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Abstract. It is proved that if the solution of the Navier–Stokes system satisfies

∂3u ∈ Lp(0, T ; Lq(R3)),
2

p
+

3

q
=

22

13
+

3

13q
, 3 < q < 4,

or

∂3u3 ∈ Lβ(0, T ; Lα(R3)),
2

β
+

3

α
=

3(
√

65α2 − 78α + 49 + 7 − α)

16α
,

3 +
√

17

4
≤ α ≤ ∞,

then the solution is smooth on (0, T ]. These two improve many previous results.
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1. Introduction

In this paper, we continue our study [31,35,36] of the regularity criteria of the following Navier–Stokes
equations (NSE):

⎧
⎨

⎩

∂tu + (u · ∇)u − Δu + ∇π = 0,
∇ · u = 0,
u|t=0 = u0,

(1)

where u = (u1, u2, u3) is the fluid velocity field, π is a scalar pressure, u0 is the prescribed initial velocity
field satisfying the compatibility condition ∇ · u0 = 0, and

∂tu =
∂u

∂t
, ∂i =

∂

∂xi
, (u · ∇) =

3∑

i=1

ui∂i, Δ = ∂1∂1 + ∂2∂2 + ∂3∂3.

Leray [18] and Hopf [13] have established a global weak solution to (1); however, it remains an open
problem of its regularity and uniqueness. Serrin [25] first showed that if

u ∈ Lp(0, T ;Lq(R3)),
2
p

+
3
q

= 1, 3 ≤ q ≤ ∞, (2)

then the solution is regular on (0, T ]. See also [8,22]. The so-called Serrin-type regularity criterion (2)
was generalized by Beirão da Veiga [1] by adding integrability conditions on the velocity gradient,

∇u ∈ Lp(0, T ;Lq(R3)),
2
p

+
3
q

= 2,
3
2

≤ q ≤ ∞. (3)
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In view of the divergence-free condition ∇ · u = 0, it is natural and important to consider compo-
nents reduction improvements of (2) and (3), that is, whether or not integrability conditions on partial
components of the velocity or velocity gradient could still ensure the smoothness of the solution. There
are so many studies devoted to this refinement, and without no intention to be complete, we recommend
[2,3,5,6,12,15,16,19–21,26,28,31,32,34,37–40].

In this paper, we would like to investigate the regularity criterion of (1) based on one directional
derivative of the velocity field, say ∂3u, or one diagonal entry of the velocity gradient, say ∂3u3. Let us
first review what have happened in the last decades. In [20, Theorem 4 (i)], Penel–Pokorný showed that
if

∂3u ∈ Lp(0, T ;Lq(R3)),
2
p

+
3
q

=
3
2
, 2 ≤ q ≤ ∞, (4)

then the solution is smooth. This is based on a regularity criterion in terms of u3, ∂3u1 and ∂3u2 [20,
Theorem 1 (a)]:

u3 ∈ L
2s

s−3 (0, T ;Ls(R3)), 3 < s ≤ ∞;

∂3u1, ∂3u2 ∈ L
2q

2q−3 (0, T ;Lq(R3)),
3
2

< q ≤ ∞.
(5)

Then, Kukavica–Ziane [16] established a fine property of the horizontal convective terms (denoting by
Δh = ∂1∂1 + ∂2∂2 the horizontal Laplacian)

2∑

i,j=1

∫

R3

ui∂iujΔhuj dx =
1
2

2∑

i,j=1

∫

R3

∂iuj∂iuj∂3u3 dx

−
∫

R3

∂1u1∂2u2∂3u3 dx +
∫

R3

∂1u2∂2u1∂3u3 dx,

(6)

and refined (4) to be critical, but with limited range of space integrability indices,

∂3u ∈ Lp(0, T ;Lq(R3)),
2
p

+
3
q

= 2,
9
4

≤ q ≤ 3. (7)

