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Abstract. In this paper, we consider the initial value problem for the compressible fluid models of Korteweg type in R™(n > 3)
and asymptotic profile of global solutions and the corresponding convergence rate are established. The structure of the

nonlinear term plays a very important role in constructing asymptotic profile. The proof is based on the decay estimate of
solutions operator, decay estimate and weighted decay estimate of global solutions.
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1. Introduction

This paper concerns the initial value problem for the compressible fluid models of Korteweg type

atm+V~(L?m)+VP(p)f,uA%f(,u+>\)VV'(%) = apVAp :
with the initial condition
t=0:p=po(x), m=mpy(x), ve€R™ (1.2)

The variables are the density p and the momentum m. Furthermore, p = p(p) is the pressure function
satisfying P’(p) > 0 for p > 0. The viscosity coefficients satisfy p > 0,2+ nX > 0, a > 0.

This compressible fluid model of Korteweg type describes the dynamics of a liquid—vapor mixture
in the setting of the diffuse interface approach: between the two phases lies a thin region of continuous
transition and the phase changes are described through the variations of the density, for example a Van
der Waals pressure. The compressible fluid model of Korteweg type was derived rigorously by Dunn and
Serrin [4] (see also [2,5]).

Let u = %%, then (1.1) may be rewritten as

{3tp+v-(pu)0, (1.3)
O(pu) + V- (pu @ u) + VP(p) — pAu — (n+ N)V(V - u) = apVAp. '

There are numerous works dedicated to the study of the compressible fluid models of Korteweg type,
and lots of important results were established. For well-posedness results, we refer to [1,3,6,7,9,15].
Global existence of classical solutions in Sobolev space was established by [9]. Danchin and Desjardins
[3] proved that global well-posedness in the critical Besov spaces for the initial data is close enough to
stable equilibria. Moreover, local existence of solutions for initial densities bounded away from zero was
also established. Bresch et al. [1] and Haspot [6] proved the global existence of weak solutions for the
compressible Navier—-Stokes—Korteweg system, respectively. Global strong solutions to the compressible
Navier—Stokes—Korteweg system in two space dimensions have been proved in [7].
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For decay estimate results of global solutions, we may refer to [12,20-22,27,28]. Wang and Tan [27]
established the L? and LP(p > 2) decay rates for the classical solutions by the detailed study of the linear
decay estimates and nonlinear energy estimates. For the global existence and decay estimate of strong
solutions, please refer to [20]. Tan and Zhang [22] obtained the faster decay estimate by assuming suitable
condition on the initial value. For more decay estimates results, we may refer to [12,21,28]. The optimal
decay estimates of global mild solutions in the critical nonhomogeneous Besov spaces to the problem
(1.1), (1.2) were established in [25], provided that the initial perturbations of density and velocity are
small in the space BQ%’1 NBY ., and Bf;l NBY ..

Our main purpose of this paper is to investigate asymptotic profile of global solutions obtained by
Hattori and Li [9] to the problem (1.1), (1.2) and the corresponding convergence rate in the sprit of [14].
The nonlinear term plays a very important role in asymptotic profile of global solutions obtained in this
paper. For the details, we refer to the following Theorem 1.3. The proof is based mainly on the decay
estimate of solutions operator in the low-frequency region, the high-frequency region, the structure of the
nonlinear term and global solutions obtained in [9] and decay estimate of global solutions established by
Wang and Tan [27].

To state our asymptotic profile and the corresponding convergence rate results, we firstly state global
solution and decay estimate results established by Hattori and Li [9] and Wang and Tan [27], respectively,
as follows:

Theorem 1.1. ( [9]) Let n > 3 and s = [2] + 1 be an integer. Assume that po —1 € H***, mo € H*. Put
Eo =llpo = U zs+1 + [mol &

