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1. Introduction

Consider the system
ü = − u

|u|3 + ε∇uU(t, u, ε), u ∈ R
3 (1)

where U is a C∞-function defined on R × U × [0, ε∗] for an open set U ⊂ R
3 containing the origin u = 0

and some ε∗ > 0. The function U(t, u, ε) is assumed to be T -periodic in t. This system models a Kepler
problem with an external periodic force.

It is a classical problem in the theory of perturbations to look for periodic solutions for small ε. Tra-
ditionally, due to the proper-degeneracy of the Kepler problem, all the collisionless bounded orbits are
closed and some non-degeneracy condition has to be imposed on the function U(t, u, ε). This condition
has to be verified for concrete U(t, u, ε). In typical situations the periodic orbits are found in the neigh-
bourhood of a prescribed closed orbit of the unperturbed Kepler problem and in particular they have no
collisions.

A result of different nature was obtained in [4], in which it has been shown that for any smooth function
U , the equation (1) has an arbitrarily large number of T -periodic solutions if ε has been accordingly chosen
small enough. As it is usually the case in the study of periodic orbits with singular potentials, in the
framework of [4] the function U was supposed to be globally defined; that is,

U = R
3. (2)

Also, the periodic solutions are understood in a generalized sense. They can have collisions but the energy
and the direction of motion must be preserved after each bouncing at a time t∗ with u(t∗) = 0.

There are good topological reasons for the introduction of generalized solutions. Let M be the set of
T -periodic solutions of the Kepler problem (ε = 0). After including solutions with collisions it becomes a
manifold

M̃ =
∞⋃

n=1

Mn
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with infinitely many connected components Mn, where each of them is compact. The periodic solutions
of (1) for ε �= 0 are obtained as bifurcations from these manifolds. The compactness is essential if we
want to guarantee that this bifurcation is always produced.

On the other hand, as we will explain in this note, since our method is perturbative, the condition
(2) is not so essential. Since the components Mn converge to the origin as n → ∞, the projection of
Mn on the configuration space will lie inside any neighbourhood U of the origin for n large enough. In
consequence, when (2) does not hold, it is still possible to obtain bifurcations from Mn when n is large
and the projection of Mn to the configuration space has a neighborhood in which the function U is
well-defined. This observation may seem minor but it is of importance if we want to apply this technique
to some classical problems in Celestial Mechanics. A typical situation arises in the so-called circular or
elliptic restricted three-body problem, where the perturbation U on the asteroid is due to a periodic
gravitational force from another massive body. The function U will then be singular at the position of
this massive body which is at some distance of u = 0. Note that for the circular problem we shall consider
the problem in a fixed inertial frame, and shall not go to some rotating frame to reduce the system to an
autonomous one.

We shall then apply this to show that an arbitrarily large number of generalized T -periodic solutions
of a general class of circular or elliptic restricted three body problems with any eccentricity e ∈ [0, 1) can
be found when the mass ratio between the primaries is taken as an external parameter that we assume
to be sufficiently small. These solutions may collide with the big primary. In fact we will find periodic
motions of the small body in a neighbourhood of this big primary. The common year of the primaries will
also be a period for the third body and each year this small body will make a large number of revolutions
around the big primary. There are many other results on the existence of periodic solutions of the circular
or elliptic restricted problem and many families of periodic solutions have been identified. See for instance
[1,6,11]. A possible novelty of our result is mainly in the absence of additional non-degeneracy conditions
and the result is more global in the sense that the continuation is made from manifolds made of periodic
orbits of the Kepler problem instead of particular periodic orbits of an approximating system. It seems
reasonable to expect other applications in similar models. For instance, in an elliptic restricted N-body
problem where the primaries are assumed to move on an elliptic homographic motion and the infinitesimal
body is assumed to stay close to a primary.

The rest of the paper is organized in three sections. In Sect. 2 we work with Eq. (1) and go back
to the main theorem in [4]. We explain the modifications in the proof allowing to eliminate the con-
dition (2). The result in [4] was obtained via the use of Levi–Civita regularization in dimension 2 and
Kustaanheimo–Stiefel regularization in dimension 3, together with the application of a theorem of We-
instein [13]. Generalized periodic solutions can be characterized equivalently by periodic orbits of the
regularized system. This was proved in [4] in dimension 2 and we will prove that it is also the case in
dimension 3. This proof will require a delicate topological result on the lifting of piecewise smooth paths
via the Hopf fibration. For smooth paths this is a direct consequence of general results in the theory of
Ehresmann connections, and the modifications required for the piecewise smooth case are explained in
Sect. 3. Finally, the application to the circular or elliptic restricted three body problem is presented in
Sect. 4.

