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zero exponent theory and fixed point technique, we show the existence of positive solutions to nonlocal boundary value
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1. Introduction

The Antarctic Circumpolar Current (ACC) plays an important role in the global climate and is the main
means of water exchange among the Atlantic, Indian and Pacific oceans. A better understanding of ACC
transport at the Last Glacial Maximum would allow a better assessment of ACC dynamics and past
global climate change. ACC is not a single flow; it is composed of narrow jets about 40-50 km wide with
typical velocity exceeding 1 m/s. ACC has remarkably consistent flow characteristics. ACC is a complex
and rich structure formed by the combined action of very strong westerly winds and Coriolis forces. It
carries about 140 million cubic meters of water per second, more than 100 times the amount of all the
world’s rivers, and travels about 24,000 km. ACC is strongly constrained by the terrain at the bottom,
so it can be observed as time changes [1–10].

The problem of the existence of solutions to nonlinear governing equations of geophysical fluid dy-
namics, initiated by Constantin and Johnson [11–20], is widely discussed and researched in this field. The
mathematical ideas is that, from the inviscid fluid Euler equation and the equation of mass conservation,
they introduced spherical pole projection without considering the azimuth change of horizontal velocity
to transform spherical coordinate model into an equivalent plane elliptic boundary value problem. In
addition, mathematical models of gyres flows with boundary conditions in the southern and northern
hemispheres have been studied in [18,21–31]. Recently, the existence of exact solutions to ACC for the
case of varied density has also been discussed in [32,33]. We try to solve this problem of ACC model with
nonlocal boundary conditions which has not been discussed from the existing literature.
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2. Preliminaries

We adapt methods from [18] to bear relevance to our setting. By introducing the stream function ψ(θ, ϕ)
in terms of the stereographic projection from the North Pole, the azimuthal and polar velocity components
of ACC flows is given by

1
sin θ

ψφ and − ψθ,

where θ ∈ [0, π) is polar angle with θ = 0 corresponding to the North Pole and ϕ ∈ [0, 2π) represents
the angle of longitude in Fig. 1. In terms of the stream function Ψ is associated with the vorticity of the
motion of the ocean, [18] defined

ψ(θ, ϕ) = −ω cos θ + Ψ(θ, ϕ), (1)

where Ψ is not driven by the Earth’s rotation. The governing equation of ACC flows can be expressed as

1
sin2 θ

Ψϕϕ + Ψθ cot θ + Ψθθ = F (Ψ − ω cos θ), (2)

where F (Ψ − ω cos θ) represents the form of the ocean flow of the ocean vortex and defines the property
of the ocean vorticity function. ω in F (Ψ − ω cos θ) is the dimensionless Coriolis parameter and 2ω cos θ
represents the planetary vorticity. The basic source of ocean vorticity is the gravitational attraction
generated by the wind and the relative motion of the Moon, Sun and Earth in the form of tidal currents.
Ebb and flow refers to the horizontal unidirectional movement of water, while tide refers to the vertical
movement of water. The vorticity of water flows, the interaction of geophysical wave flows and the oceanic
vorticity of these wind-driven flows can be regarded as a fixed nonzero constant in [17,34].

The stereographic projection is used from the North Pole to the equatorial plane on a unit sphere
centered at the origin in Fig. 2. The model (2) in spherical coordinates can be transformed into an

Fig. 1. Azimuthal and polar angular spherical coordinates ϕ and θ of a point P on the spherical surface of the Earth, with

θ = 0 and θ = π correspond to the North and South Poles
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Fig. 2. Stereographic projection of the unit sphere (center at origin) from the North Pole to the equatorial plane, the point
P in the Antarctic region, the straight line connecting it to the North Pole intersects the equatorial plane in a point P ′
belonging to the interior of the circular region delimited by the Equator. The ACC is mapped into a annular region within
the equatorial plane

equivalent semilinear elliptic partial differential equation [18]. Set

ξ = reiφ with r = cot
(

θ

2

)
=

sin θ

1 − cos θ
, (3)

where (r, φ) represents the polar coordinates on the equatorial plane and r is a function of θ. After several
cancellations by using (3), equation (2) is simplified as

Ψξξ =
F (Ψ − ω((ξξ − 1)/(ξξ + 1)))

(1 + ξξ)2
. (4)

By seeking partial derivatives in (1), we have

Ψξ = ψξ +
2ωξ

(1 + ξξ)2
,Ψξξ = ψξξ +

2μ

(1 + ξξ)2
− 4ωξξ

(1 + ξξ)3
. (5)

Linking (5) and (4), we get

ψξξ + 2ω
1 − ξξ

(1 + ξξ)3
− F (ψ)

(1 + ξξ))2
= 0. (6)

