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Abstract. We demonstrate the existence of solutions to Signorini’s problem for the Timoshenko’s beam by using a hybrid
disturbance. This disturbance enables the use of semigroup theory to show the existence and asymptotic stability. We show

that stability is exponential, when the waves speed of propagation is equal. When the waves speed is different, we show

that the solution decays polynomially. This result is new. We perform numerical experiments to visualize the asymptotic

properties.
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1. Introduction

We study the mechanical and thermal evolution of a thermoelastic beam in unilateral contact. These
contact problems arise naturally in many situations in industrial processes, when two or more materials
can come into contact or lose contact as a result of thermoelastic expansion or contraction. Here, we
consider the cross-contact problem with Timoshenko’s beam model. The physical setting is represented
in Fig. 1.

The equations of motion and energy balance are described by

ρ1ϕtt − k(ϕx + ψ)x = 0,
ρ2ψtt − bψxx + k(ϕx + ψ) + σθx = 0,
ρ3θt − τθxx + σψxt = 0.

(1.1)

The mathematical modelling can be found in [1,2]. Here, ϕ(x, t), stands for the transversal displacement of
the point x on the beam, ψ is the rotatory angle of the cross section and θ is the difference of temperature
of the beam. Here, ρ1 = ρA, ρ2 = ρI, k = κGA, b = EI where E is Young’s modulus, G is the modulus
of rigidity and κ is the transversal shear factor. The terms ρ, A and I are density of body, the area of the
cross section and the moment of inertia, respectively. The constants ρ3, τ, σ > 0 represent the physical
parameters from thermoelasticity theory. The initial conditions of the model are given by

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), θ(x, 0) = θ0(x), ∀x ∈ (0, L)
ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), ∀x ∈ (0, L), (1.2)

and we use the following boundary conditions

ϕ(0, t) = ψ(0, t) = θ(0, t) = ψ(L, t) = θ(L, t) = 0, in (0, T ). (1.3)

For the free end of the beam, where contact with the obstacle can occur, we consider Signorini’s contact
condition.

g1 ≤ ϕ(L, t) ≤ g2, 0 ≤ t ≤ T. (1.4)
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Fig. 1. Beam subject to a constraint at the free end L

This condition ensures that the transversal displacement at x = L is restricted between stops g1 and g2.
The mathematical boundary conditions for this physical setting are as follows

S(L, t) ≥ 0 if ϕ(L, t) = g1,

S(L, t) = 0 if g1 < ϕ(L, t) < g2,

S(L, t) ≤ 0 if ϕ(L, t) = g2,

(1.5)

where S = k(ϕx + ψ) and M = bψx.

In a series of articles by Andrews et al. [3], Kuttler and Shillor [4], the authors studied the problem
of one-dimensional semi-static thermoelastic contact. They demonstrated the existence of global weak
solutions of their respective models. The numerical aspects of the problem were studied in [5,6]. In [7] was
considered the Signorini’s problem of the Euler–Bernoulli thermoelastic beams system, the authors showed
the global existence of weak solutions of the model which decay exponentially to zero. Finally, in [8], the
authors demonstrated the global existence of weak solutions of the Signorini’s problem to Timoshenko’s
thermoelastic beam model and by introducing an additional friction mechanism, the authors were able to
show that the solution of the models decay exponentially to zero. This additional dissipative mechanism
makes the difference in the proof of the exponential stability of the problem. Here, we only consider the
dissipation produced by the difference of temperature, for this reason we need that the waves speed of
propagation be equal.

χ0 :=
k

ρ1
− b

ρ2
= 0. (1.6)

In the general case (different propagation speeds), we prove that the decay rate is polynomial. Our method
is different and follows the theory of semigroups.

The main contribution of this article is the use of semigroup theory to solve the Signorini’s problem. We
do this by taking dynamic boundary conditions and addressing the Signorini’s problem using a Lipschitz
disturbance, to obtain the normal compliance condition, then to arrive at the contact problem we use
the observability inequalities. We believe that this method is stronger than the penalty method used in
all the articles cited above. This is because we get more information about the asymptotic behaviour of
the solution, under all boundary conditions. Unlike the articles [7–9] where special boundary conditions
had to be used to show the exponential decay. Furthermore, with this method it is possible to prove
the polynomial decay of the solutions of Timoshenko’s contact problem. Finally, we believe that the
polynomial decay rate that we obtain is optimal in the sense that it is the same rate as that obtained in
[10,11] where optimality is demonstrated.
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The remaining part of this manuscript is organized as follows: Sects. 2 and 3 deal with the global
existence and the uniform stability of the hybrid system, respectively. In Sect. 4, we consider the normal
compliance condition as a Lipschitz disturbance, then we take the limit ε → 0 to show the existence of
global weak solutions to Signorini’s problem. In addition, we show the exponential stability, provided
the waves speed of propagation of the system is equal and the polynomial stability in the general case.
Finally, in Sect. 5 we develop numerical experiments that verify the decay properties of solutions.

2. The semigroup setting

Our starting point is to consider the linear hybrid Timoshenko system that is given by

ρ1ϕtt − k(ϕx + ψ)x = 0, in (0, L) × (0,∞)
ρ2ψtt − bψxx + k(ϕx + ψ) + σθx = 0, in (0, L) × (0,∞)
ρ3θt − τθxx + σψxt = 0, in (0, L) × (0,∞).

