKe)bl can be proved analogously (on the basis of
(88)3). Then, the relation (111) is completely proved. �

Finally, we are now able to write the simplified form of the strain energy density (85), which is
equivalent to (58). If we employ the relation (111) (Lemma 4.2) in conjunction with (91), (99), (103),
(106) and (109), we can calculate the terms appearing in the strain energy density (58) in the following
way

Wmp

(
E0

)
= Wmp

(
Ln0(E

e)
)

= WCoss

(
Ee

)
,

Wmp

(
E′

0

)
= Wmp

(
Ln0(E

eb + cKe)
)

= WCoss

(
Eeb + cKe

)
,

Wmp

(
E′′

0

)
= Wmp

(
2Ln0

(
(Eeb + cKe)b

))
= 4WCoss

(
(Eeb + cKe)b

)
,

Wmp(E0,E
′′
0 − 4HE′

0) = WCoss

(
Ee, 2(Eeb + cKe)b − 4H(Eeb + cKe)

)

= −2WCoss

(
Ee, (Eeb + cKe)b∗),

Wmp(E′
0,E

′′′
0 − 6HE′′

0 + 3KE′
0) = WCoss

(
Eeb + cKe, 6(Eeb + cKe)b2 − 12H(Eeb + cKe)b

+3K(Eeb + cKe)
)

= −3K WCoss

(
Eeb + cKe

)
,

Wmp(E0,E
(4)
0 − 8HE′′′

0 + 12KE′′
0) = WCoss

(
Ee, 24(Eeb + cKe)b3 − 48H(Eeb + cKe)b2

+24K(Eeb + cKe)b
)

= 0, (116)
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since b2 − 2Hb + Ka = 0. Substituting (116) into (58), we find the reduced form of the strain energy
density

Wmemb,bend(Ee,Ke) :=
∫ h/2

−h/2

Wmp(E) b dx3 with

Wmemb,bend(Ee,Ke) =
(
h + K

h3

12

)
WCoss

(
Ee

)
+

(h3

12
− K

h5

80

)
WCoss

(
Eeb + cKe

)

− h3

12
2WCoss

(
Ee, (Eeb + cKe)b∗) +

h5

80
WCoss

(
(Eeb + cKe)b

)
. (117)

The last relation can be written, in view of b b∗ = Ka, in the alternative equivalent form

Wmemb,bend(Ee,Ke) =
(
h − K

h3

12

)
WCoss

(
Ee

)
+

(h3

12
− K

h5

80

)
WCoss

(
Eeb + cKe

)

− h3

12
2WCoss

(
Ee, cKeb∗) +

h5

80
WCoss

(
(Eeb + cKe)b

)
. (118)

In conclusion, we have obtained the total strain energy density Wshell(Ee,Ke) for the Cosserat shell
model as the sum (51) of the strain energy density (118) and the curvature energy density (78), in the
following form

Wshell(Ee,Ke) := Wmemb,bend(Ee,Ke) + Wbend,curv(Ke)

=
(
h − K

h3

12

)[
WCoss

(
Ee

)
+ Wcurv

(
Ke

)]
+

(h3

12
− K

h5

80

)

[
WCoss

(
Eeb + cKe

)
+ Wcurv

(
Keb

)]
− h3

12
2WCoss

(
Ee, cKeb∗)

+
h5

80

[
WCoss

(
(Eeb + cKe)b

)
+ Wcurv

(
Keb2

)]
, (119)

where b∗ = −b + 2Ha, the bilinear form WCoss is defined in (29) and Wcurv in (59).
In the part Wmemb,bend of the energy density, which accounts for combined stretching and bending

deformations, we observe the coupling between the strain tensor Ee and the bending tensor cKe. Also,
we see in the expression (119) the dependence of the constitutive coefficients on the initial curvature
through the mean curvature H, the Gauß curvature K and the tensor b = −Grads n0 .

