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Abstract. A continuum model for dielectric elastomers is proposed on the basis of a micromorphic theory of electroelas-

ticity. A biaxial microstretch deformation is considered to describe macrostretch and electric polarization due to applied

mechanical loads and electric fields. A statistical isotropic condition is exploited to express the dependence of strain tensors

on microstretch, and the equilibrium balance laws are given for micro- and macrodeformation and the electric potential. A

one-dimensional problem is formulated to model a layer of dielectric elastomer subject to electric potential and mechanical

traction. Some numerical results are obtained, which show consistence with the expected electroelastic physical behavior of

such structures.
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1. Introduction

Electroelasticity of soft materials is characterized by large deformations connected to a coupled action
of mechanical loads and electromagnetic fields. In particular, dielectric elastomers consist of polymer
chains of molecules that, under the application of an external electric field, are equipped with an electric
polarization and a deformation which includes stretches and chain’s spatial reorientation. These phenom-
ena are typically nonlinear and imply a dependence of electric permittivity from stretch and the actual
electric field.
The most common approaches to model such electroelastic behaviors are continuum electromagneto-
elastic theories based on nonlinear constitutive assumptions, allowing to give a phenomenological basis to
describe various material performances and stability [1–3]. Statistical mechanics approaches have been also
considered to account for the polymeric structure and its polarization by suitable statistical averages [4–6].
In the present work, we consider an alternative continuum mechanical approach which relies on a micro-
morphic electromagneto-elastic model. The general mechanical theory [7] accounts for a microstructure
of the continuum particle by introducing internal degrees of freedom and the corresponding strain mea-
sures. An extension of this theory to electromagneto-elastic interactions has been proposed in previous
works to obtain explicit expressions of polarization and magnetization which connect the electromagnetic
field with the microdeformation [8,9]. Here, we consider a dielectric, nonmagnetic model and assume
that the continuum particle is subject to a biaxial microstretch, in order to describe the polymer chain
deformation of the dielectric elastomer. This model introduces two microstretch variables beside one
orientational unit vector. The kinematics is developed in Sect. 2 where both microstrain tensors and
polarization are derived as functions of the previous variables. In particular, evaluating polarization we
account for first-order (dipole) and second-order (quadrupole) charge moments. Section 3 is devoted to a
statistical averaging by the requirement of isotropy in order to obtain dipole and quadrupole densities and
the microstretch tensors which describe the macrocontinuum model. With the aim of writing an explicit
form of the set of balance equations for a boundary value problem, in Sect. 4 we write the constitutive

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-020-1266-0&domain=pdf
http://orcid.org/0000-0002-0993-9706


44 Page 2 of 13 M. Romeo ZAMP

equations for mechanical and electric stress and couple stress. Although we simply choose linear mechan-
ical constitutive laws, our formulation yields a nonlinear problem due to the dependence on the stretch
variables. The incompressibility assumption is then introduced, and a one-dimensional problem for an
elastomer layer structure is formulated to discuss the effectiveness of our model. As expected, a nonlinear
dependence of the stretch on the applied electric potential appears, together with a clear dependence of
polarization on the stretch.

2. Kinematics for microstretch continua

The following analysis is based on the classical micromorphic theory of continuum media [7], extended
to electroelastic coupling modeled by charge microdensity [8,9]. As usual, we denote by x = f (X, t)
the center of mass of the continuum particle Pt in the actual configuration, where X is the correspond-
ing vector in the reference configuration P. f is a smooth function with gradient (deformation tensor)
F = (∇ f )T . The microdeformation vector ξ , within the particle in the actual configuration, is represented
by ξ = χ (X, t)Ξ where Ξ is the microdeformation vector in the reference configuration. The microde-
formation tensor χ characterizes the kinematics of deformation within Pt. In particular, we describe the
elastomer element by its polymeric end-to-end direction n assuming a biaxial stretch given by the real
positive stretches λ̄ and λ, respectively, along and orthogonal to n. All these quantities are supposed to
be sufficiently smooth functions of X and t, and we have

χ = λI + (λ̄ − λ)n ⊗ n,

where I is the identity tensor. In the following, we shall denote components in the reference and actual
configurations, respectively, by capital and lowercase indices so that the previous equation reads

