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Abstract. We explore how the expression for the thermal resistance of a porous layer in superfluid helium in laminar
counterflow conditions can be generalized for thin layers with several pores. We analyze different situations, i.e., narrow
pores with radius comparable to the phonon mean free path, in which slip effects along the walls must be incorporated and
thermal resistance is slightly reduced, and thin layers with length of the pores comparable to the so-called entrance length,
in such a way that Poiseuille parabolic flow is not achieved and thermal resistance becomes dependent on the heat flux.
Furthermore, we deal with the contribution to the thermal resistance of a turbulent layer of quantized vortices produced at
the exit of the pores.
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1. Introduction

The analysis of heat transport, both in laminar and in turbulent regimes, in channels and devices using
superfluid helium has much practical interest in cryogenics [1], and it is challenging from the point of
view of transport theory and non-equilibrium thermodynamics [2]. Indeed, heat transport in helium has
particularly outstanding aspects that much differ from usual transport described by Fourier’s law. Not
only the superfluid material properties are relevant, but also the geometrical characteristics of the devices.
Indeed, the effective thermal conductivity of superfluid helium strongly depends, for instance, on the size
and on the form of channels, instead of being a purely material quantity.

The simplest situation refers to counterflow heat transfer (i.e., heat transfer without net mass transfer)
in laminar regime along a cylindrical channel, or between two parallel plates. A natural extension of the
former situation is to consider heat transport through a layer with a number N of parallel pores of radius
R per unit area of the layer, in the laminar regime. It may be obtained in an easy way, starting from
Landau–Lifshitz expression for counterflow heat transfer in a cylindrical channel [2–4]. Such expression
is:

Q̇ =
NπR4S2T

8η

(
T1 − T2

L

)
, (1)

with S the entropy density of the normal component, η the viscosity of the normal component, T1 and
T2 the temperatures of the superfluid at both sides of the layer, T the average temperature inside the
channel, L the thickness of the layer (which corresponds to the length of the channels), and Q̇ the heat
flow through the layer per unit area of the layer and unit time. Note that, in contrast to Fourier’s law,
in which Q̇ should be proportional to NπR2, the total transversal area of the several pores, it depends
on NπR4. This is a characteristic feature of the so-called hydrodynamic heat transfer.
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Fig. 1. Heat flux flowing through a layer with N parallel pores of radius R, with length L. The dependence of the total
heat flow per unit area Q̇ on ΔT ≡ T1 − T2, L and R is considerably different for R � l and R � l, being l phonon mean
free path, and for L � Lentrance and L � Lentrance, Lentrance being entrance length

In the present paper, we aim to generalize expression (1) to the case of thin layers and of narrow pores
and to incorporate the effects of possible quantized vortices at the exit of the pores. Indeed, expression
(1) is valid for sufficiently long channels allowing a fully developed Poiseuille parabolic profile along most
of their length, and with non-slip condition at the walls, i.e., assuming that the relative velocity of the
normal component on the wall is zero. These hypotheses are not valid when the diameter of the cylinders
becomes comparable to the phonon mean free path, or when the cylinder length is comparable to the
so-called entrance length, which is the length necessary to achieve the parabolic velocity profile starting
from a flat velocity profile at the entrance of a cylindrical tube. Thus, we consider how both restrictions
of (1) could be overcome (Fig. 1). Both topics are of interest but they have not yet received sufficient
attention up to now, though they become especially relevant for the cryogenics of small systems. In Sect. 2
we deal with thin layers (relevant effects of the entrance length) in the corresponding short channels, and
in Sect. 3, we study the appearance of a layer of quantized vortices past the wall and their contribution
to the total thermal resistance. In Sect. 4, we deal with narrow pores (transition to slip flow).

2. Short pores: influence of the entrance length

Heat transport in superfluid 4He follows very different laws than heat transport in other materials, both
in the laminar and in the turbulent regimes [2]. Instead of being given by Fourier’s law q = −λ∇T , with
λ the thermal conductivity, it is described, in the steady state, by the equation [1–3,5,6]:

η

TS2
∇2q = ∇T. (2)

Here η is the viscosity of the normal component, T the average temperature of superfluid helium, and S
the entropy density per unit volume.

