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Abstract. In this paper, we study the following class of fractional Choquard-type equations

(−Δ)1/2u + u =
(
Iµ ∗ F (u)

)
f(u), x ∈ R,

where (−Δ)1/2 denotes the 1/2-Laplacian operator, Iµ is the Riesz potential with 0 < µ < 1, and F is the primitive function
of f . We use variational methods and minimax estimates to study the existence of solutions when f has critical exponential
growth in the sense of Trudinger–Moser inequality.
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1. Introduction

In this paper, we are concerned with existence of solutions for a class of fractional Choquard-type equa-
tions

(−Δ)su + u =
(
Iμ ∗ F (u)

)
f(u), x ∈ R

N , (1.1)

where (−Δ)s denotes the fractional Laplacian, 0 < s < 1, 0 < μ < N , F is the primitive function of f ,
Iμ : R

N\{0} → R is the Riesz potential defined by

Iμ(x) := Aμ
1

|x|N−μ
, where Aμ :=

Γ
(

N − μ

2

)

Γ
(μ

2

)
π

N
2 2μ

,

and Γ denotes the Gamma function. We consider the “limit case” when N = 1, s = 1/2 and a Choquard-
type nonlinearity with critical exponential growth motivated by a class of Trudinger–Moser inequality, see
[15,16,23,27]. The main difficulty is to overcome the “lack of compactness” inherent to problems defined
on unbounded domains or involving nonlinearities with critical growth. In order to apply properly the
variational methods, we control the minimax level with fine estimates involving Moser functions (see
[27]), but here in the context of fractional Choquard-type equation. Before stating our assumptions and
main result, we introduce a brief survey on related results to motivate our problem.
Motivation. Nonlinear elliptic equations involving nonlocal operators have been widely studied both from
a pure mathematical point of view and their concrete applications, since they naturally arise in many
different contexts, such as, among the others, obstacle problems, flame propagation, minimal surfaces,
conservation laws, financial market, optimization, crystal dislocation, phase transition and water waves,
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see for instance [6,13] and references therein. The class of equations (1.1) is motivated by the search of
standing wave solutions for the following class of time-dependent fractional Schrödinger equations

i
∂Ψ
∂t

= (−Δ)sΨ + W (x)Ψ − (Iμ ∗ |Ψ|p) |Ψ|p−2Ψ, (t, x) ∈ R+ × R
N , (1.2)

where i denotes the imaginary unit, p ≥ 2, s ∈ (0, 1) and W (x) is an external potential. A standing
wave solution of (1.2) is a solution of type Ψ(x, t) = u(x)e−iωt, where ω ∈ R and u solves the stationary
equation

(−Δ)su + V (x)u = (Iμ ∗ |u|p) |u|p−2u, in R
N , (1.3)

with V (x) = W (x)−ω. In some particular cases, equation (1.3) is also known as the Schrödinger–Newton
equation which was introduced by R. Penrose in [25] to investigate the self-gravitational collapse of a
quantum mechanical wave function. It is well known that when s → 1, the fractional Laplacian (−Δ)s

reduces to the standard Laplacian −Δ, see [13]. In the local case when s = 1, p > 1, μ = 2 and N = 3,
Eq. (1.1) becomes the following nonlinear Choquard equation

− Δu + u = (I2 ∗ |u|p) |u|p−2u, x ∈ R
3. (1.4)

This case goes back to 1954, in the work [24], when S. Pekar described a polaron at rest in the quantum
theory. In 1976, to model an electron trapped in its own hole, P. Choquard considered equation (1.4) as a
certain approximation to Hartree–Fock theory of one-component plasma, see [17]. For more information
on physical background, we refer the readers to [8,9].

There is a large bibliography regarding to Choquard-type equations in the case of the standard Lapla-
cian operator. In this direction, we refer the readers to the seminal works [17,19,21,22] and references
therein.

