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Abstract. This study aimed to develop an explicit JKR-type model for adhesive contact of a rigid sphere (of radius R) on
a compressible elastic thin layer (of thickness h, Young’s modulus E, and Poisson ratio ν) bonded or sliding on a rigid
substrate. Based on a simple Kerr model for a compressible elastic layer, an explicit expression for strain energy of the
elastic layer is derived in terms of the two JKR-type variables (δ, a), where a is the radius of contact zone and δ is the
indentation depth of the rigid sphere. Thus the equilibrium values of (δ, a) can be determined as the stationary point of the
potential energy. The explicit model is justified by detailed comparison of the predicted results (for Poisson ratio ν ≤ 0.45)
with known data reported in recent literature. For example, the validity and accuracy of the present model are demonstrated
for moderately soft elastic thin layers under the condition 2

(
1 − v2

)
WR2

/(
Eh3

) ≥ 100 (where W is adhesion energy per

unit contact area, for instance, for typical materials with R = 500 µm E = 100 KPa and W = 100 mJ/m2, the condition
requests h < 20 µm). As compared to existing methods that request more substantial numerical calculations, the present
model achieves an explicit expression for strain energy of a compressible elastic layer and could offer a simpler analytical
method for adhesion mechanics of a rigid sphere on a compressible thin elastic layer bonded or sliding on a rigid substrate.
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1. Introduction

The well-known Johnson–Kendall–Roberts (JKR) model [1,2] for adhesive contact between two elastic
spheres is based on the classical Boussinesq solution of an elastic half-space, which cannot be applied to
a thin elastic layer bonded or sliding on a rigid substrate [3–8] (such as a MEMS component coated by a
soft thin layer [3] or atomic force microscopy (AFM) on a biological shell bonded on a petri dish [4,6]).
In such cases, the contact radius can be much larger than the thickness of the elastic thin layer and the
classical JKR model [1,2] is inapplicable.

Recently, a remarkable research effort has been made to extend the classical JKR theory [1,2] to
adhesive contact of a rigid sphere on an elastic layer bonded or sliding on a rigid substrate [9–23].
For example, Choi [9] studied adhesive contact of a rigid sphere on an elastic film bonded to a rigid
substrate by using an elasticity solution of axisymmetric indentation with an elastic film, and concluded
that the classical JKR model fails to correctly evaluate the adhesion energy between the spherical tip
and the elastic film when the contact radius is larger than the thickness of elastic film. Yang [14] used
a perturbation technique to analyze the axisymmetric indentation of a rigid sphere on a compressible
elastic thin film bonded to a rigid substrate when the contact radius is much larger than the thickness
of thin film. Sridhar et al. [11,12] obtained empirical relations for the indentation load and contact
compliance as a function of contact radius for several practical layer–substrate material systems. Chung
et al. [16] studied mechanical properties of sufficiently thin polymer films supported by stiff substrates
using AFM nanoindentation experiments. Zhu and Xu [18] investigated adhesive contact of a rigid sphere
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Fig. 1. Adhesive contact of a rigid sphere on a compressible elastic thin layer bonded or sliding on a rigid substrate

on an elastic film bonded or sliding on a rigid substrate using linear fracture mechanics, and formulated
a semi-analytical approach to study the relation between the indentation force, penetration depth and
contact radius. However, most of the mentioned works request substantial numerical calculations, and it
remains an interesting problem how to achieve a simpler explicit method to analyze adhesive contact of
a rigid sphere on an elastic thin layer bonded or sliding on a rigid substrate.

The present work aims to develop an explicit JKR-like model based on an expression for strain energy
of an elastic layer on a rigid substrate. This paper is organized as follows. In Sect. 2, the Kerr model is
used to derive an explicit expression for strain energy of a compressible elastic layer bonded or sliding
on a rigid substrate, based on which the indentation depth and contact radius can be determined as the
stationary point of the potential energy. The present model is validated in Sect. 3 by detailed comparison
with known data available in the recent literature. Section 4 is devoted to a further study on the role of
Young’s modulus and thickness of the elastic layer in adhesion mechanics. Finally, the main conclusions
are summarized in Sect. 5.