Remembering the equation of a viscous fluid in steady state along a straight channel, namely:

η∇2v = ∇p, (3)

with v the velocity and p the pressure, Eq. (2) is analogous to Eq. (3) for a steady rectilinear viscous
flow along a channel, with ∇T instead of the pressure gradient ∇P , q(r) instead of the barycentric
velocity v(r), and η/TS2 instead of η/ρ. Because of this analogy, this regime of heat transfer is known
as hydrodynamic heat transport [7–12].
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Equation (2) may be solved for the flow of q along a cylindrical channel of radius R and length L,
leading for q(r) to the parabolic profile:

q(r) = −TS2

4η

[
R2 − r2

] ∇T, (4)

where it has been assumed the non-slip condition on the wall, implying v = 0 at r = R. Integration of
(4) over a transversal cross section leads to:

Q̇1 =
πR4S2T

8η

(
T1 − T2

L

)
, (5)

where Q̇1 is the total heat flow along the cylinder. If one considers a layer with N cylindrical parallel
pores per unit area (see Fig. 1), the total heat flow per unit time and area Q̇ = NQ̇1 will be the same of
expression (1).

Equation (2), and therefore solution (4) with parabolic profile, is valid when the flow is sufficiently
developed, i.e., for long pores, but in the entrance of the pore q as a function of r (the radial position)
usually has a flat profile. The region from the flat profile to the well-developed parabolic profile q(r) (4) is
known as entrance region [3,13]. In such region q depends on r and x, i.e., q(r, x), and the rearrangement
of the q(r) profile implies that there is a radial flow qr besides the longitudinal flow qx. In this case, terms
of the form q · ∇q (or more complicated terms [14,15]) would also appear on the left-hand side of (2),
analogous to the convective terms appearing in the Navier–Stokes equation (6) presented below. Such
terms vanish when q has only the longitudinal component and depends only on the radial coordinate r,
but it does not vanish when q has also a radial component. Thus, in the entrance region, nonlinear effects
become relevant and require a more complicated analysis than (2).

There are not many studies of the effects of entrance length [16–18] in heat transport in helium II.
Recently [18], this topic has been dealt by comparing the entrance length for normal component and for
superfluid component. It has been found that at the hot end of the channel the entrance length for the
normal fluid behaves in a classical way and increases linearly with the Reynolds number. However, at
the cool end, the entrance length (or exit length) for the superfluid is one magnitude longer than for the
normal component. This has been attributed to the large-scale superfluid vortices produced in the cool
bath and which partially reenter in the pipe along the layers. Thus, there is much interesting physics in
this phenomenon. In this section we consider a pure laminar flow without vortices at the end, so that the
sophisticated effects in [18] are not expected to influence the result. Later, we will consider the appearance
of vortices.

In viscous fluids, in such region, Eq. (3) is no longer satisfactory, but the full Navier–Stokes equation
must be used, namely:

∂v
∂t

+ v · ∇v = −1
ρ
∇p +

η

ρ
∇2v, (6)

in the entrance region, the nonlinear term v · ∇v plays a very relevant role. The analytical solution of
(6) is very challenging [13].

The characteristic entrance length for viscous fluids in a cylindrical channel of diameter d = 2R is of
the order of [3,13]:

Lentrance ≈ dRey, (7)

with Rey the Reynolds number given by:

Rey =
ρU
η

d, (8)
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Table 1. Values of coefficients Ai in expression (10) as obtained by Shah and London in [19]

A1 A2 A3

13.74 1.25 0.00021

with U the average barycentric speed of the fluid in the channel. For channels of length comparable to
Lentrance, the Poiseuille law:

V̇ = πR2U =
πR4

8η

(p1 − p2)
L

, (9)

where V̇ is the volume rate along the cylinder, valid for channels much longer than Lentrance, must be
generalized to account for entrance length effects.