Then there is a positive constant &g such that if Eg < g, then the problem (1.3), (1.2) has a unique global
solution (p,u) satisfying

t

1(p = DO Fresr + ) Fesn + /(II(%p(T)II%,M + 10z u(r) |3 )dr < CEo. (1.4)
0

Theorem 1.2. ( [27]) Let n >3 and s = %] +2 be an integer. Assume that po —1 € H**', mg € H® and
L' norm of (po — 1,m) is finite. Let (p,u) be the global solution to the problem (1.3), (1.2) obtained in
Theorem 1.1. Then

(o = Lu)®)[rr < Cllpo = Ulasrr

HImoll e ) (1+8) 2075, w2 <p < oc. (1.5)
102(p = L, u)(®)[[r < C(llpo = Ula=+r e
Hlmoll e qr) (1 +1)~ 207975 w2 <p <. (1.6)
and
102(p = )(®) e + [02u(®) [ o1 < C(llpo = Ume+r 22 + Mol e o) (1+8) 7577, (L.7)

Let U = (p—1,m)" = (o,m)”. We state our asymptotic profile of global solutions obtained by Hattori
and Li [9] and the corresponding convergence rate as follows:

Theorem 1.3. Let n > 3, s = [n/2] + 2 and k = % when n = 3 and K = 1 when n > 4. Assume that
po—1e HTYNLLNL2, mge HSNLLN L2 and 8,po € L2. Put

K’

Ey = |lpo — Ul gstrnpr + [Imollgsn -
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Let (p,m) be the global solution to the problem (1.1), (1.2) obtained in Theorem 1.1. If Ey is suitable
small, then it holds that

HU(t) — G * Uy = 3 0., Gult) /OO/IFZ-(U)dydTHLz
0 R™
<C{8+ ;Efzzg‘l (1.8)

where

Fy(U) = (FZ_(()U)> (1.9)

and F;(U) is the i-th column vector of the matriz F;;(U) defined by
Fy(U) = _ler”f — [P(1+0) — P'(1)als;; — %|va|25ij — 0y, 00,0 (1.10)

and Gy(t) is defined by (2.8).

Remark 1.4. The result in Theorem 1.3 implies that the solutions to the problem (1.1), (1.2) are asymp-
totic to a new asymptotic profile, which is given by the nonlinear term in F;;(U). In fact, the corresponding
decay rate of the other nonlinear term in Fj; (see (2.2)) is much faster.

The paper is organized as follows. We make the detail analysis for solution operators to (1.1), (1.2) in
Sect. 2. In Sect. 3, weighted decay estimate of global solutions to the problem (1.3), (1.2) is established.
Section 4 is devoted to derive the asymptotic profile of global solutions to the problem (1.1), (1.2) and
the corresponding convergence rate.

Notations Let F[f] denote the Fourier transform of f defined by

flo) = 7101 = [ e p(ayda,
]R'n.
We denote its inverse transform by F~1. LP = LP(R")(1 < p < oo) denotes the usual Lebesgue space
with the norm || - ||z». LE = LP(R™)(1 < p < 00) denotes the weighted Lebesgue space with the norm

1

P

I fllzz = (IR/ |(1+ |z|®) f(z)|Pdx | < oo.

The usual Sobolev space of order s is defined by H® = (I — 0%)~2L? with the norm || f|g: = ||(I —
92)% fll2-

For a nonnegative integer k, 9% denotes the totality of all the k-th order derivatives with respect to
x € R™. 9! denotes the totality of all the [-th order derivatives with respect to t € R,.. Also, for an interval
I and a Banach space X, C*(I; X) denotes the space of k-times continuously differential functions on I
with values in X.