2. An extended JKR model based on Kerr model for a compressible elastic layer

An extended JKR-type model is developed here for adhesion of a rigid sphere (of radius R) on a com-
pressible elastic thin layer (of Young’s modulus E and Poisson ratio ν) of thickness h which is either
perfectly bonded or sliding on a rigid substrate under the condition R � a � h (see Fig. 1).

The adhesion contact is defined by two geometrical variables (δa), where δ is the indentation depth
of the rigid sphere, and a is the radius of circular contact zone. The total potential energy of the rigid
sphere-elastic layer system is given by

U = Ue − πa2W − Fδ, (1)

where Ue is the strain energy of elastic layer, F is the external indentation force applied to the rigid
sphere, and W = γ1 + γ2 − γ12 is the adhesion energy (per unit area) of contact zone, and γ1, γ2 and γ12

are the surface energy (per unit area) of the rigid sphere, the elastic layer and the interfacial energy of
contact zone, respectively. The key problem is how to derive an explicit expression Ue(δ, a) for the strain
energy of a compressible elastic thin layer bonded or sliding on a rigid substrate, in terms of the two
variables (δ, a).
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Clearly, strain energy Ue of the elastic layer can be calculated by

Ue(a, δ) =
1
2

a∫

0

2πp(r)w(r)rdr, (2)

where w(r) is the surface deflection of the elastic layer, and p(r) is the surface pressure in the circular
contact zone (0 ≤ r ≤ a). In what follows, the pressure p(r) inside the contact zone will be determined
by Kerr model [24] which offers a simple differential relationship between the surface deflection w(r) and
the surface pressure p(r) inside the contact zone.

2.1. Kerr model for a compressible elastic thin layer on a rigid substrate

It is known that the Kerr model [24] gives a simple differential relation between the surface pressure p and
the downward surface deflection w of an elastic layer (of thickness h) on a rigid substrate. For example,
up to the second-order differential terms, the Kerr model in axisymmetric case gives

w − Ah2∇2w = C
h

E
p − D

h3

E
∇2p, (3)

where ∇2 =
(

∂2

∂r2 + 1
r

∂
∂r

)
, E is Young’s modulus of the elastic layer, and A,C,D are some nonnegative

constants determined by the Poisson ratio ν of the elastic layer. For an elastic layer bonded on a rigid
substrate [25]

A =
1

1 − ν
, C =

(1 − 2ν) (1 + ν)
1 − ν

, D =
(3 − 4ν) (1 + ν)

3 (1 − ν)
, (4)

and for an elastic layer sliding on a rigid substrate [24]

A =
1
3
, C = 1 − ν2, D =

1 − ν2

3
. (5)

Similar to existing related works [9,11,12,14], let us focus on compressible elastic layers with ν < 0.5, and
thus C �= 0. Therefore, all results given in this paper are applied to either a bonded compressible layer
or a (compressible/incompressible) sliding layer, but should not be applied to a bonded incompressible
layer (for which C = 0 in Eq. (4)).

2.2. Pressure p(r) inside contact zone

Assume that the rigid sphere of radius R penetrates into the elastic layer by depth δ, with a circular
contact zone of radius a. Thus, inside the contact zone (r ≤ a) between the rigid sphere and the elastic
layer, the axisymmetric surface (downward) deflection w(r) of the elastic layer is given by (see Fig. 1,
with R � a)

w(r) =
√

R2 − r2 − R + δ ≈ δ − r2

2R
. (6)

It follows from Kerr model (Eq. 3) that the surface pressure p(r) inside the contact zone is determined
by the second-order differential equation

C
h

E
p − D

h3

E
∇2p ≈

(
δ + 2A

h2

R

)
−

(
1 − 4A

h2

R2

)
r2

2R
. (7)

An exact particular solution of the above non-homogeneous equation is of the form

p(r) = c + dr2 (8)
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with two coefficients c and d given by

c =
E

C

[(
δ

h
+ 2A

h

R

)
− 2hD

CR

(
1 − 4A

h2

R2

)]
,

d =
−E

2hCR

(
1 − 4A

h2

R2

)
. (9)

