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Abstract. This paper analyzes prey–predator models with indirect predator-taxis in such a way that chemical secreted by the
predator triggers the repellent behavior of prey against the predator. Under the assumption of quadratic decay of predator,
we prove the global existence and uniform boundedness of classical solutions up to two spatial dimensions. Moreover, via
the linear stability analysis, we show that large chemosensitivity gives rise to the occurrence of pattern formations. We also
obtain the global stability results for the nontrivial constant steady states by establishing proper Lyapunov functionals.
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1. Introduction

Many observations in nature demonstrate that the emergence of prey or predator can induce the directed
movement of a species. Researchers have proposed and investigated several mathematical models with
prey-taxis or predator-taxis to describe the prey–predator behavior involving the advection effect (see
[5,10,12,21,32,33]). Instead of advection induced by direct contact between prey and predator, chemical
effects such as specific odor, pheromone, and excrement may influence the mobility of species. Taking
the effects of chemicals secreted by the predator on prey into consideration, we may come up with the
chemotactic behavior of the indirect predator-taxis as a survival strategy of prey. For example, in nature,
some whales avoid the underwater sounds of killer whales as a sign of potential danger or juvenile toads
detect and avoid chemical cues from snake species that prey on them (see [6–8]).

In this paper, we study a diffusion–advection–reaction PDE model with indirect predator-taxis, i.e.,
we assume that the prey moves away from the gradient of a chemical emitted by the predator. From this
perspective, we consider the following 3-component parabolic system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = duΔu + ∇ · (χu∇c) + f(u) − vg(u, v), x ∈ Ω, t > 0,

ct = dcΔc + αv − βc, x ∈ Ω, t > 0,

vt = dvΔv + rvg(u, v) − k(v)v, x ∈ Ω, t > 0,

u(x, 0) = u0(x), c(x, 0) = c0(x), v(x, 0) = v0(x), x ∈ Ω,

∂u

∂ν
=

∂c

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

(1.1)

where Ω is a smooth bounded domain in R
n, n ≥ 1, and ν denote the outer normal vector at the boundary.

The unknowns u, c and v represent the population densities of prey, the concentration of the chemical
and the population densities of predator, respectively. In addition, χ > 0 is the chemotactic sensitivity of
prey, f(u) is the growth rate of prey, g(u, v) is the functional response of predation, k(v) is the mortality
rate of predator, and constants du, dc, dv, α, β, r are positive.

We assume that f(u) satisfies the following hypothesis:
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(H1) The function f : [0,∞) → [0,∞) is continuously differentiable, and there exist two constants
N1, N2 > 0 such that f(u) ≤ N1u − N2u

2 for any u ≥ 0.

The hypothesis (H1) indicates that the growth of prey follows the logistic law. On the other hand, we
assume that g(u, v) satisfies either (H2) or (H3) below.

(H2) The function g : [0,∞) × [0,∞) → [0,∞) is continuously differentiable, g(0, v) = 0, gu(u, v) > 0
and there exists a constant N3 > 0 such that g(u, v) ≤ N3 for any u, v ≥ 0.

(H3) The function g : [0,∞) × [0,∞) → [0,∞) is continuously differentiable, g(0, v) = 0, gu(u, v) > 0
and there exists a constant N3 > 0 such that g(u, v) ≤ N3u for any u, v ≥ 0.

The hypothesis (H2) covers various type of functional responses such as:

g(u, v) = g(u) =
u

d1u + d2
(Holling type II);

g(u, v) =
u

d1u + d2v
(Ratio-dependent type);

g(u, v) =
u

d1u + d2v + d3
(Beddington-DeAngelis type)

for some d1, d2, d3 > 0. The typical example of (H3) is the Lotka–Volterra type, i.e., g(u, v) = u. As for
k(v), we assume the following:

(H4) The function k : [0,∞) → (0,∞) is continuously differentiable, and there exist three constants
k1, k2 > 0, k3 ∈ R such that k′(v) ≥ k1 and k(v) ≥ k2v + k3 for any v ≥ 0.

The hypothesis (H4) accounts for the intra-specific competition (k2 > 0) or the logistic growth (k3 < 0).
The indirect signal production mechanisms have been studied for various taxis-type models. When the

predator detects the chemical emitted by prey and chases the trace, we can adopt the role of chemicals into
the prey-taxis model. Recently, there have been several related studies on the indirect prey-taxis models
(see [1,27,28]). Note that system (1.1) shares the same dynamics as the indirect prey-taxis models except
for the taxis term. The indirect mechanisms can also be applied to a chemotaxis model related to two
different states of a species. In this regard, Tao and Winkler [25] proposed a prototypical parabolic–elliptic
ODE system describing the spread and aggregative behavior of the Mountain Pine Beetle (MPB) as the
following:

⎧
⎪⎨

⎪⎩

ut = Δu − ∇ · (u∇c), x ∈ Ω, t > 0,

ct = Δc − 1
|Ω|
∫

Ω
v + v, x ∈ Ω, t > 0,

τvt = u − δv, x ∈ Ω, t > 0,

where u and v denote the density of flying MPB and nesting MPB, respectively, and c is the concentration
of beetle pheromone. They verified that the indirect mechanism plays a significant role in excluding the
occurrence of blow-up in finite time. We refer the reader to [9,14,16] for more related results.

We state the first main result about the global existence of solutions to (1.1).

Theorem 1.1. Let Ω ⊂ R
n be a bounded domain with smooth boundary, and let f(u) and k(v) satisfy

(H1) and (H4), respectively. Assume that either g(u, v) satisfies (H2) if n ≥ 1, or (H3) if n ∈ {1, 2}.
Then, for any initial data (u0, c0, v0) ∈ [W 1,p(Ω)]3 with p > n satisfying u0(x), c0(x), v0(x) ≥ 0(	≡ 0) for
x ∈ Ω, system (1.1) possesses a unique global-in-time nonnegative classical solution (u, c, v) such that

(u, c, v) ∈ [C([0,∞);W 1,p(Ω)) ∩ C2,1(Ω × (0,∞))
]3

,

and there exists a constant M1 > 0 independent of t such that

‖u(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,∞(Ω) + ‖v(·, t)‖L∞(Ω) ≤ M1 for all t > 0.
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In the case of direct predator-taxis, Wu et al. [33] proved the global existence and uniform boundedness
of classical solutions when g(u, v) satisfies (H2). If g(u, v) is bounded above by some positive constant,
then we can use the comparison principle so that we obtain the uniform boundedness of v. However, if
g(u, v) satisfies (H3), i.e., the Lotka–Volterra type reaction term, due to the strong coupling of equations
of u and v, the boundedness of v is not easily attained. We remark that a similar difficulty arises in urban
crime models. A seminal urban crime model was proposed by Short et al. [20]:

{
ut = Δu − χ∇ · (u

v ∇v) − uv + B1(x, t), x ∈ Ω, t > 0,

vt = Δv + uv − v + B2(x, t), x ∈ Ω, t > 0,
(1.2)

where u represents the density of criminal agents and v the attractiveness value. Similar to the loga-
rithmic chemotaxis model, system (1.2) possesses an advection term −χ∇ · (u

v ∇v), which is interpreted
as a directed movement of criminals toward increasing attractiveness values. The Lotka–Volterra type
+uv term in the second equation of (1.2) is driven by the assumption that criminal activity increases
attractiveness. To the best of our knowledge, the results on the existence of global classical solutions are
only obtained in one-spatial dimension (see [19,29]). For the two-dimensional case, Winkler [31] showed
the existence of global renormalized solution on a radially symmetric domain. Therefore, Theorem 1.1
implicates that up to two spatial dimensions, the indirect taxis is a key contribution in obtaining the
well-posedness compared to direct taxis mechanisms, thus preventing the blow-up of solutions.

