
Z. Angew. Math. Phys. (2020) 71:35
c© 2020 Springer Nature Switzerland AG
0044-2275/20/010001-19
published online January 31, 2020
https://doi.org/10.1007/s00033-020-1255-3

Zeitschrift für angewandte
Mathematik und Physik ZAMP

Torsion of a cracked elastic body by an embedded semi-infinite rigid cylinder

Pinchas Malits

Abstract. Torsion of a cracked elastic body by an embedded semi-infinite rigid cylinder is studied. A coaxial penny-shaped

crack is situated in the plane of the end of the cylinder. The problem is reduced to a system of dual integral equations

including Hankel and Weber–Orr transforms and then, by using ansatzs, to an integral equation of the second kind with

Hankel integral operator given on a semi-infinite interval or to an equivalent infinite system of linear algebraic equations

with a Hankel matrix. A detailed investigation allowed us to suggest efficient methods for solving equations for any size of

the crack. In particular, accurate approximate formulas for the stress intensity factor and the contact stresses are derived,

as well as an asymptotic formula for the stress intensity factor when a crack is large. Analytical estimations and calculations

manifest a strong increase in the stress intensity factor and the contact stress at the end of the cylinder as the crack tip is

very close to the cylinder surface.
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1. Introduction

In this article, we consider static torsion of a cracked elastic space with the semi-infinite cavity r = a,
0 ≤ z < ∞, 0 ≤ θ ≤ 2π, and the coaxial crack z = 0, a ≤ r ≤ b, 0 ≤ θ ≤ 2π, twisted by an embedded
semi-infinite rigid circular cylinder whose cylindrical surface is bonded to the surface of the cavity and
whose flat end is not in contact with the elastic medium. The cylinder is rotated through an angle γ
about the axis z.

The problem stated above describes the leading asymptotic term for the torsional stress–strain state
of a semi-infinite elastic body deformed by rotation of a partially embedded long rigid cylinder (a pin,
a single rigid cylindrical pile or a rigid cylindrical pier) that has induced a crack. Our goal is to get an
efficient approximate solution by basing on rigorous analytical methods and estimations of accuracy for
approximations.

If a crack is absent, various torsional problems describing torsional stress in the vicinity of the base
of a rigid or elastic inclusion were studied in [4,5,8,18–22]. Note that the problem investigated in this
article is a typical mixed boundary value problem, and therefore methods of the papers mentioned above
cannot be applied in this case. Readers can find some mathematical similarity of the considered problem
with the Reissner–Sagoci-type torsional contact problems for a half-space with a circular cylindrical hole
or inclusion [1,3,15] and analogous axisymmetric contact problems [2,11–14,16].

In the dimensionless cylindrical coordinates ρ = r/a, θ, ζ = z/a, the boundary conditions are:
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uθ (1, ζ) = aγ, 0 ≤ ζ < ∞, (1)
uθ (ρ, 0+) = uθ (ρ, 0−) , ρ ≥ β, (2)
τθz (ρ, 0+) = τθz (ρ, 0−) , ρ ≥ β, (3)
τθz (ρ, 0+) = 0, 1 ≤ ρ < β, (4)
τθz (ρ, 0−) = 0, 0 < ρ < β, (5)

where β = b/a > 1.
The only nonvanishing displacement uθ (ρ, ζ) obeys the partial differential equation (Lurie [9])

1
ρ

∂

∂ρ

(
ρ
∂uθ

∂ρ

)
− uθ

ρ2
+

∂2uθ

∂ζ2
= 0, (6)

and the non-trivial components of the stress tensor are expressed via uθ (r, z) by the formulas

τθr =
G

a
ρ

∂

∂ρ

(
uθ

ρ

)
, τθz =

G

a

∂uθ

∂ζ
, (7)

where G is the shear moduli.
The following integral representations in the form of inverse Hankel and Weber–Orr transforms (Titch-

marsh [23]) with integrands including the Bessel functions Jν (ξ), Yν (ξ) and H
(1)
ν (ξ),

uθ (ρ, ζ) =

⎧⎪⎪⎨
⎪⎪⎩

∞∫
0

exp (ξζ) A (ξ) J1 (ξρ) dξ, ζ ≤ 0

aγ
ρ +

∞∫
0

exp(−ξζ)∣∣∣H(1)
1 (ξ)

∣∣∣2 B (ξ) χ1 (ξ, ρ) dξ, ζ ≥ 0
, (8)

χν (ξ, ρ) = J1 (ξ) Yν (ξρ) − Y1 (ξ) Jν (ξρ) , (9)

satisfy the differential equation (6) and boundary condition (1). On inserting into the remaining boundary
conditions (2),(3),(4) and (5), the above representations yield the system of the dual integral equations:

∞∫
0

ξA (ξ) J1 (ξρ) dξ = 0, 0 ≤ ρ < β, (10)

∞∫
0

B (ξ)
ξχ1 (ξ, ρ)∣∣∣H(1)

1 (ξ)
∣∣∣2

dξ = 0, 1 ≤ ρ < β, (11)

∞∫
0

ξA (ξ) J1 (ξρ) dξ +

∞∫
0

ξB (ξ) χ1 (ξ, ρ)∣∣∣H(1)
1 (ξ)

∣∣∣2
dξ = 0, ρ ≥ β, (12)

∞∫
0

A (ξ) J1 (ξρ) dξ −
∞∫
0

B (ξ) χ1 (ξ, ρ)∣∣∣H(1)
1 (ξ)

∣∣∣2
dξ =

aγ

ρ
, ρ ≥ β. (13)

In Sect. 2, by using ansatzs and discontinuous integrals, the system of the dual integral equations is
reduced to an Abel-type integral equation and, after that, to an integral equation of the second kind on
the infinite interval [β,∞) with an integral operator whose kernel depends on the sum of the arguments
(a Hankel integral operator). This integral equation is shown to have in L2 (β,∞) a unique solution ω (x)
such that xω (x) ∈ C∞[β,∞) ∩ L1 (β,∞) which provides a unique solution of the problem studied in the
article.