2. Decay properties of solution operators

This section is devoted to derive the solution operators to the compressible fluid models of Korteweg type
(1.1), (1.2). To do so, let 0 = p—1 and P’(1) = 1. (1.1) may be rewritten as

{8t0+v'm=07

dem + Vo — pAm — (u+ NV(V -m) — aVAs = V - F, (2.1)
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where F' is the n x n matrix Fj; defined by

Py = =4 550 () = (e 00, (28] = 1Pl + 1) = P(1)o]

7 +1 +1 o+1 (2.2)
+§(A02 —|Vo[*)éij — 00,,00,,0
with the i-th component of V - F' given by Z 0x, Fij.
j=1
Let U = (o,m), then (1.1) may be written as
oU—AU =V -3(U), (2.3)

where

A 0 -V
"\ -V+aVA pA+ (p+ N)VV-

and F(U) = (0, F(U))".
Let G(t)* be the solution operators to the compressible fluid models of Korteweg type (1.1). Then
Fourier transform of G(¢,x) is given by

- Gt G2
G(tv f) = (@21 622 ) (24)
with
Gl — 7:[ G2 — ZET 5
G = *2(1 + |§| )Sg G22 (21 + NEETG + HIyn, 05
e (@5)
A 1) = 2=
and
—(2p 4+ N2 £ /(20 + N)2|E]* — 4(J€2 + af¢l*
(g = Xt NP /i PR~ TET ¥ o) 26
Due to Duhamel principle, the solution to the problem (1.1), (1.2) may expressed as
t
U(t) = G(t) * (T(;O ) +\/G(t7T)*V‘%V(U)(T)dT. (2.7)
0
0
Let F¢ € C°°(R™) such that
s_ 1L kl<e
”—%,52%
where 0 < € < 1 is a constant. Set
Gi=¢xG, Gh,=G—0¢xG =G —(|. (2.8)
The above Fourier splitting frequency technique was early introduced in [13] and so on. Then (2.7) implies
U(t) = Ui(t) + Un(t), (2.9)

where
t

Ui(t) = Gy(t) * U + / Gyt — 1)+ V - §(U)(r)dr (2.10)

0
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and
t

Un(t) = Gu(t) + U + /Gh(t L)+ V- FU)(r)dr (2.11)

Gi(t,€) and Hy(t,€) may be written

~ B 1 —2uEA g2y
and
Fu(t,§) = CEIIE 2216t i el + e 5168 con(elo e, (213)
49(€)
respectively, where
)2
06 = 1+ (- ZE g

Due to Taylor formula, it is not difficult to find that

~ 2 204 [ #12

Gut, € = LU =216 i 1) 1 (1) (24)

€]

and
(2u+ N

2

2pu4+A

(1 +O(¢*)e= =16  sin(le] + O(Jef?) )t
21 cos (€] + O(IEP))t.

Ha(t, ) = (2.15)

+e

We state the pointwise estimates for the solution operators G and ‘H to the generalized Boussinesq
equation (see [23] and [26]) as follows, which comes from [25].

Lemma 2.1. Let G and H be given by (2.5). Then we have the pointwise estimates
IG(4,6)| < ClE|~1(1 + [¢]?)~Fe—clél®t,
1H(t, )| < Ceclélt,
19:G(t,€)| < Ceelél’t,
OCH (,€)] < CIE|(1+ [¢2) beelel™t

(2.16)

for E € R™ and t > 0.
From the above results in Lemma 2.1, it is not difficult to find that
VEGH| < Clg| 727!, |VEHA| < Clg|Fe™". (2.17)

By Lemma 2.1 and the Plancherel theorem, the following decay estimates of solution operators can
be established.

Lemma 2.2. Let 1 < ¢ <2, and let k, j and | be nonnegative integers. Then we have

10EG(t) * Up|| 2 < C(1 +t)*%<%*%>*%||ango||m + Ce™|oF Uy | 2 (2.18)
and
1050,G(#) * Ugll 2 < C(1+ 1)~ 2G5 00U || + Ce™ |05 1Ty | 2. (2.19)

Lemma 2.3. Let k, j be nonnegative integers. Then
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(i) If 2 < p < o0, it holds that

107 0EG (1)1 < C(1 + 1) 2= =5 (2.20)
(i) If 1 <p <2, il holds that
n 1 n—1 2 k+3
; 1+6)" 20" 092" >3 and n is odd
105G (1) | < C ] ¢ 1y ;= 2.21
18- Gr(B)llr < {(1 +t)_5(1—5)—z(1—%)—k%7 n > 2 and n is even ( )
Proof. We may refer to [10,11,16-18] and [24] for the proof. The details are omitted. O
From Lemma 2.2 and (2.8), (2.17), we get immediately the decay properties of Gy (¢, x).
Lemma 2.4. Let k be a nonnegative integer. Then
105 (G (t) x Uy — Gy(t) * Up)||r2 < Ce |05 Uo|| 2. (2.22)

To establish the weighted decay estimate of global solutions, we need the following decay properties
of solution operators in low-frequency parts.