Under the assumed conditions R � a � h (i.e.,
(

a
R

)2 � 1 and
(

h
a

)2 � 1), we have

c ≈ E

C

[(
δ

h

)
+ 2

(
A − D

C

)
h

R

]
, d ≈ −E

2hCR
. (10)

Since the homogeneous equation C h
E p−D h3

E ∇2p = 0 is a modified Bessel equation of order 0 (the solution

is given by eI0

(√
C
D

r
h

)
), the general solution p(r) of Eq. (7) inside the contact zone is given by

p(r) = eI0

(√
C

D

r

h

)

+ c + dr2, 0 ≤ r ≤ a, (11)

where I0

(√
C
D

r
h

)
is the zeroth-order modified Bessel function of the first kind which becomes infinite at

infinity and remains bounded at
√

C
D

r
h=0, and the coefficient e is to be determined by an extra condition

derived by Betti reciprocal theorem as shown below. Here, it should be noted that, unlike elastic contact
of a rigid sphere on an elastic layer without adhesion (for which p(a) = 0 at r = a inside contact zone, see
[20]), adhesive contact of JKR type causes a nonzero value of p(a) at r = a inside contact zone. (Actually,
it is known from JKR model [1,2] that p(r) can be tensile and even infinite as r = a is approached inside
contact zone.) In addition, the slope of deflection dw

dr is generally discontinuous at the edge r = a of
contact zone. Therefore, for the present adhesive contact problem, the only continuity condition imposed
at the edge r = a is the continuity of the deflection w(r).

2.3. Deflection w(r) of elastic layer outside contact zone

The coefficient e in Eq. (11) will be determined in Sect. 2.4 by an application of Betti reciprocal theorem
to the entire elastic layer. For this end, the deflection w(r) outside the contact zone (r > a) needs to be
determined. Outside the contact zone (r > a), the deflection w(r) is determined by Kerr model (Eq. 3)
with the continuity condition of w(r) on the edge r = a of contact zone as follows

w − Ah2

(
∂2

∂r2
+

1
r

∂

∂r

)
w = 0; w|r=∞ = 0, w|r=a = wa =

(
δ − a2

2R

)
. (12)

Equation (12) is written as the modified Bessel equation of order 0 and variable s (defined by s = r
h

√
A

)

w(s) −
(

d2w

ds2
+

1
s

dw

ds

)
= 0. (13)

Thus, the solution of Eq. (12) is given by

w(r) = bK0

(
r

h
√

A

)
, b =

wa

K0

(
a

h
√

A

) , (14)

where K0(s) is the zeroth-order modified Bessel function of the second kind which goes to zero at infinity
and becomes infinity at s = 0, and b is a constant coefficient determined by the edge condition w|r=a = wa.
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2.4. Determination of the coefficient (Betti theorem)

To use Betti reciprocal theorem, let us consider the uniform deflection w0 of the elastic layer under a
uniform surface pressure p0, related by the Kerr model as follows

w0 = C
h

E
p0. (15)

Thus, since no mechanical work appears on the bottom interface between the elastic layer and the rigid
substrate for a bonded layer or a sliding layer, it follows from Betti reciprocal theorem that

2πp0

∞∫

0

w(r)rdr = 2πC
h

E
p0

a∫

0

p(r)rdr (16)

Inside the contact zone, w(r) is given by Eq. (6) and p(r) is given by Eq. (11) with the constants c and d
given by Eq. (10). Outside the contact zone, p(r) = 0 and w(r) is given by Eq. (14). Thus, substituting
the expressions of w(r) (Eq. 6) and p(r) (Eq. 11) and the expressions of c and d (Eq. 10) into Eq. (16)
and using the formulas

d
dx

[xI1(x)] = xI0(x);
d
dx

[xK1(x)] = −xK0(x), (17)

where K1(x) is the first-order modified Bessel function of the second kind, and I1(x) is the first-order
modified Bessel function of the first kind, we get