In Sect. 3, the expressions in terms of ω (x) for the stress intensity factor at the tip of the crack and
the contact stress between the cylinder and elastic body are derived and certain lower bounds for the
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quantities mentioned above are obtained. In particular, the contact stress at the base of the cylinder is
shown to be finite but large as the tip of the crack is very close to the cylinder surface.

Highly efficient analytic approximate formulas for ω (x) and a quantities of interests, as well as esti-
mates of their errors, are obtained in Sect. 4 as β ≥ 1.01 by basing on the little known in the research
community formulas for approximate solutions of linear operator equations given in [10].

An approach for solving the integral equation, which is efficient also for small β −1, is given in Sect. 5.
The solution ω (x) is represented in the form of an orthogonal series with coefficients to be a l1-solution
of an infinite system of linear algebraic equations whose matrix operator is a sum of the unit operator
and a compact in l2 Hankel matrix operator. Truncating the infinite system to a finite system by using
finite-dimensional operators with upper anti-triangular matrix as approximations for the Hankel operator,
we first find an approximate l2-solution which then is used to construct an approximate solution of the
problem. The estimates of errors for approximate quantities of interest found in such a way are given.
For very small β − 1, the order of finite systems is rather large. In this case, we suggest a novel highly
efficient iterative procedure that allows us to get an approximate solution and estimate its error. The
methods suggested in this section can be helpful in various problems of mechanics, mathematical physics
and engineering.

Asymptotic formula for the stress intensity factor is derived in Sect. 6 for a large crack, β ≥ 1.7, by
analyzing terms of the integral equation Neumann series with asymptotic evaluating arising integrals.

Results of calculations of the stress intensity factor and the contact stress are discussed in Sect. 7.
Some estimates for solutions of integral equations that are exploited in the article are obtained in the
“Appendix.”

2. Reducing the problem to an integral equation of the second kind

To solve the system of the dual integral equations obtained in the preceding section, we make use of the
integrals

Qn =

∞∫
0

√
ξ
χ1 (ξ, ρ) χn+ 1

2
(ξ, t)∣∣∣H(1)

1 (ξ)
∣∣∣2

dξ =

∞∫
0

√
ξJ1 (ξρ) Jn+ 1

2
(ξt) dξ

−Re

∞∫
0

√
ξ

J1 (ξ)

H
(1)
1 (ξ)

H
(1)
1 (ξρ) H

(1)

n+ 1
2

(ξt) dξ, ρ > α, t > α. (14)

On evaluating the first integral [17] and rotating the path of integration in the second integral on the
right side of (14) to 90◦,

Q0 =

∞∫
0

√
ξJ1 (ξρ) J 1

2
(ξt) dξ =

√
2t

π

H (ρ − t)

ρ
√

ρ2 − t2
, (15)

Q1 =

∞∫
0

√
ξJ1 (ξρ) J 3

2
(ξt) dξ − 2

π

∞∫
0

√
ξ

I1 (ξ)
K1 (ξ)

K1 (ξρ) K 3
2

(ξt) dξ

=

√
2

πt3
ρH (t − ρ)√

t2 − ρ2
− 2

π

∞∫
0

√
ξ

I1 (ξ)
K1 (ξ)

K1 (ξρ) K 3
2

(ξt) dξ, (16)
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where H (x) is the Heaviside unit step function and Iν (ξ) and Kν (ξ) are modified Bessel functions.
Represent A (ξ) and B (ξ) in the form of the ansatzs:

A (ξ)
aγ

=
√

ξ

∞∫
β

tψ (t)J 3
2

(ξt) dt (17)

=
βψ (β)√

ξ
J 1

2
(ξβ) +

∞∫
β

1√
ξt

J 1
2

(ξt) d
(
t
3
2 ψ (t)

)
, (18)

B (ξ)
aγ

= −
√

ξ

∞∫
β

tψ (t)χ 3
2

(ξ, t) dt (19)

= −βψ (β)√
ξ

χ 1
2

(ξ, β) − 1√
ξ

∞∫
β

1√
t
χ 1

2
(ξ, t) d

(
t
3
2 ψ (t)

)
, (20)

with ψ (t) to be determined.
Insert (18) and (20) into (10), (11) and (12). Interchanging the order of integration, we ascertain by

exploiting (15) that the above ansatzs satisfy identically the above-said equations.
On inserting (17) and (19) into (13) and interchanging the order of integration, we obtain by exploiting

(15) and (16):

2ρ

∞∫
ρ

√
2
πt

ψ (t) dt√
t2 − ρ2

=

∞∫
β

tψ (t) L̃ (t, ρ) dt +
1
ρ
, ρ ≥ β, (21)

where

L̃ (t, ρ) =
2
π

∞∫
0

√
ξ

I1 (ξ)
K1 (ξ)

K 3
2

(ξt) K1 (ξρ) dξ.