In this note we will work in the space u ∈ R
3 but the results are easily adapted to the simpler case of

the plane u ∈ R
2 or the line u ∈ R.

2. Periodic solutions via regularization

Following [4] we say that a continuous and T -periodic function u : R → R
3 is a generalized T -periodic

solution of (1) if it satisfies the following conditions:

(1) Z = {t ∈ R : u(t) = 0} is a discrete set;
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(2) for any open interval I ⊂ R\Z the function u is in C∞(I, R3) and satisfies (1) on this interval;
(3) For any t0 ∈ Z the limits below exist

lim
t→t0

u(t)
|u(t)| , lim

t→t0

(1
2
|u̇(t)|2 − 1

|u(t)|
)
.

Note that for any classical solution of (1) tending to a collision at t0, the left and right limits t → t−0
and t → t+0 always exist (see [12]). The crucial point in the above definition is that they coincide.

The above definition extends in an obvious way for the case of sub-harmonic solutions having period
ηT with η ∈ Z, η ≥ 2.

We will prove the existence of generalized T -periodic solutions using a regularization technique. We
refer to [3] and [2] for an alternative use of variational techniques. Following [4,15] we consider the
Kustaanheimo–Stiefel regularization. The skew-field of quaternions is denoted by H. The space of purely
imaginary quaternions IH = {z ∈ H : 	(z) = 0} is naturally a three-dimensional vector field over the
reals. The map

Π : H → IH, z 
→ z̄iz

plays an important role.
We set T = R/TZ for the quotient space of the real line of time by the lattice TZ, so for t ∈ R we

denote by t̄ its corresponding quotient. The manifold

M = H × H × T × R

with points (z = z0 + z1i + z2j + z3k,w = w0 + w1i + w2j + w3k, t̄, τ) is endowed with the symplectic
two-form

ω =
3∑

l=0

dzl ∧ dwl + dt ∧ dτ.

On the symplectic manifold (M, ω) we consider the Hamiltonian function

Kε : M → R,Kε(z, w, t, τ) =
|w|2
8

+ τ |z|2 − 1 + εP (t, z, ε)

with P (t, z, ε) = |z|2U(t, z̄iz, ε). This is the regularized system of the spatial forced Kepler problem in
extended phase space [4].

This function is invariant under the Hamiltonian S1-action

g ∗ (z, w, t̄, τ) = (gz, gw, t̄, τ),

where we realize S1 as {g ∈ C : |g| = 1}. By standard theory, the corresponding moment map

BL(z, w, t̄, τ) = z̄iw

is a first integral of the system.
Assume now that X(s) = (z(s), w(s), t̄(s), τ(s)) is a solution of the Hamiltonian system (M, ω,Kε)

which lies in K−1
ε (0) ∩ BL−1(0) and X(s + S) = g ∗ X(s), s ∈ R for some S > 0 and g ∈ S1. Then X(s)

gives a generalized periodic solution of (1), as a consequence of Lem 5.1, Rem 5.2 in [4], with period ηT
where η is the degree of the map t̄(s), given via a lift of this mapping as

t(s + S) = t(s) + ηT.

These solutions were produced by a perturbation argument in the symplectically reduced manifold

M0 = BL−1(0)/S1.

Indeed by applying a result of Weinstein [13], we obtained a continuation from the sets Λ̄k of periodic
orbits of K0 which are obtained as quotients from the sets

Λk = {X = (z, w, t̄, τ) ∈ K−1
0 (0) ∩ BL−1(0) : τ = τk}
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with τk =
(√

2kπ

T

) 2
3
, k = 1, 2, . . .

In principle the set

Ek = {z̄iz : X = (z, w, t̄, τ) ∈ Λk}
can occupy any region in IH. For this reason, it was assumed in [4] that (2) holds. Nevertheless, by the
result by Weinstein, the only requirement for continuation of periodic orbits from the periodic manifold
Λk is that the perturbation be defined in a neighborhood of Λk and is sufficiently small. The computations
in [4] therefore remain valid when U � R

3 as long as Ek ⊂ U holds.
The set U can be otherwise chosen arbitrarily. For instance we may choose U small. The above-

mentioned inclusion might not hold for all k ≥ 1. Nevertheless we now remark that this inclusion holds
for k sufficiently large.