For dimension N = 2, the Trudinger–Moser inequality may be viewed as a substitute of the Sobolev
inequality as it establishes a maximum growth for integrability of functions on H1(R2), see [1,10]. The
first version of the Trudinger–Moser inequality in R

2 was established by D. Cao in [7] and this fact has
inspired many works for elliptic equations including Choquard-type nonlinearities, see [3,4,26,28] and
references therein.
Assumptions and main Theorem. Inspired by [3], our goal is to establish a link between Choquard-type
equations, 1/2-fractional Laplacian and nonlinearity with critical exponential growth. We are interested
in the following class of problems

(−Δ)1/2u + u =
(
Iμ ∗ F (u)

)
f(u), x ∈ R, (P)

where F is the primitive of f . In order to use a variational approach, the maximal growth is motivated by
the Trudinger–Moser inequality first given by T. Ozawa [23] and later extended by S. Iula, A. Maalaoui,
L. Martinazzi [15] (see also [16]). Precisely, it holds

sup
u∈H1/2(R)

‖(−Δ)1/4u‖2≤1

∫

R

(eαu2 − 1) dx

{
< ∞, α ≤ π,
= ∞, α > π.

In this work, we suppose that f : R → R is a continuous function satisfying the following hypotheses:

(f1) f(t) = 0, for all t ≤ 0 and 0 ≤ f(t) ≤ Ceπt2 , for all t ≥ 0;
(f2) There exist t0, C0 > 0 and a ∈ (0, 1] such that 0 < taF (t) ≤ C0f(t), for all t ≥ t0;
(f3) There exist p > 1 − μ and Cp = C(p) > 0 such that f(t) ∼ Cpt

p, as t → 0;

(f4) There exists K > 1 such that KF (t) < f(t)t for all t > 0, where F (t) =
t∫
0

f(τ) dτ ;

(f5) lim inf
t→+∞

F (t)
eπt2

=
√

β0 with β0 > 0.
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Assumption (f5) plays a very important role in estimating the minimax level to recover some compactness
in our approach. For this reason, we give a few comments on this hypothesis in different contexts. Since the
pioneer works [1,10], many authors have used Moser functions to estimate the minimax level of functional
associated with a problem involving a nonlinearity f(t) with exponential growth. For this matter, usually
one may use the asymptotic behavior of h(t) = f(t)t/eα0t2 at infinity, which can appear in different ways.
For instance, in [10] the authors considered (among other conditions) that limt→∞ h(t) = C(r), where r
is the radius of the largest open ball in the domain. In [14], it was assumed that limt→∞ h(t) = ∞ for an
equation involving 1/2-Laplacian operator. Regarding to Choquard-type equations, due to the problem
nature, this type of hypothesis must be adapted, because we need to estimate some integrals where tf(t)
and F (t) appear simultaneously. In [3], it is considered that there exists a positive constant γ0 > 0 large
enough such that

lim
t→∞

tf(t)F (t)
e8πt2

≥ γ0,

while in [18] (see also [2,5]) it is assumed that there exists a positive constant ξ0 > 0 large enough such
that

lim
t→+∞

F (t)
e4πt2

≥ ξ0.

In our case, differently from [18], it is not necessary assumed any constraint on constant β0 > 0 in
assumption (f5), similarly as it occurs in [2].

We are in condition to state our main result:

Theorem 1.1. Suppose that 0 < μ < 1 and assumptions (f1)–(f5) hold. Then, Problem (P) has a non-
trivial weak solution.

Remark 1.1. Though there have been many works on the existence of solutions for problem (1.1), as far as
we know, this is the first work considering a fractional Choquard-type equation involving 1/2-Laplacian
operator and nonlinearity with critical exponential growth. Particularly, our Theorem 1.1 is a version of
Theorem 1.3 of [3] for 1/2-Laplacian operator.

Remark 1.2. Assumptions (f2) and (f5) imply the asymptotic behavior of tf(t)F (t)/e2πt2 at infinity.
Precisely, for given ε > 0, there exists t0 > 0 such that

tf(t)F (t) ≥ (β0 − ε)C0e
2πt2ta+1, for all t > t0. (1.5)

This behavior plays a very important role to estimate the minimax level associated with Problem (P),
using a version of Moser functions for problems involving 1/2-Laplacian operator.

Outline. The paper is organized as follows: In the forthcoming section, we recall some definitions and
preliminary basic results which are important to prove our main result. In Sect. 3, we introduce the
variational setting and we study the mountain pass geometry. Section 4 is devoted to study minimax esti-
mates. Precisely, we establish an upper estimate of the minimax level that guarantees some compactness
of Palais–Smale sequences. In Sect. 5, we prove Theorem 1.1.