Lemma 2.5. Let k =0, %7 1 and let k be nonnegative integer. Then we have

_n_ n

12|05 Gy (t) * Upllrz < C(1+ )" 52| U1 4+ (1 + )~ 5% |[|2|*Up|| 1. (2.23)

Proof. When k = 0, by the Plancherel theorem, it is not difficult to see that (2.23) holds. Owing to the
properties of Fourier transform and (2.14), (2.15), (2.5), we have

oGz < [ |ve((ie)Gn)| ag

|g1<2r
<C / |£|2(k—1)e—c\§\2td§ + Ct2 / |£‘2ke—c\§\2td§
[gl<2r €|<2r
<CO(14t)"2 M2, (2.24)

From Holder inequality and (2.24), we have
1ok k 3 1ok 3
Iz 2 Gi(t)l| L2 < (|07 Gr(t) |2 107 Gr(®) I 7
<C(l+t) 5 3+3, (2.25)
When « = 1,1, it follows from Young inequality and (2.24), (2.25) that
|z 02Gi(#) * Uoll 2 = [l|z[" 02 Gi(2) * Uo|l 2
< l2* a5 Gi(®)ll 2 |1 Uoll s + 195 Go(t)l| 2 l|2]"To|l 1
< O+ ) FE Ul + (14 )75 22l Ul 1.

The lemma is proved. O

Lemma 2.6. Assume that Uy € L3(R™). Then we have

ety < va—Gitt) [awin+ 3 26uo) [ atwras],

Rn |a‘:1 Rn™
<O+~ T MUy (2.26)
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Proof. The definition of convolution, Taylor formula, Young inequality and (2.20) entails that

|cutty < va - Gitt) [vawin+ 3 a26u(0) [ tatwas]

L2
Rn |al=1 Rn
~ || [ (Gt — v - Gty + Y a2t s,
Rn |a|=1
- 3 ercitea - omwia
R |a|:2
< N02Gi(®) |2 Nl |=[*Uo | o
<O+~ Uol|y,
where 6 € (0,1). We complete the proof of Lemma 2.6. d

To derive the weighted decay estimate of solution operators in high-frequency part, we need the
following lemma, which comes from [14].

Lemma 2.7. Let 8§f€ L™ for k=0,1, and let (1+ |z|2)g € L. Then we have

llal®f * glize < CAIFlle= + 19 Fll)(lglzz + lllal2 gl z2). (2:27)
Lemma 2.8. Let k =0, %, 1 and let k be nonnegative integer. Then we have
205 Gn(t) * Uollz= < Ce™ (105Ul |2 + Il|2[*5 Uol|2) (2.28)
and
205 GR2(E) * ol 2 < Ce™ (|50l L2 + [[l2]"Dyuol|2). (2.29)

Proof. When k = 0,1, (2.28) immediately follows from the Plancherel theorem. When x = %7 making use
of (2.27) and (2.5), (2.17), we deduce that

et i, =)ot
< (JlocGu |, +[Gnw], ) (okTollze + 1ol 2001 12)

< Ce™ (05 Uol 2 + |||2[* 05 Uol| =) -
Similarly, we may prove (2.29). Then the proof of Lemma 2.8 is completed. O