χhH = λδhH + (λ̄ − λ)nHnKδKh, (2.1)

where the symbol δhH is the so-called shifter. We observe that the unit vector n is expressed in the
reference configuration in order to discuss the arbitrariness of its orientation for the not deformed state,
as explained in the next section.
The inverse microstretch tensor is given by

XKl =
1
λ

δKl +
λ − λ̄

λλ̄
nKnHδHl (2.2)

so that XKlχlH = δKH and χhKXKl = δhl.
According to the general micromorphic theory, we introduce the strain tensors ε , e, γ , known as relative
deformation, microdeformation and wryness tensors

εkl = δkl − F−1
HkχlH , ekl =

1
2
(δkl − XHkXHl), γklm = χkH,MXHlF

−1
Mm (2.3)

In view of equations (2.1)–(2.3), we get

εkl = δkl − F−1
Hk[λδlH + (λ̄ − λ)nHnKδKl]

ekl =
1
2

(
1 − 1

λ2

)
δkl +

1
2

(
1
λ2

− 1
λ̄2

)
nHnKδHkδKl

γklm =
{

λ,M

λ
δkl +

[(
λ̄,M

λ̄
− λ,M

λ

)
nHnJ + (λ̄ − λ)

(
1
λ

nH,MnJ +
1
λ̄

nHnJ,M

)]
δkJδHl

}
F−1

Mm

(2.4)

By introducing the microdensity of bound charges, σ′(x+ ξ , t), in the actual configuration, we can write
electric multipoles of different order in ξ . For dipole and quadrupole densities, we have

p(x, t) =
1

Δv′

∫
Pt

σ′(x + ξ , t)ξ dv′, Q(x, t) =
1

Δv′

∫
Pt

σ′(x + ξ , t)ξ ⊗ ξ dv′ (2.5)
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The corresponding quantities in the reference configuration are given by

P(X) =
1

ΔV ′

∫
P

σ′
0(X + Ξ )Ξ dV ′, Q(x) =

1
ΔV ′

∫
P

σ′
0(X + Ξ )Ξ ⊗ Ξ dV ′ (2.6)

We assume the conservation of charge microdensity so that σ′
0 = jσ′ where j = det χ . This allows to

obtain the following relation between multipoles in actual and reference configuration. In components

pi =
1
j
χiHP, Qij =

1
j
χiHχjKQHK . (2.7)

Owing to Eq. (2.1), we have j = λ2λ̄. Then, we pose

PH = δHkπk, QHK = δHhδKkQhk

and from Eqs. (2.7) and (2.1) we obtain the following representation of electric dipole and quadrupole
densities in the actual deformed configuration

pi =
1

λ2λ̄
[λπi + (λ̄ − λ)nHnKδHhδKiπh]

Qij =
1

λ2λ̄

{
λ2Qij + (λ̄ − λ)nJ

[
λ(nHδjKδJi + nKδiHδJj) + (λ̄ − λ)nHnKnMδJiδMj

]
QHK

}
(2.8)

In the following, these result will be exploited to express the polarization of the continuum according to
the result

P = p − 1
2
∇ · Q, (2.9)

up to the second-order multipoles [10].

3. Statistical averages

In the following, we shall consider a spatial random orientation of the elastomer element in the reference
configuration assuming an isotropic distribution. The orientational vector n of the continuum particle
can be written as

n = (cos θ, sin θ cos ψ, sin θ sin ψ), (3.1)

where θ and ψ are spherical angles referred to a fixed frame in the reference configuration. The statistical
average of a quantity h for a probability distribution g(X,n) is

〈h〉 =

2π∫
0

π∫
0

h(X,n)g(X,n) sin θ dθ dψ

Under the isotropic assumption, g(X,n) = 1/4π and we get the following results

〈nHnK〉 =
1
4π

2π∫
0

π∫
0

nHnK sin θ dθ dψ =
1
3
δHK (3.2)

〈nHnKnJnM 〉 =
1
4π

2π∫
0

π∫
0

nHnKnJnM sin θ dθ dψ

=
1
15

(δHKδJM + δHJδKM + δHMδKJ) (3.3)
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Moreover, assuming constant gradients ∇θ and ∇ψ, for the random distribution in the reference config-
uration, we get