The integral term on the left side of (21) is the well-known Abel integral operator [6]. Inverting the
Abel operator and evaluating arising integrals

d
dx

∞∫
x

K1 (ξρ)√
ρ2 − x2

dρ = −
√

πξ

2x
K 3

2
(ξx) ,

d
dx

∞∫
x

dρ

ρ
√

ρ2 − x2
= − π

2x2
,

yields the integral equation of the second kind on semi-infinite interval

√
xψ (x) = L

(√
tψ (t)

)
+

√
π

8
1
x

, x ∈ [β,∞), (22)

L (f (t)) =

∞∫
β

f (t)L (x, t) dt,

L (x, t) =
√

tx

π

∞∫
0

ξ
I1 (ξ)
K1 (ξ)

K 3
2

(ξx) K 3
2

(ξt) dξ > 0. (23)
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Expressing K3/2 (x) in terms of exponential function and integrating by parts, we have the estimate

0 < L (x, t) < Θ (xt)−1/2 (x + t)−1, where Θ is a constant. Then,
∞∫
β

∞∫
β

L2 (x, s) dxds < ∞, and there-

fore the self-adjoint integral operator L is a positive compact operator in the Hilbert space L2 (β,∞),
which transforms functions from L2 (β,∞) into function belonging to L2 (β,∞) ∩ C∞[β,∞). Hence, any
L2 (β,∞)-solution

√
xψ (x) belongs to L2 (β,∞) ∩ C∞[β,∞) and can be written in the form

x
3
2 ψ (x) = −

x∫
β

sω∗ (s) ds + β
3
2 ψ (β) , x ≥ β, (24)

where sω∗ (s) is an integrable on [β,∞) function.
By inserting (24) into (22), interchanging the order of integration and differentiating, we obtain the

integral equation of the second kind:

(I + R) ω∗ (x) =
√

βψ (β) R (x + β) , x ∈ [β,∞), (25)

in which R is a positive self-adjoint integral operator whose kernel is continuous on [β,∞) × [β,∞),

Rω (x) =

∞∫
β

ω (s) R (x + s) ds,

R (s) =
1
2

∞∫
0

I1 (ξ)
K1 (ξ)

e−ξsdξ. (26)

It is readily seen by using asymptotic expansions of Laplace integrals and behavior of cylindrical functions
at ξ = 0 that R (x + s) = O

(
1/ (x + s)3

)
as x + s → ∞. Therefore, R is a positive compact operator in

L2 (β,∞), and if ω∗ (x) is a L2 (β,∞), then ω∗ (x) ∈ C∞[β,∞)∩L2 (β,∞). Also, the estimate |Rω∗ (x)| ≤
‖ω∗ (s)‖L2 ‖R (x + s)‖L2 involves xω∗ (x) ∈ C∞[β,∞) ∩ L1 (β,∞). Since I + R is a coercive operator,
such a L2 (β,∞)-solution exists and is unique for any β > 0.

Now, note that ψ (β) 
= 0. Otherwise, it follows from (25) that ω∗ (x) = 0 and then (24) gives ψ (x) ≡ 0.
But the latter is impossible because ψ (x) = 0 does not satisfies (22).

Thus, one can write

ω∗ (x) =
√

βψ (β) ω (x) , (27)
(I + R) ω (x) = R (x + β) , x ∈ [β,∞), (28)

and solve (28) instead of (22).
To determine the unknown constant ψ (β), one can note that (22) involves

lim
x→∞ x

3
2 ψ (x) =

√
π

8
.

Setting x = ∞ in (24) yields

ψ (β) =
√

π

8β

1

β −
∞∫
β

sω (s) ds

. (29)

In conclusion of this section, we note that the aforementioned properties of ψ (x) and ω (x) manifest
that pertaining integrals in this section converge absolutely and uniformly. This validates all formal
operations made in the process of deriving the above equations. Thus, there exists an unique solution of
the problem if ω (x) is a L2 (β,∞)-solution to (28). It will be seen in the next section that this solution
also leads to physically correct results.
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3. Stress intensity factor and contact stress

Once the function ψ (t) is determined, the stress on the crack plane z = 0, r ≥ b, is given by the relation:

τθz (r, 0)
γG

=
1
a

∞∫
0

ξA (ξ) J1 (ξρ) dξ

= βψ (β)

∞∫
0

√
ξJ 1

2
(ξβ) J1 (ξρ) dξ

+

∞∫
β

√
ξ

t

⎛
⎝

∞∫
0

√
ξJ 1

2
(ξt) J1 (ξρ) dξ

⎞
⎠ d

(
t3/2ψ (t)

)
.

Then, for r ∈ [b,∞],

τθz (r, 0)
aγG

=

√
2β

π

ψ (β)
r

⎡
⎢⎣ b√

r2 − b2
−

r
a∫

β

xω (x) dx√
(r/a)2 − x2

⎤
⎥⎦ ,

where ψ (β) is given by (29).
Now, the stress intensity factor is given by the formula

KIII = lim
r→b+0

√
2π (r − b)τθz (r, 0) = γG

√
2aψ (β) . (30)

Then, by using the estimate for ψ (β) obtained in the “Appendix,” we have the lower estimate

KIII ≥ γG

2β2

√
πa

2
(1 + C (β)) > 0,

with

C (β) = C (β, β) , C (s, β) =

∞∫
0

ξβ + 1
2ξ2β

I1 (ξ)
K1 (ξ)

e−ξ(β+s)dξ > 0. (31)