3. Weighted decay estimate of global solutions
The purpose of this section is to establish weighted decay estimate of global solutions obtained in [9]. To

this end, let 0 = p—1, u =2, P'(1) =L and V = (0,u)",Vo = (00, u0)” = (00, ;o7)" - Then (1.3) may
be rewritten as

o +V-u=F (V) - (3.1)
Owu+ Vo — pAu— (p+ANV(V-u) —aVAe = F5(V), '
The initial value becomes
t=0: V=V, (3-2)

where

F(V) =~V (ou) (3.3)
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and

Fy(V) = —u-Vu— MULHAU —(u+ )\)LV(V cu) — L[V(P(l +0) — P'(1)0))].

o+1 oc+1

The problem (3.1), (3.2) may be rewritten as

O,V — AV = F(V),
t=0: V=1,

where F(V) = (Fy(V), Fo(V))T.
Noting that (2.8), then the solution to the problem (3.5) is given by
¢

V(t)=G) « Vo + /G(t — 1)« F(V)(r)dr
0

=Gi(t)« Vo + Gp(t) « Vo + /Gl(t —7) % ﬁ(V)(T)dT
0

t

+ / Gu(t —7) % F(V)(1)dr.
0
We state the weighted decay estimate of global solutions obtained in [9] as follows.

ZAMP

(3.6)

Theorem 3.1. Letn > 3 and k = % when n = 3 and kK = 1 when n > 4. Assume that the conditions of
Theorem 1.2 hold. Moreover, assume that Vo € L: (L2 and 9,00 € L2. The solutions V to the problem

(3.1), (3.2) satisfy
2"V (#)]lz2 < COL+ )~ F+n
and
lal*deo(llze < C(1+8)~ 5.
Proof. Let
X(t)= swp {147 (2V (D)2 + el 00 (7) | 2) }-

0<r<t
Thanks to (3.6) and Minkowski inequality, we obtain
IV ()2 < [l|"Gi(t) * Vol L2 + [[|l2]"Gn(t) * Vol 2

+ [ el Grte = 7) 2 FOV)()sodr
0

+ [ el Gt = 1)« POVl
0

=L+ 1+ I3+ 1.
By virtue of (2.23), we can get
L < COL+6) T (Vollzr + [l Vol 1)
< CO+ )T Vol
(2.28) entails that

(3.7)

(3.8)

(3.10)

(3.11)
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I < Ce™(|[Vol 2 + [l|*Vol|2)
<O+ Vol| 2. (3.12)

It follows from (2.23) that

L<C | (L+t—7) 8 EV)(r)|padr

S—__

t

+C/(1 +t =) P (V) (7) || i dr
0

<C [+t =) TNV L2 (10:V (1) 22 + 107V (7)l|2)dr

o—__

t

+C/(1 +t =) TV () L2 (10:V ()| 2 + 107V (7) | 2)dr
0
t

< CE%/(l Ft—r) iR )T 2y
t
0

<CE}1+t) T L CEL X () (1 4+t)~1H". (3.13)

Owing to (2.28), we arrive at

t t
L<c / e | F(V)(r) | dr + C / &= |2l F(V) (1) | odr
0 0
t
= C/ eIV ()| L2 (|18 V (7)o + [02u(T)]| oo )dr
0
t
+C/ e 2|V ()| 2 (185 V (7) | o + [[02u(T)|| oo )d

/ ~NY ()| 2 (102 V (7)1 + [000(7) || 2o )
0

t

C [ Nl V()22 102V () s + [0su(r) )

0

<C (/eQC(tT)(IIV(T)iz + |||$”V(T)|Ii2)d7)
0

2
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2

t
x /(IlaxV(T)H?{s—l + 10z u(r) |3 )dr
0

=

t
< CE? /e_zc(t_T)(l +t)"2dr
0

N

t
+CE1 X (t) / e 2= (1 4 )" 220
0
<CE}14t)"1T +CEX(t)(1+1t)"5t",
Making use of (3.6) and Minkowski inequality, we obtain
| 0so (1) |22 < [l|2]0:Gi*(2) * ool 2 + |||2]*0:G}' () * ool 2
[0 Gy (2) * woll = + || 0GR (2) * uol| 2