Remark 4.3. Taking into account the relations (91), (99), (103), (106) and (109), we can write the Taylor
expansion with respect to x3 in the following form

E = Ln0

(
Ee

)
+ x3 Ln0

(
Eeb + cKe

)
+ (x3)2 Ln0

(
(Eeb + cKe)b

)
+ (x3)3 Ln0

(
(Eeb + cKe)b2

)

+(x3)4 Ln0

(
(Eeb + cKe)b3

)
+ O(x5

3). (120)

The linear operator Ln0 defined by (92) satisfies the relation Ln0(X)a = X for any tensor X = Xiαai ⊗
aα. Hence, multiplying (120) with a we obtain for the projection Ea of the three-dimensional strain
tensor the following expression

Ea = Ee + x3

(
Eeb + cKe

)
+ (x3)2

(
Eeb + cKe

)
b

+(x3)3
(
Eeb + cKe

)
b2 + (x3)4

(
Eeb + cKe

)
b3 + O(x5

3). (121)

Following the same line of thought as in [33], in view of relation (121) we can interpret the tensor
Eeb + cKe as a strain measure appropriate to bending for 6-parameter shells. Thus, we define the new
mixed bending tensor by

Φe := Eeb + cKe. (122)
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Using the relations (12) and (95) into (122), we obtain Φe = (QT
e Gradsm − a)b + (QT

e Gradsd3 + b),
i.e.,

Φe = QT
e

[(
Gradsm

)
b + Gradsd3

]
. (123)

We notice that the mixed bending tensor (123) vanishes in the reference configuration indeed, since it
reduces to QT

e

[
(Gradsy0)b + Gradsd

0
3

]
= QT

e

(
ab + Gradsn0

)
= QT

e

(
b − b

)
= 0.

With this notation, we can express the strain energy density (117) in terms of the strain tensor Ee

and the mixed bending tensor Φe as follows

Wmemb,bend(Ee,Ke) = W̆memb,bend(Ee,Φe) =
(
h + K

h3

12

)
WCoss

(
Ee

)

+
(h3

12
− K

h5

80

)
WCoss

(
Φe

)
− h3

12
2WCoss

(
Ee,Φeb∗) +

h5

80
WCoss

(
Φeb

)
. (124)

5. Further remarks and special cases

In order to gain more insight in the mechanical meaning of the various terms in the energy density (119),
we shall write the two parts Wmemb,bend(Ee,Ke) and Wbend,curv(Ke) of the elastically stored energy in
some other useful alternative forms.

5.1. Alternative expression of the shell strain energy density Wmemb,bend(Ee, Ke)

We remark that the bending-curvature tensor Ke appears in the energy density Wmemb,bend(Ee,Ke)
in (118) only through the combination cKe. If we replace cKe = −ρe, where ρe is the bending tensor
defined by (16), as well as b∗ = −b + 2Ha and b2 = 2Hb − Ka in (118), we can put the shell strain
energy density in the form

Wmemb,bend(Ee,Ke) = W̃memb,bend(Ee,ρe)

=
(
h − K

h3

12
+ K2 h5

80

)
WCoss

(
Ee

)
+

(h3

12
− K

h5

80

)
WCoss

(
ρe

)

+
(h3

12
+ (4H2 − K)

h5

80

)
WCoss

(
Eeb

)
+

h5

80
WCoss

(
ρeb

)

+
h3

12
4H WCoss

(
Ee,ρe

)
− h5

80
4HK WCoss

(
Ee,Eeb

)

−2
(h3

12
− K

h5

80

)(
WCoss

(
Ee,ρeb

)
+ WCoss

(
Eeb,ρe

))

− h5

80
4H WCoss

(
Eeb,ρeb

)
, (125)

which is expressed only in terms of the shell strain tensor Ee, the bending tensor ρe and the combinations
Eeb and ρeb. One can see clearly in (125) the coupling terms for the strain measures Ee and ρe.