Thus, as it is expected, KIII → ∞ if β → 1.
The contact stress τθr (a, z), z ≥ 0, is evaluated by making use of (20), (24), (27), (29) and (15):

τθr (a, z) =
2γG

πa

∞∫
0

B (ξ) exp (−ξζ)
J2
1 (ξ) + Y 2

1 (ξ)
dξ − 2γG

= γG

⎛
⎜⎜⎜⎝

∞∫
β

xω (x) Φ (x, z/a) dx − βΦ(β, z/a)

β −
∞∫
β

xω (x) dx

− 2

⎞
⎟⎟⎟⎠ (32)

=
2
√

βKIII√
πa

⎛
⎜⎝

∞∫
β

xω (x) Φ (x, z/a) dx − βΦ(β, z/a)

⎞
⎟⎠ − 2γG, (33)
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with

Φ (x, ζ) =
1√
2πx

∞∫
0

e−ξζχ 1
2

(ξ, x) dξ√
ξ (J2

1 (ξ) + Y 2
1 (ξ))

=
1√
2πx

Im

∞∫
0

H
(1)
1
2

(ξx) e−ξζ

√
ξH

(1)
1 (ξ)

dξ

=
1
2x

∞∫
0

exp (−ξx)
ξK1 (ξ)

cos (ξζ) dξ, x ≥ β, (34)

where the integral Φ (x, ζ) is transformed into the form (34) by rotating the path of integration to 90◦,
Φ (x, ζ) = O

(
1/x2

)
as x → ∞, and Φ (x, ζ) = O

(
1/z2

)
as z → ∞. Note that k (ξ) = exp (−ξx) / (ξK1 (ξ))

is a bounded monotonically decreasing function that tends to zero as ξ → ∞ and has a monotonically
increasing negative derivative. Then, it is well known that the continuous function 2xΦ(x, ζ), a cosine
Fourier transform of k (ξ), is positive for 0 ≤ ζ ≤ ∞.

At the point z = 0, the contact stress can be written as

τθr (a, 0+)
γG

=

∞∫
β

xω (x) (Φ (x, 0) − Φ(β, 0)) dx

β −
∞∫
β

xω (s) dx

− Φ(β, 0) − 2.

According to the estimates given in the “Appendix,” ω (x) and the denominator in the above formula
are positive. Then, by noting Φ (x, 0) − Φ(β, 0) < 0, one might see that all terms on the right side are
negative, and therefore

−τθr (a, 0+)
γG

> Φ(β, 0) + 2.

Now, by rewriting Φ (β, 0) in the form

Φ (β, 0) =
1
2

∞∫
0

(
1

zK1 (z) ez
− e− z

2 I0

(z

2

))
e−(β−1)zdz +

1
2
√

β3 (β − 1)
,

where the integral converges absolutely and uniformly with respect to β ≥ 1, we infer that for very small
β − 1 the contact stress τθr (a, z) appears to be large at the end of the cylinder.

4. Approximate formulas for the stress intensity factor and contact stress

Because I + R is a bounded coercive self-adjoint operator,

1 ≤ 〈(I + R) ω, ω〉
‖ω‖2L2

≤ 1 + ‖R‖L2 ≤ 1 + ρR,

ρ2R =

∞∫
β

∞∫
β

R2 (x + s) dxds,
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an efficient approximate L2-solution to (28), ω̃ (x), can be found by the formulas suggested by Malits
[10]:

ω̃ (x) = AnR (x + β) ,

An =
η

1 − q2
Pn

(
1 − η

q
I − η

q
R
)

,

η =
2

2 + ρR
, q =

ρR

2 + ρR
,

where the polynomial Pn (x) is expressed in terms of the Chebyshev polynomials Tn (x):

Pn (x) =

[
Tn (x) (cx − q) + Tn+1 (x)

√
1 − q2

]
cn − (

1 − q2
)
qn−1

(qx − 1) qn−1
,

c = 1 −
√

1 − q2, P0 (x) = 1, P1 (x) = qx +
√

1 − q2, (35)

and the error estimate is

‖ω (x) − ω̃ (x)‖L2 ≤ qn+1 ‖R (x + β)‖L2

(1 + ρR) (1 − q)
(
1 +

√
1 − q2

)n . (36)

The number ρR can be evaluated as the following:

ρ2R =
1
4

∞∫
β

∞∫
β

⎛
⎝

∞∫
0

I1 (ξ)
K1 (ξ)

e−ξ(x+s)dξ

∞∫
0

I1 (υ)
K1 (υ)

e−υ(x+s)dυ

⎞
⎠ dtds

=
1
4

∞∫
0

∞∫
0

I1 (ξ)
K1 (ξ)

I1 (υ)
K1 (υ)

e2(ξ+υ)β

(ξ + υ)2
dξdυ.