Later on, Cao [2] employed multiplicative Sobolev inequalities

1 ≤ q < ∞ ⇒ ‖f‖L3q ≤ C ‖∂1f‖ 1
3
L2 ‖∂2f‖ 1

3
L2 ‖∂3f‖ 1

3
Lq (8)

and
1 ≤ q < ∞ ⇒ ‖f‖L5q ≤ C

∥
∥∂1(f2)

∥
∥

1
5

L2

∥
∥∂2(f2)

∥
∥

1
5

L2 ‖∂3f‖ 1
5
Lq (9)

to get the following extended regularity condition

∂3u ∈ Lp(0, T ;Lq(R3)),
2
p

+
3
q

= 2,
27
16

≤ q ≤ 5
2
. (10)

It should be remarked that Cao [2] claimed the range of q in (10) is q ≥ 27
16

, but it is indeed (10) which

is actually proved. See the footnote of [31, p. 35] for more information.
In a recent paper, Zhang [31] generalized (9) as

0 < λ < ∞, 1 ≤ q < ∞ ⇒ ‖f‖L(2λ+1)q ≤ C
∥
∥∂1(|f |λ)

∥
∥

1
2λ+1

L2

∥
∥∂2(|f |λ)

∥
∥

1
2λ+1

L2 ‖∂3f‖
1

2λ+1
Lq , (11)

and employed general L2λ estimate (instead of L4 estimate as in [2]) to improve (7) and (10) simultane-
ously. Precisely, he showed the following regularity criterion,

∂3u ∈ Lp(0, T ;Lq(R3)),
2
p

+
3
q

= 2, 1.56207 ≈ 3
√

37
4

− 3 ≤ q ≤ 3. (12)
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Notice in establishing (12), Zhang have missed a condition (say, in [31, (31)], we need 1 ≤ c ≤ ∞), which
was noticed by Yuliya–Skalak [30]. Skalak [27] then covered all of the range

(
3
2 , 3

]
,

∂3u ∈ Lp(0, T ;Lq(R3)),
2
p

+
3
q

= 2,
3
2

< q ≤ 3. (13)

Finally, Zhang–Yuan–Zhou [36] showed two new refinements of (4),

∂3u ∈ Lp(0, T ;Lq(R3)),
2
p

+
3
q

=
8
5

+
3
5q

, 4 ≤ q ≤ ∞, (14)

and

∂3u ∈ Lp(0, T ;Lq(R3)),
2
p

+
3
q

=
14
11

+
9

11q
,

5
2

≤ q ≤ ∞. (15)

Whence, the state of the art is the following smoothness condition

∂3u ∈ Lp(0, T ;Lq(R3)),
2
p

+
3
q

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2,
3
2

< q ≤ 3,

14
11

+
9

11q
, 3 < q <

18
5

,

3
2
,

18
5

≤ q < 4,

8
5

+
3
5q

, 4 ≤ q ≤ ∞.

(16)

The first purpose of this paper is to improve (16) in the range 3 < q < 4.
As far as regularity criterion ∂3u3 is concerned, Zhou–Pokorný [39] first established a regularity con-

dition based on u3 and then showed that if

∂3u3 ∈ Lβ(0, T ;Lα(R3)),
2
β

+
3
α

<
4
5
,

15
4

< α ≤ ∞, (17)

then the solution is smooth. The equality in (17) was verified by Jia–Zhou [14]:

∂3u3 ∈ Lβ(0, T ;Lα(R3)),
2
β

+
3
α

=
4
5
,

15
4

≤ α ≤ ∞. (18)

Later, Cao–Titi [4] established a bilateral multiplicative Sobolev inequality (see [32, Remark 8] for more
information, and [35] for a more efficient form)

∣
∣
∣
∣
∣
∣

∫

R3

φfg dx

∣
∣
∣
∣
∣
∣
≤ C ‖φ‖

r−1
r

L2 ‖∂iφ‖ 1
r

L
2

3−r
‖f‖

r−2
r

L2 ‖∂jf‖ 1
r

L2 ‖∂kf‖ 1
r

L2 ‖g‖L2 ,

2 < r ≤ 3, {i, j, k} = {1, 2, 3} .