According to Cartesian coordinates (x, y), equation (6) is equivalent to a semilinear elliptic partial dif-
ferential equation

Δψ + 8ω
1 − (x2 + y2)
(1 + x2 + y2)3

− 4F (ψ)
(1 + x2 + y2)2

= 0, (7)

where Δ = ∂2
x + ∂2

y is the Laplace operator, expressed by the Cartesian coordinates on the equatorial
plane, and the unknown function ψ(x, y) represents the stream function. The circulation on the surface
of the ocean is bounded by the horizontal set of flow functions, while in spherical projection coordinates,
the solution of the circulation model (7) in the plane region is determined by these horizontal sets. The
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ACC flows are completely around the Earth [19,35,36] in the spherical region between the 56th and
60th latitude south, where there are only oceans and no land [21,22]. This region is mapped to the
circular region of the equatorial plane by the stereographic projection, while the plane projection maps
the latitude circles of the southern hemisphere to concentric circles within the unit circle of the equatorial
plane.

From

r =
√

x2 + y2,
∂r

∂x
=

x√
x2 + y2

=
x

r
,

∂r

∂y
=

y√
x2 + y2

=
y

r
,

we obtain

ψx =
x

r
ψ′(r) and ψy =

y

r
ψ′(r),

ψxx =
x2

r2
ψ′′(r) +

(
1
r

− x2

r3

)
ψ′(r) and ψyy =

y2

r2
ψ′′(r) +

(
1
r

− y2

r3

)
ψ′(r);

therefore,

Δψ = ψ′′(r) +
1
r
ψ′(r).

Thus, by substituting r and Δψ into equation (7), we get

ψ′′(r) +
1
r
ψ′(r) + 8ω

1 − r2

(1 + r2)3
− 4F (ψ(r))

(1 + r2)2
= 0. (8)

Noting ACC corresponding to the radial symmetric solution of problem (8) with no variations in the
azimuthal direction, we introduce

ψ(r) = u(t), t1 < t < t2,

where

r = e− t
2 for 0 < t1 = −2 ln(r+) < t < t2 = −2 ln(r−),

with 0 < r− < r+ < 1.
In terms of

u′(t) = −1
2
e− t

2 ψ′(e− t
2 ) = −1

2
rψ′(r)

and

u′′(t) =
1
4
e− t

2 ψ′(e− t
2 ) +

1
4
e−tψ′′(e− t

2 ) =
1
4
rψ′(r) +

1
4
r2ψ′′(r).

(8) is equivalently turned into the second-order ordinary differential equation

u′′(t) =
et

(1 + et)2
F (t, u(t)) + 2ω

et(1 − et)
(1 + et)3

, t1 < t < t2, (9)

with nonlocal boundary conditions

u(t1) =
m−2∑
i=1

αiu(ξi), u(t2) =
m−2∑
i=1

βiu(ξi), (10)

which means the fact that r = r± for ACC as gyre flow are streamlines with ψ = u(t1) on r = r− and
ψ = u(t2) on r = r+.

In this paper, we assume that at the circulation boundary ACC flows behave as a streamline, which
happens to be a linear combination of known streamlines u(ξi), i = 1, 2, · · ·,m − 2. This assumption
is mathematically reasonable and feasible. Although many researchers have studied the boundary value
problem of ACC flows and obtained some very good results, the existence of solutions to nonlocal bound-
ary value problems regarding ACC flows has not been discussed. The ACC model is transformed into
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an equivalent operator equation by using the knowledge of nonlinear functional analysis. Using the tech-
niques of topological degree theory, zero exponent theory and fixed point, under appropriate conditions,
we discuss the existence of solutions to differential equations (9) with boundary conditions (10).

3. An equivalent operator equation for ACC model

In Sect. 2, we establish a new mathematical model of ACC with nonlocal boundary conditions, that is,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′′(t) = a(t)F (t, u(t)) + b(t), t1 < t < t2,

u(t1) =
m−2∑
i=1

αiu(ξi),

u(t2) =
m−2∑
i=1

βiu(ξi),

(11)

where a(·), b(·) : [t1, t2] → R are continuous, F (·, ·) : [t1, t2] × R → R is continuous,

a(t) =
et

(1 + et)2
, b(t) =

2ωet(1 − et)
(1 + et)3

,

and ξi (i = 1, 2, · · ·,m−2) satisfies t1 < ξ1 < ξ2 < · · · < ξm−2 < t2, αi and βi satisfy
m−2∑
i=1

αi =
m−2∑
i=1

βi = 1.

Definition 3.1. [37] Let X and Z be normed spaces. L : domL(⊂ X) → Z is a linear operator, if
(i) ImL is the closed subspace of Z,
(ii) dimKerL = codimImL < +∞,

then L is called Fredholm operator whose index is zero.