Using the identity
1

ξ + υ
=

2[
1 −

(
ξ−1
ξ+1

)(
υ−1
υ+1

)]
(υ + 1) (ξ + 1)

(37)

=
2

(υ + 1) (ξ + 1)

∞∑
m=0

(
ξ − 1
ξ + 1

)m (
υ − 1
υ + 1

)m

, (38)

we have as 0 < ξ, υ < ∞,

1
(ξ + υ)2

=
4

(ξ + 1)2 (υ + 1)2

∞∑
m=0

(m + 1)
(

ξ − 1
ξ + 1

)m (
υ − 1
υ + 1

)m

. (39)

Finally, on inserting (39) and integrating term by term, we obtain

ρR =

√√√√ ∞∑
m=0

(m + 1) c2m, (40)

where

cm =

∞∫
0

I1 (ξ)
K1 (ξ)

(
ξ − 1
ξ + 1

)m
e−2ξβ

(ξ + 1)2
dξ. (41)

Integrating by parts shows that

cm = O

(
1

m3

)
as m → ∞. (42)
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In a similar manner, (38) involves

‖R (x + s)‖L2 =

√√√√ ∞∑
k=0

f2
k (s), (43)

fk (s) =
1√
2

∞∫
0

I1 (ξ)
K1 (ξ)

(
ξ − 1
ξ + 1

)k
e−ξ(β+s)

ξ + 1
dξ, (44)

fk (s) = O

(
1
k3

)
as k → ∞. (45)

The values of ρR and ‖R (x + s)‖L2 versus β are given in Table 1.
An approximate solution ωap (x) ∈ C∞[β,∞) can be determined by the formula

ωap (x) = R (x + β) − Rω̃ (x) (46)

whose error is

|ω (x) − ωap (x)| ≤

∣∣∣∣∣∣∣
∞∫

β

R (x + s) (ω (s) − ω̃ (s)) ds

∣∣∣∣∣∣∣
≤ ‖ω (s) − ω̃ (s)‖L2 ‖R (s + x)‖L2

≤ qn+1 ‖R (s + x)‖L2 ‖R (s + β)‖L2

(1 + ρR) (1 − q)
(
1 +

√
1 − q2

)n . (47)

Using the approximate solution (46) yields an approximate formula for ψ (β),

ψ (β) ≈
√

π

8β

1

β −
∞∫
β

sωap (s) ds

, (48)

with

1
β

∞∫
β

sωap (s) dt = C (β) −
∞∫

β

C (s, β) ω̃ (s) ds,

whose error estimate can be found by means of (36) and∣∣∣∣∣∣∣
∞∫

β

sω (s) ds −
∞∫

β

sωap (s) ds

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
β

∞∫
β

C (s, β) (ω (s) − ω̃ (s)) ds

∣∣∣∣∣∣∣
(49)

≤ βqn+1 ‖C (s, β)‖L2 ‖R (s + β)‖L2

(1 + ρR) (1 − q)
(
1 +

√
1 − q2

)n . (50)

The values of ‖C (s, β)‖L2 again can be found by using (38):

‖C (s, β)‖L2 =

√√√√ ∞∑
k=0

C2
k (β),

Ck (β) =
1√
2

∞∫
0

I1 (ξ)
K1 (ξ)

(
ξ − 1
ξ + 1

)k (ξβ + 1) e−2βξdξ

ξ2 (ξ + 1) β
.
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Table 1. Quantities pertaining to approximate formulas and estimates

β 1.0004 1.01 1.02 1.1 1.2 1.5 2 2.5
ρR 0.326 0.187 0.153 0.075 0.048 0.021 0.009 0.006
q 0.403 0.086 0.071 0.036 0.023 0.010 0.094 0.003
‖C (x, β)‖L2 0.361 0.339 0.325 0.259 0.212 0.138 0.085 0.059
‖R (x + β)‖L2 5.506 0.958 0.619 0.207 0.092 0.030 0.011 0.005
Φ 7.202 1.644 1.453 1.025 0.852 0.644 0.505 0.433

As given in Table 1, the simplest approximate inverse operator A0 can be taken in a wide interval of
the parameter β. Then,

ωap (x) = R (x + β) − 2 + ρR

2 + 2ρR

∞∫
β

R (x + s) R (s + β) ds + R (x + β)

= R (x + β) − 2 + ρR

2 (1 + ρR)

∞∑
k=0

fk (x) fk (β) . (51)

This leads to the approximate formula for the stress intensity factor at r = b:

KIII ≈
√

πaγG

2β3/2

(
1 − C (β) +

(2 + ρR)
2 (1 + ρR−)

∞∑
k=0

Ck (β) fk (β)

)−1

. (52)

Evaluations show that a relative error of (52) monotonically decreases, is less than 1.45% as β ≥ 1.01, is
less than 0.75% as β ≥ 1.02 and is less than 0.18% as β ≥ 1.1.

To derive an approximate formula for the contact stress at the end of the cylinder τθr (a, 0+), we take
ω (x) ≈ ω̃ (x) = A0R (x + β) and again exploit (38). Then,

τθr (a, 0+) ≈ τ̂ =
2
√

βKIII√
πa

⎛
⎜⎝

∞∫
β

xω̃ (x) Φ (x, 0) dx − βΦ(β, 0)

⎞
⎟⎠ − 2γG

=
2
√

βKIII√
πa

(
η

1 − q2

∞∑
k=0

fk (β) Φk (β) − βΦ(β, 0)

)
− 2γG,

Φk (β) =
1√
2

∞∫
0

e−ξβ

ξK1 (ξ)

(
ξ − 1
ξ + 1

)k dξ

ξ + 1
, (53)

with an error

|τθr (a, 0+) − τ̂ |√a

KIII
≤ 2

√
β

π
‖ω (x) − ω̃ (x)‖L2 ‖xΦ(x, 0)‖L2

≤ 2q
√

β ‖R (x + β)‖L2 ‖xΦ(x, 0)‖L2√
π (1 + ρR) (1 − q)

,

‖xΦ(x, 0)‖L2 =

√√√√ ∞∑
k=0

Φ2
k (β) < Φ,
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Φ =

∞∫
0

e−ξβdξ

(2ξ)3/2
K1 (ξ)

=
e

β−1
π

2
√

π
K0

(
β − 1

π

)
+

+
1√
8

∞∫
0

⎛
⎝ 1

ξK1 (ξ) eξ
−

√
2
π√

ξ + 2
π

⎞
⎠ e−(β−1)ξ

√
ξ

dξ.