Further, we would like to decompose the shell strain tensor Ee in the in-plane deformation tensor
εe = aEe and the transverse shear deformation vector γe = n0E

e, according to relations (14). Using the
decomposition X = aX + n0 ⊗ (n0X), we can write the bilinear form WCoss(X,Y ) defined by (29) in
the form

WCoss(X,Y ) = Wmixt(aX,aY ) +
2μ μc

μ + μc

(
n0X

)
·
(
n0Y

)
(126)
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for any tensors X = Xiαai ⊗ aα, Y = Yiαai ⊗ aα, where we introduce the bilinear form Wmixt(X,Y )
by

Wmixt(X,Y ) := μ (sym X) : (sym Y ) + μc(skew X) : (skew Y ) +
λ μ

λ + 2μ

(
trX

) (
trY

)
,

Wmixt(X) := Wmixt(X,X). (127)

Then, in view of (14) and n0ρ
e = 0, the relation (126) yields

WCoss(Ee) = Wmixt(εe) +
2μ μc

μ + μc
‖γe‖2,

WCoss(ρe) = Wmixt(ρe) and WCoss(Ee,ρe) = Wmixt(εe,ρe). (128)

Using relations of the type (128) in (125), we obtain the following alternative form of the strain energy
density

Wmemb,bend(Ee,Ke) = Wmemb,bend(εe,γe,ρe)

=
(
h − K

h3

12
+ K2 h5

80

)
Wmixt

(
εe

)
+

(h3

12
− K

h5

80

)
Wmixt

(
ρe

)

+
(h3

12
+ (4H2 − K)

h5

80

)
Wmixt

(
εeb

)

+
h5

80
Wmixt

(
ρeb

)
+

h3

12
4H Wmixt

(
εe,ρe

)
− h5

80
4HK Wmixt

(
εe, εeb

)

−2
(h3

12
− K

h5

80

)(
Wmixt

(
εe,ρeb

)
+ Wmixt

(
εeb,ρe

))
− h5

80
4H Wmixt

(
εeb,ρeb

)

+
2μ μc

μ + μc

[(
h − K

h3

12
+ K2 h5

80

)
‖γe‖2 +

(h3

12
+ (4H2 − K)

h5

80

)
‖γeb‖2

− h5

80
4HK γe · (γeb)

]
, (129)

which is written in terms of the strain measures εe, γe and ρe. Note that the last square bracket in (129)

accounts for the transverse shear deformation and has the coefficient
2μ μc

μ + μc
, i.e., the harmonic mean

between the shear modulus μ and the Cosserat couple modulus μc .

Remark 5.1. Let us point out the mechanical and geometrical significance of the strain measures γe, εe

and ρe. For the transverse shear deformation vector γe given by (14), (15), we have clearly

γe =
(
m,α ·Qen0

)
⊗ aα, (130)

i.e., we consider the scalar products between the tangent vectors to the deformed midsurface m,α and
the rotated normal Qen0 = d3 (third director).

Next, the strain tensor of in-plane deformation εe, which was introduced in (14), can be written in
the form

εe = aEe = (Qea)T Gradsm − a = (QeGradsy0)
T Gradsm − (Gradsy0)

T Gradsy0. (131)

This strain tensor has the same structure as the change of metric tensor

2ε := (Gradsm)T Gradsm − (Gradsy0)
T Gradsy0, (132)

which is usually employed in the classical (Koiter) shell theory.
Further, the bending tensor ρe given by (16), (17) can be written as

ρe = −(Qea)T Gradsd3 + Gradsn0 = −(QeGradsy0)
T Grads(Qen0) + (Gradsy0)

T Gradsn0. (133)
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This tensor is similar to the change of curvature tensor

ρ := −(Gradsm)T Gradsn + (Gradsy0)
T Gradsn0, (134)

which is commonly used in the Koiter shell model (n is the unit normal to the deformed midsurface),
see, e.g., [14,20,36].