If L is Fredholm operator of index zero, then there are continuous operator P : X → X and Q : Z → Z,
such that

ImP = KerL, ImL = KerQ, X = KerL ⊕ KerP, Z = ImL ⊕ ImQ

where the operator L|domL∩KerP : domL∩KerP → ImL is invertible. We use KP to represent the inverse
of L|domL∩KerP and KP,Q = KP (I − Q) to express KP,Q : Z → domL ∩ KerP , where I is a identity
operator. For all J : ImQ → KerL, there is an isomorphic mapping JQ + KP,Q : Z → domL such that
(JQ + KP,Q)−1u = (L + J−1P )u for u ∈ domL.

Definition 3.2. [37] Let X and Z be normed spaces, Ω ⊂ X be open and bounded, L : domL(⊂ X) → Z
is a Fredholm mapping. The operator N : Ω → Z is called L-compact on Ω if QN : Ω → Z and
KP,QN : Ω → X be compact on Ω.

Let X = C2[t1, t2], Z = C[t1, t2], and define

domL =

{
u ∈ X

∣∣∣∣u(t1) =
m−2∑
i=1

αiu(ξi), u(t2) =
m−2∑
i=1

βiu(ξi)

}
,

then domL is a Banach space with the norm

‖u‖X = max{‖u‖1, ‖u′‖1, ‖u′′‖1},

where ‖u‖1 = max
t∈[t1,t2]

|u(t)|. We also introduce the norm ‖u‖2 =
∫ t2

t1
|u(t)|dt on Z. We put ‖u‖ =

max{‖u‖1, ‖u′‖1}.
Let L : domL → Z be given as

Lu(t) = u′′(t),
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and N : X → Z as

Nu(t) = a(t)F (t, u(t)) + b(t).

Then the nonlocal boundary value problem (11) is transformed into

Lu = Nu. (12)

Lemma 3.3. L : domL(⊂ X) → Z is a Fredholm operator of index zero.

Proof. Let u ∈ X. Since
t∫

t1

τ∫
t1

u′′(s)dsdτ = u(t) − tu′(t1) − u(t1) + t1u
′(t1),

we have

u(t) =

t∫
t1

τ∫
t1

u′′(s)dsdτ + tu′(t1) + u(t1) − t1u
′(t1). (13)

There exists a u ∈ domL ⊂ X satisfying (10) such that u′′(t) = g(t) for every g ∈ ImL. By (13), we have

u(t1) =
m−2∑
i=1

αiu(ξi) =
m−2∑
i=1

αi

⎛
⎝

ξi∫
t1

τ∫
t1

g(s)dsdτ + u(t1)

⎞
⎠+

m−2∑
i=1

αi(ξi − t1)u′(t1).

Noticing that
m−2∑
i=1

αi = 1, we obtain

u′(t1) = − 1
m−2∑
i=1

αi(ξi − t1)

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

g(s)dsdτ. (14)

Since u(t2) =
m−2∑
i=1

βiu(ξi), we have

u(t2) =

t2∫
t1

τ∫
t1

g(s)dsdτ + (t2 − t1)u′(t1) + u(t1)

=
m−2∑
i=1

βi

ξi∫
t1

τ∫
t1

g(s)dsdτ +
m−2∑
i=1

βi(ξi − t1)u′(t1) +
m−2∑
i=1

βiu(t1). (15)

Combining (14) and (15), we have

m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

g(s)dsdτ =
t2 −

m−2∑
i=1

βiξi

m−2∑
i=1

αi(ξi − t1)
·

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

g(s)dsdτ ; (16)

therefore,

ImL ⊆

⎧⎪⎨
⎪⎩g ∈ Z

∣∣∣∣
m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

g(s)dsdτ − γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

g(s)dsdτ = 0

⎫⎪⎬
⎪⎭ , (17)
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where

γ =
t2 −

m−2∑
i=1

βiξi

m−2∑
i=1

αi(ξi − t1)
.

On the other hand, let g ∈ Z and

u(t) =

t∫
t1

τ∫
t1

g(s)dsdτ − t
m−2∑
i=1

αi(ξi − t1)

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

g(s)dsdτ + C,

where C is an arbitrary constant, t ∈ [t1, t2]. Noting that u(t1) =
m−2∑
i=1

αiu(ξi),

u′(t) =

t∫
t1

g(s)ds − 1
m−2∑
i=1

αi(ξi − t1)

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

g(s)dsdτ,

u′′(t) = g(t).