The second key contribution is the growth restriction of logistic-type specified by (H1). As for classical
chemotaxis models with logistic source, that is, for

{
ut = Δu − χ∇ · (u∇v) + au − bu2, x ∈ Ω, t > 0,

τvt = Δv − v + u, x ∈ Ω, t > 0,
(1.3)

the existence theory has been well investigated by several studies. In the two-dimensional case, due to
the pure existence of the quadratic degradation term, the global existence and uniform boundedness of
classical solutions to (1.3) are obtained for any b > 0. In contrast, in the higher-dimensional cases, the
global boundedness is guaranteed for sufficiently large b > 0 (see [26] for a parabolic–elliptic version
(τ = 0) and [17,30] for a parabolic–parabolic version (τ = 1)). In particular, for the parabolic–parabolic
case in the higher dimensions, Winkler [30] verified the global boundedness by using a specific functional

m∑

k=0

ck

∫

Ω

uk|∇v|2m−2k,

with arbitrarily large m ∈ N and some proper constants ck’s. Due to the complexity, it is not easy to apply
the approach in [30] to system (1.1), and thus, the existence problem of (1.1) in the higher dimensions
seems to need more consideration.

The next result is concerned with the linear stability of a positive constant steady state in the aspect
of pattern formations. Indeed, the positive constant steady state (uc, cc, vc) satisfies

f(uc) = vcg(uc, vc), g(uc, vc) =
k(vc)

r
, cc =

α

β
vc, uc, cc, vc > 0. (1.4)

Assuming the direct predator-taxis, Wu et al. [33] investigated the stability of a positive steady state, and
it turns out that the presence of large predator-taxis may annihilate the spatial patterns. This result is
similar to that of the direct prey-taxis model. Lee et al. [15] showed that prey-taxis stabilizes the system
in the sense that, for large prey-taxis sensitivity, pattern formation does not occur. However, the indirect
taxis provides different dynamics. For the indirect prey-taxis case, Ahn and Yoon [1] showed that large
prey-taxis sensitivity results in generating pattern formations without diffusion-driven instability. Due to
the similar structure to the prey-taxis case, we can find that indirect predator-taxis tends to generate
pattern formations as the following proposition.



29 Page 4 of 20 I. Ahn and C. Yoon ZAMP

Proposition 1.2. Let f(u) satisfy (H1) and g(u, v) satisfy (H2) or (H3). Suppose that there exists a
positive constant steady state (uc, cc, vc) of (1.1) satisfying (1.4), and it is linearly stable for χ = 0.
Then, there exists χc > 0 such that (uc, cc, vc) is linearly unstable for any χ > χc.

The last part of this paper is devoted to show the global behavior of solutions to (1.1). To do so, we
impose specific conditions for f, g, k, and thus, we consider the following Lotka–Volterra system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= duΔu + ∇ · (χu∇c) + u(a1 − b1u − c1v), x ∈ Ω, t > 0,

∂c

∂t
= dcΔc + αv − βc, x ∈ Ω, t > 0,

∂v

∂t
= dvΔv + v(a2 + b2u − c2v), x ∈ Ω, t > 0,

u(x, 0) = u0(x), c(x, 0) = c0(x), v(x, 0) = v0(x), x ∈ Ω,

∂u

∂ν
=

∂c

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

(1.5)

where Ω ⊂ R
2 is a smooth bounded domain, a1 > 0, a2 ∈ R and bi, ci > 0, i = 1, 2. The functional

response g(u, v) = c1u satisfies (H3) which is not considered in [33]. Here, a2 > 0 means that there exists
another resource for predator so that the predator can survive even in the absence of the prey, whereas
a2 ≤ 0 indicates that the reproduction of the predator entirely depends on the prey. Direct calculations
on the kinetic terms of the equations of u and v yield that the existence of the positive constant steady
state or the semi-trivial steady states depends on the parameters. More precisely, if a2 > 0, then there
exist nontrivial constant steady states (u∗, c∗, v∗) such that

(u∗, c∗, v∗) =

{
(a1

b1
, 0, 0) or (0, αa2

βc2
, a2

c2
) if a1

c1
≤ a2

c2
,

(a1
b1

, 0, 0) or (0, αa2
βc2

, a2
c2

) or (uc, cc, vc) if a1
c1

> a2
c2

,

where (uc, cc, vc) is given by

(uc, cc, vc) =
(

a1c2 − a2c1

b1c2 + b2c1
,
α(a2b1 + a1b2)
β(b1c2 + b2c1)

,
a2b1 + a1b2

b1c2 + b2c1

)

. (1.6)

On the contrary, if a2 ≤ 0, then we have two nontrivial constant steady states (u∗, c∗, v∗):

(u∗, c∗, v∗) =

{
(a1

b1
, 0, 0) if a1

b1
≤ −a2

b2
,

(a1
b1

, 0, 0) or (uc, cc, vc) if a1
b1

> −a2
b2

.

The global existence and the uniform boundedness of classical solutions to (1.5) obtained in Theorem 1.1
enable us to have the following results on the global behavior of solutions to (1.5).

Theorem 1.3. Let (u, c, v) be a global classical solution to system (1.5). Then, it holds that:
(1) If a2 > 0 and a1

c1
≤ a2

c2
, then the semi-trivial steady state (u∗, c∗, v∗) = (0, αa2

βc2
, a2

c2
) is globally

asymptotically stable. Moreover, there exist positive constants η1, CS1 , T1 such that for all t > T1,

‖u‖L∞(Ω) + ‖c − αa2

βc2
‖L∞(Ω) + ‖v − a2

c2
‖L∞(Ω) ≤ CS1e

−η1t if
a1

b1
< −a2

b2
,

‖u‖L∞(Ω) + ‖c − αa2

βc2
‖L∞(Ω) + ‖v − a2

c2
‖L∞(Ω) ≤ CS1

(1 + t)η1
if

a1

b1
= −a2

b2
.

(2) If a2 < 0 and a1
b1

≤ −a2
b2
, then the semi-trivial steady state (u∗, c∗, v∗) = (a1

b1
, 0, 0) is globally

asymptotically stable provided that χ > 0 satisfies

χ <
4
α

√
dudcβb1c1c2

a1b2
.
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Moreover, there exist positive constants η2, CS2 , T2 such that for all t > T2,

‖u − a1

b1
‖L∞(Ω) + ‖c‖L∞(Ω) + ‖v‖L∞(Ω) ≤ CS2e

−η2t if
a1

b1
< −a2

b2
,

‖u − a1

b1
‖L∞(Ω) + ‖c‖L∞(Ω) + ‖v‖L∞(Ω) ≤ CS2

(1 + t)η2
if

a1

b1
= −a2

b2
.

(3) If −a1b2
b1c2

< a2
c2

< a1
c1
, then there exists a positive constant steady state (u∗, c∗, v∗) = (uc, cc, vc) given

as (1.6). Moreover, if χ > 0 satisfies

χ <
4
α

√
dudcβc1c2

b2
,

then (uc, cc, vc) is globally asymptotically stable, and there exist positive constants η3, CS3 , T3 such
that

‖u − uc‖L∞(Ω) + ‖c − cc‖L∞(Ω) + ‖v − vc‖L∞(Ω) ≤ CS3e
−η3t for all t > T3.