2. Preliminaries

We start this section recalling some preliminary concepts about the fractional operator, for a more
complete discussion we cite [13]. For s ∈ (0, 1), the fractional Laplacian operator of a measurable function
u : R

N → R may be defined by

(−Δ)su(x) = −C(N, s)
2

∫

RN

u(x + y) + u(x − y) − 2u(x)
|y|N+2s

dy, for all x ∈ R
N ,
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for some normalizing constant C(N, s). The particular case when s = 1/2 its called the square root of the
Laplacian. We recall the definition of the fractional Sobolev space

H1/2(R) =

⎧
⎨
⎩u ∈ L2(R) :

∫

R

∫

R

|u(x) − u(y)|2
|x − y|2 dxdy < ∞

⎫
⎬
⎭ ,

endowed with the standard norm

‖u‖1/2 =

⎛
⎝ 1

2π
[u]21/2 +

∫

R

u2 dx

⎞
⎠

1/2

,

where the term

[u]1/2 =

⎛
⎝
∫

R

∫

R

|u(x) − u(y)|2
|x − y|2 dxdy

⎞
⎠

1/2

is the so-called Gagliardo semi-norm of a function u. We point out from [13, Proposition 3.6] that

‖(−Δ)1/4u‖2
L2(R) =

1
2π

∫

R

∫

R

|u(x) − u(y)|2
|x − y|2 dxdy, for all u ∈ H1/2(R). (2.1)

In order to deal with the exponential growth, we use the following result due to S. Iula, A. Maalaoui,
L. Martinazzi, see [15, Theorem 1.5]:

Theorem A. (Fractional Trudinger–Moser inequality) We have

sup
u∈H1/2(R)
‖u‖1/2≤1

∫

R

(eπu2 − 1) dx < +∞.

Moreover, for any a > 2,

sup
u∈H1/2(R)
‖u‖1/2≤1

∫

R

|u|a(eπu2 − 1) dx = +∞.

The vanishing lemma was proved originally by P.L. Lions [20, Lemma I.1] and here we use the following
version to fractional Sobolev spaces:

Lemma 2.1. Assume that (un) is a bounded sequence in H1/2(R) satisfying

lim
n→+∞ sup

y∈R

y+R∫

y−R

|un|2 dx = 0,

for some R > 0. Then, un → 0 strongly in Lp(R), for 2 < p < ∞.

In order to study the convolution term, we use the Hardy–Littlewood–Sobolev inequality, which can
be stated as follows:

Lemma 2.2. (Hardy–Littlewood–Sobolev inequality) Let 1 < r, t < ∞ and 0 < μ < N with 1/r + 1/t +
μ/N = 2. If f ∈ Lr(RN ) and h ∈ Lt(RN ), then there exists a sharp constant C = C(r, t, μ) > 0,
independent of f and h, such that∫

RN

∫

RN

f(x)h(y)
|x − y|μ dxdy ≤ C‖f‖Lr(RN )‖h‖Lt(RN ).
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3. The variational framework

In this section, we introduce the variational framework to our problem. The energy functional I :
H1/2(R) → R associated with Problem (P) is defined by

I(u) =
1
2
‖u‖2

1/2 − 1
2

∫

R

(Iμ ∗ F (u))F (u) dx (3.1)

where F (t) =

t∫

0

f(τ) dτ . By using assumptions (f1) and (f3), it follows that for each q > 2 and ε > 0

there exists Cε > 0 such that

f(t) ≤ ε|t|1−μ + Cε(eπt2 − 1)|t|q−1, for all t ∈ R, (3.2)

which implies that

F (t) ≤ ε̃|t|2−μ + C̃ε(eπt2 − 1)|t|q, for all t ∈ R. (3.3)

In view of the above estimates jointly with Hardy–Littlewood–Sobolev inequality, I is well defined in
H1/2(R). Furthermore, I ∈ C1(H1/2(R), R) and

I ′(u)v =
1
2π

∫

R

∫

R

[u(x) − u(y)][v(x) − v(y)]
|x − y|2 dxdy +

∫

R

uv dx −
∫

R

(Iμ ∗ F (u)) f(u)v dx.

Thus, critical points of I are weak solutions of Problem (P) and conversely.
Now, we prove that the energy functional defined in (3.1) satisfies the Mountain Pass Geometry.

Lemma 3.1. Suppose that (f1) and (f3) are satisfied. Then, the following conclusions hold:
(i) There exist τ > 0 and � > 0 such that I(u) ≥ τ , provided that ‖u‖1/2 = �.
(ii) There exists v ∈ H1/2(R) with ‖v‖1/2 > � such that I(v) < 0.