From X ∈ K−1
0 (0) we deduce that

τk|z|2 +
|w|2
8

= 1,

which implies that |z| ≤ τ
−1/2
k → 0 as k → +∞.

The Hamiltonian function

K̄ε(X̄) = Kε(X)

is not well-defined on the whole manifold M0 but it is well-defined on the open set

Dδ = {X̄ ∈ M0 : X = (z, w, t̄, τ), |z| < δ},

where δ > 0 is such that

{u ∈ R
3 : |u| < δ2} ⊂ U .

The periodic manifold Λ̄k is thus contained in Dδ for k large enough. For these values of k, the
argument in [4] holds without change.

We sum up the previous discussions in the following theorem:

Theorem 2.1. Assume that U : R × U × [0, ε∗] → R is a C∞-function satisfying

U(t + T, u, ε) = U(t, u, ε)

for some fixed T > 0 and an open set U ⊂ R
3 containing u = 0. Given an integer l ≥ 1 there exists εl > 0

such that (1) has at least l generalized T -periodic solutions (lying in U) for each ε ∈]0, εl[.

Remark 2.1. The same result holds in the plane and in a line as well, which can be obtained by following
the same line of argument and using Levi–Civita regularization instead.

In the previous proof we have used that the solutions X(s) = (z(s), w(s), t(s), τ(s)) of the Hamiltonian
system (M,ω,Kε) lying in

K−1
ε (0) ∩ BL−1(0)

and satisfying

X(s + S) = g ∗ X(s), t(s + S) = t(s) + ηT, s ∈ R

for some S > 0, g ∈ S1 and η ∈ Z lead to generalized periodic solutions of (1) with period ηT . These are
given by

u(t) = z(s(t))iz(s(t)),

where s = s(t) is the inverse of the homeomorphism t = t(s). Note that in the previous proof η = 1 for
ε = 0 and so η = 1 also for small ε, since η = ηε is a continuous function taking values in Z.
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The rest of the section will be devoted to show that it is possible to go from generalized solutions of
(1) to solutions X(s) of (M,ω,Kε) satisfying the above conditions.

A similar discussion for planar solutions and Levi–Civita regularization can be found in Section 4 of
[4]. We now explain that the same holds for the spatial case as well.

Now assume that u(t) is a generalized T -periodic solution of (1) and consider the function σ(t) =
u(t)
|u(t)| . In principle σ(t) is only defined for t ∈ R\Z but the notion of generalized solution implies that it

has a continuous extension to the whole real line. At collisions, the function σ is not necessarily smooth
but there is some control on its velocity. More precisely for each t0 ∈ Z, there holds

σ̇(t) = O((t − t0)−1/3) as t → t0.

This asymptotic expansion follows from the formula

σ̇(t) =
|u(t)|2u̇(t) − 〈u(t), u̇(t)〉u(t)

|u(t)|3 , t ∈ R\Z

together with the classical estimates at collisions (see [12])

u(t) = a(t − t0)2/3 + b(t)(t − t0)4/3,

u̇(t) =
2
3
a(t − t0)−1/3 + c(t)(t − t0)1/3,

where a ∈ R
3\{0} and b(t), c(t) are bounded functions defined in a neighborhood of t − t0. We now

identify R
3 and IH, u = u(t), u = u1i + u2j + u3k and now view S2 and S3 as unit spheres in IH and H,

respectively. The properties of σ : R → S2 suggests the following definition.

Definition 2.1. Given an interval [0, T ] and a partition of it

P : t0 = 0 < t1 < · · · < tN = T,

the path α : [0, T ] → Sd, d = 2 or 3, is a P-path, if it is continuous, the restriction α|]ti,ti+1[ is C∞ and
the integral below is finite:

ti+1∫

ti

|α̇(t)|dt < ∞, i = 0, . . . , N − 1.

The map Π : z 
→ z̄iz sends S3 onto S2 and we can define the Hopf map as the restriction

π : S3 → S2, z 
→ z̄iz.