√
A

(
δ − a2

2R

) K1

(
a

h
√

A

)

K0

(
a

h
√

A

) =
Ch

E
e

√
D

C
I1

(√
C

D

a

h

)

+
(

A − D

C

)
ah

R
. (18)

Finally, the coefficient e is expressed, in terms of (δ, a), by

e(a, δ) =

√
A

(
δ − a2

2R

) K1

(
a

h
√

A

)

K0

(
a

h
√

A

) − (
A − D

C

)
ah
R

h
E

√
CDI1

(√
C
D

a
h

) (19)

2.5. Explicit expression of Ue for a compressible elastic layer on a rigid substrate

Thus, by introducing Eqs. (6) and (11) into Eq. (2), the strain energy Ue(δ, a) of a compressible elastic
layer, as a function of (δ, a), is given by

Ue(a, δ) = π

[

eδah

√
D

C
I1

(√
C

D

a

h

)

− e

2R
Y +

cδa2

2
− ca4

8R
+

dδa4

4
− da6

12R

]

(20)

where

Y =
Da2h2

C

[√
C

D

a

h
I1

(√
C

D

a

h

)

− 2I2

(√
C

D

a

h

)]

(21)

and c and d are determined by Eq. (10) and e is determined by Eq. (19). Substituting the derived
expression of Ue(a, δ) (Eq. 20) into the total potential energy U (Eq. 1) gives

U = π

[

eδah

√
D

C
I1

(√
C

D

a

h

)

− e

2R
Y +

cδa2

2
− ca4

8R
+

dδa4

4
− da6

12R

]

− πa2W − Fδ. (22)

Thus, the equilibrium values of (δ, a) can be determined by the two equilibrium conditions “∂U/∂δ =
0” and “∂U/∂a = 0” in terms of all given parameters, with the coefficients A, C and D given by
Eq. (4) for a compressible bonded layer, or with the coefficients A, C, and D given by Eq. (5) for
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Fig. 2. Comparison for the normalized contact radius a0

[
4E/

(
9πWR2

(
1 − v2

))]
versus the non-dimensional parameter

α (defined by Eq. 23) with Sridhar’s model [12] (Poisson ratio ν = 0.2, ν = 0.3 and ν = 0.45)

a (compressible/incompressible) sliding layer. Compared to existing methods [11,12,14,16], only for a
bonded layer that request more substantial numerical calculations, the present model is characterized by
an explicit expression (20) for strain energy of the compressible elastic layer and could offer a simpler
analytical method for a bonded or a sliding layer on a rigid substrate.

3. Comparison with known data for a bonded compressible layer

Now let us first compare the results given by the present model with some known data available in the
recent literature on adhesion of a rigid sphere on a compressible elastic layer (for Poisson ratio ν ≤ 0.45)
bonded on a rigid substrate.

3.1. Without an external force (F =0 ) (ν ≤ 0.45)

First, let us consider the case in the absence of an applied force (F = 0). Through solving the two
equilibrium equations “∂U/∂δ = 0” and “∂U/∂a = 0” with F = 0, we calculate the normalized contact
radius a0

[
4E/

(
9πWR2

(
1 − v2

))]
with respect to a non-dimensional parameter α defined by

α =
√(

2 (1 − v2) WR2
/
(Eh3)

)
(23)

for Poisson ratio ν = 0.2 or ν = 0.3 or ν = 0.45, respectively, as shown in Fig. 2, with a comparison to
Sridhar et al.’s numerical results (see Fig. 7(a) in [12]). Figure 2 shows that our results well fit Sridhar et
al.’s results for the cases of a bonded compressible layer (ν ≤ 0.45) under the condition α ≥ 1, with the
relative error less than 10%. Therefore, it is concluded that the results predicted by the present model
are in good agreement with known data (with relative errors less than 10%) under the condition that the
bonded compressible (ν ≤ 0.45) elastic thin layer is relatively soft so that 2

(
1 − v2

)
WR2

/(
Eh3

) ≥ 1 for
case F = 0.
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Fig. 3. Comparison for the non-dimensional parameter α (defined by Eq. 23) versus the normalized pull-off force
Foff/ (3πWR) with Sridhar’s model [12] (Poisson ratio ν = 0.2, ν = 0.3 and ν = 0.45)

3.2. With an external force (F �= 0)

Now let us make detailed comparison of the present model with available known data in the case of an
applied force F �=0.