Proof. Let us prove (i). In view of (3.3), we get

‖F (u)‖
L

2
2−μ (R)

≤ ε‖u‖2−μ
L2(R) + C

⎧
⎨
⎩
∫

R

[(
eπu2 − 1

)
|u|q

] 2
2−μ

dx

⎫
⎬
⎭

2−μ
2

. (3.4)

Consider � > 0 and suppose ‖u‖1/2 ≤ �. By Hölder inequality, we obtain

∫

R

[(
eπu2 − 1

)
|u|q

] 2
2−μ

dx ≤
⎡
⎣
∫

R

(
e

4π‖u‖2
1/2

2−μ

(
u

‖u‖1/2

)2

− 1

)
dx

⎤
⎦

1
2

‖u‖
2q

2−μ

L
4q

2−μ (R)
. (3.5)

If � ≤ √
(2 − μ)/2, then we are able to apply Trudinger–Moser inequality (see Theorem A). Thus, (3.4),

(3.5) jointly with Sobolev embedding imply that

‖F (u)‖
L

2
2−μ (R)

≤ ε‖u‖2−μ
1/2 + C̃‖u‖q

1/2.

Hence, it follows from Hardy–Littlewood–Sobolev inequality that∫

R

(Iμ ∗ F (u))F (u) dx ≤ ε2‖u‖2(2−μ)
1/2 + C̃‖u‖2q

1/2.

Thus, we have

I(u) ≥ 1
2
‖u‖2

1/2 − ε2‖u‖2(2−μ)
1/2 − C̃‖u‖2q

1/2.
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Since 2(2 − μ) > 2 and 2q > 2, there exist τ, ρ > 0 such that if ‖u‖1/2 = ρ, then I(u) ≥ τ > 0.
Now in order to prove (ii), take u0 ∈ H1/2(R) \ {0}, u0 ≥ 0, u0 	≡ 0 and set

w(t) =
1
2

∫

R

(
Iμ ∗ F

(
t

u0

‖u0‖1/2

))
F

(
t

u0

‖u0‖1/2

)
dx, for t > 0.

It follows from (f4) that

w′(t)
w(t)

>
2K

t
, for t > 0.

Thus, integrating this over [1, s‖u0‖1/2] with s > 1/‖u0‖1/2, we can conclude that

1
2
(Iμ ∗ F (su0))F (su0) dx ≥

⎛
⎝1

2

∫

R

(
Iμ ∗ F

(
u0

‖u0‖1/2

))
F

(
u0

‖u0‖1/2

)
dx

⎞
⎠ ‖u0‖2K

1/2s
2K .

Therefore, from (3.1), we get

I(su0) < Cs2 − Cs2K , for s >
1

‖u0‖1/2
.

Since K > 1, taking v = su0 with s large enough, we have (ii). �

In view of the preceding Lemma 3.1, we may apply Mountain Pass Theorem to get a (PS) sequence,
i.e., (un) ⊂ H1/2(R) such that

I(un) → c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) and I ′(un) → 0,

where

Γ :=
{

γ ∈ C1([0, 1],H1/2(R)) : γ(0) = 0, I(γ(1)) < 0
}

.

4. Minimax estimates

The main difficulty in our work is the lack of compactness typical for elliptic problems in unbounded
domains with nonlinearities with critical growth. In order to overcome this, we will make use of assump-
tion (f5) to control the minimax level in a suitable range where we are able to recover some compactness.
For this purpose, let us consider the following sequence of nonnegative functions supported in B1 given
by

un =

⎧
⎪⎪⎨
⎪⎪⎩

(ln n)1/2, if |x| < 1
n ,

ln 1
|x|

(ln n)1/2
, if 1

n ≤ |x| ≤ 1,

0, if |x| ≥ 1.

As pointed out in [27], un ∈ H1/2(R) and we have

‖(−Δ)1/4un‖2
L2(R) ≤ π

(
1 +

1
C ln(n)

)
:= C̃n.

Thus, by (2.1), for n large enough, we have

‖un‖2
1/2 ≤ C̃n + 2

⎡
⎢⎣

1
n∫

− 1
n

ln(n) dx +
1

ln(n)

− 1
n∫

−1

(ln |x|)2 dx +
1

ln(n)

1∫

1
n

(ln |x|)2 dx

⎤
⎥⎦ ,
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which implies that ‖un‖2
1/2 ≤ C̃n + δn where

δn := 4
(

n − 1 − ln(n)
n ln(n)

)
.