Note that, in the notation of [7, p. 376], x1 = −z0, x2 = z1, x3 = z2, x4 = z3.
We will need the following result on the lifting of P-paths.

Lemma 2.1. Assume that γ : [0, T ] → S2 is a P-path. Then there exists a P-path Γ : [0, T ] → S3 satisfying
π ◦ Γ = γ and

	{Γ̄(t)iΓ̇(t)} = 0, when t �= ti.

Moreover, if γ(0) = γ(T ) then Γ(T ) = gΓ(0) for some g ∈ S1.

The proof of this result is postponed to the next section. It is worth to observe that the last conclusion
on closed paths follows easily from the structure of the fibers of the Hopf map

π−1(γ(0)) = {gΓ(0) : g ∈ S1}.

Let us take our generalized T -periodic solution u(t). The set [0, T ]∩Z defines a partition P. Then σ is
a P-path and Lemma 2.1 can be applied to γ = σ. In consequence there exists a P-path Σ : [0, T ] → S3

with π ◦ Σ = σ and 	{Σ̄iΣ} = 	{Σ̄iΣ̇} = 0. Note that Σ̄iΣ ∈ S2 ⊂ IH.
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Since σ is T -periodic we extend Σ to the whole real line via the formula Σ(t+T ) = gΣ(t), t ∈ R. Then
Σ : R → S3 is continuous.

We will define X(s) = (z(s), w(s), t(s), τ(s)) in terms of Σ. The coordinate t(s) is defined from
Sundman integral as in [4]. The set Z∗ = t−1(Z) is discrete. Then we have

z(s) = r(s)Σ(t(s)), s ∈ R,

where

r(s) = |u(t(s))|1/2, w(s) = 4z′(s), τ(s) = −E(t(s)) + εU(t(s), z̄(s)iz(s), ε), s ∈ R\Z∗.

After this definition the proof follows along the same line of [4]. The only essential difference is the
verification of the additional condition BL(X(s)) = 0 which is equivalent to

	{z̄(s)iz′(s)} = 0.

To check this condition, it is sufficient to observe that

z′(s) = r′(s)Σ(t(s)) + r(s)3Σ̇(t(s))

and thus the condition follows directly.

3. Lifting of paths via the Hopf map

For each z ∈ S3 we consider the tangent space

Tz(S3) = {w ∈ H : w ⊥ z}
with vertical and horizontal subspaces

Vertz = ker(dΠ)z ∩ Tz(S3)

Horz = [ker(dΠ)z]⊥ ∩ Tz(S3)

The real vector space Vertz has dimension one and is spanned by iz. The space Horz has dimension two
and is spanned by the vectors jz, kz. Moreover

(dπ)z(Horz) = Tπ(z)(S2).

The splitting

Tz(S3) = Vertz ⊕ Horz

is clearly smooth with respect to the base points and thus defines an Ehresmann connection associated
to the submersion π. We refer to [7, Chapter VIII] for more details.

The results in [7] imply that this connection is “good”. This means that, given a C∞ curve α :
[t0, t1] → S2 and a point ξ ∈ π−1(α(t0)), there exists a horizontal lift starting at ξ. This lift is a C∞

curve A : [t0, t1] → S3 satisfying A(t0) = ξ, π ◦ A = α, Ȧ(t) ∈ HorA(t) for each t ∈ [t0, t1].
From our point of view, the key point is the following characterization of the horizontal component

Horz = {w ∈ H : w ⊥ z,	{z̄iw} = 0}.

From this observation we could derive a version of Lemma 2.1 in the class of C∞-paths, or even in the class
of piecewise C∞-paths. This second case will follow by an iterative application of the above-mentioned
lifting principle for good Ehresmann connections. However we must work in the larger class of P-paths
and the proof uses specific properties of the Hopf map. To prove Lemma 2.1 we will restrict to the case
P : t0 = 0 < t1 = T so that [t0, t1] = [0, T ]. The iterative argument for a general partition is left to the
reader. We also assume that γ(t) �= i for each t ∈ [t0, t1] and, at the end of the proof, we will show that
there is no loss of generality.
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Following [7], we shall obtain Γ(t) from the solution of a system of differential equations in the plane.
We sketch some computations which are similar to those in [7, pp. 376–377]. Note that our map π does
not coincide with the map π in [7], although they are conjugate.