5.2. Alternative form of the shell curvature energy density Wbend,curv(Ke)

Let us express the bending-curvature tensor Ke in terms of the bending tensor ρe = −cKe and the vector
of drilling bendings νe = n0K

e, according to the decomposition (16), and insert this in the curvature
energy density Wbend,curv(Ke) given by (78). To this aim, let us introduce the bilinear form Wcps by

Wcps(U ,V ) := μL2
c

[
b1(sym U) : (sym V ) +

(
2b3 +

b1

3

)
(skew U) : (skew V ) +

b2 − b1

2
(
tr U

) (
trV

)]
,

Wcps(U) := Wcps(U ,U) for any tensors U = Uαβaα ⊗ aβ , V = Vαβaα ⊗ aβ . (135)

We employ the surface deviator operator devs , which was defined in [5,11] by

devs X := X − 1
2
(
tr X

)
a. (136)

With the help of devs we can decompose any tensor X = Xiαai ⊗ aα as a direct sum (orthogonal
decomposition)

X = devssym X + skew X +
1
2

(
tr X

)
a. (137)

Then, the definition (135) can be written alternatively

Wcps(U ,V ) = μL2
c

[
b1(devssym U) : (devssym V ) +

(
2b3 +

b1

3

)
(skew U) : (skew V ) +

b2

2
(
tr U

) (
trV

)]

(138)

and

Wcps(U) = μL2
c

[
b1‖devssym U‖2 +

(
2b3 +

b1

3

)
‖skew U‖2 +

b2

2
(
tr U

)2
]
, (139)

which shows that the quadratic form Wcps(U) is positive definite (since b1, b2, b3 > 0).
Let us prove next some useful relations.

Lemma 5.2. (i) For any two tensors of the form U = Uαβaα ⊗ aβ , V = Vαβaα ⊗ aβ we have

skew(c U) =
1
2

(
trU

)
c and

skew(c U) : skew(c V ) =
1
2

(
tr U

) (
tr V

)
. (140)

(ii) For any tensor of the form S = Sαβaα ⊗ aβ we have

‖skew(cS)‖2 =
1
2

(
trS

)2
,

[
tr(c S)

]2 = 2 ‖skew S‖2, ‖devssym(cS)‖2 =‖devssym S‖2. (141)

(iii) For any tensor X = Xiαai ⊗ aα, we can represent the quadratic form Wcurv(X) in the following
ways

Wcurv(X) = Wcurv(aX) + μL2
c

b1 + b2

2
‖n0X‖2

= Wcps(cX) + μL2
c

b1 + b2

2
‖n0X‖2. (142)
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Proof. (i) On the basis of the relation (see [10, f. (59)])

cU =
(
tr U

)
c − UT c, (143)

we deduce that

skew(c U) =
1
2

(
c U − UT cT

)
=

1
2

(
c U + UT c

)
=

1
2

(
tr U

)
c

and the relation (140)1 is proved. Further, using the last relation we can write

skew(c U) : skew(c V ) =
1
4

(
trU

) (
trV

)
c : c =

1
2

(
tr U

) (
tr V

)
,

since c : c = tr(cT c) = tr(−c2) = tr(a) = 2.
(ii) The relation (141)1 follows directly from (140)2 provided we choose U = V = S. Also, we can

obtain (141)2 directly from (140)2 if we put U = V = cS and take into account that c2 = −a. To show
the third relation in (141), let us prove the more general identity

devssym(c U) : devssym(c V ) = (devssym U) : (devssym V ) , (144)

which holds for any tensors U = Uαβaα ⊗ aβ , V = Vαβaα ⊗ aβ . Indeed, using the orthogonal decompo-
sition (137) we find

U : V = (devssym U) : (devssym V ) + (skew U) : (skew V ) +
1
2

(
tr U

) (
tr V

)
. (145)

Then, in view of part (i) and the relation (c U) : (c V ) = tr(UT cT cV ) = tr(UT V ) = U : V we deduce
from (145) that

(devssym U) : (devssym V ) = U : V − (skew U) : (skew V ) − 1
2

(
tr U

) (
tr V

)

= (c U) : (c V ) − 1
2

tr(c U) tr(c V ) − skew(c U) : skew(c V )

= devssym(c U) : devssym(c V )

and the identity (144) is proved. If we put U = V = S in (144), we obtain the desired result (141)3 .
(iii) The first equation in (142) follows directly from the definition (59) and the decomposition

X = aX + n0 ⊗ (n0X). Further, using the relations (138)–(141) and (144) we obtain