3.2.1. Comparison with Sridhar et al. [12] (ν ≤ 0.45): In the case of an applied force F �= 0, through
solving the two equilibrium equations (“∂U/∂δ = 0” and “∂U/∂a = 0”) and using the condition dF/da =
0, we plot the normalized pull-off force Foff/ (3πWR) with respect to a non-dimensional parameter α
(defined by Eq. (23)) for the cases of a compressible layer (Poisson ratio ν = 0.2 or ν = 0.3 or ν = 0.45),
respectively, as shown in Fig. 3, in comparison with the results of Sridhar et al. (see Fig. 6(a) in [12]).
Figure 3 shows that our results for the normalized pull-off force Foff/ (3πWR) agree well to Sridhar et
al.’s results (with the relative error less than 10%) under the condition α ≥ 10. It is concluded that the
results for pull-off force predicted by the present model are in good agreement with known data (with
relative errors less than 10%) under the condition that the bonded compressible (ν ≤ 0.45) elastic thin
layer is relatively soft so that 2

(
1 − v2

)
WR2/

(
Eh3

) ≥ 100 for case F �= 0.

3.2.2. Comparison with Choi [9] (ν = 0.3): In addition, the dimensionless pulling force −F
/(

μh2
)

(μ is
shear modulus defined by μ = E

/
(2 (1 + v))) is calculated against a/h for two values of R/h(R/h = 10

and R/h = 100) with Poisson ratio v = 0.3. Then, using the condition d
(−F

/(
μh2

))/
d (a/h) = 0, the

relations between a non-dimensional parameter α2/ (1 − v) (i.e., WR2/
(
μh3

)
used in Choi’s results in

[9]), where α is defined by Eq. (23), the normalized contact radius at pull-off aoff/h, and the associated
normalized pull-off force −Foff/

(
μh2

)
are obtained and plotted in Figs. 4 and 5, respectively, with a

comparison to Choi’s results (see the Figs. 6 and 8 in [9]) and the JKR model (included in Choi’s Figs. 6
and 8 in [9]). Figure 4 shows that our results for the normalized contact radius at pull-off aoff/h well fit to
Choi’s results within the range of the non-dimensional parameter α2/ (1 − v) ≥ 1.5 (approximately, α2 ≥
1) with relative errors less than 10%, consistent with our previous conclusion shown for the comparison
with Sridhar’s results (see Fig. 2). On the other hand, Fig. 5 shows that our results for the associated
normalized pull-off force −Foff/

(
μh2

)
for both R/h = 10 and R/h = 100 fit well to Choi’s results with

relative errors less than 10% when the normalized contact radius at pull-off aoff/h ≥ 4 (approximately,
α2/ (1 − v) ≥ 150 or α2 ≥ 100, as shown in Fig. 4), also consistent with our previous conclusion shown
for the comparison with Sridhar’s results (see Fig. 3).
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Fig. 4. Comparison for the non-dimensional parameter α2/ (1 − v) (α is defined by Eq. 23) versus the normalized contact
radius at pull-off aoff/h with JKR model and Choi’s model [9] (Poisson ratio ν = 0.3)

Fig. 5. Comparison for the normalized pull-off force −Foff/
(
μh2

)
versus the normalized contact radius at pull-off aoff/h

with JKR model and Choi’s model [9] a R/h = 10; b R/h = 100 (Poisson ratio ν = 0.3)

Therefore, it is concluded that the present model for adhesion of a rigid sphere on a compressible elastic
layer bonded on a rigid substrate is valid with robust accuracy under the condition that the compressible
thin layer (defined by ν ≤ 0.45) is relatively soft so that α2 = 2