(2.1)

Verifying the initial data (1.2) and the boundary conditions (1.3) with ϕ(L, t) = v(t), where

εvtt + εvt + εv + S(L, t) = 0. (2.2)

Equation (2.2) is called the dynamic boundary condition. The equations describe the oscillations of
the uniform cantilever curved beam with a load mass ε at its tip, with damping term proportional to
the velocity. In a first moment, we omit the super index ε in system (2.1)–(2.2), we use this dependence
later when we begin the limit process ε → 0. The objective of these boundary conditions is to apply
the Lipschitz perturbation to obtain the normal compliance condition and then arrive to the Signorini’s
problem.

Let us introduce the Hilbert space H
H = V0 × L2(0, L) × H1

0 (0, L) × L2(0, L) × L2(0, L) × R
2,

where

V0 = {u ∈ H1(0, L);u(0) = 0}
which is a Hilbert space with the norm

‖U‖2
H =

L∫

0

[
ρ1|Φ|2 + ρ2|Ψ|2 + k|ϕx+ψ|2 + b|ψx|2 + ρ3|θ|2

]
dx + ε|V |2 + ε|v|2.

Denoting by Φ = ϕt, Ψ = ψt, V = vt system (2.2) can be written as

dU

dt
= AU, U(0) = U0,

where (ϕ,Φ, ψ,Ψ, θ, v, V ), U0 := (ϕ0, ϕ1, ψ0, ψ1, θ0, v0, v1) and A is the operator

AU =
(

Φ,
1
ρ1

Sx,Ψ,
1
ρ2

Mx − 1
ρ2

S − σ

ρ2
θx,

τ

ρ3
θxx − σ

ρ3
Ψx, V,−[V + v +

1
ε
S(L)]

)�
(2.3)

with domain of A given by

D(A) := {U ∈ H; and ϕ(L) = v}
where

H := [H2(0, L) ∩ V0] × V0 × [H2(0, L) ∩ H1
0 (0, L)] × H1

0 (0, L) × [H2(0, L) ∩ H1
0 (0, L)] × R

2.
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Moreover A is dissipative,

Re(AU,U) = −τ

L∫

0

|θx|2 dx − ε|V |2 ≤ 0. (2.4)

To show the well-posedness of (2.1)–(2.2), we only need to prove that A is an infinitesimal generator
of a C0 semigroup. To do that it is enough to show that 0 ∈ �(A), see [12] . That is for any F =
(f1, f2, f3, f4, f5, f6, f7)� ∈ H, there exists only one U ∈ D(A) such that AU = F . In fact, recalling the
definition of A we get the system

Φ = f1 ∈ H1(0, L), Ψ = f3 ∈ H1(0, L), V = f6,

and

Sx = ρ1f2, Mx − S − σθx = ρ2f4, τθxx − σΨx = ρ3f5, V + v +
1
ε
S(L) = −f7.

Since θ verify Dirichlet boundary condition and Ψ is already given by f3, using the Lax–Milgram Lemma
we conclude that there exists only one θ ∈ H2(0, L). It remains to show the existence of ψ and ϕ.

k(ϕx + ψ)x = ρ1f2, bψxx − k(ϕx + ψ) = σθx + ρ2f4,

verifying the following boundary conditions

ϕ(0) = ψ(0) = ψ(L) = 0, ϕ(L) +
1
ε
S(L) = −f7 − f6.

Denoting by U i = (ϕi, ψi) the bilinear form

a(U1, U2) =

L∫

0

k(ϕ1
x + ψ1)(ϕ2

x + ψ2) + bψ1
xψ2

x dx

is symmetric, continuous and coercive over the convex set

K =
{

(ϕ,ψ); ϕ ∈ V0, ψ ∈ H1
0 (0, L), ϕ(L) +

1
ε
S(L) = −f7 − f6

}
.

Thus, for any (f6, f7) ∈ L2(0, L) × L2(0, L) there exists only one weak solution to the above system (see
Theorem 5.6 (Stampacchia) page 138 of [13]). Using the equations, we conclude that (ϕ,Φ, ψ,Ψ, θ, v, V ) ∈
D(A)

Theorem 2.1. The operator A is the infinitesimal generator of a C0 semigroup of contractions.

The above theorem implies the global existence of solution for the corresponding hybrid problem.

3. Asymptotic behaviour of the hybrid system

The main tool we use in this section is the result due to Pruess [14] and Borichev and Tomilov [15].

Theorem 3.1. Let S(t) = eAt be a C0-semigroup of contractions over a Hilbert space H. Then, ( [14])
S(t) is exponentially stable if and only if

iR ⊂ �(A) and ‖(i λ I − A)−1‖L(H) � C, ∀λ ∈ R.

Moreover, if iR ⊂ �(A) then we have ( [15])

‖ (iλ − A)−1 ‖L(H) ≤ C|λ|β ⇔ ‖etAΦ0‖H ≤ C

t
1
β

‖AΦ0‖H.
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Let us consider U = (ϕ,Φ, ψ,Ψ, θ, v, V )� ∈ D(A) and F = (f1, f2, f3, f4, f5, f6, f7)� ∈ H. The
resolvent equation iλU − AU = F in terms of its components can be written as

iλϕ − Φ = f1,
iλρ1Φ − k(ϕx + ψ)x = ρ1f2,
iλψ − Ψ = f3,
iλρ2Ψ − bψxx + k(ϕx + ψ) + σθx = ρ2f4,
iλρ3θ − τθxx + σΨx = ρ3f5,
iλv − V = f6,
iλεV + εv + εV + S(L, t) = εf7.