Notice that

δn → 0 and ln(n)δn → 4 as n → +∞. (4.1)

By setting wn := un√
C̃n+δn

we obtain ‖wn‖1/2 ≤ 1.

Proposition 4.1. Assume that f satisfies (f1)–(f5). Then

c <
2 − μ

4
.

Proof. Since

c ≤ max
t∈[0,1]

I(tw) ≤ max
t≥0

I(tw),

it is sufficient to prove that there exists a function w ∈ H1/2(R), ‖w‖1/2 ≤ 1, such that

max
t≥0

I(tw) <
2 − μ

4
.

In order to prove that, we claim that there exists n0 such that

max
t≥0

I(twn0) <
2 − μ

4
.

Arguing by contradiction, we suppose that for all n we have

I(tnwn) = max
t≥0

I(twn) ≥ 2 − μ

4
.

Since

I(tnwn) =
1
2
‖tnwn‖2

1/2 − 1
2

∫

R

(Iμ ∗ F (tnwn)) F (tnwn) dx,

and f is nonnegative, we obtain

t2n ≥ 2 − μ

2
. (4.2)

Moreover, as tn satisfies

d

dt
I(twn)

∣∣∣∣
t=tn

= 0,

it follows that

t2n≥
∫

R

(Iμ ∗ F (tnwn)) tnwnf(tnwn) dx. (4.3)

On the other hand, from (1.5) we obtain

tf(t)F (t) ≥ (β0 − ε)C0e
2πt2ta+1, for all t ≥ t0. (4.4)
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Thus, for n ∈ N large enough, by using (4.3) and (4.4), we have

t2n ≥
1
n∫

− 1
n

tn
√

ln n√
C̃n + δn

f

⎛
⎝ tn

√
ln n√

C̃n + δn

⎞
⎠ dy

1
n∫

− 1
n

F

(
tn

√
ln n√

C̃n+δn

)

|x − y|μ dx

≥ (β0 − ε)C0 exp
(

2πt2n ln n

C̃n + δn

)⎛
⎝ tn

√
ln n√

C̃n + δn

⎞
⎠

a+1 1
n∫

− 1
n

1
n∫

− 1
n

dxdy

|x − y|μ .

Consequently,

t2n ≥ (β0 − ε)C022−μ

(1 − μ)(2 − μ)
exp

([
2πt2n

C̃n + δn

− (2 − μ)
]

ln n

)⎛
⎝ tn

√
lnn√

C̃n + δn

⎞
⎠

a+1

≥ (β0 − ε)C022−μ

(1 − μ)(2 − μ)
exp

([
2πt2n

C̃n + δn

− (2 − μ)
]

ln n

)
.

(4.5)

Thus, we conclude that t2n is bounded. Moreover, it follows from (4.1) and definitions of C̃n and δn that

t2n → 2 − μ

2
.

We can rewrite (4.5) as

t2n ≥ (β0 − ε)C022−μ

(1 − μ)(2 − μ)

⎛
⎝ tn√

C̃n + δn

⎞
⎠

a+1

exp
([

2πt2n

C̃n + δn

− (2 − μ)
]

ln n +
(a + 1)

2
ln(ln(n))

)
.

Since t2n is bounded, there exists C1 > 0 such that

C1 ≥
[

2πt2n

C̃n + δn

− (2 − μ)
]

ln n +
a + 1

2
ln(ln(n)).

Using (4.2), we have

C1 ≥
[

π

C̃n + δn

− 1
]

(2 − μ) ln n +
a + 1

2
ln(ln(n)).

Note that by (4.1) and the definition of C̃n

[
π

C̃n + δn

− 1
]

(2 − μ) ln n → −π − C

Cπ
(2 − μ), as n → ∞,

for some C > 0. Therefore, as ln(ln(n)) → +∞, we have a contradiction. �

5. Proof of Theorem 1.1

Let (un) be the (PS) sequence obtained in Sect. 3. Thus, we have

1
2
‖un‖2

1/2 − 1
2

∫

R

(Iμ ∗ F (un))F (un) dx → c, as n → ∞, (5.1)
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and

∣∣∣∣∣∣
1
2π

∫

R

∫

R

[un(x) − un(y)][v(x) − v(y)]
|x − y|2 dxdy +

∫

R

unv dx −
∫

R

(Iμ ∗ F (un))f(un)v dx

∣∣∣∣∣∣
≤ εn‖v‖1/2,

(5.2)

for all v ∈ H1/2(R), where εn → 0 as n → ∞. Similarly to [3, Lemma 2.4], we conclude that (un) is
bounded in H1/2(R), up to a subsequence, un ⇀ u weakly in H1/2(R) and there holds

[Iμ ∗ F (un)] F (un) → [Iμ ∗ F (u)] F (u), in L1
loc(R).