IN

t
+ / 2l 0.GI (¢ — 7) % Fy (V)(r)|| padr
0
t
+ / 2l 0uGR (¢ — 7) % Fy (V)()|| padr
0
t
+ / 2| 0uGI2(t — 7) % Fo(V) ()| p2dr
0

t
+ / 2l 0uGI2(t — 7) % Fo(V) ()| padr
0

= J1+Jo+Js+ 4+ J5s+ Js + J7 + Js.
Thanks to (2.23), we arrive at
Ji < CA+1)7E7 24 (||ogl| 1 + 2|00l 1)
<O+ 752 oo s
Applying (2.28), this gives
Jy < Cem([|0z00] 2 + ||| D00l L2)
< C(L+4) 757247 0,00] 2.
By using (2.23), we get
Ty < C(L+ )57 (|fuo 11 + |||l "ol 1)
<O+ 7572 ug | .
(2.29) entails that

Ty < Ce=(|luo]| 12 + |||z[*uo| £2)
< O +8) 572 Jugl| 2.

ZAMP

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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By a similar calculation to (3.13), it follows from (2.23) that

(14t —7) T35 B (V)(7) || prdr

c>\W

t
e / (14t — 7)~ 5= F% S By (V) () | padr

1+t —7) 5 25|V (1) 2|0V (7) || L2dr

o\W

t
+C / (1t — 1)~ 5 E SV () 120V (7) | 2

0
t

n

< CE} /(1 +1t- 7')7%*%*“(1 + T)fffédr

t
+CE1 X /1+t—7‘ “EItR(L 4 )BT ety
0

< CE}(1L+) 375 + CELX(t)(1+ 1)~ 572",

Due to (2.28), it holds that

t t
Js < C / e By (V)(r) | adr + C / el Fy (V) (1) | odr
0 0

t
< [ (ol 0Eulr) = + 18s0() 2 Oculr) |~

Hlulm) 221020 (7)1~ ) dr
t

+C/ ~D (2l o (1)l 2 107 u(r) || L + [llz]*8zo (7) | 2| 0sul) [ oo
0
" u(r)| 2|07 (1) L )dT

t
= C/ eIV () 22110V (D) | zrs + 182V (7) || 221182V (7) || o1 )d

+C/e_c(t_T)(lllff\”V(T)llmHBmV(T)IIHs + 217020 ()l L2182V (7) | o1 ) dr

0

t
¢ </ e 2 (VD)Z2 + 10:V ()12 + 2"V (D172 + ll2)*0z0 (7)[|Z2)dr

N
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(3.20)
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ZAMP
t 3
X (/(&:V(T)llizsl + 1102V (7)] %(s)d7>
0
t 3
< CE% (/ e—2c(t—‘l’)(1 —l—t)_gdr)
0
t 3
+CE X (1) ( / e~ 2t=m)(1 +t)—3+%dT)
0
<CE}(14+t)" 1 +CEX(t)(1+1t)"atr (3.21)
We estimate J7 as follows by (2.23)
Jr < C/ﬂ +t = 1) By(V) ()| padr
t
+C/(1 +t— T)_%_%"'”H|x|”ﬁ2(V)(T)HL1dT
0
t
<C [ A+t—7) 5 V()| 2 (10:V (1)l 2 + 102V (7)]| 2 )dr
0
t
+C/(1 b= 1) T2V () | 2 (10:V ()| 2 + 102V (7) | 22 )dr
0
t
< CE} /(1 +t—7) IR (L4 7)TE Ry
0
t
+CE X (t) /(1 ) TETEER (1 ) TE TRy
0
< CEX1+1) 83T L CEX(H)(1+1) 13", (3.22)

Making use of (2.29), we see that

t
Js<C 6*0<t*7>||ﬁ2(v)(7)||mdr+0/e*C<t*T>|||x\“152(v)(7)||L2d7
0

t
C/ t'r”V
0
t

+C/ eIV ()| 2 (18:V (D) poe + 02u(r) || o )dr

0

M2 (10:V ()l[poe + [10Fu(r) |1 )dr
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t