Though the accurate mathematical solution of (6) is very cumbersome [13], there are several approx-
imate expressions. In [19], Shah and London made a simplified analysis of the factors influencing the
entrance region in a viscous fluid and they found that Δp, the difference of pressure between the ends of
the channel, in a tube of length L may be approximated by the following expression:

Δp =
ρU2

2

[
A1X

1
2 +

A2 + 64X − A1X
1
2

1 + A3X−2

]
, (10)

with coefficients Ai as in Table 1, and X a dimensionless parameter, given by:

X =
L

d2U
η

ρ
≡ L

d

1
Rey

. (11)

High values of X correspond to long channels. One may consider Lentrance as the L for which X = 1
[in this case we recover expression (7)]. Recall that for Rey > 1000 the flow becomes turbulent; thus, high
values of X (small Rey) will usually correspond to laminar flows. Here we consider laminar flows.

For X � 1 (short channels) the right-hand side of (10) reduces to its first term A1X
1
2 , which fits

well the experimental results (thus, it includes both entrance effects as exit effects). For X � 1, (10)
yields A2 + 64X for X high. The latter term corresponds to the well-developed Poiseuille flow in long
channels, plus the contribution A2, that approximates better the observed results. Thus, (10) provides

an interpolation between A1X
1
2 and A2 + 64X, of the form A1X

1
2 + A2+64X−A1X

1
2

1+AX−n , with A obtained by
Bender in [20] and n by Shah in [21].

In [22,23] it was proposed to use (10) as the basis to generalize (1) to short channels, using the Gibbs–
Duhem relation at constant chemical potential, namely Δp = SΔT , and the relation STπR2U1 = Q̇/N

(where U1 is the average velocity in one channel and Q̇/N the heat transmitted per unit time along one
channel) [22]. Making these changes, expression (10) may be adapted to heat flux as:

Q̇ =
NπR4S2T

8η

[
B1X

− 1
2 +

B2X
−1 + 1 − B1X

− 1
2

1 + A3X−2

]−1
T1 − T2

L
, (12)

where Bi = Ai/64 and

X ≡ ηπSTL

4ρ(Q̇/N)
. (13)

In strict terms, to be able of using (12)—the analogous of Eq. (10) for the superfluid case—the
evolution equation for the heat flux should be the analogous to the Navier–Stokes equation (6). Then in
Eq. (2) we have to incorporate convective terms of the form q ·∇q, that in the two-fluid model for helium
II are related to terms of the form vn · ∇vs and vs · ∇vn, and that take into account the interaction
between normal and superfluid component (see [14,24]). Complicated nonlinear terms could also appear
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[14,15], in which case the analysis of the entrance region would be more complicated than that using the
analogy with (10).

In summary, we propose using (12) as a suitable generalization of (1), but one must keep in mind
that this is conditioned to the validity of the equation chosen for the heat flux and, if a different equation
should be used for q, the numerical coefficients B1 and A3 of the terms in X− 1

2 and in X−2 should
probably take other values. Anyway, more relevant than the concrete values of the coefficients in (13) is
the scaling of the heat flux with L. Accurate experiments on superfluid flow through thin porous layers
with known values of the pore radii would be very useful to compare experimental results with those
following from different nonlinear models. In this sense, our analysis corresponds to the simple model
analogous to nonlinear Navier–Stokes equation.

According to (12), for X = 1, Q̇ = 0.98 Q̇Pois. and therefore the Poiseuille expression (5) is considerably
accurate. However, for shorter channels (5) becomes less accurate: for X = 0.5, one has Q̇ = 0.96 Q̇Pois.,
and for X = 0.1, Q̇ becomes Q̇ = 0.85 Q̇Pois., which indicates errors of Poiseuille expression (5) with
respect to the observed flow of the order of 4% and 15% respectively, and the difference is remarkable.

For X � 1 (L long or Q̇ small) expression (12) reduces to:

Q̇ =
NπR4S2T

8η

[
1 + B2X

−1
]−1 T1 − T2

L
, (14)

which yields (1) for X → ∞, and gives first-order corrections to (1) in X−1 for long but finite channels.
In the opposite limit of X � 1 (L short or Q̇ high), expression (12) reduces to:

Q̇ =
NπR4S2T

8B1η
X

1
2
T1 − T2

L
, (15)

namely, using (13) for X,

Q̇
3
2 =

N
3
2 πR4S2T

8B1η

(
ηπSTL

4ρ

) 1
2 T1 − T2

L
. (16)

It is indeed seen from (15) that for short L or high Q̇, the relation between ΔT = T1 − T2 and Q̇ is
no longer linear, but Q̇ becomes