The condition Γ̇(t) ∈ HorΓ(t) implies that

Γ̇(t) = (λ1(t)j + λ2(t)k)Γ(t),

where λ1, λ2 : [t0, t1] → R are functions to be determined. With the notation Γ = Γ0 + Γ1i + Γ2j + Γ3k
we are led to the equations

Γ̇0 = −λ1Γ2 − λ2Γ3, Γ̇1 = λ1Γ3 − λ2Γ2 (3)

Γ̇2 = λ1Γ0 + λ2Γ1, Γ̇3 = −λ1Γ1 + λ2Γ0. (4)

From the notation γ = γ1i + γ2j + γ3k and the definition of π,

γ1 = Γ2
0 + Γ2

1 − Γ2
2 − Γ2

3,

(
Γ2 −Γ3

Γ3 Γ2

)(
Γ1

Γ0

)
=

1
2

(
γ2

γ3

)
. (5)

In particular, Γ2
2 + Γ2

3 =
1
2
(1 − γ1).

We recall that the curve γ does not pass through the point i and therefore γ1 < 1 and Γ2
2 + Γ2

3 > 0
everywhere. This allows us to use the equations in (3) to solve λ1 and λ2.

Plugging the corresponding formulas in (4) and taking into account the equations in (5) we obtain

(1 − γ1)
(

Γ̇2

Γ̇3

)
= −M

(
Γ̇1

Γ̇0

)
, M =

(
γ2 γ3

γ3 −γ2

)
. (6)

Also, from the second identity in (5),

(1 − γ1)
(

Γ1

Γ0

)
=

(
Γ2 Γ3

−Γ3 Γ2

)(
γ2

γ3

)
= M

(
Γ2

Γ3

)
. (7)

Differentiating with respect to t and substituting the result in (6) we find
(

Γ̇2

Γ̇3

)
= − 1

2(1 − γ1)
[γ̇1M

(
Γ1

Γ0

)
+ MṀ

(
Γ2

Γ3

)
].

In these computation we have used that M2 = (1 − γ2
1)I. Combining this identity with (7), we are led to

a planar linear system of the type
(

Γ̇2

Γ̇3

)
= B(t)

(
Γ2

Γ3

)
. (8)

where the coefficients of the matrix B(t) are linear combinations of functions of the type
γiγ̇j

1 − γ1
and

γ̇i

1 − γ1
.

Most probably this matrix is not continuous at t = t0 = 0 and t = t1 = T . Nevertheless, since we

know that γ is C∞ in ]0, T [ and
T∫
0

|γ̇(t)|dt < ∞, we deduce that the coefficients of B(t) belong to the

Lebesgue space L1(]0, T [). We are assuming that γ1(t) �= 1 if t ∈ [0, T ]. In consequence, the matrix B
is integrable and the system (8) satisfies the conditions of Carathéodory’s theorem (see for instance [5,
Chapter 2]). Given ξ ∈ π−1(γ(0)), we impose the initial condition

Γ2(0) = ξ2,Γ3(0) = ξ3
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to obtain a unique solution of the Cauchy problem for (8) defined on the whole interval [0, T ]. These
functions Γ2 and Γ3 are absolutely continuous in [0, T ]. The functions Γ0 and Γ1 are defined from the
identity (7) and they are also absolutely continuous. In particular there holds

T∫

0

|Γ̇(t)|dt < ∞

and Γ is a P-path. Going back to the previous construction we observe that Γ is the desired lift.
To complete the proof we must remove the extra assumption γ1 �= 1. Assume now that γ(t) is an

arbitrary P-path. Since γ is smooth on ]t0, t1[, the set γ([t0, t1]) has zero measure in S2. Let us take a
point ξ ∈ S2 such that γ(t) �= ξ for each t ∈ [t0, t1]. We select a rotation of S2 sending ξ into i. This
rotation can be expressed in the form z′ = qzq for some q ∈ S3. Then γ∗(t) = qγ(t)q is a P-path with
γ∗(t) �= i for each t ∈ [t0, t1]. The possible lifts of γ and γ∗ are linked, for if Γ = Γ(t) satisfies π ◦ Γ = γ

then π ◦ Γ∗ = γ∗, where Γ∗(t) = Γ(t)q. Moreover, it is easy to check that 	{Γ̄(t)iΓ̇(t)} = 0 is equivalent
to 	{Γ̄∗(t)iΓ̇∗(t)} = 0.