(19)

With (19) in hand, Cao–Titi showed the following two smoothness conditions,

∂3u3 ∈ Lβ(0, T ;Lα(R3)),
2
β

+
3
α

=
3
4

+
3
2α

, 2 < α < ∞, (20)

and

∂1u3 ∈ Lβ(0, T ;Lα(R3)),
2
β

+
3
α

=
1
2

+
3
2α

, 3 < α < ∞. (21)

Then Fang–Qian [9, Theorems 1.1 and 1.2] dominated u3 by ∂1u3, employed some tricks in [4] and
improved (21) as (after rationalizing the denominator of [9, Equation (1.10)])

∂1u3 ∈ Lβ(0, T ;Lα(R3)),
2
β

+
3
α

=
√

103α2 − 12α + 9 + 3 − 9α

2α
, 3 ≤ α < ∞. (22)
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Finally, Zhang–Zhong–Huang [35] found a more effective substitute of (19),
∫

R3

|f |2|g|2 dx1 dx2 dx3

≤ C ‖∂if‖
2(q−1)
3q−2

L2(R3) ‖∂jf‖
2(q−1)
3q−2

L2(R3) ‖∂kf‖
2q

3q−2

Lq(R3) ‖g‖
6q−8
3q−2

L2(R3) ‖∂ig‖
2

3q−2

L2(R3) ‖∂jg‖
2

3q−2

L2(R3) ,

2 ≤ q < ∞, {i, j, k} = {1, 2, 3} .

(23)

Invoking (23), Zhang–Zhong–Huang [35] were able to improve (21) and (22) as

∂1u3 ∈ Lβ(0, T ;Lα(R3)),
2
β

+
3
α

=
3
4

+
5
4α

,
7
3

≤ α < ∞, (24)

but could not refine (20).
As for (20), Fang–Qian [9] made a contribution by invoking a regularity criterion of Zhang [33]. Fang–

Qian [10, Theorem 1.8] then used an integration by parts technique in estimating u3 by ∂3u3 and obtained
the finest result up to now,

∂3u3 ∈ Lβ(0, T ;Lα(R3)),

2
β

+
3
α

=
√

289α2 − 264α + 144 + 12 − 7α

8α
,

9
5

< α ≤ ∞.
(25)

For later developments in anisotropic Lebesgue spaces, see [11,24]. The second aim of the present paper
is to make (25) better.

Before stating the precise result, let us recall the weak formulation of (1), see [7,17,23,29] for instance.

Definition 1. Let u0 ∈ L2(R3) with ∇ · u0 = 0, T > 0. A measurable R
3-valued function u defined in

[0, T ] × R
3 is said to be a weak solution to (1) if

(1) u ∈ L∞(0, T ;L2(R3) ∩ L2(0, T ;H1(R3));
(2) (1)1 and (1)2 hold in the sense of distributions, i.e.,

t∫

0

∫

R3

u · [∂tφ + (u · ∇) φ] dx ds +
∫

R3

u0 · φ(0) dx =

T∫

0

∫

R3

∇u : ∇φ dx dt,

for each φ ∈ C∞
c ([0, T ) × R

3) with ∇ · φ = 0, where A : B =
∑3

i,j=1
aijbij for 3 × 3 matrices

A = (aij), B = (bij), and

T∫

0

∫

R3

u · ∇ψ dx dt = 0,

for each ψ ∈ C∞
c (R3 × [0, T ));

(3) the strong energy inequality, that is,

‖u(t)‖2L2 + 2

t∫

s

‖∇u(s)‖2L2 ds ≤ ‖u(s)‖2L2 , s ≤ t ≤ T,

holds for s = 0 and almost all times s ∈ (0, T ).