We note that if one obtains the uniform boundedness of solutions to (1.1), then the global behavior of
solutions can be verified by the method similar to the proof of Theorem 1.3, even for higher dimensions
than n = 2.

The rest of this paper is organized as follows: In Sect. 2, we provide several preliminaries. In Sect. 3,
we prove the global existence and uniform boundedness of (1.1). A case study for global stability is given
in Sect. 4. We investigate the global asymptotic behaviors of solutions to (1.5) and find the convergence
rates. In the appendix, the proof of Proposition 1.2 will be provided.

Throughout this paper, C and Ci (i = 1, 2, 3, . . .) denote generic positive constants which change from
line to line.

2. Preliminaries

First, we obtain the local existence in time of a classical solution to (1.1). Moreover, we assert that the
total mass of u, c, and v are uniformly bounded.

Lemma 2.1. Let Ω be a smooth bounded domain of Rn, n ≥ 1. Suppose that f(u) and k(v) satisfy (H1)
and (H4), respectively, and g(u, v) satisfies (H2) or (H3). For any (u0, c0, v0) ∈ [W 1,p(Ω)]3 where p > n,
satisfying u0(x), c0(x), v0(x) ≥ 0(	≡ 0) for x ∈ Ω, we have:

(1) There exists a maximal time of existence Tmax > 0 such that a unique nonnegative classical solution
(u, c, v) satisfies

(u, c, v) ∈ [C([0, Tmax);W 1,p(Ω)) ∩ C2,1(Ω × (0, Tmax))
]3

.

(2) There exists a constant M2 > 0 such that

‖u(·, t)‖L1(Ω) + ‖c(·, t)‖L1(Ω) + ‖v(·, t)‖L1(Ω) ≤ M2 for t ∈ (0, Tmax). (2.1)

(3) If Tmax < ∞, we have

lim
t↗Tmax

(‖u(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,∞(Ω) + ‖v(·, t)‖L∞(Ω)

)
= ∞. (2.2)

(4) If g(u, v) satisfies (H2), there exists a constant M3 > 0 such that

0 ≤ v(x, t) ≤ M3 for (x, t) ∈ (Ω × (0, Tmax)). (2.3)
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Proof. The application of Amman’s fixed point argument from Theorems 14.4 and 14.6 in [3] implies the
local existence and uniqueness of solutions to (1.1) and blow-up criterion (2.2) (see e.g., [32,33]). In view
of the hypotheses (H1)–(H4), it follows from the maximum principle that the solutions are nonnegative.
To show (2.1), we multiply the first equation of (1.1) by r and add it to the third equation of (1.1). Then
integrating it over Ω implies

d
dt

(

r

∫

Ω

u +
∫

Ω

v

)

+
∫

Ω

k(v)v = r

∫

Ω

f(u) ≤ r

∫

Ω

(N1u − N2u
2). (2.4)

For given r,N1, N2 > 0, one can easily find a constant C1 > 0 such that

rN1u − rN2u
2 ≤ −ru + C1 for all u ≥ 0. (2.5)

From (H4), we observe that there exists C2 > 0 such that

− C2 +
∫

Ω

v ≤
∫

Ω

k2v
2 + k3v ≤

∫

Ω

k(v)v. (2.6)

Using (2.5) and (2.6), (2.4) turns into

d
dt

(

r

∫

Ω

u +
∫

Ω

v

)

+
(

r

∫

Ω

u +
∫

Ω

v

)

≤ C3

for some positive constant C3. Thus, we show the uniform boundedness of ‖u(·, t)‖L1(Ω) and ‖v(·, t)‖L1(Ω)

for any t > 0. Integrating the second equation of (1.1) over Ω, the boundedness of ‖c(·, t)‖L1(Ω) directly
follows from the boundedness of ‖v(·, t)‖L1(Ω). If g(u, v) satisfies (H2), due to Theorem 3.1 in [2] and
comparison principle, we obtain (2.3). �

Next, we give the estimates introduced in [11] related to the fractional operator (−Δ + 1)θ, θ ∈ (0, 1)
in Ω with the Neumann boundary conditions. For any 1 < q < ∞, the operator −Δ + 1 is sectorial in
Lq(Ω) and the fractional operator (−Δ + 1)θ is defined on a domain D((−Δ + 1)θ) ⊂ Lq(Ω) such that

‖w‖D((−Δ+1)θ) := ‖(−Δ + 1)θw‖Lq(Ω) < ∞.

Lemma 2.2. If m ∈ {0, 1}, 1 ≤ p ≤ ∞, 1 < q < ∞ and m − n
p < 2θ − n

q , then there exists a constant
C > 0 that satisfies

‖w‖W m,p(Ω) ≤ C‖(−Δ + 1)θw‖Lq(Ω) (2.7)

for all w ∈ D((−Δ + 1)θ). Moreover, there exist C > 0 and ζ > 0 such that, for q ≥ p,

‖(−Δ + 1)θet(Δ−1)w‖Lq(Ω) ≤ Ct−θ− n
2 ( 1

p − 1
q )e−ζt‖w‖Lp(Ω) (2.8)

for all w ∈ Lp(Ω).

3. Global existence

In this section, we show the uniform boundedness of ‖u(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,∞(Ω) + ‖v(·, t)‖L∞(Ω),
which guarantees the global existence of solutions. To this end, we establish a boundedness criterion with
respect to ‖v(·, t)‖Lp(Ω) for p > n. As long as ‖v(·, t)‖Lp(Ω) is bounded, one can achieve the boundedness of
‖c(·, t)‖W 1,∞(Ω) and ‖u(·, t)‖L∞ . Sequentially, the boundedness of ‖u(·, t)‖L∞ implies the boundedness of
‖v(·, t)‖L∞(Ω). If g(u, v) satisfies (H2), by (2.3), ‖v(·, t)‖L∞ is uniformly bounded, so we shall investigate
the case for n ∈ {1, 2} and (H3).

First, we state the decay estimate for u induced by the logistic growth of u.
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Lemma 3.1. Let n = 1, 2, and let f(u), g(u, v) and k(v) satisfy (H1), (H3) and (H4), respectively.
Suppose that (u, c, v) is a classical solution of system (1.1) in Ω×(0, Tmax). Then, there exist two constants
M4,M5 > 0 independent of t such that

∫ t

0

∫

Ω

u2 ≤ M4(t + 1) for t ∈ (0, Tmax), (3.1)
∫ t+τ0

t

∫

Ω

u2 ≤ M5 for t ∈ (0, Tmax − τ0), (3.2)

where τ0 := min{1, 1
6Tmax}.

Proof. Integrating the first equation of (1.1) over Ω, we have

d
dt

∫

Ω

u ≤ N1

∫

Ω

u − N2

∫

Ω

u2. (3.3)

Using Young’s inequality, the Cauchy–Schwarz inequality and (2.1), we have from (3.3) that

d
dt

∫

Ω

u ≤ −N2

2

∫

Ω

u2 + C

≤ − N2

2|Ω|
(∫

Ω

u

)2

+ C for all t ∈ (0, Tmax).

Thus, a standard ODE comparison implies the boundedness of
∫

Ω
u(·, t) on (0, Tmax), which proves (3.1).

Moreover, integration of (3.3) in time shows (3.2). �

We now introduce a boundedness criterion as below.