Let un = u+
n −u−

n , where u+
n (x) = max{un(x), 0} and u−

n = −min{un(x), 0}. Since f(t) = 0 for all t ≤ 0,
by taking vn = −u−

n and using the fact that (un) is a (PS) sequence, we obtain

on(1) =I ′(un)(−u−
n )

= − 1
2π

∫

R

∫

R

[un(x) − un(y)][u−
n (x) − u−

n (y)]
|x − y|2 dxdy −

∫

R

unu−
n dx

≥‖u−
n ‖1/2,

where we have used that u+
n , u−

n ≥ 0. Thus, ‖u−
n ‖1/2 → 0, as n → ∞. Hence, we have that

∫

R

∫

R

[u+
n (x) − u+

n (y)][u−
n (x) − u−

n (y)]
|x − y|2 dxdy → 0, as n → ∞,

which implies that ‖un‖1/2 = ‖u+
n ‖1/2 + on(1). Therefore, (u+

n ) is also a (PS) sequence for functional
I. For this reason, we may suppose, without loss of generality, that (un) is a nonnegative Palais–Smale
sequence.

Let us now prove that the weak limit u yields actually a weak solution to Problem (P). Following [3,
Lemma 2.4], let φ ∈ C∞

0 (R) be such that suppφ ⊂ Ω′ satisfying 0 ≤ φ ≤ 1 and φ ≡ 1 in Ω ⊂ Ω′ and
define vn = φ/(1 + un). In view of Young’s inequality, one has

∫

R

∫

R

[un(x) − un(y)][vn(x) − vn(y)]
|x − y|2 dxdy ≤ 1

2
[un]21/2 +

1
2
[vn]21/2

=
1
2
[un]21/2 +

1
2

∫

R

∫

R

[(1 + un(y))φ(x) − (1 + un(x))φ(y)]2

(1 + un(x))2(1 + un(y))2|x − y|2 dxdy

≤ 1
2
[un]21/2 +

1
2

∫

R

∫

R

[(1 + un(y))φ(x) − (1 + un(x))φ(y)]2

|x − y|2 dxdy

≤ C
(
[un]21/2 + [φ]21/2 + [unφ]21/2

)
.

(5.3)
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Notice that ∫

R

∫

R

|un(x)φ(x) − un(y)φ(y)|2
|x − y|2 dxdy

≤ C1

∫

R

∫

R

[ |un(x)φ(x) − un(y)φ(x)|2
|x − y|2 +

|un(x)|2|φ(x) − φ(y)|2
|x − y|2

]
dxdy

≤ C̃1[un]21/2 + C2(φ)
∫

R

u2
n dx

≤ C(φ)‖un‖2
1/2,

(5.4)

where C2(φ) is a constant which depends on φ. By using (5.2), (5.3) and (5.4), we obtain∫

Ω

[Iμ ∗ F (un)]
f(un)
1 + un

dx ≤
∫

R

[Iμ ∗ F (un)]
f(un)φ
1 + un

dx

=
1
2π

∫

R

∫

R

[un(x) − un(y)][vn(x) − vn(y)]
|x − y|2 dxdy +

∫

R

unvn dx + εn‖vn‖1/2

≤ C
(
[un]21/2 + [φ]21/2 + [unφ]21/2

)
+
∫

Ω′

un dx + εn‖vn‖1/2

≤ C̃(φ)‖un‖2
1/2 + C3(φ) +

∫

Ω′

un dx + εn‖vn‖1/2.

Since (un) is bounded in H1/2(R) and un → u in L1(Ω′), we conclude that∫

Ω

[Iμ ∗ F (un)]
f(un)
1 + un

dx ≤ C(φ).

Thus, by a Radon–Nikodym argument, we can conclude that

lim
n→∞

∫

R

(Iμ ∗ F (un))f(un)φ dx =
∫

R

(Iμ ∗ F (u))f(u)φ dx, for all φ ∈ C∞
c (R).