〈nH,MnK〉 =
1
4π

2π∫
0

π∫
0

nH,MnK sin θ dθ dψ =
1
3
εHMKψ,M , (M not summed) (3.4)

and on the basis of the required isotropy we pose ψ,M = k, (M = 1, 2, 3) to obtain

〈nH,MnK〉 =
k

3
εHMK . (3.5)

The meaning of the quantity k concerns an intrinsic measure of randomness in the reference distribution
of orientation. As shown in the next section, it turns to be a factor in the mechanical parameters of the
constitutive equation of the wryness tensor.
We apply these results to the statistical averages of the strain measures for the macroscopic continuum
description. In view of the next developments, we introduce the macrodisplacement u such that

uh = fh − XHδHh, uh,j = δhj − F−1
Hj δHh. (3.6)

We obtain the following results

〈εkl〉 =
(

1 − 2
3
λ − 1

3
λ̄

)
δkl +

(
2
3
λ +

1
3
λ̄

)
ul,k, (3.7)

〈ekl〉 =
(

1
2

− 1
3λ2

− 1
6λ̄2

)
δkl (3.8)

〈γklm〉 =
1
3

(
2
λ,m

λ
+

λ̄,m

λ̄

)
δkl +

1
3
k

(λ̄ − λ)2

λλ̄
(εklm − εklhuh,m) (3.9)

Analogously, for the electric multipole densities,

〈pi〉 =
1

λ2λ̄

(
2
3
λ +

1
3
λ̄

)
πi, (3.10)

〈Qij〉 =
1

15λ2λ̄

[
(λ̄ − λ)2Qhhδij + (7λ2 + 2λ̄2 + 6λλ̄)Qij

]
(3.11)

In the absence of microdeformation, i.e., for λ = λ̄ = 1, the previous strain measure εkl reduces to the
corresponding macrocontinuum classical strain ul,k in the absence of microdeformation. In this case, ekl

and γklm vanish and the electric multipole densities reduce to the corresponding reference values πi and
Qij .
For incompressible materials, we have isochoric deformations. As shown in a previous work [11], isochoric
microdeformations imply isochoric macrodeformations so that we describe the incompressibility condition
by posing j = λ̄λ2 = 1. Then, we get λ̄ = 1/λ2, λ̄,m = −2λ−3λ,m and we obtain

〈εkl〉 = δkl +
1

3λ2
(2λ3 + 1)(ul,k − δkl)

〈ekl〉 =
(

1
2

− 1
3λ2

− λ4

6

)
δkl

〈γklm〉 =
1
3
k

(
1
λ2

− λ

)
(εklm − εklhuh,m) (3.12)

〈pi〉 =
(

2
3
λ +

1
3λ2

)
πi

〈Qij〉 =
1
15

(
1
λ2

− λ

)2

Qhhδij +
1
15

(
7λ2 +

2
λ4

+
6
λ

)
Qij . (3.13)
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In the following, we shall restrict our analysis to incompressible materials. To simplify writing, angular
brackets in the previous averaged quantities will be omitted.

4. Constitutive equations

Now we proceed in writing the constitutive equations according to the linear isotropic micromorphic
mechanical theory. We observe that, despite this assumption, the balance equations obtained by this
approach are not linear, due to the previous expressions of the strain tensors. From the general micro-
morphic model [7], the Cauchy stress T and the couple stress m are given by

Tij = Aijhkεhk + Eijhkehk + TE
ij , mijk = Cjkihlpγhlp + mE

ijk (4.1)

where TE and mE are purely electric contributions which are introduced to complete the effects of
electroelastic coupling considered in the next balance equations. The isotropy condition implies

Aijhk = αδijδhk + (μ + κ)δihδjk + μδikδjh

Eijhk = (α + ν)δijδhk + (μ + σ)(δihδjk + δikδjh)