Next, (10) is equivalent to

t2∫
t1

τ∫
t1

g(s)dsdτ − t2
m−2∑
i=1

αi(ξi − t1)

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

g(s)dsdτ + C

=
m−2∑
i=1

βi

ξi∫
t1

τ∫
t1

g(s)dsdτ −

m−2∑
i=1

βiξi

m−2∑
i=1

αi(ξi − t1)

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

g(s)dsdτ +
m−2∑
i=1

βiC,

which by using
m−2∑
i=1

βi = 1, gives (16). So (10) is obtained if (16) is true, that is, for ∀u ∈ domL,

⎧⎪⎨
⎪⎩g ∈ Z

∣∣∣∣
m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

g(s)dsdτ − γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

g(s)dsdτ = 0

⎫⎪⎬
⎪⎭ ⊆ ImL. (18)

From (17) and (18), we have⎧⎪⎨
⎪⎩g ∈ Z

∣∣∣∣
m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

g(s)dsdτ − γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

g(s)dsdτ = 0

⎫⎪⎬
⎪⎭ = ImL.

Now we define a linear continuous operator Q : Z → Z by

Qg =
1
C1

⎡
⎢⎣

m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

g(s)dsdτ − γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

g(s)dsdτ

⎤
⎥⎦
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where

C1 =
1
2
t22 − t1t2 − 1

2
γt21 −

m−2∑
i=1

ξi(βi + γαi)(
1
2
ξi − t1).

Here, Q is a projection operator. In fact,

Q2g =
1
C1

⎡
⎢⎣

m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

Qgdsdτ − γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

Qgdsdτ

⎤
⎥⎦

=
1
C1

⎡
⎢⎣

m−2∑
i=1

βi

t2∫
ξi

Qg(τ − t1)dτ − γ

m−2∑
i=1

αi

ξi∫
t1

Qg(τ − t1)dτ

⎤
⎥⎦

=
1
C1

[
m−2∑
i=1

βi · Qg · (1
2
t22 − 1

2
ξ2
i − t1t2 + t1ξi

)− γ

m−2∑
i=1

αi · Qg · (1
2
ξ2
i − t1ξi +

1
2
t21
)]

= Qg · 1
C1

(
1
2
t22 − 1

2

m−2∑
i=1

βiξ
2
i − t1t2 + t1

m−2∑
i=1

βiξi − 1
2
γ

m−2∑
i=1

αiξ
2
i + γt1

m−2∑
i=1

αiξi − 1
2
γt21

)

= Qg,

which implies Q is a projection operator, and ImL = KerQ. For g ∈ Z, since g − Qg ∈ KerQ = ImL
and Qg ∈ ImQ, we have Z = ImL + ImQ. If g ∈ ImL ∩ ImQ, then g = 0; therefore, Z = ImL ⊕ ImQ.
Because of the definition of domL, it is easy to verify

KerL = {u ∈ X|u(t) = c, c ∈ R};

hence,

dimKerL = codimImL = 1.

The proof is finished. �

We define

Qg =

t2∫
t1

q(s)g(s)ds,

where

q(s) =
1
C1

[
m−2∑
i=1

βiκ1i(s) − γ

m−2∑
i=1

αiκ2i(s)

]
,

κ1i(s) =

{
t2 − ξi, for s ∈ [t1, ξi],
t2 − s, for s ∈ [ξi, t2],

κ2i(s) =

{
s − t1, for s ∈ [t1, ξi],
0, for s ∈ (ξi, t2].

(19)

Considering continuous linear operator P : X → X defined by

P (u(t)) = u(t1), t ∈ [t1, t2] (20)
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or

P (u(t)) =
1

t2 − t1

t2∫
t1

u(s)ds, t ∈ [t1, t2], (21)

we can define KP : ImL → domL ∩ KerP by

KP g(t) =

t∫
t1

τ∫
t1

g(s)dsdτ − t − t1
m−2∑
i=1

αi(ξi − t1)

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

g(s)dsdτ ;

then,

(KP g(t))′ =

t∫
t1

g(s)ds − 1
m−2∑
i=1

αi(ξi − t1)

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

g(s)dsdτ ;

we obtain

max
t∈[t1,t2]

|KP g(t)| ≤ (t2 − t1)C2

t2∫
t1

|g(s)|ds,

max
t∈[t1,t2]

|(KP g(t))′| ≤ C2

t2∫
t1

|g(s)|ds,

where

C2 = 1 +
t2 − t1

m−2∑
i=1

αi(ξi − t1)
.

Obviously, for every g ∈ ImL, we have

(LKP )g(t) = g(t);

for every u ∈ domL ∩ KerP , we have

(KP L)u(t) =

t∫
t1

τ∫
t1

u′′(s)dsdτ − t − t1
m−2∑
i=1

αi(ξi − t1)

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

u′′(s)dsdτ

= u(t) − u(t1) − u′(t1)t + t1u
′(t1) −

u(t1) −
m−2∑
i=1

αiξiu
′(t1) − u(t1) + t1u

′(t1)

m−2∑
i=1

αi(ξi − t1)
(t − t1)

= u(t) − u(t1) = u(t),

where P is defined as (20). Since u ∈ KerP , u(t1) = 0; hence,

KP = (L|domL∩KerP )−1.