(3.1)

From (2.4) and the resolvent equation iλU − AU = F , we get

ε|V |2 +

L∫

0

τ |θx|2 dx = Re(F,U)H. (3.2)

To get exponentially stability, we use condition (1.6). Let us introduce the functionals

I(x) = ρ2b|Ψ(x)|2 + |M(x)|2︸ ︷︷ ︸
:=Iψ(x)

+ ρ1k|Φ(x)|2 + |S(x)|2︸ ︷︷ ︸
:=Iϕ(x)

L(s) = q′ (ρ2|Ψ|2 + |M |2 + ρ1|Φ|2 + |S|2
)

− qρ1kΦΨ − qSM,

where

q(x) =
enx − enξ1

n
, q0(x) =

e−nx − e−nξ2

n
. (3.3)

Note that in this case q′(x) is large in comparison with q for n large, therefore there exist positive
constants such that

c0

ξ2∫

ξ1

I(x) dx ≤
ξ2∫

ξ1

L(s)ds ≤ c1

ξ2∫

ξ1

I(x) dx.

Lemma 3.1. For any [ξ1, ξ2] ⊂ [0, L], the solution of system (2.1) satisfies
∣∣∣∣∣∣∣
q(ξ1)Iψ(ξ1) + q(ξ2)Iψ(ξ2) −

ξ2∫

ξ1

Iψ ds

∣∣∣∣∣∣∣
≤ c‖U‖‖F‖ + c‖S‖‖M‖,

∣∣∣∣∣∣∣
q(ξ1)I(ξ1) + q(ξ2)I(ξ2) −

ξ2∫

ξ1

L(s) ds

∣∣∣∣∣∣∣
≤ c‖U‖‖F‖.

Proof. Multiplying Eq. (3.1)4 by qM , we get

− 1
2

ξ2∫

ξ1

q
d
dx

[
ρ2b|Ψ|2 + |M |2

]
= ρ2b

ξ2∫

ξ1

qf3,xΨ dx −
ξ2∫

ξ1

qMS dx + ρ2

ξ2∫

ξ1

qMf4 dx. (3.4)
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Similarly, multiplying Eq. (3.1)2 by qS, we get

− 1
2

ξ2∫

ξ1

q
d
dx

[
ρ1k|Φ|2 + |S|2

]
= ρ1

ξ2∫

ξ1

qf1S dx + ρ1

ξ2∫

ξ1

qkΦf1,x dx + ρ1k

ξ2∫

ξ1

qΦΨ dx

−ρ1k

ξ2∫

ξ1

qΦf3 dx. (3.5)

So, our result follows. �
Let us denote by Q and R any functions satisfying

|Q| ≤ C‖U‖H‖F‖H +
c

|λ| ‖U‖2
H, |R| ≤ C‖U‖H‖F‖H + ‖F‖2

H.

Lemma 3.2. Under the above conditions, we have
L∫

0

|ψx|2 dx ≤ c

L∫

0

|Ψ|2 dx +
c

|λ|2 ‖Φ‖2
L2 +

c

|λ|2 ‖F‖2
H +

c

|λ|2 ‖U‖H‖F‖H. (3.6)

L∫

0

|Φ|2 dx ≤ c

L∫

0

|S|2 dx +
c

|λ|2 ‖U‖2
H +

c

|λ|2 ‖F‖2
H +

c

|λ|2 ‖U‖H‖F‖H. (3.7)

Proof. Multiplying (3.1)4 by ψ and using integration by parts, we get
L∫

0

b|ψx|2 dx =

L∫

0

ρ2|Ψ|2 dx + k

L∫

0

ϕψx dx − k

L∫

0

|ψ|2 dx − σ

L∫

0

θxψ dx +

L∫

0

f4ψ dx.

from where we get (3.6). Similarly, multiplying (3.1)2 by ϕ we get the other inequality. �
Lemma 3.3. Under the above conditions, we have that for any [ξ1, ξ2] ⊂ [0, L] it follows∣∣∣∣∣∣∣

iλ

ξ2∫

ξ1

Ψ ds

∣∣∣∣∣∣∣
≤ c‖U‖1/2

H ‖Ψ‖1/2
L2 +

c

|λ|1/2
‖U‖H + c‖F‖H.

Proof. Integrating over ]0, L[ (3.1)4, we get∣∣∣∣∣∣∣
iλρ2

ξ2∫

ξ1

Ψ ds

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
b[ψx(ξ2) − ψx(ξ1)] − k[ϕ(ξ2) − ϕ(ξ1)] −

ξ2∫

ξ1

(
kψ + σθx

)
dx + ρ2

ξ2∫

ξ1

f4 dx

∣∣∣∣∣∣∣
,

≤ c[Iψ(ξ1)+Iψ(ξ2)]1/2 +
c

|λ| [I(ξ1)+I(ξ2)]1/2 +

∣∣∣∣∣∣∣
k

iλ

ξ2∫

ξ1

Ψ ds

∣∣∣∣∣∣∣
+ c‖θx‖L2 + c‖F‖H.

So, using Lemma 3.2 and (3.4) we get for λ large enough that

Iψ(ξ1)+Iψ(ξ2) ≤ c‖S‖L2‖ψx‖L2 + c‖U‖H‖F‖H.