Q̇ ∝ L
1
3

(
ΔT

L

) 2
3

= L− 1
3 ΔT

2
3 . (17)

(see Fig. 2).
This dependence of Q̇ on L and ΔT is different from that of the Gorter–Mellink nonlinear law in

superfluid turbulence, in which [1,2,16]

Q̇ ∝ L− 1
3 ΔT

1
3 . (18)

Instead the dependence of Q̇ as a function of 1/L at constant ΔT is the same in (16) and (17). Of course,
the phenomenon analyzed here is very different than the turbulent regime considered in (18), and it is
not expected that the dependence of Q̇ with ΔT/L is the same in both cases. It is interesting to note
that a marked separation from the linear dependence of Q̇ with ΔT/L is found in short channels despite
that the helium flow is laminar.

The effective thermal resistance per unit area of the layer, is defined as:

Th.Res. ≡ ΔT

Q̇
, (19)

and for short pores, according to Eq. (16), is:

Th.Res.short−ch. ≡ ΔT

Q̇
=

16B1(ρηLQ̇)
1
2

(NπT )
3
2 R4S

5
2
. (20)
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Fig. 2. In the figure is plotted Q̇
NπR2 versus 1/L for constant ΔT . In the region of long L (small 1/L) the black line

corresponds to Eq. (1); in this case the channel is sufficiently long to have a fully developed parabolic profile almost

everywhere and Q̇
NπR2 is linear in 1/L. Instead, the blue line describes Eq. (16) for short channel; the dependence on 1/L

is no longer linear, but it goes as (1/L)1/3 according to (17). In this figure we have considered R = 0.05 cm as in the
experiments of [25]. The dotted line indicatively shows the cross-over region between both behaviors

Table 2. For Q̇1 = 102 erg/ (cm2 s) and Lentrance = 1.4 cm in the table are evaluated the values of X, the error of
Poiseuille flow εQ, and the error on the thermal resistance, εThR, due to the error in the Poiseuille flow

L (cm) X εQ (%) εThR (%)

3 2.14 − 1 +0.8
0.5 0.35 − 5 +5
0.14 0.1 − 15 +17

We may estimate the order of magnitude of Lentrance for hydrodynamic heat transfer in superfluid 4He
by setting X ≈ 1 in (13), and therefore:

Lentrance ≈ 4ρ

ηπST

Q̇

N
. (21)

So that, for T = 1.7 K, after using the values of ρ and S [26] at this temperature, we have:

Lentrance(cgs units) ≈ 0.014 Q̇/N(cgs unit). (22)

This means that for Q̇/N = 102erg/s or Q̇/N = 103erg/s, the entrance length will be of the order of 1.4
cm or 14 cm respectively. In Table 2 are reported some values of L, X (for Q̇1 = 102 erg/ (cm2 s) and
Lentrance = 1.4 cm), the relative error of Poiseuille flow εQ = Q̇ − Q̇P [where Q̇P is the Poiseuille flow
calculated by (1)], and the relative error of the thermal resistance, εThR due to the error of the Poiseuille
flow, i.e., Th.Res.short−por = ΔT

Q̇
1

1+εQ
.

If we want to make explicit the role of the radius R of the pores in the value of the entrance length,
we may write (22) in terms of qpores ≡ Q̇(NπR2)−1, as:

Lentrance(cgs units) = 0.043qporesR
2(cgs units) (23)

It is seen that for a given value of qpores (the average heat flux in a single pore) Lentrance goes as R2.
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Fig. 3. In the left Reyq < Reycrit, in the middle Reyq > Reycrit and in the right Reyq � Reycrit. The vector is the heat

flux q, in a channel; the separation between neighboring channels is L′

3. Influence of vortices beyond the layer

In Sects. 4 and 2, we have assumed that neither in the channels nor outside the channels there is turbulence.
Quantum turbulence arises when the quantum Reynolds number:

Reyq ≡ q
TS

d

κ
, (24)

with d the diameter of the pores, and κ the quantum of circulation given by κ = h/m, being h the
Planck’s constant and m the mass of helium atom, is higher than some critical value, of the order of 102

(in fact, such a value depends on temperature; in terms of Vnsd/κ, the critical value is 127 at T = 1.5
K, 112 at T = 1.6 K and 96 at T = 1.7 K [25]). For a discussion on these critical Reynolds numbers, see
[18], where is pointed out that for short channels there is a relatively wide scatter of values of the critical
Reynolds numbers, in contrast to long channels, probably because of entrance effects.