Lemma 3.2. Let n = 1, 2, and let f(u), g(u, v) and k(v) satisfy (H1), (H3) and (H4), respectively.
Suppose that (u, c, v) is a classical solution of system (1.1) in Ω × (0, Tmax). If there exists C > 0 such
that for some p > n,

‖v(·, t)‖Lp(Ω) ≤ C, for any t ∈ (0, Tmax), (3.4)

then we have

‖u(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,∞(Ω) + ‖v(·, t)‖L∞(Ω) < ∞ for all t ∈ (0, Tmax). (3.5)

Proof. Suppose that for some p > n,

‖v(·, t)‖Lp(Ω) ≤ C for any t ∈ (0, Tmax). (3.6)

Using (3.6), we claim that

‖∇c(·, t)‖Lp(Ω) ≤ C for t ∈ (0, Tmax). (3.7)

For simplicity, we set dc = 1 and β = 1. We consider the Duhamel formulation of the second equation of
(1.1) as

c(x, t) = e(Δ−1)tc0(x) + α

∫ t

0

e(Δ−1)(t−s)v(x, s)ds for (x, t) ∈ Ω × (0, Tmax). (3.8)
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Let t0 ∈ (0, Tmax) be fixed. Applying (2.7) and (2.8) to (3.8), by (3.6), we find that for p > n and
θ ∈ (1

2 + n
2p , 1), there exists ζ > 0 such that

‖c(·, t)‖W 1,∞(Ω) ≤ C‖(−Δ + 1)θc‖Lp(Ω)

≤ Ct−θe−ζt‖c0‖Lp(Ω) + C

∫ t

0

(t − s)−θe−ζ(t−s)‖v(·, s)‖Lp(Ω)ds

≤ Ct−θ + C

∫ t

0

(t − s)−θe−ζ(t−s)ds

≤ Ct−θ
0 + C

∫ ∞

0

s−θe−ζsds

≤ C(t−θ
0 + 1) for all t ∈ (t0, Tmax).

Thereofore, we infer that

‖c(·, t)‖W 1,∞(Ω) ≤ C for all t ∈ (0, Tmax),

which shows (3.7). Using the standard Moser iterative technique [2] with (3.7), we conclude that
‖u(·, t)‖L∞(Ω) is bounded for all t ∈ (0, Tmax) (see also [13,22,32] for similar approaches). Due to the
comparison principle, the boundedness of u guarantees the boundedness of v. �

3.1. One-dimensional case

For one-dimensional setting, via (3.4), it suffices to show the boundedness of ‖v(·, t)‖L2(Ω).

Lemma 3.3. Let n = 1, and let f(u), g(u, v) and k(v) satisfy (H1), (H3) and (H4), respectively. Suppose
that (u, c, v) is a classical solution of system (1.1) in Ω× (0, Tmax). Then, there exists C > 0 independent
of t such that

‖v(·, t)‖L2(Ω) ≤ C for all t ∈ (0, Tmax). (3.9)

Proof. Multiplying the third equation of (1.1) by v, we deduce from Young’s inequality that there exists
C1 > 0 such that

1
2

d
dt

∫

Ω

v2 + dv

∫

Ω

v2
x =

∫

Ω

rg(u, v)v2 −
∫

Ω

k(v)v2

≤ rN3

∫

Ω

uv2 − k2

∫

Ω

v3 − k3

∫

Ω

v2

≤ rN3

∫

Ω

uv2 − 1
2

∫

Ω

v2 + C1.

Owing to the Gagliardo–Nirenberg inequality, we find that there exists C2 > 0 such that

‖v‖4
L4(Ω) ≤ C2

(
‖vx‖2

L2(Ω)‖v‖2
L1(Ω) + ‖v‖4

L1(Ω)

)
,

which, along with Hölder’s inequality, Young’s inequality and the hypothesis (H3), helps to infer that for
any ε > 0,

1
2

d
dt

∫

Ω

v2 + dv

∫

Ω

v2
x ≤ −1

2

∫

Ω

v2 + C1 + rN3‖u‖L2(Ω)‖v‖2
L4(Ω)

≤ −1
2

∫

Ω

v2 + C1 +
r2N2

3

4ε

∫

Ω

u2 + εC2

(
‖vx‖2

L2(Ω)‖v‖2
L1(Ω) + ‖v‖4

L1(Ω)

)
.
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Choosing ε = dv

2C2M2
2
, we see that there exists C3 > 0 such that

d
dt

∫

Ω

v2 + dv

∫

Ω

v2
x +

∫

Ω

v2 ≤ C3

(

1 +
∫

Ω

u2

)

. (3.10)

Let y(t) :=
∫

Ω
v2(·, t). Neglecting the second summand on the left-hand side of (3.10), we obtain

y′(t) + y(t) ≤ C3

(

1 +
∫

Ω

u2

)

.

Employing Lemma 3.2 in [24] with (3.2), we have for τ0 ≤ 1 that

y(t) ≤ max
{∫

Ω

u2
0 + C3(C1 + 1),

C3(C1 + 1)
τ0

+ 2C3(C1 + 1)
}

,

which completes the proof of (3.9). �

3.2. Two-dimensional case

In the two-dimensional case, the uniform boundedness of ‖v(·, t)‖Lp(Ω), p > 2 is not directly obtained.
Thus, we first proceed to show the global solvability of (1.1).

Lemma 3.4. Let n = 2, 0 < T < Tmax, and let g(u, v) satisfy (H3). Suppose that (u, c, v) is a classical
solution of system (1.1) in Ω × (0, Tmax). Then, for any p > 1, there exists C = C(p, T ) > 0 such that

‖v(·, t)‖Lp(Ω) ≤ C for all t ∈ (0, T ). (3.11)

Proof. Let 0 < T < Tmax. Multiplying the third equation of (1.1) by pvp−1 and integrating over Ω imply

d
dt

∫

Ω

vp +
4dv

p

∫

Ω

|∇v
p
2 |2 = rp

∫

Ω

g(u, v)vp − p

∫

Ω

k(v)vp

≤ rN3p

∫

Ω

uvp − pk2

∫

Ω

vp+1 − pk3

∫

Ω

vp

≤ C1‖u‖L2(Ω)‖v
p
2 ‖2

L4(Ω) − pk2

∫

Ω

vp+1 − pk3

∫

Ω

vp. (3.12)

We observe that by the Gagliardo–Nirenberg inequality, there exists C2 > 0 such that

‖v
p
2 ‖2

L4(Ω) ≤ C2

(

‖∇v
p
2 ‖L2(Ω)‖v

p
2 ‖L2(Ω) + ‖v

p
2 ‖2

L
2
p (Ω)

)

. (3.13)

Moreover, by Young’s inequality, we have from (H4) that for any C3 > 0, there exists C4 > 0 such that

− pk2

∫

Ω

vp+1 − pk3

∫

Ω

vp ≤ −C3

∫

Ω

vp + C4. (3.14)

Plugging (3.13) and (3.14) into (3.12), we have

d
dt

∫

Ω

vp +
4dv

p

∫

Ω

|∇v
p
2 |2

≤ C1C2‖u‖L2(Ω)

(

‖∇v
p
2 ‖L2(Ω)‖v

p
2 ‖L2(Ω) + ‖v

p
2 ‖2

L
2
p (Ω)

)

− C3

∫

Ω

vp + C4

≤ 2dv

p

∫

Ω

|∇v
p
2 |2 + C5

∫

Ω

u2

∫

Ω

vp + C6

(∫

Ω

u2

) 1
2

− C3

∫

Ω

vp + C4

≤ 2dv

p

∫

Ω

|∇v
p
2 |2 + C7

∫

Ω

u2

(

1 +
∫

Ω

vp

)

− C3

(

1 +
∫

Ω

vp

)

+ C8, (3.15)
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which turns into

d
dt

(

1 +
∫

Ω

vp

)

+
2dv

p

∫

Ω

|∇v
p
2 |2 ≤ C7

∫

Ω

u2

(

1 +
∫

Ω

vp

)

+ C8 for all t ∈ (0, T ).