Note that

KP g(t) =

t2∫
t1

G(t, s)g(s)ds
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for

G(t, s) = G1(t, s) − t − t1
m−2∑
i=1

αi(ξi − t1)

m−2∑
i=1

αiκ2i(s),

G1(t, s) =

{
s − t1, for s ∈ [t1, t]
0, for s ∈ (t, t2].

Then

KP,Qg(t) =

t2∫
t1

G(t, s)

⎛
⎝g(s) −

t2∫
t1

q(τ)g(τ)dτ

⎞
⎠ ds

=

t2∫
t1

⎛
⎝G(t, s) − q(s)

t2∫
t1

G(t, τ)dτ

⎞
⎠ g(s)ds =

t2∫
t1

H(t, s)g(s)ds

for

H(t, s) = G(t, s) − q(s)

t2∫
t1

G(t, τ)dτ. (22)

4. Existence results for positive solutions to ACC model

Set

M(r) =

⎡
⎢⎣

m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

(
a(s)F (s, r) + b(s)

)
dsdτ − γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

(
a(s)F (s, r) + b(s)

)
dsdτ

⎤
⎥⎦ . (23)

We consider the following assumptions:
(H1) There exists a positive constant A such that for every u ∈ domL\KerL with QNu = 0, there is

a t0 ∈ [t1, t2] satisfying |u(t0)| ≤ A.
(H2) There exist continue functions p(·), q(·) : [t1, t2] → R and p(·) satisfying

‖p‖2 ≤ 1 − (t2 − t1)
a∗(C2 + 1)(t2 − t1)

,

such that

|F (t, u)| ≤ p(t)|u| + q(t),

where a∗ = max
[t1,t2]

|a(t)|, 0 < t2 − t1 < 1.

(H3) There exists a positive constant B such that for ∀ |c| > B, c ∈ R, it holds

cM(c) < 0.

Theorem 4.1. Assume that (H1), (H2) and (H3) hold. Then nonlocal boundary value problem (11) has
at least one solution.

Proof. Consider

Ω1 = {u ∈ domL\KerL| Lu = λNu, λ ∈ (0, 1)}.
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Then for each u ∈ Ω1, we have u /∈ KerL, λ �= 0; hence, Nu ∈ ImL. Since KerQ = ImL, we have
QNu = 0. We know from the condition (H1) that there exists a t0 ∈ [t1, t2] satisfying |u(t0)| ≤ A; then,

|u(t1)| =
∣∣∣∣u(t0) −

t0∫
t1

u′(τ)dτ

∣∣∣∣ ≤ |u(t0)| + (t2 − t1)‖u′‖1 ≤ A + (t2 − t1)‖u′‖1. (24)

Since

u′(t) =

t∫
t1

u′′(τ)dτ + u′(t1),

we have

|u′(t)| ≤
t2∫

t1

|u′′(τ)|dτ + |u′(t1)| = ‖u′′‖2 + |u′(t1)| = ‖Lu‖2 + |u′(t1)| ≤ ‖Nu‖2 + |u′(t1)|. (25)

Using (24) and (25), we obtain

|u(t1)| ≤ A + (t2 − t1)(‖Nu‖2 + |u′(t1)|). (26)

Considering that (I − P )u ∈ ImKP = domL ∩ KerP for all u ∈ Ω1, we have

‖(I − P )u‖ = ‖KP L(I − P )u‖ ≤ (t2 − t1)C2‖L(I − P )u‖2

= (t2 − t1)C2‖Lu‖2 ≤ (t2 − t1)C2‖Nu‖2. (27)

Using (26), (27) and (20), we obtain

‖u‖ = ‖Pu + (I − P )u‖ ≤ ‖Pu‖ + ‖(I − P )u‖ ≤ |u(t1)| + (t2 − t1)C2‖Nu‖2

≤ A + (C2 + 1)(t2 − t1)‖Nu‖2 + (t2 − t1)‖u′‖1;

that is,

‖u‖1, ‖u′‖1 ≤ A + (C2 + 1)(t2 − t1)‖Nu‖2 + (t2 − t1)‖u′‖1

≤ A + (t2 − t1)‖u′‖1 + (C2 + 1)(t2 − t1)(a∗‖p‖2‖u‖1 + a∗‖q‖2 + ‖b‖2);

consequently, we have

‖u‖1 ≤ A + (t2 − t1)‖u′‖1 + (C2 + 1)(t2 − t1)(a∗‖q‖2 + ‖b‖2)
1 − a∗(C2 + 1)(t2 − t1)‖p‖2

, (28)

and

‖u′‖1 ≤ A + (C2 + 1)(t2 − t1)(a∗‖p‖2‖u‖1 + a∗‖q‖2 + ‖b‖2)
1 − (t2 − t1)

. (29)

Linking (28) and (29), we obtain

‖u′‖1 ≤ A + (C2 + 1)(t2 − t1)(a∗‖q‖2 + ‖b‖2)
1 − (t2 − t1) − a∗(C2 + 1)(t2 − t1)‖p‖2

;

therefore, there exist positive number Mu′ and Mu, such that ‖u′‖1 ≤ Mu′ and ‖u‖1 ≤ Mu for all u ∈ Ω1,
which shows that Ω1 is bounded.