From Lemma 3.2, we get

Iψ(ξ1)+Iψ(ξ2) ≤ c‖S‖L2‖Ψ‖L2 +
c

|λ| ‖S‖2
L2 + c‖U‖H‖F‖H, (3.8)

from where our conclusion follows. �
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Theorem 3.2. The semigroup eAt associated with system (2.1) verifying (1.3) is exponentially stable pro-
vided (1.6) holds. If χ0 �= 0 the semigroup decays polynomially to zero, that is

‖T (t)U0‖ ≤ c

t
1
2
‖U0‖D(A),

where c is independent of ε.

Proof. Multiplying (3.1)5 by

L∫

x

Ψ ds, we get

−ρ3

L∫

0

θ

L∫

x

iλΨ ds dx

︸ ︷︷ ︸
:=J1

+ τθx(0)

L∫

0

Ψ ds

︸ ︷︷ ︸
:=J2

−τ

L∫

0

θxΨ dx + σ

L∫

0

|Ψ|2 dx =

L∫

0

f4

L∫

x

Ψ ds dx.

Therefore, we have

σ

L∫

0

|Ψ|2 dx = J1 − J2 + τ

L∫

0

θxΨ dx +

L∫

0

f4

L∫

x

Ψ ds dx,

from where we get
L∫

0

|Ψ|2 dx ≤ c|J1| + c|J2| + c‖U‖H‖F‖H. (3.9)

From Lemma 3.3, ∣∣∣∣∣∣ρ2

x∫

0

iλΨ ds

∣∣∣∣∣∣ ≤ c‖U‖1/2
H ‖Ψ‖1/2

L2 +
c

|λ|1/2
‖U‖H + c‖F‖H. (3.10)

Using Gagliardo–Nirenberg’s inequality and relation (3.1), we get

|θx(0)| ≤ c‖θx‖1/2‖θxx‖1/2 ≤ c‖θx‖1/2
L2 |λ|1/2

[
‖θ‖1/2

L2 + ‖ψx‖1/2
L2 +

1
|λ|1/2

‖F‖1/2
H

]
.

≤ c|λ|1/2
[√

R + ‖θx‖1/2
L2 ‖ψx‖1/2

L2

]
.

Using Lemma 3.3, the above inequality and recalling the definition of J2 we get

|J2| ≤ c

|λ|1/2

[√
R + ‖θx‖1/2

L2 ‖ψx‖1/2
L2

]
(‖U‖1/2

H ‖Ψ‖1/2
L2 +

1
|λ|1/2

‖U‖H + ‖F‖H),

≤ c

|λ|1/2

√
R‖U‖1/2

H ‖Ψ‖1/2
L2 +

c

|λ|1/2
‖θx‖1/2

L2 (‖ψx‖1/2
L2 ‖Ψ‖1/2

L2 )‖U‖1/2
H︸ ︷︷ ︸

:=J3

+
c

|λ| ‖U‖H
√

R

+
c

|λ| ‖U‖H‖θx‖1/2
L2 ‖ψx‖1/2

L2 +
c

|λ|1/2
R. (3.11)

To estimate J3, we use (3.6)

J3 ≤ c

|λ|1/2
‖θx‖1/2

L2 ‖Ψ‖L2‖U‖1/2
H +

c

|λ| ‖θx‖1/2
L2 ‖Ψ‖1/2

L2 ‖U‖H +
c

|λ|R
3/4‖U‖1/2

H ,

≤ ε0
|λ|2 ‖U‖2

H + ε0‖Ψ‖2
L2 + R.
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Using the same above procedure in (3.11), we get

J2 ≤ ε0
|λ|2 ‖U‖2

H + ε0‖Ψ‖2
L2 + R.

On the other hand, using interpolation we get

‖θ‖L2 ≤ c‖θ‖1/2
−1 ‖θx‖1/2

L2 ≤ c

|λ|1/2

[
‖θx‖1/2

L2 + ‖Ψ‖1/2
L2 + ‖F‖1/2

H
]
‖θx‖1/2

L2 ,

≤ c

|λ|1/2

[
‖θx‖L2 + ‖Ψ‖1/2

L2 ‖θx‖1/2
L2 + ‖F‖1/2

H ‖θx‖1/2
L2

]
,

≤ c

|λ|1/2

[
cε

√
R + ‖Ψ‖1/2

L2 ‖θx‖1/2
L2

]
. (3.12)

Recalling the definition of J1 and using (3.10) and (3.12), we get

|J1| ≤ c

|λ|1/2

[
cε

√
R + ‖Ψ‖1/2

L2 ‖θx‖1/2
L2

] [
‖U‖1/2

H ‖Ψ‖1/2
L2 +

1
|λ|1/2

‖U‖H + ‖F‖H

]
,

≤ ε

|λ|2 ‖U‖2
H + ε‖Ψ‖2

L2 + R, (3.13)

where we used inequalities of the type
c

|λ|1/2
‖θx‖1/2

L2 ‖U‖1/2
H ‖Ψ‖L2 ≤ cε

|λ| ‖θx‖L2‖U‖H + ε‖Ψ‖2
L2 ≤ cε‖θx‖2

L2 +
ε

|λ|2 ‖U‖2
H + ε‖Ψ‖2

L2 .

Recalling (3.2) and substitution of J1 and J2 into (3.9) yields
L∫

0

|Ψ|2 dx ≤ cε0‖U‖H‖F‖H +
ε0

|λ|2 ‖U‖2
H. (3.14)

Using Lemma 3.2, we arrive to
L∫

0

|Iψ|2 dx ≤ cε0‖U‖H‖F‖H +
c

|λ|2 ‖U‖2
H + R. (3.15)

Multiplying (3.1)4 by S, we get

iλρ2

L∫

0

ΨS dx − b

L∫

0

ψxxS dx +

L∫

0

|S|2 dx + σ

L∫

0

θxS = ρ2

L∫

0

f4S dx.