Note that q/TS has dimensions of velocity and κ has the dimension of (length)2/time, the same as
the kinematical viscosity ν = η/ρ. Thus, (24) is the thermal quantum analog of the classical hydrody-
namical Reynolds number. The physical basis of (24) is that the velocity circulation in a quantum fluid
is quantized, and it must be an integer multiple of κ. (This is a consequence of the quantum macroscopic
behavior of the fluid.) Since the minimum value of the circulation inside the channel is of the order of
(q/TS)R, this means that (q/TS)R should be higher than κ in order that a quantized vortex may appear.

In this sketch, we have assumed that the vortices are out of the channel and do not influence the
flow in the channel. However, for sufficiently wide channels, the vortex flow is expected to have deeper
influence on the flow near the channel outlet. Such effects have been pointed out recently in [18] and we
aim to consider them in future works.

3.1. Formation of vortices beyond the layer

If the radius R is small, the critical value of q according to (8) will be high inside the channel. However,
turbulence could arise at the exit of the channels (Fig. 3) if:

Reyq ≡ q
TS

L′

κ
, (25)

with L′ the average separation between neighboring channels, is higher than the critical value. Note that
L′ may be expressed in terms of N (the number of channels per unit area) as L′ = (1/N)

1
2 (thus if
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Fig. 4. When the heat flux is high enough (namely, when the value of (24) is higher than the critical value of the order of

100), vortices appear beyond the porous layer. D′ is the width of the layer occupied by vortices near the wall, L
′′

the width
of the wider channel beyond the layer. In this situation, one can observe three regions, the channels, the vortex layer with
thickness D′, and a third one in which the turbulence depends on the full width of the wide channel

N = 100 channels/cm2, L′ = 0.1 cm, for instance). Since L′ may be much higher than R, it could be that
vortices may form at the exit of the channel.

The value of the heat flux q in the channel and just at the exit of the channel is qch = Q̇
NπR2 . In fact,

in confined geometries (small orifices), superfluid hydrodynamic effects may be observed which are the
analogous of the well-known Josephson effects in superconductors, related to the nucleation of a small
number of quantized vortices and manifested as discrete quantized dissipation events, being multiplies of
κJc, with Jc the critical mass flow rate (something similar could be observed for the critical heat flow
rate in the case of counterflow) [27]. In the case of heat flux, the elementary energy related to the vortices
would be of the order of κ−1qc.

When separating from the exit of the pores, the heat flux will become distributed in a wider area
of the order of L′2 beyond some length D′ (Fig. 4). The average flux there will be of the order of
qD′ ≈ qch

πR2

(L′/2)2 , and will be considerably reduced as compared to the heat flux in a single channel qch.
At such position D′, the Reynolds number will be:

Reyq =
qD′

TS

L
′′

κ
=

qch

TS

πR2

L′2
L

′′

κ,
(26)

with L
′′

the width of the wider channel beyond the layer. The length D′ may be estimated from the
theory of jets in a viscous fluid [28–31]. If such value is lower than the critical one, vortices disappear at
D′. Otherwise, vortices will occupy the whole channel.

To get a rough estimate of the length D′, we consider that the diffusive lateral broadening ΔR of the
jet will be of the order of (ΔR)2 
 (4η/ρ)t, with η/ρ the diffusive coefficient for velocity (being η the
viscosity and ρ the density), and t the time elapsed since the jet has left the channel. Then, the time
to reach ΔR ≈ L′/2 (characterizing the full homogeneous redistribution of q across the total width of
the channel) will be of the order of t′ 
 L′2

16η/ρ . The speed at which the jet is flowing is of the order of
vns = |vn −vs|, which is related to the heat flux as vns = qch(ST )−1. Therefore, the distance D′ may be
estimated as:

D′ = vnst
′ =

qch − qD′

2ST

L′2

16η/ρ
. (27)
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If we assume qD′ � qch, D′ may be estimated as:

D′(cm) =
qch

2ST

1
16η/ρ

1
N

=
Q̇

N2

1
πR2

ρ

32ηST
, (28)

because Q̇ = qchNπR2. Here we have assumed that the average separation L′ between close neighbor
pores is L′ ≈ N− 1

2 . For T = 1.7 K, D′(cm) 
 10−4 Q̇
N2

1
R2 (cgs units). Concrete values of D′ are given in

Table 3 for different values of Q̇, R and N .