Wcurv(aX,aY ) = Wcps(cX, cY ) and Wcurv(aX) = Wcps(cX) (146)

for any tensors X = Xiαai ⊗ aα, Y = Yiαai ⊗ aα . By virtue of (146), the second equation (142) is also
proved and the proof is complete. �

With the help of Lemma 5.2 (iii), we can rewrite the shell curvature energy density (78) in an alter-
native form, in terms of the bending tensor ρe = −cKe and the vector of drilling bendings νe = n0K

e,
as follows

Wbend,curv(Ke) = W̃bend,curv(ρe,νe)

=
(
h − K

h3

12

)
Wcps

(
ρe

)
+

(h3

12
− K

h5

80

)
Wcps

(
ρeb

)
+

h5

80
Wcps

(
ρeb2

)

+μL2
c

b1 + b2

2

[(
h − K

h3

12

)
‖νe‖2 +

(h3

12
− K

h5

80

)
‖νeb‖2 +

h5

80
‖νeb2‖2

]
. (147)
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Substituting b2 = 2Hb − Ka , the last relation can be written alternatively

W̃bend,curv(ρe,νe) =
(
h − K

h3

12
+ K2 h5

80

)
Wcps

(
ρe

)
+

(h3

12
+ (4H2 − K)

h5

80

)
Wcps

(
ρeb

)

− h5

80
4HK Wcps

(
ρe,ρeb

)
+ μL2

c

b1 + b2

2

[(
h − K

h3

12
+ K2 h5

80

)
‖νe‖2

+
(h3

12
+ (4H2 − K)

h5

80

)
‖νeb‖2 − h5

80
4HK νe · (νeb)

]
. (148)

One can see that the last square bracket in the energy density (148) (or (147)) accounts for the drilling
bendings νe, whereas the first three terms account for the bending deformation characterized by the
tensor ρe.

5.3. Special case: the quadratic ansatz

In many papers on shell or plate modeling, the deformation function (or the displacement vector) is
represented as a quadratic function in the thickness coordinate x3, which coefficients depend on the
surface coordinates (x1, x2). For instance, in [7] a quadratic ansatz for the deformation function ϕ is
adopted. This is tantamount to assume that the vectors γ, δ, ε, . . . vanish in the formula (81), i.e., we
have

γ = 0, δ = 0, ε = 0, ... (149)

and the expansion (81) reduces to

ϕ(x1, x2, x3) = m(x1, x2) + x3 α(x1, x2) +
x2

3

2
β(x1, x2). (150)

By using the representation (150) together with the assumptions (approximations)

T 0n0 = 0 and T ′
0n0 = 0, (151)

we can follow the same procedure as in Sect. 4 to obtain the following areal strain energy density corre-
sponding to the quadratic ansatz

W(quad)
shell (Ee,Ke) = W(quad)

memb,bend(Ee,Ke) + Wbend,curv(Ke), (152)

where Wbend,curv(Ke) is given by (78) (or (147)), while W(quad)
memb,bend(Ee,Ke) has the following expression

W(quad)
memb,bend(Ee,Ke) =

(
h − K

h3

12

)
WCoss

(
Ee

)
+

(h3

12
− K

h5

80

)
WCoss

(
Eeb + cKe

)

− h3

12
2WCoss

(
Ee, cKeb∗) +

h5

80
Wmp

(
(Eeb + cKe)b

)
. (153)

Here, Wmp is the quadratic form defined by (56). We notice that the only difference between the strain
energy density (153) and the energy Wmemb,bend(Ee,Ke) obtained for the general case in (118) is that
the last term involves the quadratic form Wmp in (153) instead of WCoss in (118). This difference is due
to the truncated (quadratic) ansatz in (150). Nevertheless, we mention that the general correct result is
given by (118), since it is necessary to consider the complete fifth-order representation (81) when deriving
a shell model of order O(h5).