Cjkihlp = τ1(δjkδihδlp + δjpδkiδhl) + τ2(δjkδilδhp + δjiδkpδhl) + τ3δjkδipδhl

+ τ4δjhδkiδlp + τ5(δjiδkhδlp + δjlδkiδhp) + τ6δjiδklδhp + τ7δjhδklδip

+ τ8(δjlδkpδih + δjpδkhδil) + τ9δjhδkpδil + τ10δjlδkhδip + τ11δjpδklδih (4.2)

with real parameters α, μ, κ, ν, σ, τi(i = 1, . . . , 11) subjected to restrictions imposed by thermodynamics
[7]. Also we have

TE
ij = ε0

(
EiEj − 1

2
‖E‖2δij

)
(4.3)

mE
ijk =

1
2

(QikEj − QijEk − εhjkQiEh) (4.4)

where E is the electric field and where we posed Qi =
∑3

h=1 Qih. Equation (4.3) represents a Maxwell
stress, while Eq. (4.4) arises from a dimensional analysis, accounting for linearity and for the skew-
symmetric requirement due to the fact that, as in the micropolar theory, we shall write the balance of
moment of momentum in its dual vectorial form.
In view of Eq. (3.12), in the isochoric case we obtain the following explicit expression for T,

Tij =
(

α0 − α1λ − α2
1
λ2

− α3λ
4 − p

)
δij

+
1
3

(
2λ +

1
λ2

)
[αuk,kδij + μ(ui,j + uj,i) + κuj,i] + TE

ij

(4.5)

where p is the pressure variable introduced by the incompressibility condition and

α0 =
9
2
α + 3μ + κ +

3
2
ν + σ, α1 = 2α +

4
3
μ +

2
3
κ,

α2 = 2α +
4
3
μ +

1
3
κ + ν +

2
3
σ, α3 =

1
2
α +

1
3
μ +

1
2
ν +

1
3
σ,

and the following expression for m,

mijk =
1
3
kλ

(
1
λ2

− λ

)2

{εijk(τ7 + 2τ8 − τ9 − τ10 − τ11)

+ [(τ2 − τ1)δjkεipq + (τ5 − τ4)δkiεjpq + (τ6 − τ5)δijεkpq]uq,p

+ (τ10 − τ7)εjkquq,i + (τ9 − τ8)εijquq,k + (τ11 − τ8)εkiquq,j} + mE
ijk (4.6)
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As expected, in the absence of microstretch (λ = 1) and electric field, the microstress tensor mijk vanishes
and the Cauchy stress tensor reduces to the classical form

Tij = (αuk,k − p)δij + μ(ui,j + uj,i) + κuj,i.

The explicit expression for polarization, from Eq. (2.9) in the isochoric case, becomes

P =
1
3

(
2λ +

1
λ2

)
π +

1
15

(
2
λ5

− 1
λ2

− λ

)
(trQ )∇λ − 1

15

(
7λ − 4

λ5
− 3

λ2

)
Q∇λ. (4.7)

We note that, in the absence of an intrinsic electric dipole π of the elastomeric element, the contribution
to polarization arises from the gradient of microstretch, connected to the bound charge distribution
characterizing the quadrupole density Q .
Looking to the next vectorial form of the balance equation for moment of momentum, we write the
following microstress tensor

μil = εjklmijk

=
1
3

(
λ3 +

1
λ3

− 2
)

{[(2β1 + β2) − β1uk,k] δil + β(ui,l − ul,i) + (β1 − β2)ul,i}

+
1
2
εhkl(QkiEh − QhiEk) − QiEl

(4.8)

where

β = k(τ4 − 2τ5 + τ6), β1 = k(2τ8 − τ9 − τ11), β2 = 2k(τ7 − τ10).

5. Equilibrium balance equations and boundary conditions

We consider the balance laws for equilibrium of the dielectric elastomers according to the general micro-
morphic theory of electroelasticity for not magnetizable dielectric continua [8]. In the absence of external
mechanical body forces, and accounting for the absence of net charge density, we can write the balance
laws for momentum, moment of momentum and the Gauss’ law in the following form

∇ · T + p · ∇E +
1
2
(Q∇)∇E = 0 (5.1)

