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Deformation of a fluid drop subjected to a uniform electric field
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Abstract. We theoretically investigate the deformation of a perfect dielectric drop suspended in a second dielectric liquid
subject to a uniform electric field. Axisymmetric equilibrium shapes are found by solving simultaneously the Young–
Laplace equation at the interface and Laplace equation for the electric field. Analytical solutions are constructed for the
governing nonlinear boundary-value problem using domain perturbation method together with a special type of Hermite–
Padé approximation. The results show the existence of a critical electric capillary number beyond which no axisymmetric
figure is possible.
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1. Introduction

Electrohydrodynamic phenomena arise in a broad variety of scientific and engineering applications. These
include, among others, inkjet technology [1], electrostatic spraying [2], electrowetting [3], mass spectrome-
try especially electrospray ionization [4], processes controlled by convection in microgravity [5], and other
phenomena in microfluidics [6].

An electric field can also be an effective method for improving heat transfer in nucleate pool boiling
process [7].

In meteorology, the shape of the drops in the presence of electric forces has been the subject of many
research investigations as diverse as the depolarization of electromagnetic waves in the rain, the study of
storms and the investigation of different mechanisms of precipitation formation [8,9].

In emulsion processes, the application of an electric field makes it possible to characterize the stability
of the emulsion and to improve the performance of the surfactants [10].

For the study of the phenomena related to the water/oil interface, the oil after settling is subjected to
an electric field which allows the water drops to coalesce and thus create a phase of free water separated
from oil [11].

In the following, we briefly review some of the previous works focusing on the influence of an electric
field on the behaviour of an isolated fluid drop suspended in another fluid. Special emphasis will be placed
on the studies concerning the shapes of this drop and the conditions of their stability. The influence of
the various physical parameters of the fluids (permittivities ratio, conductivities ratio, as well as the
associated other dimensionless numbers) is conducted.

The deformation of a dielectric drop subject to an electric field has fascinated scientists for generations.
The first studies on the effects of electric fields and charges on liquid drops were reported by Franklin in
1751 cf [12].
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We mention in this respect the pioneering work of Lord Rayleigh [13] who examined the behaviour of
charged drops. He found that an electrically charged drop becomes unstable when the repulsive electro-
static force dominates the attractive surface tension. The drop then breaks up into numerous small drops
and leaving behind a stable residual drop. He deduced the criterion of instability for a conductive drop
of radius a, stipulating that the drop remains stable as long as its charge q is lesser than 8π(a3γε0)1/2,
where ε0 is the vacuum permittivity and γ is the surface tension coefficient. This maximum amount of
charge that a liquid drop could carry to remain stable, is known as the “Rayleigh limit”.

O’Konski and Thacher [14] studied the deformation of two types of drops: droplets in water clouds
and in a dioctyl phthalate oil smoke, immersed in a uniform electric field. They advocate that the droplet
elongates in the direction of the field, whether its dielectric constant is higher or lower than that of
the surrounding medium, due to the decrease in the total electrostatic free energy of the system which
accompanies this distortion in both cases.

In the work of Allan and Mason [15], the deformation and breakup of liquid drops suspended in another
immiscible liquid and immersed in a uniform electric field were examined. The authors found that for
lower electric field strength values, the deformation of conducting drops into prolate spheroids exhibits
a good quantitative agreement with the electrostatic theory. They concluded that breakup behaviour
depends on the ratio of the velocity gradient to the electric field strength and the other involved physical
parameters.

Garton and Krasucki [16] have shown that a bubble of gas or liquid, under the action of an electric
field between two parallel electrodes, takes the form of an elongated spheroid in the direction of the
field. They suggested that the bubbles for which the permittivity ratio (denoted κ) go past the value 20,
lengthen until a critical shape is reached, and then the bubbles become unstable. Their experiments have
also shown that beyond this critical value, sharp conical tips at the drop poles are formed.

Motivated by the experiments of Allan and Mason, Taylor [17,18] argued that when the drop and
the suspending fluid medium have finite conductivities, surface charges are generated, which in turn
lead to circulatory currents inside and outside the drop and bring the interface to an equilibrium state.
Additionally, he established a relationship between the ratios of conductivities, viscosities and dielectric
constants of the drop and the surrounding medium which allows the drop to remain spherical. Moreover,
he gave a criteria describing the circulations that move the surface of the drop towards or away from the
poles and to predict whether the drop will become elongated or flattened. Taylor’s model based on this
analysis has since come to be known as the leaky dielectric model. A literature review on this model and
its applications to phenomena related to electrohydrodynamics was performed by Saville [19].

Rosenkilde [20] used an appropriate extension of the virial method developed by Chandrasekhar, to
predict that the drop becomes unstable for sufficiently large electric fields above a threshold of the relative
permittivity κ equal to 20.8.