Recalling the definition of S and using Eq. (3.1)2 to rewrite G0, we get

L∫

0

|S|2 dx = −σ

L∫

0

θxS dx + ρ2k

L∫

0

Ψ[iλ(ϕx + ψ)] dx + bψxS
∣∣L
0

− b

:=G0︷ ︸︸ ︷
L∫

0

ψxSx dx +R,

= −σ

L∫

0

θxS dx + ρ2k

L∫

0

ΨΦx + |Ψ|2 dx + bρ1

L∫

0

ΨxΦ dx + bψxS
∣∣L
0

+ R, (3.16)

where R is such that |R| ≤ C‖U‖‖F‖. Therefore, we get
L∫

0

|S|2 dx ≤ ρ2k

L∫

0

|Ψ|2 dx + (ρ2k − ρ1b)︸ ︷︷ ︸
:=χ0

L∫

0

ΨΦx dx + (ρ1bΨΦ + bψxS)
∣∣L
0

. (3.17)
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Using the observability inequalities (Lemma 3.1), we get∣∣∣ (ρ1bΨΦ + bψxS)
∣∣L
0

∣∣∣ ≤ c (Iψ(0) + Iψ(L))1/2 (I(0) + I(L))1/2
,

≤ c

δ
(Iψ(0) + Iψ(L)) + δ‖U‖2

H + c‖U‖H‖F‖H, (3.18)

hence (3.14) implies

Iψ(0) + Iψ(L) ≤ δ‖U‖2
H + c‖U‖H‖F‖H

for ε = δ2. Substitution of the above expression in (3.18) and using (3.14) we get
L∫

0

|S|2 dx ≤ c|χ0|
L∫

0

|λ||Ψϕx| dx + δ‖U‖2
H + R. (3.19)

Using Lemma 3.2 implies
L∫

0

Iϕ dx ≤ c|χ0|
L∫

0

|λ||Ψϕx| dx + δ‖U‖2
H + R. (3.20)

Note that

cχ0

L∫

0

|λ||Ψϕx| dx ≤ cχ2
0|λ|2

L∫

0

|Ψ|2 dx +
1
2
‖U‖2

H.

From (3.14) and (3.2), we get

‖U‖2
H =

L∫

0

Iϕ + Iψ + ρ3|θ|2 dx + ε|v|2 + ε|V |2 ≤ cχ2
0|λ|2

L∫

0

|Ψ|2 dx + δ‖U‖2
H +

1
2
‖U‖2

H

if χ0 = 0, the exponential decays holds. Let us suppose that χ0 �= 0. Using (3.14), we have

‖U‖2
H ≤ cε0 |λ|2‖U‖H‖F‖H + (ε0 + δ)‖U‖2

H +
1
2
‖U‖2

H.

So we have

‖U‖2
H ≤ Cδ|λ|4‖F‖2

H,

therefore from Theorem 3.1, the polynomial decays hold. �

4. The semilinear problem

Here, we prove the well-posedness of the abstract semilinear problem and we show, under suitable condi-
tions that the solution also decays polynomially to zero. Let F be a local Lipschitz function defined over
a Hilbert space H. Here, we assume that there exists a globally Lipschitz function F̃R such that for any
ball BR = {W ∈ H; ‖W‖H ≤ R},

F(0) = 0, F(U) = F̃R(U), ∀U ∈ BR. (4.1)

Additionally, we assume that there exists a positive constant κ0 such that
t∫

0

(
F̃R(U(s)), U(s)

)
H ds ≤ κ0‖U(0)‖2

H, ∀U ∈ C([0, T ];H). (4.2)

Under these conditions we present.
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Theorem 4.1. Let {T (t)}t≥0 be a C0 semigroup of contraction, exponentially or polynomially stable with
infinitesimal generator A over the phase space H. Let F locally Lipschitz on H satisfying conditions (4.1)
and (4.2). Then, there exists a global solution to

Ut − AU = F(U), U(0) = U0 ∈ H, (4.3)

that decays exponentially or polynomially, respectively.

Proof. By hypotheses, there exist positive constants c0 and γ such that ‖T (t)‖ ≤ c0e
−γt, and F̃R globally

Lipschitz with Lipschitz constant K0 verifying conditions (4.1) and (4.2). Let us consider the following
space.

Eμ =
{
V ∈ L∞(0,∞;H); t �→ e−μt‖V (s)‖ ∈ L∞(R)

}
.

Using standard fixed point arguments, we can show that there exists only one global solution to

UR
t − AUR = F̃R(UR), UR(0) = U0 ∈ H. (4.4)

Multiplying the above equation by UR, we get that

1
2

d
dt

‖UR(t)‖2
H − (AUR, UR)H = (F̃R(UR), UR)H.

Since the semigroup is contractive, its infinitesimal generator is dissipative, therefore

‖UR(t)‖2
H ≤ ‖U0‖2

H + 2

t∫

0

(F̃R(UR), UR)H dt.

Using (4.2), we get

‖UR(t)‖2
H ≤ (1 + k0)‖U0‖2

H.

Note that for R > (1 + k0)‖U0‖2
H, we have that

F̃R(V ) = F(V ), ∀ ‖V ‖H ≤ R.