∇ · μ + t + E × p + H = 0 (5.2)
∇ · (ε0E + P) = 0 (5.3)

where the vectors t and H are given by

ti = εihktkh, Hi = εikhQkjEh,j ,

and where ε0 is the dielectric permittivity in vacuum. Equation (5.2) has been obtained from the reduction
of the tensorial balance of moment of momentum to its dual vectorial form after skew-symmetrization
(multiplication by the permutation symbol) as occurs in the micropolar reduction [12]. Within the quasi-
static model of dielectrics, we introduce the electric potential ϕ and assume E = E(0) − ∇ϕ, where E(0)

is a possible constant external applied field. Then, from the constitutive model of the previous section in
the isochoric case we obtain the following explicit balance laws,

−∇p +
[
2
3
α

(
1 − 1

λ3

)
∇ · u − α1 + 2α2

1
λ3

− 4α3λ
3

]
∇λ

+
2
3

(
1 − 1

λ3

)[
μ

(∇u + (∇u)T
)

+ κ(∇u)T
] ∇λ +

1
3

(
2λ +

1
λ2

)
[(α + μ)∇(∇ · u) + (μ + κ)Δu]
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− 1
3

(
2λ +

1
λ2

)
(π · ∇)∇ϕ − 1

30

[(
1
λ2

− λ

)2

(trQ )I +
(

7λ2 +
2
λ4

+
6
λ

)
Q

]
∇[∇(∇ϕ)]

+ ε0(∇ϕ − E(0))Δϕ = 0 (5.4)
1
3

(
λ3 +

1
λ3

− 2
)

[(β − β1)∇(∇ · u) − (β − β1 + β2)Δu]

+
(

λ2 − 1
λ4

) [
(2β1 + β2 − β1∇ · u)∇λ + (β1 − β2 − β)(∇λ) · ∇u + β(∇u)T · ∇λ

]

+κ∇ × u +
1
3

(
2λ +

1
λ2

)
(E(0) − ∇ϕ) × π − 1

15

(
7λ2 +

2
λ4

+
6
λ

)
H + M = 0 (5.5)

− ε0Δϕ +
2
3

(
1 − 1

λ3

)
π · ∇λ

+
2
15

(
λ +

1
λ2

− 2
λ5

)
(trQ )Δλ +

2
15

(
7λ − 3

λ2
− 4

λ5

)
Q : ∇(∇λ)

+
2
15

(
1 − 2

λ3
+

10
λ6

)
(trQ )‖∇λ‖2 +

2
15

(
7 +

6
λ3

+
20
λ6

)
(∇λ) · Q (∇λ) = 0 (5.6)

where

Hi = εikhQkjϕ,hj Mi = Qjϕ,ij +
1
2
(Qhjϕ,kj − Qkjϕ,hj).

If N is the external normal to the boundary of the continuum domain, we have the following boundary
conditions [12]

NT = τ , Nμ = σ, [[D]] · N = 0, (5.7)

where τ ,σ are, respectively, the force traction and couple traction on the boundary and double square
brackets denote the difference [[D]] = D− − D+ across the surface.

6. One-dimensional problem

In order to discuss the effectiveness of the present model in describing electroelastic coupling for elas-
tomers, here we formulate a one-dimensional isochoric equilibrium problem for fields with spatial depen-
dence on x1 ≡ x, assuming

u(x), λ(x), ϕ(x), p(x).

We consider a layer of thickness d in the reference configuration, delimited by two parallel planes orthog-
onal to the e1 direction along x. No bounds are considered along the axes e2 and e3, thus describing an
unbounded material region between planes X = 0 and X = d. The surface X = 0 is fixed (x = 0) while
at X = d, a displacement along e1 is described by the local value of u1, due to the coupling of the electric
and mechanical boundary conditions (see Fig. 1). This means that the variable x is bounded as x ∈ [0, d̂]
where d̂ = d + û1 and û1 is implicitly defined by

û1 = u1(d + û1). (6.1)

Denoting differentiation with respect to x by a prime, the balance laws (5.4)–(5.6) reduces, in components,
to the following set of equations
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Fig. 1. Layer of dielectric elastomer. a Reference configuration, b deformed configuration due to applied electric potential
V and traction T

−p′ +
2
3
(α + 2μ + κ)