Ajayi [21] extended Taylor’s linearized asymptotic model [18] by including higher-order terms to
predict the behaviour of flattened drops; however his study proved insufficient to narrow the gap between
theory and experiment. Apparently, this disparity is due to the negligence of nonlinear interfacial charge
convection in his model.

By means of the boundary-integral techniques, Miksis [22] had computed the shape of an axisymmetric
dielectric drop in a uniform electric field. His results showed that an elongated spheroidal shape is obtained
for the permittivity ratio lower than a critical value of the order of 18.08. Beyond this value, the drop
will develop for a certain field strength, two obtuse-angled conical tips at its ends known as Taylor cones.

Dodgson and Sozou [23] examined the same problem by considering small perturbations of an elongated
spheroid. They obtained a critical permittivity ratio in good accord with that of Rosenkilde.

Sherwood [24] have demonstrated that above the value κ = 20.8, there are three equilibrium figures
(two stable and one unstable) for an intermediate range of electric field strengths. Furthermore, he
established that the pointed ends are predicted by a numerical scheme when the permittivity of the drop
is high relative to that of the surrounding fluid.
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Basaran and Scriven [25] used finite-element simulations to argue that at the Rayleigh limit, a family of
spherical figures exchange stability with a family of two-lobed shapes through a transcritical bifurcation,
of which a branch turns out to be stable.

Li and his co-authors [26] have developed a semi-analytical approach to study the drop deformation
in a uniform field, whether electric or magnetic. They showed that beyond a critical value of κ of order
17.59, two conical interfaces with a half opening angle Θ are possible, one stable for Θ < 49, 3 and the
other unstable for large value of Θ. They thus confirmed the result previously obtained by Taylor in [18].

Feng and his co-authors [27] examined numerically the same problem on the basis of the leaky dielectric
model. The authors constructed a family of drop shapes exhibiting a turning point when the dimensionless
field strength reaches a critical value beyond which no steady solution is possible.

Stone et al. [28] developed an analytical expression relating the dependence of the equilibrium cone
angle as a function of the ratio κ. When κ → ∞, their results compare well with those obtained by Taylor
[18] and Li et al. [26].

Following the leaky dielectric model formulation, Shaw and his colleagues [29] investigated analytically
the drop deformation problem. The results of their analysis suggest that there is a critical value of electric
capillary number beyond which no steady states exist and thus bubble disintegration takes place.

In Bjørklund [30] and Paknemat et al. [31], the level set method was used to capture the interface
of a drop under the application of an electric field in the absence of a net volume charge. Their results
enabled them to determine the drop profiles for a wide range of electric capillary numbers CaE , and in
particular, to determine the critical value of this number associated with the drop disintegration.

2. Electrohydrodynamics equations

First, let’s recall that electrohydrodynamics (EHD) is an interdisciplinary research field encompassing
several fields including electrostatics and fluid mechanics, where the ohmic model can be a good approx-
imation useful in many cases ( [19], [32]).

In this section, we will give an intuitive description of this model and depict the hypothesis behind
it. We then propose some physical insights about Maxwell’s stress tensor, which plays the crucial role of
coupling electrostatic and hydrodynamic effects.

In this work, we will first state the basic electrical laws defining the problem dealt with in this work.
An important feature of electrohydrodynamic interactions is that the electric field E is irrotational (Elec-
troquasistatic approximation). In addition, dynamic currents are so small that the magnetic induction
influence is negligible. Thus the appropriate laws are generally those of electrostatics, as resumed below
(see, for example [19], [32]).

∇ × E = 0 (1)
D = εE (2)
∇ · D = qv (3)

j = σeE + qvu +
∂D

∂t
(4)

∇ · j + ∂qv

∂t
= 0 (5)

where σe is the electrical conductivity, ε is the dielectric permittivity of the medium and u is the fluid
velocity field. D is the electric displacement vector, j the current density and qv is the electrical volume
charge density.

Equation (3) expresses Gauss’s law for electrically linear medium. The current density j is the combi-
nation of three mechanisms of the current flow: the first term σeE is the Ohmic current which denotes
the electrical conduction contribution in the medium, the second term qvu is the convection current and
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the last term is due to the variation time of the electric displacement field. Finally Eq. (5) expresses the
free charges density conservation.

Although electrical conduction in fluids is often badly characterized by Ohm’s law (j = σeE), this
simple conduction law can be used to draw important conclusions.