3.2. Contribution of the vortices to the thermal resistance

If vortices appear, their contribution to the total thermal resistance should be taken into account. The
thermal resistance per unit area of the layer of vortices in terms of the vortex length density L is [2,4]:

Th.Res.vort. =
K

ζ
LD′, (29)

with K a coefficient which in the two-fluid model is interpreted as the mutual friction coefficient between
normal component and quantized vortex lines [32–34], ζ is related to second sound speed V2 as ζ = ρcV 2

2 ,
and D′ is the thickness of the layer occupied by vortices near the wall (if vortices occupy the whole length
of the channel, such whole length should be considered).

Relating L to Q̇ is important. Usually, L is related to q in terms of the Vinen’s equation [2,32–34]:

dL
dt

= αvnsL 3
2 − βκL2, (30)

with α and β temperature dependent coefficients describing the local rate of vortex production and of
vortex destruction per unit volume. We use here this equation for the sake of simplicity of illustration,
but it should be kept in mind that more complicated equations are needed to incorporate the effects
of the walls [4], of the anisotropy of the tangle [35], and of non-uniformity fields of velocity [35–37].
Before incorporating these complex effects, it seems useful to begin the study by considering the simplest
situation.

The steady-state solution of (30) is:

L 1
2 =

α

βκ
vns =

α

βκ

q
ST

ρ

ρs
. (31)

As a first approximation, we propose using (30) and taking (31) for the average vortex length density
in the vortex layer beyond the wall:

L =
α2

β2κ2

q2
ch

4(ST )2
ρ2

ρ2
s

. (32)

Combining (28) for D′, (32) for L and (29), the total contribution of the vortex layer to the total thermal
resistance will be:

Th.Res.vort. =
K

ζ

ρ

16η

α2

β2κ2

ρ2

ρ2
s

1
N

1
(NπR2)3

(
Q̇

2ST

)3

. (33)

Expression (33) has a dependence in Q̇3, a factor Q̇2 comes from L, and another factor Q̇ comes from
the estimation of D′. If vortices are occupying the whole channel, the thermal resistance will become
proportional to Q̇2, as in the Gorter–Mellink expression (18) [1,2,16]. In Table 3, we estimate the con-
tributions of the channels and of the vortex layer to the thermal resistance, for a few indicative values
of Q̇

N , N , and R, in the range of validity of the usual Eq. (1) for the heat flux in the channel. Other

analysis could be made for thin layers and narrow channels. Table 3 shows that for Q̇
N = 102 (erg/s) the
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Table 3. Thickness D′ of the turbulent layer of vortices produced at the end of the channel for different values of Q̇/N ,
N and R. In the last two columns are reported the thermal resistance due to the vortices from (33) and the thermal

resistance due only to the channel in the Landau approximation from (41), with L = 10 cm and T = 1.7 K

Q̇
N

(erg/s) N (cm−2) R (cm) D′ (cm) Th.Res.vort. Th.Res.chann

(K · s · erg−1) (K · s · erg−1)

102 10 0.05 0.4 2 × 10−13 2 × 10−11

102 100 0.05 0.04 2 × 10−14 2 × 10−12

104 10 0.05 40 2 × 10−7 2 × 10−11

104 100 0.05 4 2 × 10−8 2 × 10−12

102 10 0.01 10 3 × 10−9 10−8

102 100 0.01 1 3 × 10−10 10−9

104 10 0.01 103 3 × 10−3 10−8

104 100 0.01 102 3 × 10−4 10−9

contribution of the vortex layer is small as compared with that of the channel, but that for Q̇
N = 104

(erg/s) the thermal resistance of the vortex layer is dominating.