Remark 5.3. The quadratic representation (150) has been adopted also in the work [5], where a model
of order O(h3) for Cosserat shells has been derived. Thus, using the same derivation method and the
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conditions (151), we have obtained in [5, f. (68)] the strain energy density W̄shell(Ee,Ke) in the form
(28), or equivalently

W̄shell(Ee,Ke) =
(
h − K

h3

12

)[
WCoss

(
Ee

)
+ Wcurv

(
Ke

)]

+
h3

12
[
WCoss

(
Eeb + cKe

)
− 2WCoss

(
Ee, cKeb∗) + Wcurv

(
Keb

)]
. (154)

We observe that this expression is merely the truncation of the total strain energy density (119) which
retains only the terms of order O(h3). The relation between the model (154) and the classical Koiter shell
model has been discussed in [5, Sect. 5.3].

Next, let us compare our results with the shell model obtained in [7], see also the work [18] which
presents this model in matrix formulation. In [7, f. (65)], the following quadratic ansatz has been assumed

ϕ(x1, x2, x3) = m(x1, x2) + x3 α(x1, x2)d3 +
1
2

(x3)2 β(x1, x2)d3 . (155)

This is a special case of the representation (150), in which α = αd3 , β = βd3 (i.e., the directions of
the unknown vectors α and β are prescribed to coincide with the third director d3), and the lengths of
these vectors α(x1, x2) and β(x1, x2) have to be determined. Then, the scalar fields α and β have been
determined in [7] on the basis of the assumptions

n0 · T 0n0 = 0 and n0 · T ′
0n0 = 0, (156)

which is a weaker variant of the requirements (151), where only the normal components of the stress
vectors T 0n0 and T ′

0n0 are assumed to vanish. Using a different derivation procedure, the following
areal strain energy density has been obtained (see [7, f. (104)])

Ŵshell(Ee,Ke) = Ŵmemb,bend(Ee,Ke) + Wbend,curv(Ke), (157)

where Wbend,curv(Ke) is given by (78) and the strain energy density Ŵmemb,bend(Ee,Ke) has the form

Ŵmemb,bend(Ee,Ke) =
(
h − K

h3

12

)
Wmixt

(
Ee

)
+

(h3

12
− K

h5

80

)
Wmixt

(
Eeb + cKe

)

− h3

12
2Wmixt

(
Ee, cKeb∗) +

h5

80
Wmp

(
(Eeb + cKe)b

)
. (158)

To compare this result with the strain energy density W(quad)
memb,bend(Ee,Ke) given by (153), we need to

compare the two bilinear forms Wmixt and WCoss . To this aim, we employ the relation (126) as compared
with

Wmixt(X,Y ) = Wmixt(aX,aY ) +
μ + μc

2
(
n0X

)
·
(
n0Y

)
. (159)

In this manner, we remark that the model (158) derived in [7] coincides with the strain energy density
(153) obtained here in the case of quadratic ansatz, except for the transverse shear coefficients: The

transverse shear coefficient in [7] is the arithmetic mean
μ + μc

2
, whereas we obtain here as transverse

shear coefficient the harmonic mean
2μ μc

μ + μc
(see (129)).

Further, in order to compare the strain energy density (158) from [7] with our result (129) obtained
for the general case (extended ansatz), we employ the relations (159) and

Wmp(X,Y ) = Wmixt(X,Y ) +
λ2

2(λ + 2μ)
(
tr X

) (
trY

)
,
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together with the notations εe = aEe, γe = n0E
e, ρe = −cKe. By inserting these relations, we write

the energy (158) in the following equivalent form

Ŵmemb,bend(Ee,Ke) = Ŵmemb,bend(εe,γe,ρe) =
(
h − K

h3

12
+ K2 h5

80

)
Wmixt

(
εe

)

+
(h3

12
− K

h5

80

)
Wmixt

(
ρe

)

+
(h3

12
+ (4H2 − K)

h5

80

)
Wmixt

(
εeb

)
+

h5

80
Wmixt

(
ρeb

)

+
h3

12
4H Wmixt

(
εe,ρe

)
− h5

80
4HK Wmixt

(
εe, εeb

)

−2
(h3

12
− K

h5

80

)(
Wmixt

(
εe,ρeb

)
+ Wmixt

(
εeb,ρe

))
− h5

80
4H Wmixt

(
εeb,ρeb

)

+
μ + μc

2

[(
h − K

h3

12
+ K2 h5

80

)
‖γe‖2 +

(h3

12
+ (4H2 − K)

h5

80

)
‖γeb‖2

+
λ2

2(λ + 2μ)
[
tr

(
(εeb − ρe)b

)]2
. (160)

We are now able to compare directly the strain energy densities (129) and (160): Apart from the difference
between the transverse shear coefficients (as mentioned above), we remark that the last term from (160)
has been reduced in our refined analysis and does not appear in the general result (129).