(
1 − v2

)
WR2

/(
Eh3

) ≥ 1 in the absence
of an external force (F = 0) or α2 = 2

(
1 − v2

)
WR2

/(
Eh3

) ≥ 100 for a pulling force F < 0. Since the
contact radius a is expected to increase with the indentation force F and reaches its minimum value with
the pulling-off force, this conclusion is consistent with the fact that Kerr model (Eq. 3) for a thin elastic
layer, on which the present model is based, is increasingly accurate under the assumption a � h.
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Fig. 6. Comparison for the normalized contact radius a/h versus normalized applied force F/ (πWR) with JKR model and
Yang’s model [14] (Poisson ratio ν = 0.4)

3.2.3. Comparison with Yang [14] (ν = 0.4) :. Next, with the values of parameters used in Yang’s work
[14] (R = 50 µm v = 0.4, E = 24.5 Mpa, h = 100 nm, W = 28 mJ/m2, then 2

(
1 − v2

)
WR2

/(
Eh3

)
=

4800 and ν ≤ 0.45, which satisfy the above condition identified for the present model) for the indentation
of a PDMS (polydimethylsiloxane) thin film of thickness 100 nm by a spherical indenter of radius 50 µm,
we calculate the normalized applied force F/ (πWR) with respect to the normalized contact radius a/h,
as shown in Fig. 6, with a comparison to Yang’s results (see Fig. 2 in [14]) and the JKR model (included
in Yang’s Fig. 2 in [14]). It is seen from Fig. 6 that the results predicted by the present model are in
good agreement with Yang’s results. Also, as shown in Fig. 6, both our model and Yang’s model predict
that, for the same contact area, higher indentation force is required for a thin layer than for an elastic
half-space (predicted by the JKR theory). In addition, higher pull-off force is required to separate the
indenter from a thin elastic layer than that to separate the indenter from an elastic half-space as given
by the JKR theory, as shown in Fig. 6.

4. Effects of Young’s modulus and thickness of the elastic layer (ν = 0.4)

The comparisons with known data shown in Sect. 3 indicate that the present model based on Kerr model
for a thin elastic layer [Eq. (3), which is increasingly accurate under the assumption a � h] is reasonably
accurate for adhesion-driven contact of a rigid sphere on a softer thin layer on a rigid substrate. In this
section, the role of Young’s modulus and thickness of the elastic layer will be further studied with reference
to recent results of Zhu and Xu [18] for Poisson ratio v = 0.4 and various values of the non-dimensional
parameter α2 (α is defined by Eq. (23) and α2 = 8

/(
9πh∗3

)
, where h∗ is defined as the normalized

thickness of the elastic layer h∗ = h
[
4E/

(
9π

(
1 − v2

)
WR2

)] 1
3 in Zhu and Xu’s work [18]). In Fig. 7,

the relation between the normalized applied force F ∗=F/ (3πWR)and the associated normalized contact

radius a∗ = a
[
4E/

(
9π

(
1 − v2

)
WR2

)] 1
3 (see our Fig. 7a), and the relation between the normalized

applied force F ∗=F/ (3πWR)and the normalized indent depth δ∗ = δ
[
16E2/

(
3π2

(
1 − v2

)2
W 2R

)] 1
3

(see our Fig. 7b) are shown for a thin elastic layer bonded or sliding on a rigid substrate, respectively.
Here, in addition to Zhu and Xu [18] who focused on the range h∗ > 0.1 (approximately, α2 < 100),
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Fig. 7. a the normalized contact radius a∗ versus normalized applied force F ∗, and b the normalized applied force F ∗
versus the normalized indent depth δ∗, with different values of the non-dimensional parameter α2 (α is defined by Eq. 23)
for a bonded or a sliding layer (Poisson ratio ν = 0.4)

we examine the case α2 ≥ 100 with four values α2=100, α2=2500, α2=2.5 × 105 and α2= 1.0 × 108