Now, our main result reads
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Theorem 2. Let u0 ∈ L2(R3) with ∇ · u0 = 0, T > 0. Assume that u is a weak solution to (1) on [0, T ]
with initial data u0. If one of the following two conditions holds,

∂3u ∈ Lp(0, T ;Lq(R3)),
2
p

+
3
q

=
22
13

+
3

13q
, 3 < q < 4, (26)

∂3u3 ∈ Lβ(0, T ;Lα(R3)),

2
β

+
3
α

=
3
(√

65α2 − 78α + 49 + 7 − α
)

16α
, 1.78078 ≈ 3 +

√
17

4
≤ α ≤ ∞, (27)

then the solution u is smooth in (0, T ] × R
3.

Remark 3. (1) Our regularity criterion (26) is better than (16) in case 3 < α < 4. See Fig. 1, where
“Skalak” refers to (13), “one Zhang-Zhou” (the upper one) means (14), “two Zhang-Zhou (the lower
one)” demonstrates (15), “Penel-Pokorny” reveals (4), and “this” reflects (26).

(2) Our regularity criterion (27) is better than (17), (20) and (25). See Fig. 2, where “Zhou-Pokorný”
refers to (17); “Cao–Titi” means (20); “Fang-Qian” demonstrates (25); and “this” reflects our result
(27).

(3) It is not so hard to deduce that the scaling dimension
3
(√

65α2 − 78α + 49 + 7 − α
)

16α
in (27) is

strictly decreasing with respect to
3 +

√
17

4
≤ α ≤ ∞. Notice that

lim
α→ 3+

√
17

4

3
(√

65α2 − 78α + 49 + 7 − α
)

16α
=

3(
√

17 − 3)
2

≈ 1.68466,

lim
α→∞

3
(√

65α2 − 78α + 49 + 7 − α
)

16α
=

3(
√

65 − 1)
16

≈ 1.32417,

we have the following rough, but maybe more elegant regularity criterion in terms of ∂3u3,

∂3u3 ∈ Lβ(0, T ;Lα(R3)),

2
β

+
3
α

=
3(

√
65 − 1)
16

≈ 1.32417, 1.78078 ≈ 3 +
√

17
4

≤ α ≤ ∞.
(28)

2. Proof of Theorem 2

In this section, we shall prove Theorem 2.
Case I (26) holds. For any ε ∈ (0, T ), due to the fact that ∇u ∈ L2(0, T ;L2(R3)), we may find a δ ∈

(0, ε), such that ∇u(δ) ∈ L2(R3). Take this u(δ) as initial data, there exists an ũ ∈ C([δ, Γ ∗),H1(R3)) ∩
L2(δ, Γ ∗;H2(R3)), where [δ, Γ ∗) is the life span of the unique strong solution, see [29]. Moreover, ũ ∈
C∞(R3 × (δ, Γ ∗)). According to the uniqueness result, ũ = u on [δ, Γ ∗). If Γ ∗ ≥ T , we have already that
u ∈ C∞(R3 × (0, T )), due to the arbitrariness of ε ∈ (0, T ). In case Γ ∗ < T , our strategy is to show that
u3 ∈ L3(δ, Γ ∗;L9(R3)). Then, by the fact that

(26) ⇒ ∂3u ∈ L
13q

11q−18 (δ, Γ ∗;Lq(R3)) ⊂ L
2q

2q−3 (δ, Γ ∗;Lq(R3)),

we may conclude the proof by invoking (5).
For this purpose, we multiply the equation of u3 in (1) by |u3|u3 and integrate over R

3,
1
3

d
dt

∥
∥
∥|u3| 3

2

∥
∥
∥
2

L2
+

4
9

∥
∥
∥∇|u3| 3

2

∥
∥
∥
2

L2
+
∫

R3

|u3| · |∇u3|2 dx = −
∫

R3

∂3π|u3|u3 dx ≡ I. (29)
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Fig. 1. Comparison of regularity criterion based on ∂3u

Fig. 2. Comparison of regularity criterion based on ∂3u3,
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By the Hölder inequality,

I ≤ ‖∂3π‖
L

3q
4

‖u3‖2
L

6q
3q−4

.