4. Narrow pores: transition from hydrodynamic flow to slip flow

Equation (2) is valid when the phonon mean free path is much shorter than the radius of the channel.
But, the phonon mean free path in liquid helium becomes longer than 4× 10−4 m for temperatures lower
than 1 K, and increases for lower temperatures, as it behaves as T− 4

3 [38]. Thus, channels of diameter
of the order of 1 mm or smaller must be considered as truly narrow channels, where phonons flow in
a ballistic way at low temperature (i.e., their collisions with the walls are dominant over their mutual
collisions inside the fluid).

In this situation the usual non-slip condition q = 0 along the wall must be modified as it happens in
the flow of rarefied viscous gases [39–43]. In rarefied gases, the non-slip condition for the velocity along
the wall is replaced by: v = −C ′l(∂v/∂r), with l the mean free path and C ′ a coefficient depending on
temperature. An analogous of such equation has been proposed for heat flow in [7,8,44,45], namely:

q(r = R) = −Cl
∂q(r)
∂r |r=R

, (34)

where l is the average phonon mean free path [8]. The coefficient C is a constant dependent on the wall
properties, and it may be interpreted as C = (2 − f)/f , f being the fraction of phonons which undergo
diffusive scattering with the walls, and (1 − f) the fraction undergoing specular scattering. In superfluid
helium, the boundary conditions for slip flow of velocity and of heat flux could be related by the boundary
condition, proposed in [6], vt − 1

TS qt = 0, where the underscript t denotes the tangential component of
the vectors along the wall.

The solution of (2) has the general form:

q(r) = c1r
2 + c2r + c3. (35)

Imposing the boundary condition (34), and that the maximum of heat flux is at the center of the channel
(i.e., ∂q(r)

∂r |r=0
= 0), we obtain the coefficients:

c1 =
TS2

4η
∇T, c2 = 0, c3 = −TS2

4η
R2∇T

[
1 + 2C

l

R

]
. (36)
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Fig. 5. In the figure is plotted Q̇
NπR2 versus R for constant ΔT . The dashed blue line corresponds to Eq. (38), the black

line to the Landau–Lifshitz expression (1). For high values of R Eq. (38) tends to Eq. (1) as shown in the figure on the left.
On the right, we have zoomed on the region for very small values of R, i.e., when the radius is smaller than the mean free
path of phonons and Eq. (38) reduces to Eq. (40). On the figure on the right it is apparent that Q̇/NπR2 is linear in R in
this region, in contrast to the behavior in R2 shown for wider pores as plotted on the left figure. The data for ΔT/L, C = 2

and l = 1.53 ∗ 10−2cm are extracted from [46] at T = 1.7 K. The values of the other coefficients are extracted from [26]

Then the solution (35) becomes:

q(r) = −TS2

4η

[
R2

(
1 + 2C

l

R

)
− r2

]
∇T. (37)

The corresponding total heat flux, obtained by integration of (4) over a cross section of the channel,
becomes:

Q̇1 =

R∫
0

2πrq(r)dr =
πR4S2T

8η

[
1 + 4C

l

R

]
T1 − T2

L
. (38)

This value is higher than that considered in (1) in a factor (1 + 4Cl/R), whose second term yields the
contribution of the slip flow described by (34). When l � R one recovers expression (1). Expression (38)
remains valid when the diameter of the cylinders becomes comparable to the phonon mean free path. For
R � l expression (38) yields:

Q̇1 =
πR3S2TCl

2η

T1 − T2

L
. (39)

For N parallel pores, the heat flux per unit area and unit time will be:

Q̇ = NQ̇1 =
NπR3S2TCl

2η

T1 − T2

L
. (40)

Thus, in the ballistic regime Q̇ becomes proportional to R3l instead of to R4; since in this regime l � R,
this means a relative increase of heat transport with respect to (1), because of the contribution of the
slip flow (34). For a single cylindrical channel, the transition from R4 to R3l regime was experimentally
observed in [38,44].