Let Ω2 = {u ∈ KerL| Nu ∈ ImL}. For each u ∈ Ω2, we have u = c ∈ R and Nu ∈ ImL = KerQ,
i.e.,

1
C1

⎡
⎢⎣

m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

(
a(s)F (s, c) + b(s)

)
dsdτ − γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

(
a(s)F (s, c) + b(s)

)
dsdτ

⎤
⎥⎦ = 0.
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Thus, by (H3), we obtain ‖u‖ = ‖c‖ < B, which implies that Ω2 is bounded.
Define the mapping J : ImQ → KerL by Jc = c. Let

Ω3 = {u ∈ KerL| − λJ−1u + (1 − λ)QNu = 0, λ ∈ [0, 1]},

then u = c ∈ R for all u ∈ Ω3, and we have

1 − λ

C1

[m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

(
a(s)F (s, c) + b(s)

)
dsdτ−

γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

(
a(s)F (s, c) + b(s)

)
dsdτ

]
= λc. (30)

Using the condition (H3) and (30), we obtain λc2 < 0, which is a contradiction. Thus, ‖u‖ = |c| ≤ B,
which shows that Ω3 is bounded.

Let Ω be an open and bounded set satisfying Ω1 ∪ Ω2 ∪ Ω3 ⊆ Ω, then we can obtain

Lu �= λNu, (u, λ) ∈ ((domL\KerL) ∩ ∂Ω) × (0, 1),

Nu /∈ ImL, u ∈ KerL ∩ ∂Ω.

Next, let us show that N is L-compact on Ω.
We notice the fact that to prove that N is L-compact on Ω just need to prove that QN(Ω) is bounded

and KP,QN : Ω → X is compact. In fact, we have

|QNu| ≤ 1
C1

(m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

(|a(s)||p(s)||u(s)| + |a(s)||q(s)| + |b(s)|)dsdτ

+ |γ|
m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

(|a(s)||p(s)||u(s)| + |a(s)||q(s)| + |b(s)|)dsdτ

)

≤ |γ| + 1
C1

(t2 − t1)(a∗‖p‖2‖u‖1 + a∗‖q‖2 + ‖b‖2),

which shows that QN(Ω) is bounded.
We now show that KP,QN(Ω) is compact in X. In fact,

|(KP,QNu)(t)| =
∣∣∣∣

t∫
t1

τ∫
t1

(I − Q)Nu(s)dsdτ − t − t1
m−2∑
i=1

αi(ξi − t1)

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

(I − Q)Nu(s)dsdτ

∣∣∣∣

≤

⎛
⎜⎜⎝1 +

t2 − t1
m−2∑
i=1

αi(ξi − t1)
+

|γ| + 1
C1

(t2 − t1)2 +
|γ| + 1

C1

m−2∑
i=1

αi(ξi − t1)
(t2 − t1)3

⎞
⎟⎟⎠

· (t2 − t1)(a∗‖p‖2‖u‖1 + a∗‖q‖2 + ‖b‖2) := MK ,

which implies that KP,QN(Ω) is uniformly bounded in X.



ZAMP On the nonlocal boundary value problem Page 13 of 18 27

For all t ∈ [t1, t2], we have

|(KP,QNu)′(t)| =
∣∣∣∣

t∫
t1

(I − Q)Nu(s)dsdτ − 1
m−2∑
i=1

αi(ξi − t1)

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

(I − Q)Nu(s)dsdτ

∣∣∣∣

≤

⎛
⎜⎜⎝1 +

t2 − t1
m−2∑
i=1

αi(ξi − t1)
+

|γ| + 1
C1

(t2 − t1)2 +
|γ| + 1

C1

m−2∑
i=1

αi(ξi − t1)
(t2 − t1)3

⎞
⎟⎟⎠

· (a∗‖p‖2‖u‖1 + a∗‖q‖2 + ‖b‖2) =
MK

t2 − t1
.

Let {un} be an arbitrary sequence in Ω , then by using the mean value theorem, we obtain
∣∣(KP,QNun)(t′1) − (KP,QNun)(t′2)

∣∣ ≤ MK

t2 − t1

∣∣t′1 − t′2
∣∣, t′1, t

′
2 ∈ [t1, t2], n ∈ N∗.