< C/6’“’7)IIV(T)IIL2(Ilan(T)IIHs—l + 102 u(7) | s )dr

0
t

+C/ e~ NV ()| L2 (|18 V (7) | o1 + |100u(T) || 11+ )dr

0

t 2
<C /B’QC“’T)(IIV(T)IIQLQ + [V (1)1 22)dr
0

2

t
A WAL R LR P
0

1
t 2
< CE? /e‘Qc(t_T)(l +1)"2dr
0
t 2
+CE X (t) / e~ 21 4 1)~ B+ gy
0

SCE}(1+t)" T +CEX(t)(1+t)" 1t
Inserting (3.11)—(3.14) into (3.10) and (3.16)—(3.23) into (3.15) yields

X(t) < C(IVolley + Vollez + 10z00ll22) + CE} + CE1 X (1),
which implies

X(t) < C(|Vel

L+ Vollez + 19z00ll.2) + CEZ,

provided that E; is suitably small. The proof of Theorem 3.1 is completed.

4. Asymptotic profile of global solutions

Page 13 of 19 45

(3.23)

(3.24)

In this section, our main goal is to establish asymptotic profile of global solutions and the corresponding
convergence rate. To this end, we state the L? decay rate of global solutions obtained in Theorem 1.1 in

high-frequency part as follows.

Lemma 4.1. Under the conditions of Theorem 1.3, Uy (t,x) satisfies

[Un@)llz2 < CL+8)" 570

(4.1)

Proof. (4.1) immediately follows from Theorem 1.1, 1.2 and the decay property of G} (x,t). Here we omit

the details.
In what follows, we give the proof of Theorem 1.3.

Proof. From (2.7), (2.9) and (2.10), we arrive at

O



45 Page 14 of 19 Y. Wang and Y.-Z. Wang
U(t) — G(t) + Uo — 3 00, Gi(1) / / Fy(U)dydr
=1 0 Rn
t

= Up(t) + Gy(t) * Up — G(t) + Up + /Gl(t — )% V- §(U)(r)dr

0
- 0, Gl(t)//E(U)dydr
i=1 0 Rn

i [ 30 (0uGilt == ) - 01, Gult, ) JEu(U)dydr
0 rn =1

+O/§amiGl(t —T) * (Sz(U) — Fi(U))(T)dT

+ [ 0., Gilt — 7) = Fi(U)(r)dr
T =1

2

_i 9z,Gi(t) /oo/ F;(U)dydr.

t Rn
£ R

Then (4.2) and Minkowski inequality give

low -y «v, - iamic;l(t) / / F(U)dydr | |

0 R»

< OO + |Gy« Uy — Gy < i

+ /z/zn: (aﬂﬂtGl(t —1,x—y) — 0., Git, CU))R—(U)dydT

n =1
0 Re * L2

z
2 n

+ /Z%Gl(t — ) (&»(U) - IFi(U))(T)dT

i=1
L2
=1 t Rn

L2
::K1+K2+K3+K4+K5+K6.

ZAMP

(4.2)

(4.3)
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By virtue of (4.1), it holds that

K, <C+t)~i L (4.4)
Thanks to (2.22), we have

Ky < Ce | Uo||2- (4.5)

K3 may be rewritten as

[VEY

Ky = //i(@lel t—1,x—y)— 0, Gi(t, x)) +(U)dydr

0 R™ L2
< /Z <<9le[ (t—T,2—y)— 0y, Gi(t — T, x)) (U)dydr
0 R =1 L2
//Z (9sz1 (t —7,2) — 8y, Gi(t, :c)) (U)dydr
Rn = 1 12
=: K31 + K3o.