In Fig. 5 we plot Q̇
NπR2 as a function of R, for constant ΔT , which is linear at small values of R (shorter

than l) according to (40) and quadratic at R � l, according to (1).
In wide channels, the corresponding thermal resistance, according to (19), is (R � l):

Th.Res. =
8ηL

S2TNπR4
, (41)
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according to (1) and for narrow channels (R � l), namely, in the slip regions, is:

Th.Res.ballistic =
2ηL

NπS2TCR3l
, (42)

and in the transition regime from hydrodynamic to ballistic heat flow may be obtained from [46].
For short (L < Lentrance) and narrow (R < l) channels, we tentatively generalize the expression (12)

for short channels by multiplying it times the correction for narrow channels (1+4Cl/R), to recover (38)
in the small Q̇/N limit. In the limit of small X and of small R, this generalization of (12) leads to:

Q̇ =
NπR3ClS2T

0.43η
X

1
2
T1 − T2

L
, (43)

instead of (15). Using expression (13) for X and the definition (19), we are led to:

Th.Res.short−ch. ≡ ΔT

Q̇
=

0.86(ρηLQ̇)
1
2

(NπT )
3
2 R3lCS

5
2
. (44)

In fact, it would be desiderable to know a more detailed expression generalizing (12) for short channels,
but this is not yet known to our knowledge.

5. Conclusions

We have obtained the thermal resistance per unit area of a porous layer (with N pores of radius R per unit
area of the layer and length L, given by the thickness of the layers) and of the adjacent layer of quantized
vortices formed at the exit of the pores of characteristic thickness D′ [given by (27)]. Beyond this distance,
the effects of the discrete channels are not visible, because the heat flux has become homogeneous in the
directions parallel to the layer (and perpendicular to the channels).

The main results in the several situations considered in this paper have been the following ones, which
exhibit the contribution of the channels (first term) plus that of the layer of vortices at the exit of the
channels (second term). Concerning the contribution of the walls, the first result is well known, but the
other one has been obtained here. Furthermore, we are not aware of previous situations of the width D′

of the vortex layer beyond the wall, nor of its contribution to thermal resistance, because usual result in
this field directly use the Gorter–Mellink expression for fully developed turbulent flows.

• For thick layers (L � Lentrance) and wide pores (R � l) [from Eqs. (41) and (33)]:

Th.Res. (total)(L,R,N, Q̇) ∼ L

NR4
+ f(T )

Q̇3

N4R6
. (45)

• For thick layers (L � Lentrance) and narrow pores (R � l) [from Eqs. (42) and (33)]:

Th.Res. (total)(L,R,N, Q̇) ∼ L

NR3Cl
+ f(T )

Q̇3

N4R6
. (46)

• For thin layers (L � Lentrance) and wide pores (R � l) [from Eqs. (20) and (33)]:

Th.Res. (total)(L,R,N, Q̇) ∼ Q̇
1
2 L

1
2

NR4
+ f(T )

Q̇3

N4R6
. (47)

• For thin layers (L � Lentrance) and narrow pores (R � l) [from Eqs. (44) and (33)]:

Th.Res. (total)(L,R,N, Q̇) ∼ Q̇
1
2 L

1
2

NR3Cl
+ f(T )

Q̇3

N4R6
. (48)
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In previous expressions, f(T ) comes from (33) and it is K
ζ

ρ
16η

α2

β2κ2
1

(2πST )3
. Recall that according to

the estimation based on (22), and for Q̇ = 102 erg/s, and N = 100 cm−2, thick layers means L � 0.01
cm and narrow pores L � 0.01 cm [the result for intermediate L may be obtained from (12)].

In these expressions we have emphasized the respective dependence of the thermal resistance on N ,
R, L, and Q̇. Note that for thick layers (channels much longer than the entrance length) the resistance
does not depend on Q̇ and depends on LR−4 for wide channels and LR−3 for narrow channels, whereas
for thin layers (channels comparable to the entrance length) it depends on Q̇

1
2 L

1
2 R−4 for wide pores and

Q̇
1
2 L

1
2 R−3 for narrow pores.

The contribution of the turbulent layer beyond the wall has the same form in all situations, and L′

the average separation of neighboring pores has be taken as N− 1
2 , for a given area of the layer. Note that

this part depends on N and R in a stronger way than the contribution of the pores. As seen in Table 3,
for sufficiently, high values of Q̇

N , the contribution of the vortex layer is dominating over the contribution
of the pores.
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