4. A restricted three-body problem

Let us assume that the C∞ functions X,x : R → R
3,X = X(t), x = x(t), are T -periodic and satisfy

X(t) �= x(t) ∀t ∈ R.

In addition we assign positive masses M and m to them, by normalization

M + m = 1.

We consider the system

ξ̈ =
M(X(t) − ξ)
|X(t) − ξ|3 +

m(x(t) − ξ)
|x(t) − ξ|3 . (9)

This system describes the motion of an infinitesimal body attracted by two moving centers X(t) and x(t).
When (X(t), x(t)) solves the corresponding two-body problem, then the system describes a restricted
spatial three-body problem. By assuming that (X(t), x(t)) move on a circular or elliptic Keplerian orbit
we obtain a periodic system. Note that for the restricted circular three-body problem many studies have
been made in a proper rotating coordinate system and for the elliptic problem in a proper rotating-
pulsating coordinate system. We shall just consider the problems in the inertial system.

In principle we could have collisions of the infinitesimal particle ξ with any of the two primaries: X = ξ
or x = ξ. Nevertheless we shall only consider collisions with the first primary X.

A continuous and T -periodic function ξ : R → R
3, ξ = ξ(t) is called a generalized periodic solution of

the first kind if the following conditions hold:
• ZM = {t ∈ R : ξ(t) = X(t)} is discrete;
• Zm = {t ∈ R : ξ(t) = x(t)} is empty;
• In each interval I ⊂ R\ZM , the function ξ(t) is C∞ and satisfies (9);
• For each t0 ∈ ZM the limits below exist

lim
t→t0

ξ(t) − X(t)
|ξ(t) − X(t)| , lim

t→t0

{1
2
|ξ̇(t) − Ẋ(t)|2 − M

|ξ(t) − X(t)|
}

.

Let us now assume that the primaries depend upon a parameter ε ∈ [0, 1], Xε = Xε(t), xε = xε(t). We
assume that (Xε(t), xε(t)) is a circular or elliptic solution of the two body problem with masses Mε,mε

and with center of mass placed at the origin

MεXε + mεxε = 0. (10)

We assume mε + Mε = 1 for normalization.
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From the general theory of Kepler problem we know that Xε(t) satisfies

Xε(t) = Rε

(
aε(cos u(t) − eε), aε

√
1 − e2

ε sin u(t), 0
)∗

The orbit semi major axis aε and orbit eccentricity eε determines the circular or elliptic orbit up to a
rotation in R

3, which is specified with the matrix Rε ∈ SO(3). We assume that t = 0 is the time of
passage through the pericenter, so that the eccentric anomaly u(t) is determined by the Kepler equation.

u(t) − eε sin u(t) =
m

3/2
ε

a
3/2
ε

t.

Finally, from Xε(t) one determines xε(t) from the center of mass condition Eq. (10).
From now on it will be assumed that the functions

ε ∈ [0, 1] 
→ Rε ∈ SO(3)

and

ε ∈ [0, 1] 
→ mε,Mε, aε, eε

are all C∞ and, for each ε > 0 there holds

mε,Mε > 0, aε > 0, 0 ≤ eε < 1.

According to the third Kepler law, the system (9) is periodic in time with period

Tε =
2π

m
3/2
ε

a3/2
ε . (11)

In the following result we will assume that the primary X0 is fixed at the origin while x0 describes a
circular or elliptic Keplerian orbit with mass m0 = 0.

Theorem 4.1. Assume in addition that

m0 = 0, e0 < 1, Tε → T0 > 0 as ε → 0+.

Then, for any given integer l ≥ 1, there exists εl > 0 such that Eq. (9) has at least l generalized Tε-periodic
solutions of the first kind for ε ∈]0, εl[.

In contrast to many other results [1,6,11], we do not impose any further resonance or non-degeneracy
conditions and the dependence with respect to parameters is very general. On the other hand, our solutions
are understood in a generalized sense.