Evaluations of the above coarse estimate manifest that a relative error of (53) monotonically decreases
and is less than 1.06% as β ≥ 1.01, is less than 0.22% as β ≥ 1.1 and is less than 0.01% as β ≥ 1.5.

5. Reducing the problem to an infinite system of linear algebraic equations

The solution based on employing iterations of the integral operator suggested in the preceding section
becomes inconvenient for very small β − 1 because of difficulties to ensure accurate calculating iterations
as well as computing time which is needed. In this section, we will develop a more robust approach by
reducing the integral equation to an infinite system of linear algebraic equations.

Let us represent a solution of the integral equation in the form of a series expansion in the orthonormal
basis {Lm (s)},

ω (s) =
∞∑

m=0

ωmLm (x) , (54)

Lm (s) =
√

2eβ−xLm (2 (x − β)) , (55)

where Lm (x) are Laguerre polynomials, and by exploiting the integral
∞∫

β

Lm (s) e−ξxdx =
e−ξβ (ξ − 1)n

√
2 (ξ + 1)n+1 ,

expand R (x + s) into Lm (x) series

R (x + s) =
∞∑

m=0

fm (s)Lm (x) , (56)

where fm (s) is defined by (44). The above series converges absolutely and uniformly on [β,∞) because
both ω (x) and R (x + s) belong to C∞[β,∞) ∩ L1[β,∞).

Inserting (54) and (44) into (28), on integrating and equating coefficients of like elements of the basis
{Lm (x)}, we obtain an infinite system of algebraic equations:

−→ω = −Ω−→ω +
−→
f ,

−→ω = (ω0, ω1, ω2, . . .),
−→
f = (f0, f1, f2, . . .),

fm = fm (β) , Ω−→ω =
∞∑

n=0

ωncn+m, (57)

where the matrix elements of the Hankel matrix operator cn+m are given by (41) and fm (β) by (44).
Here, the operator Ω, as a matrix representation of the operator R, is compact in l2, positive and

∞∑
m,n=0

c2n+m = ρ2R.
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Consequently, the operator I + Ω is coercive: for −→z ∈ l2,

‖−→z ‖2l2 ≤ ((I + Ω) −→z ,−→z ) ≤ (1 + ρR) ‖−→z ‖2l2 , (58)

and therefore (57) has in l2 a unique solution for any β > 1. By virtue of (45) and (42), a l2-solution
belongs to l1 also.

The compact matrix operator Ω can be approximated by some finite-dimensional operators ΩN ob-
tained with certain truncations of Ω under the condition that a sequence of operators ΩN converges to
Ω in l2 as N → ∞. We take the operators with upper anti-triangular matrices

ΩN (−→ω ) =
{∑2N−m

n=0 ωncn+m, m ≤ 2N
0, m > 2N

as such operators. Then, ‖ΩN‖l2
≤ ρN ,

ρ2N =
2N∑

m=0

2N−m∑
n=0

c2n+m =
2N∑

m=0

(m + 1) c2m,

‖Ω − ΩN‖2l2 ≤
∞∑

m=2N+1

(m + 1) c2m = ρ2R − ρ2N , (59)

and therefore ‖Ω − ΩN‖l2
→ 0 as N → ∞.

Thus, the approximation of coefficients ωn in l2 can be found by determining a vector−→̃
ω = (ω̃0, ω̃1, ω̃2, . . .) from the system

ω̃m +
2N−m∑

n=0

ω̃ncn+m = fm, m = 0, 1, 2, . . . , 2N, (60)

ω̃m = fm, m ≥ 2N + 1. (61)

The matrix operator ΩN can be represented as a sum:

ΩN = Ω̃N + Ω̂N , Ω̃N
−→ω =

⎧⎨
⎩

N∑
n=0

ωncn+m, m ≤ N

0, m > N
,

where the Hankel operator Ω̃N is positive in l2 and in the Euclidean space R
n, n ≥ 2N + 1,

(−→ω , Ω̃N
−→ω

)
=

∞∫
0

I1 (ξ)
K1 (ξ)

e−2βξ

(ξ + 1)2

(
N∑

n=0

ωn

(
ξ − 1
ξ + 1

)n
)2

dξ,

while

∥∥∥Ω̂N

∥∥∥2

≤ ρ̂2N = 2
N∑

m=0

mc2N+m,

ρ̂N =

√√√√ N∑
m=0

O

(
m

(m + N)6

)
= O

(
1

N2

)
as N � 1.

Now, it follows from

(1 − ρ̂N ) ‖−→z ‖2 ≤ ((I + ΩN ) −→z ,−→z ) ≤ (1 + ρN ) ‖−→z ‖2 , (62)

that the operator I + ΩN is coercive at least for sufficiently large N . In such a case, the system (60) has
a unique solution.
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To estimate an error of the approximate solution
−→̃
ω , we note that the equality

(I + Ω) −→ω =
−→
f = (I + ΩN )

−→̃
ω

involves (
(I + Ω)

(−→ω − −→̃
ω
)

,
(−→ω − −→̃

ω
))

=
(
(ΩN − Ω)

−→̃
ω ,

(−→ω − −→̃
ω
))

.