Then, along with (3.1), Grönwall’s inequality leads to

1 +
∫

Ω

vp ≤
(

1 +
∫

Ω

vp
0

)

eC7
∫ t
0

∫

Ω u2(·,s)ds + C8

∫ t

0

eC7
∫ t
s

∫

Ω u2(·,σ)dσds

≤
(

1 +
∫

Ω

vp
0

)

eC7M4(T+1) + C8TeC7M4(T+1) for all t ∈ (0, T ).

This completes the proof of (3.11). �

Invoking Lemmas 2.1 and 3.2, we obtain the global solvability of (1.1), i.e., Tmax = ∞ and the solution
of (1.1) exists for any finite time interval.

Lemma 3.5. Let n = 2, T > 0, and let f(u), g(u, v) and k(v) satisfy (H1), (H3) and (H4), respectively.
Then, for any initial data (u0, c0, v0) ∈ [W 1,p(Ω)]3 with p > 2 satisfying u0(x), c0(x), v0(x) ≥ 0(	≡ 0) for
x ∈ Ω, system (1.1) possesses a unique global-in-time nonnegative classical solution (u, c, v) such that

(u, c, v) ∈ [C([0, T );W 1,p(Ω)) ∩ C2,1(Ω × (0, T ))
]3

,

and there exists a constant C > 0 depending on T such that

‖u(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,∞(Ω) + ‖v(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, T ).

Now, we are in position to show the uniform boundedness of ‖v(·, t)‖Lp with p > 2.

Lemma 3.6. Let n = 2, T > 0, and let f(u), g(u, v) and k(v) satisfy (H1), (H3) and (H4), respectively.
Suppose that (u, c, v) is a classical solution of system (1.1) in Ω× (0, T ). Then, for any p > 1, there exists
C > 0 independent of t such that

‖v(·, t)‖Lp(Ω) ≤ C for all t ∈ (0, T ). (3.16)

Proof. We recall from (3.15) that for any C1 > 0, there exist C2, C3 > 0 such that

d
dt

∫

Ω

vp ≤ C2

∫

Ω

u2

(

1 +
∫

Ω

vp

)

− C1

(

1 +
∫

Ω

vp

)

+ C3, (3.17)

where C2 is independent of C1 whereas C3 depends on C1. On the other hand, we infer from (3.3) that
for any t > 0, there exists C4 > 0 independent of t such that

∫ t

s

∫

Ω

u2 ≤ C4(t − s + 1) for any s ∈ [0, t). (3.18)

We choose C1 > C2(C4 + M4). Then, in view of (3.1), there exists t∗ ∈ (0,∞) such that

C2

∫ t

0

∫

Ω

u2 − C1t ≤ C2M4(t + 1) − C1t < 0 for any t > t∗. (3.19)

Letting y(t) := 1 +
∫

Ω
vp(·, t), it follows from (3.17) that

y′(t) ≤
(

C2

∫

Ω

u2(·, t) − C1

)

y(t) + C3 for any t > 0. (3.20)
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Then, using (3.18) and (3.19), we solve (3.20) such that for any t > t∗,

y(t) ≤ y(0) exp
{

C2

∫ t

0

∫

Ω

u2(·, s)ds − C1t

}

+ C3

∫ t

0

exp
{

C2

∫ t

s

∫

Ω

u2(·, σ)dσ − C1(t − s)
}

ds

≤ y(0) + C3

∫ t

0

exp {C2C4(t − s + 1) − C1(t − s)} ds

≤ y(0) + C5

∫ t

0

e−C6(t−s)ds

≤ y(0) + C7, (3.21)

where C5, C6 and C7 are positive constants independent of t. For such t∗ > 0, Lemma 3.5 implies that
there exists C(t∗) > 0 such that

∫

Ω

vp(·, t) ≤ C(t∗) for any t ∈ (0, t∗]. (3.22)

Combining (3.21) and (3.22), we complete the proof of (3.16). �

Proof of Theorem 1.1. Suppose that Tmax < ∞, where Tmax is the maximal time of existence given in
Lemma 2.1 By the application of Lemmas 3.3 and 3.6 with some p > 2 to Lemma 3.2, we obtain (3.5).
This is contrary to (2.2), which implies Tmax = ∞. �

4. Global stability

In this section, we study the global asymptotic behavior of solutions to (1.5). For reader’s convenience,
we write system (1.5) again.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= duΔu + ∇ · (χu∇c) + u(a1 − b1u − c1v), x ∈ Ω, t > 0,

∂c

∂t
= dcΔc + αv − βc, x ∈ Ω, t > 0,

∂v

∂t
= dvΔv + v(a2 + b2u − c2v), x ∈ Ω, t > 0,

u(x, 0) = u0(x), c(x, 0) = c0(x), v(x, 0) = v0(x), x ∈ Ω,

∂u

∂ν
=

∂c

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

(4.1)

where Ω ⊂ R
2 is a smooth bounded domain, a1 > 0, a2 ∈ R and bi, ci > 0, i = 1, 2.

Since the existence of the nontrivial constant steady states depends on the parameters as mentioned
above, we shall show the global stability case by case. To this end, we introduce the following tool used
in [4, Lemma 3.1].

Lemma 4.1. Suppose that h : (1,∞) is a uniformly continuous nonnegative function such that
∫ ∞

1

h(t)dt < ∞.

Then, h(t) → 0 as t → ∞.

If a2 > 0 and a1
c1

≤ a2
c2

, there is no positive constant steady state and the semi-trivial steady state
(u∗, c∗, v∗) = (0, αa2

βc2
, a2

c2
) is globally asymptotically stable.
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Lemma 4.2. Let (u, c, v) be a global classical solution to system (4.1). If a2 > 0 and a1
c1

≤ a2
c2
, then the

semi-trivial steady state (u∗, c∗, v∗) = (0, αa2
βc2

, a2
c2

) is globally asymptotically stable. Moreover, there exist
positive constants η1, CS1 , T1 such that for all t > T1,

‖u‖L∞(Ω) + ‖c − αa2

βc2
‖L∞(Ω) + ‖v − a2

c2
‖L∞(Ω) ≤ CS1e

−η1t if
a1

b1
< −a2

b2
, (4.2)

‖u‖L∞(Ω) + ‖c − αa2

βc2
‖L∞(Ω) + ‖v − a2

c2
‖L∞(Ω) ≤ CS1

(1 + t)η1
if

a1

b1
= −a2

b2
. (4.3)

Proof. We shall use the following Lyapunov functional:

W1(u(t), c(t), v(t)) :=
b2

c1

∫

Ω

u +
CW1

2

∫

Ω

(

c − αa2

βc2

)2

+
∫

Ω

(

v − a2

c2
− a2

c2
log

v

a2/c2

)

, (4.4)

where a positive constant CW1 satisfies

CW1 <
4βc2

α2
. (4.5)

Using the Taylor’s expansion of v− a2
c2

− a2
c2

log v
a2/c2

about a2/c2, we infer that there exists ξ lying between
v and a2/c2 such that

v − a2

c2
− a2

c2
log

v

a2/c2
=

a2/c2

2ξ2

(

v − a2

c2

)2

≥ 0,

which implies the nonnegativity of W1. We differentiate W1(t) in time to obtain

d
dt

W1(t) =
b2

c1

∫

Ω

u(a1 − b1u − c1v) + CW1

∫

Ω

(

c − αa2

βc2

)

ct +
∫

Ω

(

1 − a2/c2

v

)

vt.