Therefore, u is a weak solution for Problem (P). If u 	= 0, then the proof is done. Suppose that u = 0.
We claim that there exists R, δ > 0 and a sequence (yn) ⊂ Z such that

lim
n→+∞

yn+R∫

yn−R

|un|2 dx ≥ δ. (5.5)

Suppose by contradiction that (5.5) does not hold. Thus, for any R > 0, there holds

lim
n→+∞ sup

y∈R

y+R∫

y−R

|un|2 dx = 0.

In view of Lemma 2.1, un → 0 strongly in Lp(R), for 2 < p < ∞. Similarly to [3], we may conclude that

[Iμ ∗ F (un)] F (un) → 0, in L1(R). (5.6)

Hence, in view of Proposition 4.1, (5.1) and (5.6) one has

lim
n→+∞ ‖un‖2

1/2 = 2c <
2 − μ

2
.
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Thus, there exists δ > 0 small and n0 ∈ N large such that

‖un‖2
1/2 ≤ 2 − μ

2
(1 − δ), for all n ≥ n0. (5.7)

In light of Hardy–Littlewood–Sobolev inequality, we have∫

R

(Iμ ∗ F (un)) f(un)un dx ≤ C‖F (un)‖
L

2
2−μ (R)

‖f(un)un‖
L

2
2−μ (R)

.

By using (3.2), for any ε > 0 and q > 2 there is δ > 0 such that

‖f(un)un‖
L

2
2−μ (R)

≤ ε‖un‖2−μ
L2(R) + Cε

⎡
⎣
∫

R

(eπu2
n − 1)

2
2−μ |un| 2q

2−μ dx

⎤
⎦

2−μ
2

.

Let us consider σ > 1 close to 1 and r, r′ > 1 such that 1/r + 1/r′ = 1. Thus, one has
⎡
⎣
∫

R

(eπu2
n − 1)

2
2−μ |un| 2q

2−μ dx

⎤
⎦

2−μ
2

≤ ‖un‖q

L
2qr′
2−μ (R)

⎡
⎣
∫

R

(e
2σr
2−μ πu2

n − 1) dx

⎤
⎦

2−μ
2r

.

By choosing σ, r > 1 sufficiently close to 1 such that

1 < σr <
1

1 − δ
and

2qr′

2 − μ
> 2,

it follows from (5.7) that
2σr

2 − μ
‖un‖2

1/2 < 1, for all n ≥ n0.

Thus, in view of Theorem A we obtain
∫

R

(e
2σr
2−μ πu2

n − 1) dx =
∫

R

(e
2σr
2−μ ‖un‖2

1/2π
u2

n
‖un‖2

1/2 − 1) dx ≤ C, for all n ≥ n0. (5.8)

Therefore, by using Lemma 2.1 and combining (5.7)–(5.8) we conclude that∫

R

(Iμ ∗ F (un)) f(un)un dx → 0, as n → ∞.

Since (un) is a (PS) sequence we have that

0 < c =
1
2
‖un‖2

1/2 + o(1) and o(1) = ‖un‖2
1/2,

which is not possible. Therefore, (5.5) is satisfied. The functional I is translation invariant, so the trans-
lated (PS)c sequence is again (PS)c sequence, which for simplicity we also denote (un), with the property

that limn→+∞
R∫

−R

|un|2 dx ≥ δ > 0. Thus, un ⇀ u 	= 0 and I ′(u) = 0, that is, u is a nontrivial weak

solution to Problem (P) (see [12]), which finishes the proof of Theorem 1.1.

Remark 5.1. Let u ∈ H1/2(R) be the weak solution obtained in Theorem 1.1. By choosing the negative
part u− ∈ H1/2(R) as test function and using the inequality

[u(x) − u(y)][u−(x) − u−(y)] ≥ |u−(x) − u−(y)|2, for all x, y ∈ R,

one may conclude that ‖u−‖1/2 ≤ 0. Therefore, the weak solution u is nonnegative. By using regularity
theory and [11, Theorem 1.2], one may conclude that u is positive.
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H. Poincaré Anal. Non Linéaire 1, 109–145 and 223–283 (1984)
[21] Moroz, V., Van Schaftingen, J.: Existence of ground states for a class of nonlinear Choquard equations. Trans. Am.

Math. Soc. 367(9), 6557–6579 (2015)
[22] Moroz, V., Van Schaftingen, J.: Ground states of nonlinear Choquard equations: existence, qualitative properties and

decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)
[23] Ozawa, T.: On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127, 259–269 (1995)
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