To dominate ∂3π, we apply the divergence of (1)1 to obtain

− Δπ = ∇ · [(u · ∇)u] =
3∑

j=1

(
3∑

i=1

ui∂iuj

)

=
3∑

i,j=1

∂i∂j(uiuj)

⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π =
3∑

i,j=1

RiRj(uiuj)

−Δ∂3π =
3∑

i,j=1

∂i∂j(∂3uiuj + ui∂3uj) ⇒ ∂3π =
3∑

i,j=1

RiRj(∂3uiuj + ui∂3uj)

(
Ri = ∂i(−Δ)− 1

2 is the Riesz transform
)

,

(30)

and thus by the interpolation inequality,

I ≤ C ‖u‖L3q ‖∂3u‖Lq ·
[

‖u3‖
6q−11
4q−3

L3 ‖u3‖
2(4−q)
4q−3

L4q

]2

.

Employing the multiplicative Sobolev inequalities (8) and (11) yields

I ≤ C ‖∂1u‖ 1
3
L2 ‖∂2u‖ 1

3
L2 ‖∂3u‖ 1

3
Lq · ‖∂3u‖Lq

·
⎧
⎨

⎩
‖u3‖

6q−11
4q−3

L3 ·
[∥
∥
∥∂1

(
|u3| 3

2

)∥
∥
∥

1
4

L2

∥
∥
∥∂2

(
|u3| 3

2

)∥
∥
∥

1
4

L2
‖∂3u3‖

1
4
Lq

] 2(4−q)
4q−3

⎫
⎬

⎭

2

.

After collection, we deduce by the Young inequality,

I ≤ C ‖∇u‖ 2
3
L2 ‖∂3u‖

13q
3(4q−3)

Lq ‖u3‖
2(6q−11)

4q−3

L3

∥
∥
∥∇(|u3| 3

2 )
∥
∥
∥

2(4−q)
4q−3

L2

≤ C ‖∇u‖
2(4q−3)
3(5q−7)

L2 ‖∂3u‖
13q

3(5q−7)

Lq ‖u3‖
2(6q−11)

5q−7

L3 +
2
9

∥
∥
∥∇

(
|u3| 3

2

)∥
∥
∥
2

L2

≤ C

(

‖∇u‖2L2 + ‖∂3u‖
13q

11q−18
Lq

)(
1 + ‖u3‖3L3

)
+

2
9

∥
∥
∥∇

(
|u3| 3

2

)∥
∥
∥
2

L2
.

Putting this above inequality into (29) and applying the Gronwall inequality give

‖u3‖L3(δ,Γ ∗;L9(R3)) =
∥
∥
∥|u3| 3

2

∥
∥
∥

L2(δ,Γ ∗;L6(R3))
≤ C

∥
∥
∥∇|u3| 3

2

∥
∥
∥

L2(δ,Γ ∗;L2(R3))
≤ C,

as desired.
Case II (27) holds. Argue as in Case I, it suffices to show that ‖∇u(t)‖L2 is uniformly bounded as

t ↗ Γ ∗. By the absolute continuity property of the Lebesgue integrable function, for δ2 ∈ (0, 1) to be
determined, we can choose a δ1 ∈ [δ, Γ ∗) such that

∇u(δ1) ∈ L2(R3),

Γ ∗
∫

δ1

‖∇∇hu‖2L2 dt < δ2. (31)

We first establish the Lq bound of u3 in terms of ∂3u3, which have been used in [9,10]. Multiplying
the third component of (1)1:

∂tu3 + (u · ∇)u3 − Δu3 + ∂3π = 0
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by |u3|q−2u3 with
2 < q ≤ 6, (32)

integrating over R
3 and applying integration by parts, we obtain

1
q

d
dt

‖u3‖q
Lq + c(q)

∥
∥
∥∇

(
|u3|

q
2

)∥
∥
∥
2

L2
= −

∫

R3

∂3π · |u3|q−2u3 dx

≤ C

∫

R3

|π| · |u3|q−2|∂3u3| dx

≡ J.