(approximately, h∗= 0.1, h∗= 0.05, h∗= 0.01 and h∗= 0.001, respectively)
Figure 7a shows that within the range of α2 ≥ 100, the normalized pull-off forces Foff needed to

separate the rigid sphere from the elastic layer bonded or sliding on a rigid substrate keep almost un-
changed (around Foff=F ∗

off (3πWR) = − 0.65 (3πWR) ≈ −6WR), which is consistent with Sridhar et
al.’s results (see Fig. 6(a) in [12] or our Fig. 3). In other words, if the parameters satisfy the condition
(α2 = 2

(
1 − v2

)
WR2

/(
Eh3

) ≥ 100 and ν ≤ 0.45), the pull-off force predicted by the present model is
insensitive to the Young’s modulus and thickness of the elastic layer. Meanwhile, it is seen from Fig. 7a
that with the same value of α2, the contact radius at pull-off case and the contact radius with (F = 0)
predicted for a sliding elastic layer are larger than those for a bonded elastic layer under otherwise iden-
tical conditions, in qualitative agreement with Zhu and Xu’s results (see Fig. 2 in [18]). Here, it should
be noted that, similar with Zhu and Xu’s assumption [18], the sliding layer is assumed to slide but yet
remain contact to the rigid substrate and thus can support a pulling force. In addition, Fig. 7b shows
that in the absence of the applied force (F = 0), with the same value of α2, the indentation depth pre-
dicted for a sliding layer is larger than those for a bonded layer under otherwise identical conditions, also
qualitatively consistent with Zhu and Xu’s results (see Fig. 5 in [18]).

Thus, it is concluded that for adhesion-driven contact of a rigid sphere on a soft thin compressible
(ν ≤ 0.45) layer bonded or sliding on a rigid substrate (defined by α2 = 2

(
1 − v2

)
WR2

/(
Eh3

) ≥ 100),
the pull-off force predicted by our model keeps almost unchanged (Foff ≈ −6WR), insensitive to the
Young’s modulus and thickness of the elastic layer. In addition, the contact radius at pull-off case, the
contact radius and the indentation depth with (F = 0) predicted for a sliding layer are larger than those
for a bonded layer under otherwise identical conditions.
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5. Conclusions

An extended JKR model is proposed in this paper to examine adhesion contact of a rigid sphere (of radius
R) on a compressible elastic thin layer (of thickness h, Young’s modulus E and Poisson ratio ν) bonded
or sliding on a rigid substrate. The present model is based on an explicit expression for strain energy of
the elastic layer derived from Kerr’s model in terms of the two JKR-type variables (a, δ), where a is the
radius of contact zone and δ is the indent depth of the rigid particle. Our main results are summarized
as follows

1. An explicit expression for strain energy of the elastic layer is derived, based on which the equilibrium
values of contact radius and indentation depth (a, δ) can be determined as the stationary point of
the potential energy.

2. The results given by the present model agree well to known data with relative errors typically less
than 10% for adhesion-driven contact of a rigid sphere on a soft thin compressible layer under
the conditions ν ≤ 0.45 and 2

(
1 − v2

)
WR2

/(
Eh3

) ≥ 100(where W is the adhesion energy per
unit contact area, for instance, for typical materials with R = 500 µm E = 100 KPa and W =
100 mJ/m2, the condition requests h < 20 µm). Since the Kerr model for a thin elastic layer,
on which the present model is based, is increasingly accurate under the assumption a � h, this
condition “2

(
1 − v2

)
WR2

/(
Eh3

) ≥ 100” actually ensures that the contact radius a is large as
compared to the thickness of soft elastic thin layer

3. When the conditions listed in 2) are met, the present model predicts that the pull-off force needed
to separate the rigid sphere from an elastic layer bonded or sliding on a rigid substrate is nearly
Foff ≈ −6WR, in agreement with some known results, which is insensitive to the Young’s modulus
and thickness of the elastic layer.

4. Based on the assumption that a sliding layer is sliding but yet remain contact to the rigid substrate,
the present model predicts that the contact radius at pull-off case, the contact radius and the
indentation depth in the absence of the applied force (F = 0) for a sliding layer are larger than
those for a bonded layer under otherwise identical conditions, also in agreement with some known
results.
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