In particular, we have

F̃R(UR(t)) = F(UR(t)).

This means that UR is also solution of system (4.3) and because of the uniqueness we conclude that
UR = U . To show the exponential stability to system (4.3), it is enough to show the exponential decay
to system (4.4). To do that, we use fixed points arguments.

T (V ) = T (t)U0 +

t∫

0

T (t − s)F̃R(V (s)) ds.
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Note that T is invariant over Eγ−δ for δ small, (γ > δ). In fact, for any V ∈ Eγ−δ we have

‖T (V )‖H ≤ ‖U0‖He−γt +

t∫

0

‖F̃R(V (s))‖He−γ(t−s) ds,

≤ ‖U0‖He−γt + K0

t∫

0

‖V (s)‖He−γ(t−s) ds,

≤ ‖U0‖He−γt + K0e
−γt

t∫

0

eδs ds sup
s∈[0,t]

{
e(γ−δ)s‖V (s)‖H

}
,

≤ ‖U0‖He−γt +
K0C

δ
e−(γ−δ)t.

Hence, T (V ) ∈ Eγ−δ. Using standard arguments, we show that T n satisfies

‖T n(W1) − T n(W2)‖ ≤ (k1t)n

n!
‖W1 − W2‖H.

Therefore, we have a unique fixed point satisfying

T n(U) = U = T (t)U0 +

t∫

0

T (t − s)F̃R(U(s)) ds.

That is U is a solution of (4.4), and since T is invariant over Eγ−δ, then the solution decays exponentially.
To show the polynomial stability, we consider the space

Ep = {V ∈ L∞(0,∞;H); t �→ (1 + t)p‖V (s)‖ ∈ L∞(R)}

To show the invariance, we use

sup
t>0

(1 + t)p

t∫

0

(1 + t − s)−p(1 + s)−p ds < C

and use the same above reasoning. �

Let us consider the semilinear system

ρ1ϕ
ε
tt − k(ϕε

x + ψε)x = 0, in (0, L) × (0,∞)
ρ2ψ

ε
tt − bψε

xx + k(ϕε
x + ψε) + σθε

x = 0, in (0, L) × (0,∞)
ρ3θ

ε
t − τθε

xx + σψε
xt = 0, in (0, L) × (0,∞)

εvε
tt + εvε

t + εvε + Sε(L, t) = − 1
ε

[
(vε − g2)+ − (g1 − vε)+

]
.

(4.5)

The above system can be written as

Ut − AU = F(U), U(0) = U0,

where A is given by (2.3) and F is given by

F(U) = (0, 0, 0, 0, 0, 0, f(v))�, f(v) = − 1
ε2

[
(v − g2)+ − (g1 − v)+

]
. (4.6)
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Note that F is a Lipschitz function verifying hypothesis (4.1)–(4.2). In fact, F(0) = 0. Moreover,
t∫

0

(
F(U(s)), U(s)

)
H ds = −

t∫

0

1
ε2

[
(v − g2)+ − (g1 − v)+

]
vt ds,

= − 1
2ε2

t∫

0

d
dt

[
|(v − g2)+|2 + |(g1 − v)+|2

]
ds,

≤ 1
2ε2

[
|(v0 − g2)+|2 + |(g1 − v0)+|2

]
.

Theorem 4.2. The nonlinear semigroup defined by system (4.5) is exponentially stable, provided χ0 = 0.
Otherwise the solution decays polynomially as established in Theorem 3.2.

Proof. It is a direct consequence of Theorem 4.1.
Let us introduce the functionals

I(x, t) = ρ2b|ψt(x, t)|2 + |M(x, t)|2 + ρ1k|ϕt(x, t)|2 + |S(x, t)|2,

L(t) =

L∫

0

ρ2qx|ψt|2 + qx|M |2 + ρ1qx|ϕt|2 + qx|S|2 dx −
L∫

0

qρ1kΦΨ − qSM dx,

where q is as in (3.3) hence there exist positive constants C0 and C1 such that

C0

L∫

0

I(x, t) dx ≤ L(t) ≤ C1

L∫

0

I(x, t) dx. (4.7)

Under the above conditions, we establish the observability inequalities to the evolution system. �
Lemma 4.1. The solution of system (4.5) satisfies∣∣∣∣∣∣

t∫

0

I(L, s) ds −
t∫

0

L(s) ds

∣∣∣∣∣∣ ≤ cE(0),

∣∣∣∣∣∣
t∫

0

I(0, s) ds −
t∫

0

L(s) ds

∣∣∣∣∣∣ ≤ cE(0).

Proof. Multiply Eq. (4.5)1 by qS and Eq. (4.5)2 by qM summing up and performing integration by parts
and use the same approach as in the proof of Lemma 3.3. To achieve the second inequality, we use q0

instead of q given by (3.3). �
Theorem 4.3. For any initial data (ϕ0, ϕ1, ψ0, ψ1, θ0) ∈ H, there exists a weak solution to Signorini’s
problem (1.1)–(1.5), which decays as establish in Theorem 4.2.