(33)

By the Hölder inequality with
1
a

+
q − 2

(q + 1)α
+

1
α

= 1, 1 ≤ a ≤ ∞, 1 ≤ α ≤ ∞, (34)

we have

J ≤ C ‖π‖La ‖u3‖q−2
L(q+1)α ‖∂3u3‖Lα .

Thanks to (30) and (11), it follows that

J ≤ C ‖u‖2L2a

(∥
∥
∥∇h

(
|u3|

q
2

)∥
∥
∥

2
q+1

L2
‖∂3u3‖

1
q+1
Lα

)q−2

‖∂3u3‖Lα ,

provided that
1 < a < ∞, 1 ≤ α < ∞. (35)

Employing the Gagliardo–Nirenberg inequality with
3
2a

= (1 − ϑ)
3
2

+ ϑ

(

−1 +
3
2

)

, 2 < 2a < 6 (36)

gives

J ≤ C
(
‖u‖1−ϑ

L2 ‖∇u‖ϑ
L2

)2 ∥∥
∥∇

(
|u3|

q
2

)∥
∥
∥

2(q−2)
q+1

L2
‖∂3u3‖

2q−1
q+1

Lα .

By the fact that u ∈ L∞(0, T ;L2(R3)) from Definition 1 and the Young inequality, we deduce

J ≤ C ‖∇u‖2ϑ
L2

∥
∥
∥∇

(
|u3|

q
2

)∥
∥
∥

2(q−2)
q+1

L2
‖∂3u3‖

2q−1
q+1

Lα

≤

⎧
⎪⎨

⎪⎩

C ‖∇u‖
2(q+1)ϑ

3
L2 ‖∂3u3‖

2q−1
3

Lα +
c(q)
2

∥
∥
∥∇

(
|u3|

q
2

)∥
∥
∥
2

L2
, if

2(q + 1)ϑ
3

< 2

C ‖∇u‖2L2 ‖∂3u3‖
2q−1

3
Lα +

c(q)
2

∥
∥
∥∇

(
|u3|

q
2

)∥
∥
∥
2

L2
, if

2(q + 1)ϑ
3

= 2

≤

⎧
⎪⎨

⎪⎩

C ‖∇u‖2L2 + C ‖∂3u3‖
2q−1

3−(q+1)ϑ

Lα +
c(q)
2

∥
∥
∥∇

(
|u3|

q
2

)∥
∥
∥
2

L2
, if

2(q + 1)ϑ
3

< 2

C ‖∇u‖2L2 ‖∂3u3‖
2q−1

3
Lα +

c(q)
2

∥
∥
∥∇

(
|u3|

q
2

)∥
∥
∥
2

L2
, if

2(q + 1)ϑ
3

= 2
.

(37)

if

2(q + 1)ϑ
3

≤ 2, β =

⎧
⎪⎨

⎪⎩

2q − 1
3 − (q + 1)ϑ

, if
2(q + 1)

3
< 2

∞, if
2(q + 1)ϑ

3
= 2

. (38)

Plugging (37) into (33), absorbing the last term into the left-hand side and integrating with respect to
the time, we find

u3 ∈ L∞(δ1, Γ ∗;Lq(R3)). (39)
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Then, we establish the bound of ‖∇hu‖2L2 with ∇h = (∂1, ∂2) the horizontal gradient operator. Testing
(1)1 by −Δhu, it follows from [3,4,39] that

1
2

d
dt

‖∇hu‖2L2 + ‖∇∇hu‖2L2 =
∫

R3

[(u · ∇)u] · Δhu dx

≤ C

∫

R3

|u3||∇u||∇∇hu| dx

≡ K.