In what follows, we estimate K31 for n = 3 and n > 4, respectively. When n = 3, mean value theorem,
Young inequality, Holder inequality and (2.20), (3.7), (3.8) entail that

t

Kar = | [ [ 32 0.0.Gilt ~ 7.~ 6uy)yu(U)dydr
0 rn =1 12

< c/(l+t—r)*%*1|\xFi(U)||L1dT
_3_ 1 1
<0 fast=n) ([l UIE + a0l )ar
0

<C [A+t—7) 7 A +7)"2dr
/
< (1+1)71, (4.6)

where 67 € (0,1).
When n > 4, using mean value theorem, Young inequality, Holder inequality and (2.20), (1.5), (1.6),
(3.7), (3.8), the similar estimate of (4.6) leads to
Kj = //Z@waiGl(t — 7,2 — Oy)yF;(U)dydr
0 rn =1 12

%
< C/(l+t*7’)7%71”IF1‘(U)”L1dT
0
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n

<C [(+i- T)_Tl(IIIJSIU(T)IIHHU(T)IIB + IIIﬂCI@wU(T)IImHaza(T)HLz)dT

IN

— O\m\» o\w\‘*

Cl(1+t- T)_%_l(l + T)_%+1d7'

-1l =
(1+1) log(1+1t), n=4 (4.7)

=C (14t)"571, n>5

where 62 € (0,1).
Making use of mean value theorem, Young inequality, Holder inequality and (2.20), (1.5), (1.6), we
have

Ky = / / > 0102, Gi(t — 037, 2)7F; (U)dydr

n =1
0 Rn " L2

< c/(1 bt ) E L |F (U)o
0

7

U+t =) (U@ + 10.0(7) 32 ) dr

IN

c

<C|(A+t—7)" 1T br(147)" %dr

I+t
1+t
1+t

)~ , n=3
)i tlog(1+1t), n= (4.8)
)T n>5

o

IN

—_—— O\M\N O\N‘

C

ISERSERFNE
=

where 03 € (0,1).
It follows from (2.23) with x = 0 and (1.5) that

t t

Ky < C’/(l+t—T)_%_1||U(T)||2de7+0/(1+t—7)_%_%||0(7)||%2d7
0 0

<c [art-n s tar
0
<C(l+t) ik (4.9)

Young inequality, (2.21), (1.5), (1.6) entail that

K5 <€ [ (1. = n)ls (NUP ()2 + 102 (7)22)

HO:%i(t = DI TP ()2 + 1034 (¢ — )|z HJ(T)HLz)dT
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t
/(1 +t—=7) T (U@ U2 + [020(7)[|74)dr, n > 3 and n is odd
<c!’,
/(1 +t— T)%_%(|‘U<T)||Loo||U||L2 + |0z0(7)||34)dT, n >4 and n is even
:
t
/(1+t—7) . (1+7)_%d7,n23andnisodd
<cd,
/( +t—7)i"3(1+7)" %dr, n>4andniseven
t
{(1+t) T3 =34 (4.10)
(1+t)"57 1, n>5
Owing to (2.20) and (1.5), (1.6), we deduce, for n > 3
Kg < ZHaa:lGl ||L2//|]F )|dydr
i=1 1 En
<c+07i4 [(UEIIE + 10 I)dr
.
<O+t i3 /(1 +7)"Fdr
3
<C(l+t)7ih (4.11)
Substituting (4.4)-(4.11) into (4.3) yields (1.8). This concludes Theorem 1.3. O

Remark 4.2. Assume that the conditions of Theorem 1.3 hold. Furthermore, assume that Uy € L. Then
from (2.22) and (2.26), we have

HG(t)*Uo*Gz(t)/UO Yy + Y 3Gt / “dyH

Rn laf=1 R™
<CA+1)7 5 (0ol g + 0ol z2)- (4.12)
Therefore, (1.8) and (4.12) and Minkowski inequality imply that

Jie) - Gaco / Ua(w)dy+ 3 02Gu(t) [ Vol dy

Ial 1 R

—ZBIIGI // dydT”L2

0 R»

< [[ury - Gty v - iaxic’z(t) 7/1Fi(U)dydTHL2

0 Rm»
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G(t) * Uy — Gu(t) (v) 97 Gi(t) (w)y”
+H t) Uy lt/ondy+|Z lt/UOyydy’

R» al=1 R™ o
(1+t)"5"2, n=34
< C{ Q4031 n>s (4.13)
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