Proof. To fix a uniform period we change time s → t according to the relation

Tεs = t

and set η(s) = ξ(t), so that (9) is transformed into

η
′′

=
T 2

ε Mε(φε(s) − η)
|φε(s) − η|3 +

T 2
ε mε(ψε(s) − η)
|ψε(s) − η|3 ,

where φε(s) = Xε(Tεs), ψε(s) = xε(Tεs).
We then introduce

u = λ−1(η − φε(s))

where λ > 0 is a normalization parameter to be adjusted. In this way we obtain an equation of the form
of (1) if λ = λε is given by

λ3
ε = T 2

ε Mε. (12)
Namely,

u′′ = − u

|u|3 + ε∇uU(s, u, ε)
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with

U(s, u, ε) =
1
ε
λ−3

ε T 2
ε mε

1
|λ−1

ε (ψε(s) − φε(s)) − u| − 1
ε
λ−1

ε 〈φ′′
ε (s), u〉.

This function belongs to C∞(R × U × [0, ε∗]) where U is a neighborhood of u = 0 and ε∗ > 0 is small
enough.

To prove this, we first observe that

aε(1 − eε) ≤ |φε(s)| ≤ aε(1 + eε), s ∈ R.

Then, in view of (10), for small enough ε we have

|λ−1
ε (ψε(s) − φε(s))| ≥ m−1

ε |λ−1
ε φε(s)| ≥ λ−1

ε m−1
ε aε(1 − eε).

Using (11) and (12) we see that the lower bound converges to
1 − e0

(2π)2/3
as ε → 0. Consequently there exist

ε∗ > 0 and δ > 0 such that

|λ−1
ε (ψε(s) − φε(s))| ≥ δ for ε ∈ [0, ε∗], s ∈ R.

We define

U = {u ∈ R
3 : |u| < δ}.

From the explicit definition of φε and ψε it is clear that U is smooth on R × U×]0, ε∗]. It remains to
analyze ε = 0.

First we observe that

φε(s) = aεRε(cos u − eε,
√

1 − e2
ε sin u, 0)∗, u − eε sin u = 2πs

and therefore

λ−1
ε (ψε(s) − φε(s)) = −λ−1

ε (
Tε

2π
)2/3Rε(cos u − eε,

√
1 − e2

ε sin u, 0)∗

is C∞ in R × [0, 1]. Also, the function f(ε) =
1
ε
λ−3

ε T 2
ε mε =

mε

εMε
belongs to C∞[0, ε∗] and therefore the

first summand in the definition of U is smooth.
To analyze the second summand we differentiate twice the function φε. Then we have

φ′′
ε (s) = aεχ(s, ε)

with

χ(s, ε) = u′′Rε(− sin u,
√

1 − e2
ε cos u, 0)∗ − (u′)2Rε(cos u,

√
1 − e2

ε sin u, 0)∗

and

u′ =
∂u

∂s
=

2π

1 − eε cos u
, u′′ =

∂2u

∂s2
= − 2πeε sin u

(1 − eε cos u)2
u′.

The function χ(s, ε) thus belongs to C∞(R × [0, ε∗], R3). In addition,

g(ε) =
1
ε
λ−1

ε aε =
mε

εM
1/3
ε (2π)2/3

is in C∞[0, ε∗].
Therefore U is smooth in R × U × [0, ε∗] and Theorem 2.1 is applicable. Undoing the change of

variables we obtain generalized Tε−periodic solutions. To check the continuity of the energy at collisions
it is convenient to use the identity

1
2
|u′(s)|2 − 1

|u(s)| =
T 2

ε

λ2
ε

(1
2
|ξ̇(t) − Ẋε(t)|2 − Mε

|ξ(t) − Xε(t)|
)
.

�
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Remark 4.1. After the change of variables ξ = Rεξ1 we can assume that the primaries lie on the fixed
plane x3 = 0. Then we can apply the planar version of Theorem 2.1 to conclude that, for each ε, the
three bodies move in a common plane.

We end this note with a comparison of our result with classical results concerning periodic orbits
of the planar circular restricted three-body problem of the first and second kind in a rotating frame,
where first and second kind refer to continuations of periodic orbits from circular and elliptic periodic
orbits of the limiting Kepler problem in a rotating frame, respectively. Indeed the period of rotations of
the reference frame is derived from the corresponding period T of the Keplerian elliptic motions of the
primaries. When a periodic orbit has minimal period T/n in the rotating frame, then it will also have
period T and therefore this period is preserved in the initial fixed reference frame. The existence of such
orbits of the first kind has been obtained by Poincaré [10] and has been explained in [8].
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