(40)

By the Hölder inequality, the Minkowski inequality and the Gagliardo–Nirenberg inequality,

K ≤ C

∫

R2

max
x3

|u3|
⎛

⎝

∫

R

|∇u|2 dx3

⎞

⎠

1
2
⎛

⎝

∫

R

|∇∇hu|2 dx3

⎞

⎠

1
2

dx1 dx2

≤ C

⎡

⎣

∫

R2

(

max
x3

|u3|
)r

dx1 dx2

⎤

⎦

1
r

⎡

⎢
⎣

∫

R2

⎛

⎝

∫

R

|∇u|2 dx3

⎞

⎠

r
r−2

dx1 dx2

⎤

⎥
⎦

r−2
2r

·
⎡

⎣

∫

R3

|∇∇hu|2 dx1 dx2 dx3

⎤

⎦

1
2

≤ C

⎡

⎣

∫

R3

|u3|r−1|∂3u3| dx

⎤

⎦

1
r

⎡

⎢
⎣

∫

R

⎛

⎝

∫

R2

|∇u| 2r
r−2 dx1 dx2

⎞

⎠

r−2
r

dx3

⎤

⎥
⎦

1
2

‖∇∇hu‖L2

≤ C ‖u3‖
r−1

r

Lq ‖∂3u3‖
1
r

Lα · ‖∇u‖
r−2

r

L2 ‖∇∇hu‖ 2
r

L2 · ‖∇∇hu‖L2

≤ C ‖u3‖
2(r−1)

r−2
Lq ‖∂3u3‖

2
r−2
Lα ‖∇u‖2L2 +

1
2

‖∇∇hu‖2L2 .

(41)

Here, the exponents appeared above should satisfy

2 < r < ∞,
r − 1

q
+

1
α

= 1. (42)

Putting (41) into (40) and integrating with respect to the time give

sup
δ1≤t<Γ ∗

‖∇hu(t)‖2L2 +

Γ ∗
∫

δ1

‖∇∇hu‖2L2 dt

≤ ‖∇hu(δ1)‖2L2 + C

Γ ∗
∫

δ1

‖u3‖
2(r−1)

r−2
Lq ‖∂3u3‖

2
r−2
Lα ‖∇u‖2L2 dt

≤ C + C

Γ ∗
∫

δ1

‖u3‖
2(r−1)

r−2
Lq ‖∂3u3‖

2
r−2
Lα ‖∇u‖2L2 dt.

(43)
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Finally, we obtain the H1 estimate of the solution. Taking the inner product of (1)1 by −Δu in
L2(R3), it follows from [39] that

1
2

d
dt

‖∇u‖2L2 + ‖Δu‖2L2 =
∫

R3

[(u · ∇)u] · Δu dx

≤ C

∫

R3

|∇hu||∇u|2 dx

≡ L.

(44)

Invoking the Hölder inequality (8) and the Young inequality, we get

L ≤ C ‖∇hu‖L2 ‖∇u‖2L4

≤ C ‖∇hu‖L2 ·
(
‖∇u‖ 1

4
L2 ‖∇u‖ 3

4
L6

)2

≤ C ‖∇hu‖L2 ‖∇u‖ 1
2
L2 ‖∇∇hu‖L2 ‖Δu‖ 1

2
L2

≤ C ‖∇hu‖ 4
3
L2 ‖∇u‖ 2

3
L2 ‖∇∇hu‖ 4

3
L2 +

1
2

‖Δu‖2L2 .

(45)

Gathering (45) into (44) and integrating with respect to the time provide

sup
δ1≤t<Γ ∗

‖∇u(t)‖2L2 +

Γ ∗
∫

δ1

‖Δu‖2L2 dt

≤ ‖∇u(δ)‖2L2 + C

Γ ∗
∫

δ1

‖∇hu‖ 4
3
L2 ‖∇u‖ 2

3
L2 ‖∇∇hu‖ 4

3
L2 dt

≤ C + C sup
δ1≤t<Γ ∗

‖∇hu(t)‖ 4
3
L2

⎛

⎝

Γ ∗
∫

δ1

‖∇u‖2L2 dt

⎞

⎠

1
3 ⎛

⎝

Γ ∗
∫

δ1

‖∇∇hu‖2L2 dt

⎞

⎠

2
3

.