For free surface flows in electrohydrodynamics involving a bounded domain Ω with regular boundary
Γ, as the one treated in this work, we must add to the preceding equations, those resulting from fluid
mechanics, namely the continuity equation and the momentum conservation:

∂ρ

∂t
+ ∇ · (ρu) = 0 (6)

∂(ρu)
∂t

+ ρ(u · ∇)u = ∇ · (−pI + μ(∇u + ∇uT ) + σM
)

+ ρgng + γCδΓn (7)

where ρ is the fluid density, p the pressure field, I the identity tensor, μ the dynamic viscosity, γ the
surface tension coefficient, C the mean interface curvature, δΓ the Dirac measure at the interface Γ, g
is the gravitational acceleration and σM the Maxwell stress tensor. n and ng denote, respectively, the
normal at the interface and the unit gravity vector. Recalling that the Maxwell stress tensor is defined
by:

σM = ε(E ⊗ E − 1
2
E2I) (8)

The electric forces density Fe is related to the Maxwell stress tensor by the relation: Fe = ∇ · σM .
In most macroscopic flow studies, the influence of an external electric field on a moving fluid can be

neglected, as shown by a simple analysis of the order of the magnitude of the forces involved. The electric
force must be taken into account when the scale of the flow is small, since externally applied electric fields
(even when relatively small) can have a significant effect on a flow, especially when considering cases of
multiphase flows. Moreover, in the dielectric formulation proposed by Taylor (leaky dielectric), the electric
force is important only when there is a gradient or a jump in electrical conductivity σe and/or in the
permittivity ε. Since this two-phase fluid model is observed at such small scales, the effects of capillary
forces must be taken into account in the momentum equation (last term of Eq. 7).

3. Governing equations

In this section, we will determine the axisymmetric equilibrium figures of an incompressible perfect
dielectric drop, suspended in another incompressible fluid without free charge density. The problem will
be set in a reference frame (ex, ey, ez) with the origin attached to the drop centre. By applying an external
electric field E∞, parallel to the gravity direction, i.e. E∞ = −E∞ez, the drop becomes deformed. Its
shape is determined by the local balance of the surface tension and external forces corresponding here
to the gravity and the electric force. Surface tension tends to make the drop spherical, whereas gravity
tends to flatten it. Typically, the external electric field tends to lengthen it along its direction.

We will consider the special case of a smooth axisymmetric drop that occupies a domain Ω1, exhibiting
symmetry of revolution about the axis Oz and symmetrical with respect to the plane Oxy. We denote
by ∂Ω1 the boundary of Ω1 and by n its outward unit normal vector. The surrounding fluid occupies the
domain Ω2 = R3 − Ω1. The situation is portrayed in Fig. 1.

The electric field discontinuity across the interface creates a jump of Maxwell’s stress tensor denoted
by ΔPe = [n.σM .nT ] that is similar to an electric pressure, where the notation [( · )] represents the jump
across the interface of the quantity “( · )” inside the brackets.

Given the relation (8), the external and internal Maxwell stress σM
e , respectively, σM

i at the drop, can
be expressed in terms of tangential (Et) and normal (En) components of the electric field by the relations
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Fig. 1. Schematic diagram of the problem setup

(see for example, Sherwood [24])

σM
i =

1
2
ε1(E2

1n − E2
1t), σM

e =
1
2
ε2(E2

2n − E2
2t) (9)

where εi, (i = 1, 2) is the dielectric constant of medium i.
If the two media are perfect dielectrics with zero electrical conductivity, then the continuity of the

electric field tangential components is satisfied, i.e. E1t = E2t = Et. Therefore, the jump of the normal
electrical stress across the interface separating the two dielectric media can be written as follows:

ΔPe = σM
e − σM

i =
1
2

(
ε2E

2
2n − ε1E

2
1n + (ε1 − ε2)E2

t

)
(10)

Because there is an interface between two dissimilar dielectric media, the boundary conditions can then
be expressed as:

ε1En1 = ε2En2 (11)

Then it follows that the electric pressure may be written in the form:

ΔPe =
1
2

(ε1 − ε2)
[
ε1
ε2

E2
n1 + E2

t

]

In other words, this relation can be expressed by the general formula:

ΔPe =
1
2
ε2 (κ − 1)

[
κE2

n1 + E2
t

]
(12)

where κ = ε1
ε2

is the ratio of the two media dielectric constants.
The equilibrium shape of a charged drop can be determined from the condition that local interfacial

forces must be in balance at each point on the surface resulting in the so-called augmented Young–Laplace
equation [25]:

γC = ΔP0 + Δρgz + ΔPe (13)

where γ is the surface tension coefficient, C is the interface mean curvature of ∂Ω1, ΔP0 is the difference
in pressure across the drop interface, Δρ is the density difference between the drop and surrounding fluid,
g is the acceleration due to gravity, and z is the vertical distance measured from the origin in the opposite
direction to gravity.
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When the drop is a perfect dielectric liquid with no free charge density at the interface, then the
electric tangential stress will be zero. Thus, the equation governing the equilibrium shape, i.e. Eq. (13),
is reduced to:

γC = ΔP0 + Δρgz +
1
2
ε1 (κ − 1) E2

n1 (14)

We will assume that the drop is static under the electric field and that the effects of gravitational forces
are negligible compared to the effects of electrostatic forces. In the absence of fluid movement, Eq. (14)
reflects the fact that the drop shape results from the equilibrium between surface tension and electrical
pressure at the interface.