Let

I1 :=
b2

c1

∫

Ω

u(a1 − b1u − c1v) +
∫

Ω

(

1 − a2/c2

v

)

vt,

I2 := CW1

∫

Ω

(

c − αa2

βc2

)

ct.

By integration by parts, we observe that
∫

Ω

(

1 − a2/c2

v

)

vt =
∫

Ω

(

1 − a2/c2

v

)

(dvΔv + v(a2 + b2u − c2v))

= −dva2

c2

∫

Ω

∣
∣
∣
∣
∇v

v

∣
∣
∣
∣

2

+
∫

Ω

(

1 − a2/c2

v

)

v(a2 + b2u − c2v)

= −dva2

c2

∫

Ω

∣
∣
∣
∣
∇v

v

∣
∣
∣
∣

2

− c2

∫

Ω

(

v − a2

c2

)2

+
∫

Ω

(

v − a2

c2

)

b2u,

which results in

I1 = −dva2

c2

∫

Ω

∣
∣
∣
∣
∇v

v

∣
∣
∣
∣

2

− c2

∫

Ω

(

v − a2

c2

)2

+
b2

c1

∫

Ω

(

−b1u
2 +

(

a1 − a2c1

c2

)

u

)

≤ −dva2

c2

∫

Ω

∣
∣
∣
∣
∇v

v

∣
∣
∣
∣

2

− c2

∫

Ω

(

v − a2

c2

)2

− b1b2

c1

∫

Ω

u2 + b2

∫

Ω

(
a1

c1
− a2

c2

)

u. (4.6)
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On the other hand, Young’s inequality implies

I2 = CW1

∫

Ω

(

c − αa2

βc2

)

(dcΔc + αv − βc)

= −dcCW1

∫

Ω

|∇c|2 − βCW1

∫

Ω

(

c − αa2

βc2

)2

+ αCW1

∫

Ω

(

c − αa2

βc2

)(

v − a2

c2

)

≤ −dcCW1

∫

Ω

|∇c|2 − (β − β1)CW1

∫

Ω

(

c − αa2

βc2

)2

+
α2CW1

4β1

∫

Ω

(

v − a2

c2

)2

(4.7)

for any β1 ∈ (0, β). By (4.5), we can choose β1 ∈ (α2CW1
4c2

, β), and thus, plugging (4.6) and (4.7) into (4.4),
there exist two constants C1, C2 > 0 such that

d
dt

W1(t) ≤ −dva2

c2

∫

Ω

∣
∣
∣
∣
∇v

v

∣
∣
∣
∣

2

− dcCW1

∫

Ω

|∇c|2 − b1b2

c1

∫

Ω

u2 + b2

∫

Ω

(
a1

c1
− a2

c2

)

u

− C1

∫

Ω

(

c − αa2

βc2

)2

− C2

∫

Ω

(

v − a2

c2

)2

. (4.8)

For the case of a1
c1

< a2
c2

, we employ the following functional:

W1(t) :=
∫

Ω

u +
∫

Ω

(

c − αa2

βc2

)2

+
∫

Ω

(

v − a2

c2

)2

. (4.9)

We see from (4.8) and (4.9) that there exists C3 > 0 satisfying

d
dt

W1(t) ≤ −C3W1(t) for all t > 0.

Since W1 is nonnegative, we have
∫ ∞

1

W(t)dt ≤ 1
C3

(W1(1) − W1(t)) ≤ W1(1)
C3

< ∞,

which, by Lemma 4.1, yields
∫

Ω

u +
∫

Ω

(

c − αa2

βc2

)2

+
∫

Ω

(

v − a2

c2

)2

→ 0 as t → ∞.

Further, in view of Lemma 4.1 in [12], using the convexity of a function v → v − a2
c2

− a2
c2

log v
a2/c2

and
the asymptotic convergence of v to a2

c2
, we find that there exists a constant T1 > 0 such that

C4

(

v − a2

c2

)2

≤
(

v − a2

c2
− a2

c2
log

v

a2/c2

)

≤ C5

(

v − a2

c2

)2

for all t > T1, (4.10)

where C4, C5 are positive constants. We see from the computations in (4.6)–(4.10) that for all t ≥ T1,

d
dt

W1(t) ≤ −C6W1(t) ≤ −C7W1(t),

which yields

W1(t) ≤ C8e
−C9t for all t ≥ T1.

Thus, by (4.10) and (4.9), we obtain

‖u‖L1(Ω) + ‖c − αa2

βc2
‖L2(Ω) + ‖v − a2

c2
‖L2(Ω) ≤ C10e

−C11t for all t > T1. (4.11)
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From Theorem 1.1, we see that χu∇c and u(a1 − b1u − c1v) are uniformly bounded in L∞(Ω × (0,∞)).
Using the standard parabolic regularity theory (see [18, Theorem 1.3]), one can find a constant θ0 ∈ (0, 1)
such that

‖u‖
Cθ0,

θ0
2 (Ω×[t,t+1])

≤ C12 for all t > 1.

With the aid of the standard parabolic Schauder’s theory, we have from the second and third equations
of (1.1) that

‖c‖
C2+θ0,1+

θ0
2 (Ω×[t,t+1])

+ ‖v‖
C2+θ0,1+

θ0
2 (Ω×[t,t+1])

≤ C13 for all t > 1.

By a similar method in [23, Theorem 3.14], we find a constant C14 > 0 such that

‖u‖W 1,∞(Ω) ≤ C14 for all t > 1. (4.12)

Then, the Gagliardo–Nirenberg inequality with (4.11) and (4.12) entails that

‖u‖L∞(Ω) ≤ C15

(
‖∇u‖ 2

3
L∞(Ω)‖u‖ 1

3
L1(Ω) + ‖u‖L1(Ω)

)
≤ C16e

−C17t for all t > T1. (4.13)

Moreover, by Theorem 1.1, we have

c − αa2

βc2
, v − a2

c2
∈ W 1,∞(Ω),

which, together with the Gagliardo–Nirenberg inequality, implies that for all t > T1,

‖c − αa2

βc2
‖L∞(Ω) ≤ C18

(

‖∇(c − αa2

βc2
)‖ 2

3
L∞(Ω)‖c − αa2

βc2
‖ 1

3
L2(Ω) + ‖c − αa2

βc2
‖L2(Ω)

)

≤ C19e
−C20t, (4.14)

‖v − a2

c2
‖L∞(Ω) ≤ C21

(

‖∇(v − a2

c2
)‖ 2

3
L∞(Ω)‖v − a2

c2
‖ 1

3
L2(Ω) + ‖c − αa2

βc2
‖L2(Ω)

)

≤ C22e
−C23t. (4.15)

Collecting (4.13)–(4.15), we complete the proof of (4.2). For the case of a1
c1

= a2
c2

, we use the following
functional:

W2(t) :=
∫

Ω

u2 +
∫

Ω

(

c − αa2

βc2

)2

+
∫

Ω

(

v − a2

c2

)2

. (4.16)

From (4.8), (4.10) and (4.16), we infer that

d

dt
W1(t) ≤ −C24W2(t) ≤ −C25W

2
1 (t) for all t > T1,

where we used

W1(t) ≤ C26

(∫

Ω

u +
∫

Ω

(

c − αa2

βc2

)2

+
∫

Ω

(

v − a2

c2

)2
)

≤ C27

(∫

Ω

u2

) 1
2

+ C28

(∫

Ω

(

c − αa2

βc2

)2
) 1

2

+ C29

(∫

Ω

(

v − a2

c2

)2
) 1

2

≤ C30W 1
2 (t).