(
1 − 1

λ3

)
u′
1λ

′ −
(

α1 − α2
2
λ3

+ 4α3λ
3

)
λ′

+
1
3

(
2λ +

1
λ2

)
(α + 2μ + κ)u′′

1 − 1
3

(
2λ +

1
λ2

)
π1ϕ

′′

− 1
30

[(
1
λ2

− λ

)2

Qhh +
(

7λ2 +
2
λ4

+
6
λ

)
Q11

]
ϕ′′′ + ε0(ϕ′ − E

(0)
1 )ϕ′′ = 0, (6.2)

1
3
(μ + κ)

[
2
(

1 − 1
λ3

)
u′

iλ
′ +

(
2λ +

1
λ2

)
u′′

i

]
− ε0E

(0)
i ϕ′′ = 0, i = 2, 3. (6.3)

− 1
3
β2

(
λ3 +

1
λ3

− 2
)

u′′
1 +

(
λ2 − 1

λ4

)
[2β1 + β2 − β2u

′
1]λ

′

+
1
3

(
2λ +

1
λ2

)
(π3E

(0)
2 − π2E

(0)
3 ) + Q1ϕ

′′ = 0, (6.4)

1
3
(β1 − β2 − β)

[(
λ3 +

1
λ3

− 2
)

u′′
2 + 3

(
λ2 − 1

λ4

)
u′
2λ

′
]

−κu′
3 +

1
3

(
2λ +

1
λ2

)
[π1E

(0)
3 − π3(E

(0)
1 − ϕ′)] − 1

15

(
7λ2 +

2
λ4

+
6
λ

− 15
)

Q31ϕ
′′ = 0, (6.5)

1
3
(β1 − β2 − β)

[(
λ3 +

1
λ3

− 2
)

u′′
3 + 3

(
λ2 − 1

λ4

)
u′
3λ

′
]

−κu′
2 +

1
3

(
2λ +

1
λ2

)
[π2(E

(0)
1 − ϕ′) − π1E

(0)
2 ] +

1
15

(
7λ2 +

2
λ4

+
6
λ

− 15
)

Q21ϕ
′′ = 0. (6.6)

− ε0ϕ
′′ +

2
3

(
1 − 1

λ3

)
π1λ

′ +
1
15

[(
2
λ5

− 1
λ2

− λ

)
Qhh −

(
7λ − 4

λ5
− 3

λ2

)
Q11

]
λ′′

− 1
15

[(
10
λ6

− 2
λ3

+ 1
)

Qhh +
(

7 +
20
λ6

+
6
λ3

)
Q11

]
(λ′)2 = 0. (6.7)

As to the boundary conditions, we assume that an electric potential is applied on the layer assuming
ϕ(0) = 0, ϕ(d̂) = V with E(0) = 0. In addition, a normal traction is applied at x = d̂, expressed as
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e1T(d̂) = τe1. For the additional condition on μ , we pose e1μ (d̂) = σ assuming no couple traction
along axis e1 (σ · e1 = 0).
In view of a description of effects due to the coupling between microdeformation and electric field, we
suppose that the dielectric material has no intrinsic polarization in the undeformed configuration. This
means that π = 0, while Q 	= 0 in order to describe polarization due to deformation, according to the
general expression of P. As follows, this assumption, together with the absence of external transverse
electric fields, notably simplifies the problem.
From Eq. (6.2), accounting for the boundary conditions T12(d̂) = T13(d̂) = 0, we get u′

2(x) = u′
3(x) = 0,

x ∈ [0, d̂]. This implies that both Eqs. (6.4) and (6.5) reduce to(
7λ2 +

2
λ4

+
6
λ

− 15
)

ϕ′′ = 0,

and excluding the trivial solution λ = 1, we get ϕ′′ = 0 which implies ϕ′ to be constant within the layer.
Due to the boundary conditions on ϕ, we simply obtain

ϕ(x) =
V

d̂
x, x ∈ [0, d̂]. (6.8)

The remaining boundary conditions on the stress T11(d̂) = τ and on the couple stress μ give

α0 − α1λ̂ − α2
1

λ̂2
− α3λ̂

4 +
1
3
(α + 2μ + κ)

(
2λ̂ +

1

λ̂2

)
û′
1 − p̂ +

1
2
ε0

(
V

d̂

)2

= τ (6.9)

1
3

(
λ̂3 +

1

λ̂3
− 2

)
(2β1 + β2 − β2û

′
1) + Q1

V

d̂
= 0,

σ2 = Q13
V

d̂
, σ3 = Q12

V

d̂
, (6.10)

where

λ̂ = λ(d̂), û′
1 = u′

1(d̂), p̂ = p(d̂).