In the absence of the electric field, the equilibrium shape is a spherical domain Ω0 of radius R. A
spherical coordinate system (r, θ, ψ) has to be assumed, with the origin at the centre of the drop and
with the z direction as the symmetry axis. ψ is the azimuthal direction angle and θ is the angle of the
meridian measured from the axis of symmetry as shown in Fig. 1.

The electric field E can be expressed as : E1 = ∇u1 and E2 = ∇u2 + E∞, where u1 and u2 are the
electrostatic potentials outside and inside the drop, with u2 → 0 and ∇u2 → 0, as r → ∞.

By introducing the following dimensionless variables : C̄ = RC, E = E∞Ē, x = Rx̄, u =
E∞Rū, the equations governing the electrostatic problem become:

Δūi = 0 in Ωi i = 1, 2. (15)
λ

2
(κ − 1)

[
κĒ2

n1 + Ē2
t1

] − C̄ + K = 0 on ∂Ω1 (16)

where

λ =
ε2RE2

∞
γ

= CaE , K =
RΔP0

γ
(17)

with E∞ is the electric field magnitude far from the drop, CaE is the electric capillary number which is
the ratio of electrical stress to surface tension. The dimensionless parameter K is related to the difference
between the drop and the ambient pressure. This unknown constant can be determined by constraining
the drop volume to be fixed at V0:

V = V0 =
4π

3
R3 (18)

For axisymmetrical shapes, the radial shape function is described in spherical coordinates as r = Rf(θ, λ)
where f(θ, λ) is the dimensionless shape function of the drop. From now, the bars will be dropped for
clarity.

The governing equations (15, 16) are subject to the following boundary conditions:

fθ = 0, at θ = 0, π, (19)

u1 = u2 − cos θ and
∂u2

∂n
− ez · n − κ

∂u1

∂n
= 0 on ∂Ω1 (20)

where fθ = df
dθ , and the symbol ∂

∂n denotes differentiation with respect to the outward normal derivative
on ∂Ω1.

According to Gauss’s law, the Laplace equation (15) governs the electrostatic potential behaviour
inside and outside the drop. The normal stress balance (16) deduced from the Bernoulli equation for
the static drop is a modified form of the Laplace–Young equation that includes the contribution of the
electrostatic pressure. The condition (19) is necessary for the drop to be axisymmetric, while relations
(20) represent, respectively, the electrostatic potential continuity and the electric displacement at the
interface, separating the two dielectric media.
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Fig. 2. Lagrangian representation

4. Method of solution

In this section, we will use the domain perturbation method developed by Joseph [33] that allows us to
construct an analytical solution to the problem (15-20). The idea behind this approach is to consider
as principal unknown the transformation field x = T (X, λ) from the initial known domain Ω0, taken as
a reference position, to the unknown position Ω1 (see Fig. 2). Therefore, the actual calculation will be
carried out on the unperturbed domain. Thereby this perturbation analysis approach is used to study of
the effect of a small electrical field on the stability of a nearly spherical drop.

Let T be a domain transformation of class C2 that maps the spherical domain Ω0 to the unknown
domain Ω1:

{
T : Ω0 → Ω1

X �→ x = T (X, λ)

The transformation field form can be written as: T = rf(θ, λ)er, where er, eθ, eψ are the usual unit vectors
in spherical coordinates.

Now under these considerations, the potential u can be written as : u(x, y, z) = v(r, θ, λ).
The equations transported back to the reference configuration Ω0 are given by:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇ · (|detT ′|T ′−1tT ′−1∇v1

)
= 0 for r < 1

∇ · (|detT ′|T ′−1tT ′−1∇v2

)
= 0 for r > 1

v1 = v2 − cos θ for r = 1
tT ′−1∇v2 ·t T ′−1er − tT ′−1et

z · tT ′−1er − κ tT ′−1∇v1 ·t T ′−1er = 0 for r = 1
v2 → 0 and ∇v2 → 0, as r → ∞

(21)

Where T ′, T ′−1,t T ′ denote, respectively, the Jacobian, the inverse and the transpose of the Jacobian.
Equation (16) is transformed into a relation expressing the scalar potential v and the shape function f
as follows:

λ
(κ − 1)

2

[

κ

(
tT ′−1 ∂v1

∂r

)2

+
(

1
r

tT ′−1 ∂v1

∂θ

)2
]

− C + K = 0 (22)

The mean curvature is written in terms of the shape function as:

C = −ffθθ − f2
θ − f2

(f2 + f2
θ )3/2

− fθ cos θ − f sin θ

f sin θ(f2 + f2
θ )1/2

(23)
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The reference pressure K depending only on λ is calculated by requiring the drop volume to be fixed by
the constraint (18) i.e.:

π/2∫

0

f3 sin θdθ = 1 (24)

Therefore, the first equations of the system (21) can be written in the form:

[F1i]r +
2
r

[F1i] +
1
r

[F2i]θ +
cos θ

r sin θ
[F2i] = 0 i = 1, 2 (25)

with F1i =
[
(
f2 + f2

θ

)
vir − fθviθ

r

]
, F2i =

(
f

r
viθ − fθvir

)
, i = 1, 2. The boundary conditions are

reduced for r = 1, to the following relations :
{

v1 = v2 − cos θ
(f2 + f2

θ )(v2r − κv1r) − ffθ(v2θ − κv1θ) =
(
f2 + f2

θ

)
cos θ + ffθ sin θ

(26)

and the modified Young–Laplace equation becomes:

λ
κ − 1

2

[

κv2
1r

(
1 +

fθ

f

)2

+ v2
1θ

]

+ (K − C)f2 = 0 (27)

The advantage of this procedure is that the equations and boundary conditions can be rewritten with
respect to a fixed reference domain, and in addition explicit equations estimating the shape function f
are obtained. The major drawback is that these equations are a little more arduous. Noticing that for
λ = 0, there is a solution: f(θ, 0) = 1, and v(r, θ, 0). Using the implicit function theorem [34], we can
assert the existence of a unique solution depending only on r, θ and analytic in λ. Therefore, the above
functions v,K and f can be expressed as a power series expansion in λ, for sufficiently small λ:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

v1 = v1(r, θ, λ) =
∑

n≥0

λnsn(r, θ), for r < 1

v2 = v2(r, θ, λ) =
∑

n≥0

λntn(r, θ), for r > 1

f = f(θ, λ) =
∑

n≥0

λngn(θ)

K =
∑

n≥0

λnhn

(28)

We first insert the relations (28) into the governing Eqs.(25-27) and collect the coefficients of similar
powers of λ, to obtain a sequence of perturbation problems containing differential equations with their
associated boundary conditions. We note that the system of equations is uncoupled at each order, in
the sense that the equations of the potential at order m + 1 depend only on solutions of lower-order
problems. At each order, we firstly integrate the equation derived from (25) with respect to sn(r, θ) and
tn(r, θ) subjected to the boundary conditions (26). Secondly, we insert these values into (27) to get the
expression for gn, which enclose an unknown constant of the reference pressure hn. This constant has to
be calculated by taking into account Eq. (24). In addition, these equations turn out to have solutions as
linear combination of Legendre’s polynomials. We can thus write:

sn(r, θ) =
∑

m≥0

am
n (r)Pm(ξ), tn(r, θ) =

∑

m≥0

bm
n (r)Pm(ξ), gn(θ) =

∑

m≥0

cm
n P2m(ξ) (29)

with ξ = cos θ. Furthermore, we derive equations for am
n (r), bm

n (r) and cm
n which are submitted to

condition (24), enabling us to calculate hn.
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In what follows, we will examine the first few orders:
Order 0:
The Laplace–Young equation gives: h0 = 2. The equations for potential are:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δs0 = 0 for r < 1
Δt0 = 0 for r > 1
t0 − s0 = −1 for r = 1
∂t0
∂r − κ∂s0

∂r = 1 for r = 1
t0 = − cos θ as r → ∞

whose solutions are:

s0(r, θ) = −3αrξ, t0(r, θ) = −ξ +
α(κ − 1)ξ

r2
, where α =

1
κ + 2

.

Order 1: The Laplace–Young equation is reduced to:

d2g1

dθ2
+

cos θ

sin θ

dg1

dθ
+ 2g1 =

1
2
(κ − 1)

[

κ

(
cos θ

∂s0

∂r
(1, θ)

)2

+
(

sin θ
s0(1, θ)

r

)2
]

+ h1

Taking into account (29) and injecting the expressions of s0(r, θ) into the relation above yields:

g1(θ) = β1(3P2(ξ) − 1), where β1 =
3
8
(κ − 1)2α2.

The constraint on the volume gives:

h1 = −1
2
α2κ(κ − 1)σ1, where σ1 = 5κ2 + 8κ + 14.