Proof. From Theorem 4.1, there exists only one solution to system (4.5) verifying

E(t, ϕε, ψε, θε) + τ

t∫

0

L∫

0

|θε
x|2dxds ≤ E(0, ϕε, ψε, θε), (4.8)

where

2E(t) =

L∫

0

[
ρ1|ϕt|2 + ρ2|ψt|2 + k|ϕx + ψ|2 + b|ψx|2 + ρ3|θ|2

]
dx +

1
ε
N (t) + ε|vt|2 + ε|v|2.
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and

N (t) := |(ϕ(L, t) − g2)+|2 + |(g1 − ϕ(L, t))+|2

In particular, from Lemma 4.1 we have that

Iε(L, t) uniformly bounded in L2(0, T ), ∀ε > 0, (4.9)

which means that the first order energy is uniformly bounded for any ε > 0. Standard procedures implies
that the solution of system (4.5) converges in the distributional sense to system (1.1). It remains to show
that condition (1.4) holds. Using Theorem 4.1, we get that ϕε

t(L, t) and Sε(L, t) are bounded in L2(0, T )
for any ε > 0, so is vε

tt. Using (4.5)4, we get
T∫

0

[
εvtt + εvt + εv + Sε(L, t)

]
[u − v] dt = −1

ε

T∫

0

[
(v − g2)+ − (g1 − v)+

]
[u − v] dt,

for any u ∈ L2(0, T ;K) ∩ H1(0, T ;L2(0, L)), where K = {w ∈ H1(0, L), g1 ≤ w(L) ≤ g2}. It is no
difficult to see that

lim
ε→0

T∫

0

[
εvε

tt + εvε
t + εvε

]
[u − vε] dt = 0.

In fact, from (4.5)4 εvε
tt is bounded by a constant depending on ε, in L2(0, T ), from (4.9) vε

t is also
uniformly bounded in L2(0, T ). Therefore, vε

t is a continuous function, uniformly bounded in L∞(0, T ).
Making an integration by parts, we get

T∫

0

εvε
tt[u(t) − vε] dt = ε vε

t [u(t) − vε]|T0 −
T∫

0

εvε
t [ut(t) − vε

t ] dt → 0.

Hence,

lim
ε→0

T∫

0

Sε(L, t)[u − v] dt = lim
ε→0

T∫

0

−1
ε

[
(v − g2)+ − (g1 − v)+

]
[u − v] dt. (4.10)

Note that
T∫

0

(v − g2)+[u(t) − v(t)] dt =

T∫

0

(v − g2)+[u(t) − g2] dt −
T∫

0

(v − g2)+(v − g2) dt,

=

T∫

0

(v − g2)+[u(t) − g2] dt −
T∫

0

(v − g2)+(v − g2)+ dt ≤ 0,

for any g1 ≤ u(L, t) ≤ g2. Similarly, we get

−
T∫

0

[(g1 − v)+[u(t) − v(t)] dt ≤ 0.

Therefore, from the last two inequalities we arrive to
T∫

0

1
ε

[
(v − g2)+ − (g1 − v)+

]
[u(t) − v(t)] dt ≤ 0, ∀ε > 0,
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for any u ∈ H1(0, T ;L2(0, L)) such that g1 ≤ u(L, t) ≤ g2. Letting ε → 0 and recalling that v = ϕ(L, t)
we get

T∫

0

S(L, t)[u(L, t) − ϕ(L, t)] dt ≥ 0, ∀u ∈ L2(0, T ;K).

From this relation, we get (1.5). The proof of the existence is now complete. To show the asymptotic
behaviour, we use Theorem 4.2 to get

E(t, ϕε, ψε, θε) ≤ CE(0, ϕε, ψε, θε)e−γt.

So, using the semicontinuity of the norm and noting that N (0) = 0, we obtain

E(t, ϕ, ψ, θ) ≤ lim inf
ε→0+

E(t, ϕε, ψε, θε) ≤ C
{

lim
ε→0+

E(0, ϕε, ψε, θε)
}

e−γt ≤ CE(0, ϕ, ψ, θ)e−γt

where C is a positive constant independent of parameter ε. Thus, we conclude the exponential stability
of the Signorini’s problem. Similarly, we get the polynomial stability. �
Remark 4.1. We believe that the polynomial rate of decay is optimal in the sense that it is the same rate
obtained in [10,11] where the authors show the optimality.

Remark 4.2. The uniqueness of the solution to Signorini’s problem (1.1)–(1.4) remains an open question.

The same approach can be used to show existence of the semilinear problem

ρ1ϕtt − k(ϕx + ψ)x + μ1ϕ|ϕ|α = 0,
ρ2ψtt − bψxx + k(ϕx + ψ) + σθx + μ2ψ|ψ|β = 0,
ρ3θt − τθxx + σψxt = 0.

(4.11)

Theorem 4.4. Under the same hypothesis from Theorem 4.3, there is at least one solution to Signorini’s
problem (4.11) satisfying (1.2)–(1.5).

Proof. As in Theorem 4.3, we consider the function

F(U) = (0,−μ1ϕ
ε|ϕε|α, 0,−μ2ψ

ε|ψε|β , 0, 0, f(v))�,

where f is given by (4.6). Note that F(0) = 0. Using the mean value theorem to g(s) = |s|αs, we obtained
the inequality ∣∣∣s|s|α − r|r|α

∣∣∣ ≤ (|s|α + |r|α)|s − r|.

Taking the norm in H and since ϕε
i and ψε

i belong to H1(0, L) ⊂ L∞(0, L), then we get

‖F(U1) − F(U2)‖H ≤ C‖U1 − U2‖H.