Hence, due to (58) ∥∥∥−→ω − −→̃
ω
∥∥∥2

l2
≤ ‖ΩN − Ω‖l2

∥∥∥−→̃
ω n

∥∥∥
l2

∥∥∥−→ω − −→̃
ω
∥∥∥

l2
,

and then by virtue of (59) the error estimate is∥∥∥−→ω − −→̃
ω
∥∥∥

l2
≤

√
ρ2R − ρ2N

∥∥∥−→̃
ω n

∥∥∥
l2

.

The series

ω̃ (x) =
∞∑

m=0

ω̃mLm (x) (63)

will give L2 approximations of ω (x). Hence, by using Parseval’s equation
∞∫

β

xω̃ (x) Φ (x, 0) dx =
1
2

∞∑
m=0

ω̃mΦk (β) ,

∣∣∣∣∣∣∣
∞∫

β

x (ω (x) − ω̃ (x)) Φ (x, 0) dx

∣∣∣∣∣∣∣
≤ 1

2

∞∑
m=0

|ωm − ω̃m| |Φk (β)|

≤
√

ρ2R − ρ2N
2

∥∥∥−→̃
ω n

∥∥∥
l2

‖Φ(x, 0)‖L2 .

Inserting the (63) series in (25) yields an accurate approximate solution in C[β,∞) ∩ L1 (β,∞),

ω (x) ≈ φ (x) = −
∞∑

m=0

ω̃mfm (x) + R (x + β) ,

|ω (x) − φ (x)| ≤
∞∑

m=0

|ωm − ω̃m| |fm (x)| ≤
∥∥∥−→ω − −→̃

ω
∥∥∥

l2
‖fm (x)‖l2

≤
√

ρ2R − ρ2N

∥∥∥−→̃
ω n

∥∥∥
l2

‖R (x + β)‖L2 , (64)

and then

1
β

∞∫
β

sω (s) ds ≈ C (β) −
∞∑

m=0

ω̃mCm (β) ,

∣∣∣∣∣∣∣
∞∫

β

sω (s) ds −
∞∫

β

sφ (s) ds

∣∣∣∣∣∣∣
≤ β

∞∑
m=0

|ωm − ω̃m| |Cm (β)|

≤ β
√

ρ2R − ρ2N

∥∥∥−→̃
ω n

∥∥∥
l2

‖C (s, β)‖L2 . (65)

Some additional simplification can be achieved by truncating infinite series in (64) and (65) by using (61).
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When β − 1 is very small, evaluations show that matrix element cn+m are decreasing very slowly
and then

√
ρ2R − ρ2N becomes small only if 2N is rather large. For example,

√
ρ2R − ρ2200 = 0.0 412 for

β = 1.0004. It is important in this situation that for evaluation of matrix elements of ΩN one should
evaluate 2N +1 integrals c0, c1, . . . , c2N only. Another important point in such a case is that for achieving
good accuracy it is preferable to solve a finite system of linear algebraic equation by some iterative
algorithm which is rapidly convergent in R

2N+1 norm. Taking into account that self-adjoint operator ΩN

might be chosen to be a coercive operator, one can again employ results of the paper by Malits [10] for
constructing an iterative procedure. Then, an approximate solution has the form

−→
Z ≈ η

1 − q2
PM

(
1 − η

q
I − η

q
ΩN

)−→
F ,

η =
2

2 + ρN − ρ̂N
, q =

ρN + ρ̂N

2 + ρN − ρ̂N
, (66)

where
−→
Z = (ω̃0, ω̃1, . . . , ω̃2N ),

−→
F = (f0, f1, . . . , f2N ) and the polynomial Pn (x) is defined by (35).

Using the recurrent formula for Chebyshev polynomials

Tn+1 (x) = 2xTn (x) − Tn−1 (x) , T0 (x) = 1, T1 (x) = x,

one derives from (35)

Pn (x) = Pn−1 (x) + qλn−1 (Tn (x) − λTn−1 (x)) ,

λ =
q

1 +
√

1 − q2
, P0 (x) = 1.

Hence, we obtain the following iterative algorithm:
−→
Z ≈ η

1 − q2
−→P M ,

−→P k =
−→P k−1 + qλk−1

(−→G k − λ
−→G k−1

)
,

−→G k = 2
(

1 − η

q
I − η

q
ΩN

)−→G k−1 − −→G k−2,

−→P 0 =
−→G 0 =

−→
F ,

−→G 1 =
(

1 − η

q
I − η

q
ΩN

)−→
F ,

whose error estimate
∥∥∥∥−→

Z − η

1 − q2
−→P M

∥∥∥∥
R2N+1

≤ εM =
qλM

∥∥∥−→
F
∥∥∥
R2N+1

(1 + ρN ) (1 − q)

is less than error estimates of other algorithms based on using (explicitly or implicitly) M iterations of
operator ΩN [10]. For N = 200 and β ≥ 1.0004, ε2 ≤ 0.003 07 and ε3 ≤ 0.00022.