Hence, by using the Arzela–Ascoli theorem (see [38]), we obain that KP,QN(Ω) is compact, which shows
that N is L-compact on Ω.

Let H(u, λ) = λJu + (1 − λ)JQNu for all u ∈ KerL ∩ ∂Ω. Then by using the homotopy invariance of
Leray–Schauder degree, we have

deg(JQN |KerL∩∂Ω,Ω ∩ KerL, 0) = deg(J,Ω ∩ KerL, 0) �= 0.

On the other hand, L : domL(⊂ X) → Z is Fredholm operator of index zero by Lemma 3.3; therefore,
we have illuminated that all assumptions of [37, Theorem 1.5] are satisfied. As a result, the nonlocal
boundary value problem (11) has at least one solution on Ω. The proof is complete. �

Remark 4.2. Assume the existence of two continuous functions F±(t) ∈ C[t1, t2] and positive constants
κ, r0 such that

|F (t, u) − F±(s)| ≤ κ (31)
for any t ∈ [t1, t2] and ±u ≥ r0 and

N± = ±

⎡
⎢⎣

m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

(
a(s)F±(s) + b(s)

)
dsdτ − γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

(
a(s)F±(s) + b(s)

)
dsdτ

⎤
⎥⎦ < 0,

respectively. Then for any u ∈ C[t1, t2] with u(t) ≥ r0, we derive
∣∣∣∣∣

m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

(
a(s)F (s, u(s)) + b(s)

)
dsdτ − γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

(
a(s)F (s, u(s)) + b(s)

)
dsdτ − N+

∣∣∣∣∣
≤ κ(1 + γ)(t2 − t1)2 ≤ −N+

2
,

when

κ ≤ − N+

2(1 + γ)(t2 − t1)2
. (32)

Thus,

m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

(
a(s)F (s, u(s)) + b(s)

)
dsdτ − γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

(
a(s)F (s, u(s)) + b(s)

)
dsdτ ≤ N+

2
< 0.
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Similarly, if

κ ≤ − N−
2(1 + γ)(t2 − t1)2

, (33)

then

0 < −N−
2

≤
m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

(
a(s)F (s, u(s)) + b(s)

)
dsdτ − γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

(
a(s)F (s, u(s)) + b(s)

)
dsdτ.

Consequently, (31), (32) and (33) imply (H1) and (H3) of Theorem 4.1 with A = B = r0.

Now we consider (11) with small nonlinearities of the form⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′′(t) = ε (a(t)F (t, u(t)) + b(t)) , t1 < t < t2,

u(t1) =
m−2∑
i=1

αiu(ξi),

u(t2) =
m−2∑
i=1

βiu(ξi),

(34)

where ε is a small parameter. We show a simple but applicable result, giving also positive solutions, or
multiple ones.

Theorem 4.3. If there are r1 < r2 such that M(r1)M(r2) < 0 for a function (23), then (34) has a solution
r1 < uε(t) < r2, t1 ≤ t ≤ t2 for any ε small.

Proof. We apply Theorem IV.2 of [39]. The operator of (IV.12) of [39] is just (23). This finishes the
proof. �

So analyzing the graph of the scalar function (23) over R, we can study solvability of (34). When
F (t, u) is C1-smooth in u, then (23) uniquely analyzes solvability of (34). This means for instance that
if M(r) does not change the sign over R, then (34) has no solution for ε �= 0 small. Furthermore, the
number of sign changes of M(r) over R is a lower number of possible solutions of (34) for ε �= 0 small.
To be more concrete, we consider that F (t, u) = F (u) in (9). Then (23) has the form

M(r) = F (r)
m−2∑
i=1

⎡
⎢⎣βi

t2∫
ξi

τ∫
t1

a(s)sdτ − γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

a(s)dsdτ

⎤
⎥⎦

+

⎡
⎢⎣

m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

b(s)dsdτ − γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

b(s)dsdτ

⎤
⎥⎦

= M1F (r) + M2

for

M1 =
m−2∑
i=1

⎡
⎣βi

(
et1(ξi − t2)

et1 + 1
+ ln

et1 + 1
eξi + 1

)
− γαi

(cosh t1 + 1)
(
tanh t2

2 − tanh ξi
2

)
− t2 + ξi

2(cosh t1 + 1)

⎤
⎦

M2 =
m−2∑
i=1

[
βi

(cosh t1 + 1)
(
tanh t2

2 − tanh ξi
2

)
− t2 + ξi

2(cosh t1 + 1)

−γαi

4

(
(t1 − ξi)sech2 t1

2
− 2 tanh

t1
2

+ 2 tanh
ξi

2

)]
.