The integration of Eqs. (6.1) and (6.3), exploiting conditions (6.8) and (6.9) gives the following results

p =
1
3
(α + 2μ + κ)

(
2λ +

1
λ2

)
u′
1 + α1λ + α2

1
λ2

+ α3λ
4 − τ̂ , (6.11)

1
3

(
λ3 +

1
λ3

− 2
)

(2β1 + β2 − β2u
′
1) = −Q1

V

d̂
(6.12)

where

τ̂ = τ − 1
2
ε0

(
V

d̂

)2

− α0 + 2
(

α1λ̂ + α2
1

λ̂2
+ α3λ̂

4

)
.

Finally, by integrating Eq. (6.6) under the boundary condition (5.7)3 we obtain

ψ(λ) − ψ(λ̂) = 15ε0
V

d̂
(x − d̂), (6.13)

where

ψ(λ) =
(

1
λ

− 1
2λ4

− 1
2
λ2

)
Qhh −

(
7
2
λ2 +

1
λ4

+
3
λ

)
Q11.

Now, the solution to our problem can be achieved in the following way. As a first step, we evaluate
parameters λ̂ and û′

1 from Eqs. (6.9) and (6.10)1. Then, substitution into Eqs. (6.11) and (6.12) and
(6.13) allows us to obtain the functions p(x), λ(x) and u′

1(x) on [0, d̂]. The successive integration of u′
1

allows to exploit the implicit formula (6.1) to obtain û1 and then d̂. By this final result, we achieve explicit
results for the problem variables p, λ, u1.
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Table 1. Material parameters

α0

(106N/m2)
ᾱ1 ᾱ2 ᾱ β2

(10−6N/m)
b Q11

(10−9Cm−1)
Qhh

(10−9Cm−1)
Q1

(10−9Cm−1)

1 0.2 0.5 2 −1 1.5 2 4 −1

7. A numerical simulation

In order to apply our analysis on a possible soft electroelastic material and looking for a test on the
effectiveness of the present micromorphic model for the qualitative electroelastic behavior of elastomers,
we present a numerical solution of the problem depicted in the previous section. To this aim, we rewrite
Eqs. (6.9) and (6.10)1 in the following dimensionless form

τ̄ = 1 − ᾱ1λ̂ − ᾱ2
1

λ̂2
− α̂3λ̂

4 +
1
3
ᾱ

(
2λ̂ +

1

λ̂2

)
û′
1 +

1
2

ε0
α0

(
V

d̂

)2

,

1
3
(λ̂3 − 1)2(b − û′

1) +
Q1

β2

V

d̂
λ̂3 = 0,

(7.1)

where we posed

τ̄ =
τ + p̂

α0
, ᾱ =

α + 2μ + κ

α0
, b =

2β1 + β2

β2
, ᾱi =

αi

α0
, i = 1, 2, 3.

We observe that, owing to the definitions of αi (i = 0, 1, 2, 3), we have
∑3

i=1 ᾱi = 1, so that we consider
here six mechanical parameters and three parameters for the quadrupolar matrix Q . In Table 1, a
set of values for these quantities are proposed after a comparison with some mechanical parameters
of elastomers, micromorphic elastic coefficients and accounting for the order of magnitude of electric
quadrupoles in monomeric molecules [6,13,14].
Then, we proceed along the description given at the end of the previous section and evaluate numerically
the quantities λ(x), u1(x) on [0, d̂] for a layer with a thickness d = 0.005m in the reference configuration.
We introduce the macrostretch of the layer as

Λ = 1 +
u1

d
.