6. Stress intensity factor for a large crack.

The norms of the operator R in C[β,∞) and in L1 (β,∞) are given by the Laplace integral:

‖R‖C = ‖R‖L1 =

∞∫
β

R (β + x) dx = q (β) ,

q (β) =
1
2

∞∫
0

I1 (ξ) e−2ξβ

ξK1 (ξ)
dξ,
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where q (β) is a monotonically decreasing function of the parameter β, q (1.0004) = 0.985. Then, the
Neumann series

ω (x) =
∞∑

k=0

(−R)k
R (x + β) (67)

converges absolutely and uniformly for β ≥ 1.0004.
The inequality

0 ≤ RR (x + β) ≤ R (x + β) q (β)

involves that for β ≥ 1.0004 the terms of the Neumann series are alternating and monotonically decreasing
in magnitude. For large β: ∥∥∥(−R)k

R (x + β)
∥∥∥

C
≤ qk+1 (β) , (68)∥∥∥(−R)k

R (x + β)
∥∥∥

L1
≤ qk+1 (β) , (69)

q (β) =
1

4β2
+ O

(
1
β3

)
. (70)

The above estimates manifest that terms of the Neumann series constitute an asymptotic scale as (2β)2

is large and the Neumann series therefore is an asymptotic expansion. Hence, we find
∞∫

β

x

β
ω (x) dx = C (β) −

∞∫
β

C (x, β)

(
N−1∑
k=0

(−R)k
R (x + β)

)
dx + O

(
1

(2β)2N+4

)
,

where the asymptotic order of error is derived by using the estimates

C (x, β) ≤ C (β) =
3

16β2
+ O

(
ln (2β)
(2β)4

)
,

(69) and (70):
∞∫

β

C (x, β)
(
RNR (x + β)

)
dx ≤ C (β) max

∞∫
β

(
RNR (x + β)

)
dx

≤ C (β) qN+1 (β) = O

(
1

(2β)2N+4

)
.

Taking N = 2 and expanding Laplace integrals C (x, β) and R (s + x) into asymptotic series, we finally
obtain

∞∫
β

xω (x) dt = β (H (β) + r (β)) ,

H (β) =
3

16β2
− d1 − d2 ln (2β)

(2β)4
− d3 + d4 ln (2β) − 7d2 ln2 (2β)

(2β)6
,

d1 = 1.782 28, d2 =
3
2
, d3 = 17.261 73, d4 = 25.445 50,

r (β) =
d5
β6

+ o

(
1

(2β)6

)
, 0 < d5 <

11
98 304

. (71)
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Fig. 1. Normalized stress intensity factor K = KIII√
aγG

versus b
a

Fig. 2. Normalized contact stress T = τθr(a,0+)
γG

versus b
a

The approximate formula for the stress intensity factor

KIII ≈
√

πaγG

2β3/2 (1 − H (β))
(72)

is asymptotically exact for large 4β2, and its relative error is a decreasing function of the parameter β.
For β = 1.75, the relative error is 3.4%, and for β = 2.5 the relative error is 0.5%.
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7. Results

The results of calculations of the stress intensity factor are represented in Fig. 1, where the dotted line
gives approximate values evaluated by the asymptotic formula (72). We observe a very rapid decrease in
the stress intensity factor as the parameter β is increasing. This means that one can expect a state of the
crack arrest for a sufficiently large β = b/a. If the tip of the crack is very close to the end of the rigid
cylinder, then the crack can be unstable.

The normalized contact stress T = τθr (a, 0+) /γG is presented in Fig. 2. Despite the fact that the
contact stress is finite for any β > 1, the contact stress is very large as the tip of the crack is very close
to the end of the rigid cylinder. In the latter case, a debonding or damage zone can be developed at the
end of the cylinder along the lateral surface.

8. Conclusions

We study torsion of an elastic space by an embedded semi-infinite rigid cylinder which has caused a coaxial
penny-shaped crack in the plane of the cylinder end. The problem is reformulated as a system of dual
integral equations containing inverse Bessel and Weber–Orr integral transforms. By using special ansatzs,
the system of dual integral equations is reduced to solving an integral equation of the second kind with
Hankel integral operator given on a semi-infinite interval. The stress intensity factor and contact stress are
expressed in terms of a solution to the integral equation. A detailed investigation of the integral equation
permits us to suggest accurate methods for its efficient solving for any size of the crack. In particular,
approximate formulas for the contact stress at the end of the cylinder and stress intensity factor are
derived. When the crack is large, an asymptotic formula for the stress intensity factor is obtained as well.
Analytical estimations and calculations manifest a strong increase in the stress intensity factor and the
contact stress at the end of the cylinder as the crack tip is very close to the cylinder surface.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

9. Appendix: Some estimates for ω (x) and ψ (b)

Let us rewrite (28) in the form

ω (x) = ((1 − μ) I − μR) ω (x) + μR (x + β) ,

0 < μ <
1

‖I + R‖L2

,

where the self-adjoint operator (1 − μ) I − μR is positive. According to [7], there exists a L2-solution of
the above equation that is a limit of the successive approximations

ωn+1 (x) = ((1 − μ) I − μR) ωn (x) + μR (x + β) ,

ω0 (x) = μR (x + β) ,

and consequently this solution is positive and, as it shown in Sect. 2, unique,

ω (x) > 0. (73)

We have from (28)

xω (x) +
xR (x + β)

β

∞∫
β

sω (s) ds ≥ xR (x + β) .
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Then, on integrating

(1 + C (β))

∞∫
β

sω (s) ds ≥
∞∫

β

xR (x + s) dx = βC (β) ,

∞∫
β

sω (s) ds ≥ βC (β)
1 + C (β)

, (74)

where C (β) is defined by (31).
Now, (29) involves

ψ (β) ≥
√

π

8β3
(1 + C (β)) > 0.

Note that C (β) is a monotonically decreasing function of the parameter β and C (1) = ∞.
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