(35)
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Consequently, if

M1 �= 0

and

inf
r∈R

F (r) < −M2

M1
< sup

r∈R
F (r),

then (34) has a solution for any ε small. In particular, if F (r) is a polynomial of odd degree, then we get
existence result. On other hand, if either

inf
r∈R

F (r) > −M2

M1

or

sup
r∈R

F (r) < −M2

M1
,

then (34) has no solutions for any ε small.

Theorem 4.4. Assume that

(i) lim
u→∞ F (t, u) = F+ uniformly for all t ∈ [t1, t2] and M1F+ + M2 < 0, where M1,2 are given by (35).

(ii) There exists a β ∈ R, such that

u

t2 − t1
+ (βq(s) + H(t, s))(a(s)F (s, u)) + b(s)) ≥ 0 ∀(t, s) ∈ [t1, t2]2,

where q(s) and H(t, s) are given by (19) and (22), respectively.

Then the nonlocal boundary value problem (11) has at least one nonnegative solution.

Proof. We follow [40, Theorem 1]. We consider now X = Z = C[t1, t2] with the norm ‖u‖1. Clearly it
holds

|N(u)(t)| ≤ |a(t)||F (t, u(t))| + |b(t)| ≤ MF + 2ω,

where

MF = sup
t∈[t1,t2],u≥0

|F (t, u)| < ∞.

So condition (i) of [40, Theorem 1] is verified for c1 = MF + 2ω and c2 = 0. We take Pu(t) given by (21)
and a cone

K = {u ∈ X | u(t) ≥ 0, t ∈ [t1, t2]}.

Next, we consider a continuous bilinear form on Z × X

〈g, u〉 =
m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

g(s)z(s)dsdτ − γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

g(s)z(s)dsdτ

with a property that g ∈ ImL if and only if 〈g, u0〉 = 0 for every u0 ∈ KerL. Note

Qg =
〈g, 1〉
〈1, 1〉 , 〈1, 1〉 = C1.
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If u = u0 + u1 ∈ K, where u0 = r ∈ KerL, r > ρ = (MF + 2ω)‖KP,Q‖, u1 ∈ KerP and ‖u1‖1 ≤ ρ, then

〈QN(u), u0〉 =
〈 〈N(u), 1〉

〈1, 1〉 , r

〉
= r〈N(u), 1〉

= r

⎡
⎢⎣

m−2∑
i=1

βi

t2∫
ξi

τ∫
t1

N(u)(s)dsdτ − γ

m−2∑
i=1

αi

ξi∫
t1

τ∫
t1

N(u)(s)dsdτ

⎤
⎥⎦

and by (i)

N(u)(s) = N(r + u1)(s) = a(s)F (s, r + u1(s)) + b(s) ⇒ a(s)F+ + b(s) as r → ∞
uniformly for s ∈ [t1, t2]. Thus, we obtain

1
r
〈QN(u), u0〉 → M1F+ + M2 as r → ∞.

Consequently by (i), we get 〈QN(u), u0〉 < 0 for a large r > 0. So condition (ii) of [40, Theorem 1] is also
verified. Next, we consider a continuous retraction γ : X → K given by

γ(u)(t) = |u(t)|,
then a mapping J : ImQ → KerL, Jz = βz, and we derive

(P + JQN + KP,QN)(γ(u)(t))

=
1

t2 − t1

t2∫
t1

|u(s)|ds + β

t2∫
t1

q(s)N(|u|)(s)ds +

t2∫
t1

H(t, s)N(|u|)(s)ds

=

t2∫
t1

[ |u(s)|
t2 − t1

+ (βq(s) + H(t, s))(a(s)F (s, |u(s)|) + b(s))
]

ds ≥ 0

by (ii). So condition (iii) of [40, Theorem 1] is also verified. The proof is finished. �
Similarly we have the next result.

Theorem 4.5. Assume that
(i) lim

u→±∞ F (t, u) = F± uniformly for all t ∈ [t1, t2] and ±(M1F± + M2) < 0, where M1,2 are given by

(35).
Then the nonlocal boundary value problem (11) has at least one solution.

Proof. We follow the above proof with a trivial cone K = X. Then γ(u) = u and (i), (ii) of [40, Theorem
1] are verified by (i) and condition (iii) of [40, Theorem 1] trivially holds. The proof is finished. �
Remark 4.6. Conditions (i) of Theorems 4.4 and 4.5 are Landesman–Lazer type [39]. Condition (ii) of
Theorem 4.5 holds, if

sup
u>0,s∈[t1,t2]

|a(s)F (s, u)) + b(s)|
u

sup
(t,s)∈[t1,t2]2

|βq(s) + H(t, s)| <
1

t2 − t1
.
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