This gives W1(t) ≤ C31(1 + t)−1 for all t > T1, and thus, via (4.16), we have

‖u‖L1(Ω) + ‖c − αa2

βc2
‖L2(Ω) + ‖v − a2

c2
‖L2(Ω) ≤ C32

(1 + t)C33
. (4.17)

Following a similar manner to the derivation of (4.2), by the Gagliado–Nirengerg inequality and (4.17),
we can improve the decay estimates up to L∞-norm. This completes the proof of (4.3). �



ZAMP Global solvability of prey–predator. . . Page 15 of 20 29

If a2 < 0 and a1
b1

≤ −a2
b2

, the semi-trivial steady state (u∗, c∗, v∗) = (a1
b1

, 0, 0) is the only nontrivial
one, and due to the chemotactic term, its global asymptotical stability is obtained for sufficiently small
χ > 0. When u∗ 	= 0, due to the advection term, we need to construct an energy functional related to a
positive semidefinite matrix (see e.g., [4,12]).

Lemma 4.3. Let (u, c, v) be a global classical solution to system (4.1). Suppose that χ > 0 satisfies

χ <
4
α

√
dudcβb1c1c2

a1b2
. (4.18)

If a2 < 0 and a1
b1

≤ −a2
b2
, then the semi-trivial steady state (u∗, c∗, v∗) = (a1

b1
, 0, 0) is globally asymptotically

stable. Moreover, there exist positive constants η2, CS2 , T2 such that for all t > T2,

‖u − a1

b1
‖L∞(Ω) + ‖c‖L∞(Ω) + ‖v‖L∞(Ω) ≤ CS2e

−η2t if
a1

b1
< −a2

b2
, (4.19)

‖u − a1

b1
‖L∞(Ω) + ‖c‖L∞(Ω) + ‖v‖L∞(Ω) ≤ CS2

(1 + t)η2
if

a1

b1
= −a2

b2
. (4.20)

Proof. From (4.18), we choose a positive constant CW2 satisfying

χ2a1b2

4dudcb1c1
< CW2 <

4βc2

α2
. (4.21)

By making use of such CW2 , we set the following Lyapunov functional:

W2(u(t), c(t), v(t)) :=
b2

c1

∫

Ω

(

u − a1

b1
− a1

b1
log

u

a1/b1

)

+
CW2

2

∫

Ω

c2 +
∫

Ω

v.

Differentiating W2(t) in time, integration by parts implies

d
dt

W2(t) =
b2

c1

∫

Ω

(

1 − a1/b1

u

)

ut + CW2

∫

Ω

cct +
∫

Ω

v(a2 + b2u − c2v)

=
b2

c1

∫

Ω

(

1 − a1/b1

u

)

(duΔu + ∇ · (χu∇c) + u(a1 − b1u − c1v))

− dcCW2

∫

Ω

|∇c|2 + αCW2

∫

Ω

cv − βCW2

∫

Ω

c2 +
∫

Ω

v(a2 + b2u − c2v)

= −dua1b2

b1c1

∫

Ω

∣
∣
∣
∣
∇u

u

∣
∣
∣
∣

2

− χa1b2

b1c1

∫

Ω

∇u · ∇c

u
− dcCW2

∫

Ω

|∇c|2

− b1b2

c1

∫

Ω

(

u − a1

b1

)2

+
∫

Ω

(

−c2v
2 +

(

a2 +
a1b2

b1

)

v

)

+ αCW2

∫

Ω

cv − βCW2

∫

Ω

c2. (4.22)

The derivative terms of (4.22) are expressed as

−dua1b2

b1c1

∫

Ω

∣
∣
∣
∣
∇u

u

∣
∣
∣
∣

2

− χa1b2

b1c1

∫

Ω

∇u · ∇c

u
− dcCW2

∫

Ω

|∇c|2 = −
∫

Ω

[∇u
∇c

]T

M

[∇u
∇c

]

,

where

M =

[
dua1b2
b1c1u2 − χa1b2

2b1c1u

− χa1b2
2b1c1u dcCW2

]

.

By (4.18) and (4.21), the matrix M is positive semidefinite, thus we have

−
∫

Ω

[∇u
∇c

]T

M

[∇u
∇c

]

≤ 0. (4.23)
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On the other hand, owing to (4.21), we take a constant β2 ∈ (α2CW2
4c2

, β). Then, Young’s inequality gives

∫

Ω

(

−c2v
2 +

(

a2 +
a1b2

b1

)

v

)

+ αCW2

∫

Ω

cv − βCW2

∫

Ω

c2

≤
∫

Ω

(

−c2v
2 +

(

a2 +
a1b2

b1

)

v

)

+
α2CW2

4β2

∫

Ω

v2 − (β − β2)CW2

∫

Ω

c2

≤ −C1

∫

Ω

v2 − C2

∫

Ω

c2 +
∫

Ω

(

a2 +
a1b2

b1

)

v
(4.24)

for some positive constants C1, C2 > 0. By (4.23) and (4.24), it follows from (4.22) that

d
dt

W2(t) ≤ −C3

(∫

Ω

(

u − a1

b1

)2

+
∫

Ω

c2 +
∫

Ω

v

)

if
a1

b1
< −a2

b2
,

d
dt

W2(t) ≤ −C4

(∫

Ω

(

u − a1

b1

)2

+
∫

Ω

c2 +
∫

Ω

v2

)

if
a1

b1
= −a2

b2
,

where C3, C4 > 0 are positive constants. Following a similar argument as in the proof of Lemma 4.2, we
prove (4.19) and (4.20). �

The global asymptotic stability of the positive constant steady state (uc, cc, vc) is also obtained for
sufficiently small χ > 0.