(46)

Thanks to (31) and the obtained estimates (43) and (39), we have

sup
δ1≤t<Γ ∗

‖∇u(t)‖2L2 +

Γ ∗
∫

δ1

‖Δu‖2L2 dt

≤ C + Cδ
1
3
2

⎡

⎣C + C

Γ ∗
∫

δ1

‖u3‖
2(r−1)

r−2
Lq ‖∂3u3‖

2
r−2
Lα ‖∇u‖2L2 dt

⎤

⎦

4
3

≤ C + Cδ
1
3
2 sup

δ1≤t<Γ ∗
‖u3(t)‖

8(r−1)
3(r−2)

Lq · sup
δ1≤t<Γ ∗

‖∇u(t)‖2L2 ·
⎛

⎝

Γ ∗
∫

δ1

‖∂3u3‖
2

r−2
Lα ‖∇u‖ 1

2
L2 dt

⎞

⎠

4
3

≤ C + Cδ
1
3
2 sup

δ1≤t<Γ ∗
‖∇u(t)‖2L2

⎛

⎝

Γ ∗
∫

δ1

‖∂3u3‖
8

3(r−2)

Lα + ‖∇u‖2L2 dt

⎞

⎠

4
3

.

(47)
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Now, if

β =
8

3(r − 2)
, (48)

then the last integral in (47) is finite, and once we choose δ2 sufficiently small, then we can absorb the
last term in (47) into the left-hand side to deduce

sup
δ1≤t<Γ ∗

‖∇u(t)‖2L2 ≤ C,

as desired. The proof of Theorem 2 is thus completed.

Now, we calculate all the parameters above. Denote by β̃ =
1
β

, α̃ =
1
α

, then

1
q

=
1

r − 1

(

1 − 1
α

)

=
1

(r − 2) + 1
(1 − α̃) (by (42))

=
1

8
3β + 1

(1 − α̃) =
3(1 − α̃)
8β̃ + 3

(by (48)).
(49)

On the other hand,

β̃ =
1
β

=
3 − (q + 1)ϑ

2q − 1
(by (38))

=
3

2q − 1
− q + 1

2q − 1
· 3
2

(

1 − 1
a

)

(by (36)⇒ ϑ =
3
2

(

1 − 1
a

)

)

=
3

2q − 1
− q + 1

2q − 1
· 3
2

· 2q − 1
(q + 1)α

=
3

2q − 1
− 3

2α
(by (34)⇒ 1 − 1

a
=

2q − 1
(q + 1)α

).

(50)

Putting (49) into (50) yields

β̃ =
3

2q − 1
− 3

2
α̃ =

3

2 8β̃+3
3(1−α̃) − 1

− 3
2
α̃ ⇒ 32β̃2 + (54α̃ + 6)β̃ + (9α̃2 + 27α̃ − 18) = 0.

Solving this quadratic equation gives

β̃ =
3(

√
65 − 78α̃ + 49α̃2 − 9α̃ − 1)

32
.

Hence,

2
β

+
3
α

= 2β̃ + 3α̃ =
3(

√
65 − 78α̃ + 49α̃2 + 7α̃ − 1)

16
=

3
(√

65α2 − 78α + 49 + 7 − α
)

16α
.

Now, the main restriction of α comes from (32) and (38). After some calculations, we find (38) reduces

to
3 +

√
17

4
≤ α ≤ ∞ (in (38), β = ∞ corresponds to α =

3 +
√

17
4

), and all the assumptions, say (32),

(34)-(36), (38), (42), (48), are all valid.

Remark 4. If we apply the same method in the proof of Theorem 2 to [9, Theorem 1.2], that is, in showing
[9, Lemma 2.1], we use the generalized multiplicative Sobolev inequality (11), we get better result than
(22), but no better result than (24).
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