In Fig. 2, we show the result on Λ as a function of the electric potential V (V) under three values of the
dimensionless traction τ̄ . A nonlinear increase of thickness appears in the present problem. In coherence
with a physical analysis and experimental results on similar problems [2,15–17,19], this behavior can be
connected to the occurrence, in the present model, of a dependence of polarization on the mechanical
stretch. In fact, in addition to the contribution of the Maxwell stress TE , the electric forces and couples
appearing in the balance Eqs. (5.1) and (5.2), depend on the microdeformation. To confirm this deduction
we consider the results on polarization for the present problem. From Eq. (4.7), we have

P1 =
1
15

[(
2
λ5

− 1
λ

2

− λ

)
trQ −

(
7λ − 4

λ5
− 3

λ2

)
Q11

]
λ′,

P2 = − 1
15

(
7λ − 4

λ5
− 3

λ2

)
Q21λ

′, P3 = − 1
15

(
7λ − 4

λ5
− 3

λ2

)
Q31λ

′.
(7.2)

We have computed the mean value of polarization within the layer in order to compare its value with
the applied potential and traction. The results are shown in Figs. 3 and 4 where a longitudinal (P1)
polarization and a transverse (P2) polarization are shown. For the transverse components of P, we have
chosen Q12 = Q13 so that the present result on P3 is the same as P2. In Fig. 3, two values of traction are
considered. An increasing traction implies a decreasing polarization for both longitudinal and transverse
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Fig. 2. Macrostretch versus V (V) for different values of dimensionless traction. (a) τ̄ = 0.01, (b) τ̄ = 0.1, (c) τ̄ = 0.5
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Fig. 3. Polarization components P1 and P2 (Cm−2) versus V (V) for different values of dimensionless traction. (a) τ̄ = 0.1,
(b) τ̄ = 0.5

components. To clarify this feature, the dependence on stretch is shown in Fig. 4 for V = 50V where the
variation of stretch is due to the variation of the applied traction. Polarization decreases by an increasing
stretch; this behavior has been observed in the past by experimental works [18,19].

8. Concluding remarks

The micromorphic approach to electroelasticity on soft materials described in this work relies on a biaxial
microstretch of the continuum elementary particle. Dielectric properties are here related to such microde-
formation on the basis of the representation of polarization by electric multipole densities. In particular,
in the absence of intrinsic electric dipole of molecules, polarization arises from the quadrupole gradient.
This approach is alternative to models based on constitutive assumptions for polarization where non-
linear phenomena are accounted by a possible dependence of permittivity on mechanical stretch. This
electroelastic coupling is a basic feature of the present model where microstretch determines both electric
polarization and macrostretch. Also, this allows to consider nonlinear electroelastic coupling assuming
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Fig. 4. Polarization components P1 and P2 (Cm−2) as functions of the macrostretch due to applied mechanical traction,
with V = 50V

simply linear constitutive equations for mechanical stress and couple stress in the classical micromorphic
theory.
The one-dimensional problem investigated in the previous sections can be considered as a simple appli-
cation where the occurrence of the only nonzero displacement in the material layer yields a constant
electric field. In this respect, we observe that this field, however, depends on the stretching layer thick-
ness, thus suggesting that the hypothesis of independence of electric field on deformation and polarization,
commonly adopted in the literature of phenomenological theories, can be restrictive in modeling nonlin-
ear phenomena. We finally note that the condition of isotropy exploited in the statistical average of
microstrain tensors and adopted in the mechanical constitutive laws, does not exclude the presence of a
polarization not aligned with the electric field. This effect depends on the intrinsic dielectric molecular
structure, and specifically, on the off-diagonal entries of the quadrupole matrix.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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[15] Schlögl, T., Leyendecker, S.: A polarization based approach to model the strain dependent permittivity of dielectric
elastomers. Sens. Actuators A 267, 156–163 (2017)

[16] Zhao, X., Hong, W., Suo, Z.: Electromechanical hysteresis and coexistent states in dielectric elastomers. Phys. Rev. B
76, 134113 (2007)

[17] Zhao, X., Suo, Z.: Electrostriction in elastic dielectrics undergoing large deformations. J. Appl. Phys. 104, 123530 (2008)
[18] Wissler, M., Mazza, E.: Electromechanical coupling in dielectric elastomer actuators. Sens. Actuators A 138, 384–393

(2007)
[19] Li, B., et al.: Effects of mechanical pre-stretch on the stabilization of dielectric elastomer actuation. J. Phys. D Appl.

Phys. 44, 155301 (2011)

Maurizio Romeo
DIMA, Università
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