Lemma 4.4. Let (u, c, v) be a global classical solution to system (4.1). If −a1b2
b1c2

< a2
c2

< a1
c1
, then there

exists a positive constant steady state (u∗, c∗, v∗) = (uc, cc, vc), uc, cc, vc > 0 given as in (1.6). Moreover,
if χ > 0 satisfies

χ <
4
α

√
dudcβc1c2

b2
, (4.25)

then (uc, cc, vc) is globally asymptotically stable and there exist positive constants η3, CS3 , T3 such that

‖u − uc‖L∞(Ω) + ‖c − cc‖L∞(Ω) + ‖v − vc‖L∞(Ω) ≤ CS3e
−η3t for all t > T3, (4.26)

Proof. The positivity of uc, cc, vc is a direct consequence of (1.6) under the assumption −a1b2
b1c2

< a2
c2

< a1
c1

.
To show the convergence, we construct a Lyapunov functional as

W3(u(t), c(t), v(t)) :=
b2

c1

∫

Ω

(

u − uc − uc log
u

uc

)

+
CW3

2

∫

Ω

(c − cc)
2 +

∫

Ω

(

v − vc − vc log
v

vc

)

,

(4.27)

where uc, cc, vc > 0 satisfy (1.6) and CW3 is chosen such that

χ2b2

4dudcc1
< CW3 <

4βc2

α2
. (4.28)
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By differentiation of (4.27), we obtain
d
dt

W3(t) =
b2

c1

∫

Ω

(
1 − uc

u

)
ut + CW3

∫

Ω

(c − cc)ct +
∫

Ω

(
1 − vc

v

)
vt

= −duucb2

c1

∫

Ω

∣
∣
∣
∣
∇u

u

∣
∣
∣
∣

2

− χucb2

c1

∫

Ω

∇u · ∇c

u
+

b2

c1

∫

Ω

(
1 − uc

u

)
u(a1 − b1u − c1v)

− dcCW3

∫

Ω

|∇c|2 + αCW3

∫

Ω

(c − cc)v − βCW3

∫

Ω

(c − cc)c

− dvvc

∫

Ω

∣
∣
∣
∣
∇v

v

∣
∣
∣
∣

2

+
∫

Ω

(
1 − vc

v

)
v(a2 + b2u − c2v). (4.29)

Similarly to the proof in Lemma 4.3, by (4.25) and (4.28), we have

−duucb2

c1

∫

Ω

∣
∣
∣
∣
∇u

u

∣
∣
∣
∣

2

− χucb2

c1

∫

Ω

∇u · ∇c

u
− dcCW3

∫

Ω

|∇c|2 ≤ 0. (4.30)

As to the reaction terms of u, we obtain
b2

c1

∫

Ω

(
1 − uc

u

)
u(a1 − b1u − c1v)

=
b2

c1

∫

Ω

(
1 − uc

u

)
u(a1 − b1u − c1v)

=
b2

c1

∫

Ω

(u − uc)(a1 − b1uc − c1vc − b1u − c1v + b1uc + c1vc)

= −b1b2

c1

∫

Ω

(u − uc)2 + b2

∫

Ω

(u − uc)(vc − v), (4.31)

where we used a1 − b1uc − c1vc = 0. Similarly, we have for v that
∫

Ω

(
1 − vc

v

)
v(a2 + b2u − c2v)

=
∫

Ω

(v − vc)(a2 + b2uc − c2vc + b2u − c2v − b2uc + c2vc)

= −c2

∫

Ω

(v − vc)2 − b2

∫

Ω

(u − uc)(vc − v). (4.32)

Lastly for c, we see that

αCW3

∫

Ω

(c − cc)v − βCW3

∫

Ω

(c − cc)c

= αCW3

∫

Ω

(c − cc)v − βCW3

∫

Ω

(c − cc)2 − βCW3

∫

Ω

(c − cc)cc

= αCW3

∫

Ω

(c − cc)(v − vc) − βCW3

∫

Ω

(c − cc)2. (4.33)

Using Young’s inequality, we infer from (4.28) and the choice of β3 ∈ (α2CW3
4c2

, β) that

− c2

∫

Ω

(v − vc)2 + αCW3

∫

Ω

(c − cc)(v − vc) − βCW3

∫

Ω

(c − cc)2

≤ −c2

∫

Ω

(v − vc)2 +
α2CW3

4β3

∫

Ω

(v − vc)2 − (β − β3)CW3

∫

Ω

(c − cc)2

≤ −C1

∫

Ω

(v − vc)2 − C2

∫

Ω

(c − cc)2 (4.34)
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for some positive constants C1, C2 > 0. Substituting (4.30)–(4.34) into (4.29), we end up with

d

dt
W3(t) ≤ −C3

(∫

Ω

(u − uc)2 +
∫

Ω

(c − cc)2 +
∫

Ω

(v − vc)2
)

,

where C3 is a positive constant. Thus, the decay rate (4.26) follows from a similar argument in the proof
of Lemma 4.2. �

Proof of Theorem 1.3. Collecting the results of Lemmas 4.2–4.4, we complete the proof. �
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5. Appendix

Using standard linearization, we prove Proposition 1.2 related to the instability of a positive constant
steady state for sufficiently large χ > 0. From the threshold χc defined by (5.5), the positive constant
steady state can become unstable for various eigenmodes depending on all possible parameters.

Proof of Proposition 1.2. To linearize system (1.1) at (uc, cc, vc), we let uL := u − uc, cL := c − cc,
vL := v − vc and rewrite (1.1) as

∂

∂t

⎛

⎝
uL

cL

vL

⎞

⎠ =

⎛

⎝
duΔ + A1 χucΔ A2

0 dcΔ − β α
A3 0 dvΔ + A4

⎞

⎠

⎛

⎝
uL

cL

vL

⎞

⎠ , (5.1)

where
A1 = f ′(uc) − vcgu(uc, vc), A2 = −g(uc, vc) − vcgv(uc, vc),

A3 = rvcgu(uc, vc), A4 = rg(uc, vc) + rvcgv(uc, vc) − k.
(5.2)

Let {μj}∞
j=1 and {φj}∞

j=1 be positive eigenvalues and corresponding eigenfunctions of the Laplace operator
−Δ on Ω with homogeneous Neumann boundary conditions. Then, we express uL, cL, vL of (5.1) as

uL =
∞∑

j=1

ujφj(x)eλjt, cL =
∞∑

j=1

cjφj(x)eλjt, vL =
∞∑

j=1

vjφj(x)eλjt

for some constants uj , cj and vj ’s. For each j = 1, 2, 3, . . ., there exists a 3 × 3 matrix Mj given by

Mj =

⎛

⎝
−duμj + A1 −χucμj A2

0 −dcμj − β α
A3 0 −dvμj + A4

⎞

⎠ ,

where λj(uL, cL, vL)T = Mj(uL, cL, vL)T holds. Let λ1
j , λ2

j , λ3
j be eigenvalues of Mj . Then, by the Routh–

Hurwitz criterion, (uc, cc, vc) is linearly stable if and only if for all j ∈ N,

P 1
j > 0, P 1

j P 2
j − P 3

j > 0, P 3
j > 0, (5.3)
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where

P 1
j = −tr(Mj) = (du + dc + dv)μj − A1 + β − A4,

P 2
j = det

(−duμj + A1 −χucμj

0 −dcμj − β

)

+ det

(−dcμj − β α
0 −dvμj + A4

)

+ det

(−duμj + A1 A2

A3 −dvμj + A4

)

,

= (duμj − A1)(dcμj + β) + (dcμj + β)(dvμj − A4) + (duμj − A1)(dvμj − A4) − A2A3,

P 3
j = −det(Mj)

= (duμj − A1)(dcμj + β)(dvμj − A4) − A2A3(dcμj + β) + A3αucμjχ

=: P 3,1
j + P 3,2

j χ.

Since we assume that (uc, cc, vc) is linearly stable for χ = 0, via (5.3), we have

P 1
j > 0, P 1

j P 2
j − P 3,1

j > 0, P 3,1
j > 0 for all j ∈ N. (5.4)

From (5.2), the hypotheses (H2) and (H3) imply A3 > 0, and thus, P 3,2
j > 0 for all j ∈ N. Therefore,

combining (5.3) and (5.4), we can find χc > 0 such that

χc := min
j∈N

{
P 1

j P 2
j − P 3,1

j

P 3,2
j

}

. (5.5)

This completes the proof. �
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