The analysis can in principle be carried out to obtain terms of higher order, but the task becomes
tedious and cumbersome. Using a computer algebra system, we obtained the first 15 terms of the solution
series (28). Thus in spherical coordinates, the radial position of the interface is given up to order 2 by:

f(θ, λ) = 1 + β1 [3P2(ξ) − 1)] λ + β2

[
5(κ + 2)(21κ2 + 55κ − 20)P4(ξ)

+ 6(−39κ3 + 74κ2 + 292κ − 192)P2(ξ) + 69κ3 − 217κ2 − 682κ − 376]λ2 + O(λ3) (30)

with β2 = − 3
40

αβ1(κ − 1)
(3κ + 4)

.

5. Bifurcation study

5.1. Objective and general principles

The equilibrium states of a perfect dielectric drop in a uniform electrostatic field in dimensionless form
, i.e. Eqs.(15-20), are determined as solutions of a functional equation of the form G(λ, φ) = 0, where
φ = (v, f,K) is an element of a Banach space E , and G is a mapping from Λ × E to another Banach
space F , Λ ⊂ R. The implicit function theorem [34] ensures the existence and uniqueness of a solution
provided that the linear operator L(λ) = ∂G

∂φ (λ, φ) is invertible in a neighbourhood of λ = 0. In general,
the operator L(λ) has a discrete spectrum. If none of its eigenvalues vanish, the operator is then invertible
and therefore, there exists a unique solution to G(λ, φ) = 0. Suppose that as λ crosses a critical value λc,
one or more eigenvalues of L(λ) becomes zero, then the operator L(λ) is no longer invertible, which is a
condition for λc to be a bifurcation point or a limit point. For further details, see the reference [34].

For perturbation problems, a specific method for calculating bifurcation points can be performed by
analysing the obtained solution series. In this case, bifurcation points are related to the values of conver-
gence radius of these solutions (point where analyticity fails). However, the difficulty lies in determining
these parameters directly from the classical ratio test. In fact, most perturbation series have a finite
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number of terms as the case examined here. So it’s difficult to estimate more precisely the radius of
convergence. Moreover, these calculations cannot be done without the aid of a computer algebra system.
Besides, this approach suffers from what is called intermediate expression swell or combinatorial explosion
causing the RAM exhaustion.

The aim of analysis series is to obtain from the first N coefficients, as accurately as possible, the
convergence radius namely the distance to the origin of the nearest singularity. We should report that
there exists several methods devised for extracting estimates of the critical parameters from a finite
number of series coefficients. The most commonly used methods are the ratio method, initially developed
by Domb and Sykes and expanded by many authors, and semi-numerical approximant methods, such
as Padé approximants [35], Hermite–Padé approximants [36], etc. For our part, we use a new form of
differential approximants (see references [37], [38]) which are a subclass of Hermite–Padé approximants.
This method has proved to be a useful tool in many branches of physics and applied mathematics to
determine the singularities of a function from its power series expansion, as well as estimate it on its
branch cuts. It consists of a high-order linear differential equation with polynomial coefficients that is
satisfied approximately by the partial sum of a power series.

5.2. The basic procedure

In the previous section, we have examined the analytic structure of the solution series (28). Once this is
realized, the next step is to locate the nearest singularity limiting the convergence of these series and to
examine its nature. This singularity should be real and positive in order to have a physical sense.
Suppose that U(λ) is an analytic representation of an unknown function u(λ), i.e.

U(λ) =
∞∑

n=0

dnλn as λ → 0 (31)

It has been reported above that only a limited number of coefficients (say N) can be determined. We
are interested to study the bifurcation by analytic continuation as well as the dominant behaviour of the
solution by using the partial sum :

UN (λ) =
N−1∑

n=0

dnλn (32)

It is well known that the singularity must be either an algebraic pole or a logarithmic branch point (cf.
[35]). So U(λ) takes the form:

U(λ) ∼
{

A(λc − λ)γ for γ 	= 0, 1, 2, ...,
A(λc − λ)γ ln|λc − λ| for γ = 0, 1, 2, ...,

as λ → λc (33)

where A is some constant and λc is the critical point with the critical exponent γ.
In order to extract this singularity, we will adopt the same approach as in ( [37], [38]) based on

differential Hermite–Padé approximants.
Let us recall that these approximants are obtained by identifying polynomials AmN such that:

A0N (λ) +
M∑

m=1

AmN (λ)U (m)(λ) = O(λm) as λ → 0 (34)

with
M∑

m=0
degAmN (λ) + M = N , and U (m)(λ) = Dm−1U(λ), where D is the differential operator given

by D = d
dλ . In addition, we normalize the polynomials (34) by setting A0N (λ) = 1, in order to obtain as

many equations as unknowns. In practice, we often take M = 3, we believe that this choice will lead us
to detecting physical singularities as Common did in his work [36].
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Table 1. Calculations showing the rapid convergence of the procedure corresponding to the bifurcation point for the
aspect ratio e(λ) for different values of κ

M N κ = 50 κ = 30 κ = 20 κ = 10
λcN λcN λcN λcN

1 9 0.1952336959 0.2125246851 0.2354803662 0.3141845313
2 12 0.1948455186 0.2120644074 0.2349496492 0.3134597348
3 15 0.1946919163 0.2118288164 0.2346965164 0.3128976634

The dominant singularities associated to (34) turn up to be the zeros of the leading polynomial A3N (λ).
The nearest singularity λc is the smallest one, and the critical exponent γN may be estimated by

γN = 1 − A
(M−1)
N (λc,N )

DA
(M)
N (λc,N )

(35)

6. Results and discussion

The equilibrium shapes and stability of perfect dielectric drop in an external electric field, are governed
by two parameters: the electrical permittivity ratio κ and the electric capillary number CaE = λ which
measures the relative importance of electrical stress and surface tension in setting drop shape.

The Hermite–Padé approximation procedure in Sect. 5 was applied to the first 15 terms of the solution
series obtained in Sect. 4. This procedure makes it possible to evaluate that for every value of κ, there is
a critical value λc (a limit or bifurcation point) such that, for 0 < λ < λc, the axisymmetric drop shapes
are stable but at λc lose stability to give rise to a unstable equilibrium shapes family. By means of energy
arguments O’Konski and Thacher [14], Garton and Krasucki [16], and Sherwood [24], have shown that
only prolate equilibrium shapes are those that minimize the total energy defined as the sum of the surface
energy and the electric energy. This energy minimization procedure shows that the prolate shape family
remains stable for λ < λc, which is a typical case of a subcritical bifurcation.

In the following, we first illustrate how the obtained series solutions will permit us to identify the
nature and location of the nearest singularity to the origin. Secondly, we show that this singularity
corresponds to a bifurcation point. To do this, we employ the differential approximants of Hermite–Padé,
and the results are reported in Tables 1, 2 and 3. This approach will first be applied to analyse the aspect
ratio e(λ) = Rp

Re
, where Re and Rp denote, respectively, the equatorial and polar radius of the drop. The

series corresponding to e(λ) can be written as

e(λ) =
∑

n≥0

pnλn (36)

Table 1 shows the rapid convergence of the dominant singularity λc for different values of the ratio of
the dielectric permittivities κ, with a gradual increase in the coefficients number of the series (36) used
in the approximants.

By similar calculations, we proceeded to extract the nearest singularities to the origin corresponding
to the semi-axis Re, Rp and to the reference pressure K (cf. Table 2). We found values roughly equal to
that of the aspect ratio.

Results for higher permittivity ratios are included in Table 3. We notice from Tables (1-3) that the
estimates of λc decrease as κ increases.

In the following, we will proceed to a comparison between the results obtained by this analytical
approach and those existing in the literature. We have contented ourselves with a comparison with
results from authors who neglected the conductivities of the two media, as is the case dealt with in this
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Table 2. Calculations showing the rapid convergence of the procedure corresponding to the bifurcation point for the
reference pressure K(λ) for different values of κ

M N κ = 50 κ = 30 κ = 20 κ = 10
λcN λcN λcN λcN

1 9 0.1948402612 0.2119338761 0.2346419210 0.3140346307
2 12 0.1947895390 0.2119627307 0.2348031756 0.3134296352
3 15 0.1946632718 0.2118613095 0.2347029490 0.3129595439

Table 3. Critical electric capillary number vs κ

Value of κ 28 30 50 100

Critical values of CaE 0.2154186097 0.2118288164 0.1946919163 0.1827286575

Table 4. Comparison of critical values of the electric capillary number versus the permittivity ratios κ

Value of κ Taylor [17] Sherwood [24] Dodgson and Sozou [23] Present work

ε1 → ∞ 0.20976 0.20430 0.20453 0.1717632540
28.2 0.21 0.2146655392
25 0.31 0.2208122145
20 0.36 0.34784 0.2346998806
1 0.24 0.2478126749

work. The results are listed in Table 4. We note that for certain values of κ, in particular when ε1 is
very large, the values obtained are significantly different. However for some cases, the values obtained are
slightly different.