In conclusion, the shell model obtained in [7] corresponds to the special case of quadratic ansatz (149)–
(153), in the sense that the strain energy density Ŵmemb,bend(Ee,Ke) from [7, f. (104)] coincides with
W(quad)

memb,bend(Ee,Ke) in (153), but with different transverse shear coefficients. Moreover, by comparing
our general result (129) with the model (160) (obtained in [7]), we deduce that the last term in (160) has
to be cancelled in the expression of the strain energy density, since this term is only a consequence of the
rough (quadratic) truncation of the expansion of ϕ used in the special case of quadratic ansatz.

Thus, the developments of the present paper show that the model presented in [7] can be improved

by discarding the last term in (160) and by adjusting the transverse shear coefficients to equal
2μ μc

μ + μc
.

Remark 5.4. The difference between the transverse shear coefficients in the two models (129) versus (160)
is due to the fact that in [7] the vectors α and β are assumed to be collinear with d3 (cf. (155)), but in
our present work the directions of α and β are not prescribed a priori (see (81) or (150)).

The value of the transverse shear coefficient
2μ μc

μ + μc
derived in the present analysis is also confirmed

by the Γ-convergence results obtained in the paper [26] in the case of Reissner–Mindlin plates.
We mention that the value of the transverse shear coefficient is adjusted in various shell or plate

models by means of shear correction factors; see, e.g., the shear correction factors αs , αt in Eqs. (26),
(27) for 6-parameter shells. For the discussion on shear correction factors in the literature we refer to the
papers [1,13,37], among others.

Remark 5.5. Under certain conditions, one can show that the obtained strain energy density (119) is
coercive. This feature has been proved for related Cosserat shell models in [19], using the matrix formu-
lation. Then, applying the general existence results for 6-parameter shells presented in [8], one can prove
the existence of minimizers for the nonlinear shell model derived in the present work.

Remark 5.6. This Cosserat shell model of order O(h5) can be employed in applications, e.g., to solve
complex shell problems by numerical simulations. For a related planar Cosserat shell model of order O(h3)
derived in [22,24], the numerical treatment has been presented in [32] using geodesic finite elements. Then,
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several concrete mechanical problems involving shells with large rotations have been solved numerically,
see [31,32].

6. Conclusions

In this paper, we have presented a simple general procedure to derive the explicit form of the areal strain
energy density of order O(h5) for isotropic 6-parameter elastic shells, starting from the three-dimensional
Cosserat model. This derivation procedure is inspired by the corresponding method from the classical
shell theory, see, e.g., [36]. The obtained closed-form strain energy density is written in Eq. (119), or
in alternative forms in relations (129) and (148). Here, we can see the dependence of the constitutive
coefficients on the initial curvature of the shell, as well as the coupling between stretching and bending
deformations. The constitutive coefficients of the model are expressed explicitly in terms of the three-
dimensional elasticity constants.

Finally, we have compared in Sect. 5.3 our results with the previous Cosserat shell model presented
in [7] and have shown that the advantage of the new derivation procedure is twofold: Firstly, we obtain
the transverse shear coefficient confirmed previously by a Γ-convergence analysis in [26] for the case of
plates. Secondly, based on the extended ansatz (81), we are able to improve the expression of the strain
energy density by discarding the last higher-order term in Eq. (160).

We mention that the obtained strain energy density (119) satisfies the invariance properties required
by the local symmetry group of isotropic 6-parameter shells, which have been established in a general
theoretical framework by Eremeyev and Pietraszkiewicz [16, Sect. 9].
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