Depending on the value of the parameter κ and the strength field i.e. λ, the drop deforms into a
flattened or elongated spheroid as shown in Figs. 3, 4, 5, 6, 7, 8 and 9, but as we mentioned before, only
the elongated shapes are stable for λ < λc, unstable otherwise because the drop depart from its local
energy minimum; these drops are rarely observed in experiments. This joins the result of Taylor [18] who
deduced on theoretical bases that an uncharged drop becomes unstable at a turning point in the applied
field strength.

This behaviour can also be examined by considering the Taylor deformation parameter defined by
DTaylor = (Rp − Re)/(Re + Rp). Positive and negative values of DTaylor stand for prolate and oblate
shapes, respectively. Using the relation giving the dimensionless shape function of the drop, as stated in
Eq. (28), we obtain:

DTaylor = C1(κ)λ + C2(κ)λ2 + O(λ3) (37)

with

C1(κ) =
3β1

2
, C2(κ) =

9
16

β2
1 − β2

16
(2283κ3 − 7753κ2 − 23274κ + 14824)

We observe that at order 1, this formula coincides with that established by Allan and Mason [15] and
O’Konoski and Thacher [14] . The evolution of this parameter is shown in Fig. 3 for different values of
the permittivity ratio. This figure illustrates that for κ less than a critical value κc = 18, the drop profile
is flattened at higher field strengths, although for values greater than κc, the figure is lengthened, which
is valid regardless of the value of the electric field strength. This is clearly shown by plotting the aspect
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Fig. 3. Taylor deformation parameter (DTaylor) droplet as function of CaE , for different permittivity ratios κ

Fig. 4. The aspect ratio as function of CaE , for different permittivity ratios κ

ratio e(λ) versus the electric capillary number λ in Fig. 4. This finding is consistent with the assertions
of Miksis [22].

It is important to note that under a weak electric field, the drop deformation will also be small as
illustrated in Fig. 5. We also illustrate in this figure a comparison between the analytical result, i.e. Eq.37
and those obtained by O’Konski and Thacher/Allan and Mason (OTAM). In the neighbourhood of κ = 1,
the results are substantially the same, elsewhere the results differ due to the contribution of the second
order in the formula Eq.37.

In Figs. 6 and 7, we plot the cross-section of the drop for various values of the electric capillary number,
using a 15-term series for f(θ, λ). We observe that the deformation of the drop is smooth and the shape
remains spherical.

For a fixed κ < 18, the drop flattens as λ progressively increases from values greater than λc, as
illustrated in Fig. 6, which theoretically corresponds to unstable equilibrium family of axisymmetric drops.
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Fig. 5. Comparison between the present analytical results, and the OTAM equation. The diagram is drawn based on the
deformation parameter DTaylor versus the dielectric ratio for three electric capillary numbers

Fig. 6. Equilibrium shape for different values of CaE , κ = 10

For a larger value of κ, the drop shape changes continuously from spherical figure to an elongated one
when CaE varies, as shown in Fig. 7.

Below 3D deformed configurations of a drop immersed in a uniform electric field are illustrated in
Figs. 8 and 9. The previous observations are confirmed. It appears that these figures elucidate that the
increase of the electric field results in a drop elongation in the direction of the applied electric field. In
Fig. 8, we can see the shape of the drop when λ reaches the critical value λc = 0.1946 for the associated
value of κ. Likewise Fig. 9 corresponds to λc = 0.2347 and κ = 20.
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Fig. 7. Equilibrium shape for different values of CaE , κ = 50

Fig. 8. The deformation of a dielectric drop in an electrical medium subjected to a uniform electric field under the values
λc = 0.1946 and κ = 50

7. Conclusion

This work focused on the deformation study of a perfect dielectric drop subject to an electric field,
magnetic and gravity effects being neglected. An analytical approach based on the perturbation domain
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Fig. 9. The deformation of an electric drop in an electrical medium subjected to a uniform electric field under the values
λc = 0.2347 and κ = 20

Fig. 10. A drop with conical ends under the values λ = 0.45 and κ = 20

method has been developed to derive the equilibrium drop shapes. This approach associated with the use
of a special type of Hermite–Padé approximation, has made it possible to determine a critical value of
the electric capillary number CaE depending on the ratio of the permittivities, leading to a subcritical
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bifurcation, in the sense that beyond this critical value, the drop breaks, giving rise to several unstable
droplets.

Even if this analytical approach allowed us to study the deformation of drops subjected to an electric
field, it failed to reveal the existence of a family of conical shapes as Taylor stated in his paper [17] and
confirmed by other authors like ( [22,24,26,28]).

These last authors even estimated a critical value of κ which are appreciably close to 17.59, for an
external electric field being of order 1√

r
giving rise to drop shapes with conical tips. However, we can

draw unstable figures resembling to conical shapes for a permittivity ratio κ > 18 as it is illustrated in
Fig. 10.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
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