Therefore, F is locally Lipschitz. Since

(FU,U)H = − d
dt

L∫

0

μ1

1 + α
|ϕε|α+2 dx +

μ2

1 + β
|ψε|β+2 dx

then
t∫

0

(FU,U)H ≤
L∫

0

μ1

1 + α
|ϕε(0)|α+2 dx +

μ2

1 + β
|ψε(0)|β+2 dx.

Thus, there exists a positive constant c0 such that
t∫

0

(FU,U)H ≤ c0‖U‖2
H.
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Note that for this function, there exists the cut-off function

f1,R2 =
{

μ1x|x|α if x ≤ R2,
μ1x|R2|α if x ≥ R2.

f2,R2 =
{

μ2x|x|β if x ≤ R2,
μ2x|R2|β if x ≥ R2.

It is not difficult to check that

F̃R2 = (0, f1,R2 , 0, f2,R2 , 0, 0, 0)�

is globally Lipschitz. Using Theorem 4.1, our conclusion follows. �

5. Numerical approach

In this section, we consider the numerical solution of the penalized problem (4.5). We use the finite
element methods over (0, L) and the finite difference in time.

5.1. Algorithms and numerical experiment

Let Xh be a partition over the interval Ω = (0, L), that is, Xh = {0 = x0 < x1 < · · · < xN =
L}, Ωj+1 = (xj , xj+1), where Ne is the number of the elements obtained of partition. We consider the

finite-dimensional Sh
1 = {u ∈ C(0, L);u

∣∣∣
Ωe

∈ P1(Ωe)}, where P1 is the set of linear polynomials over

Ωe, and Uh = {uh ∈ Sh
1 ;uh(0) = 0} and V h = {vh ∈ Sh

1 ; vh(L) = 0}. We use a representation of the
functions ϕh and ψh as in [16], so we have

uh(t, x) =
2N∑
i=1

di(t)φi(x), vh(t, x) =
N∑

i=1

θi(t)ωi(x)

where φi(x), i = 1, . . . , 2N, and ωi(x), i = 1, . . . , N, are the global vector interpolation functions. So, we
obtain the following dynamical problem in R

N × R
2N .

M1θ̇(t) + K1θ(t) + C�
1 ḋ(t) = F1(t),

M2d̈(t) + K2(d(t)) + C1θ(t) = F2(t),

θ(0) = θ0, d(0) = d0 and ḋ(0) = d1

where M1 is the thermal capacity matrix, K1 : the conductivity matrix, C1 : the coupled matrix and
F1 : the heat source vector. M2 : the consistent mass matrix, K2(d(t)) : the vector of consistent nodal
elastic stiffness at time t, and F2(t) : the vector of consistent nodal applied forces generalized at time t.
Furthermore, θ0, d0 and d1 are temperature, displacement and velocities, nodal initial.

To solve the above system, we introduce a partition P of the time domain [0, T ] into M intervals of
length Δt such that 0 = t0 < t1 < · · · < tM = T, with tn+1 − tn = Δt and we use the well-known
Trapezoidal generalized rules and Newmark’s methods (see [17,18]). In our problem, we have a nonlinear
system. Thus, our numerical scheme becomes

M1θ̇n+1 + K1θn+1 + C�
1 ḋn+1 = Fn+1

1

M2d̈n+1 + K2dn+1 + C1θn+1 = Fn+1
2 + K̃2(dn+1)

θn+1 = θn + Δtθ̇n+α,

θ̇n+α = (1 − α)θ̇n + αθ̇n+1,

dn+1 = dn + Δtḋn +
Δt2

2
[(1 − 2β)d̈n + 2βd̈n+1]

ḋn+1 = ḋn + Δt[(1 − γ)d̈n + γd̈n+1]
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Fig. 2. Beam’s oscillations at the end x = L : ϕh(L, t) and the asymptotic behaviour of the energy at time 1 s. In this case,

we performed the experiment to χ0 = 0 (this equality is equivalent to G = E
κ

) and χ0 �= 0,, respectively

where

K̃2(dn+1) =
1
ε
(0, 0, . . . , (d2N−1(t) − g2)+ − (g1 − d2N−1(t))+, 0)�

and β, γ and α are parameters that govern the stability and accuracy of the methods.

Remark 5.1. A typical numerical problem to the Timoshenko system is the shear locking. Numerical
alternatives were performed in the literature, we indicate the classical reference by Arnold [19], Hughes
et al. [20] and Prathap and Bhashyam [21].

Remark 5.2. To get computational results, we use the implemented code in Language C. The graphics
were developed using GNUplot.

5.1.1. Numerical experiment. To verify the asymptotic behaviour of the numerical solutions, we consider
the parameter from algorithms β = 1

4 , γ = 1
2 and α = 1

2 . In these experiments, we consider the following
initial conditions:

ϕ(x, 0) = 0, ψ(x, 0) = 0, ψt(x, 0) = 0 and θ(x, 0) = x2 − 2x3 + x4.

Also, we take a finite element mesh with h = 0.00125 and Δt = 10−6 s.
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Experiment We consider a rectangular beam with L = 1.0 m, thickness 0.1 m, width 0.1 m, E = 69.109

N/m2 ρ = 2700 Kg/m3, ν = 0.3 (Poisson ratio), and τ = 42 W/m K and ϕt(x, 0) = 1 − cos( 2π
L x). The

penalization parameter ε = 10−9 and g2 = −g1 = 0.001 m (Fig. 2).
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[9] Muñoz Rivera, J.E., Oquendo, H.P.: Exponential stability to a contact problem of partially viscoelastic materials. J.

Elast. 63, 87–111 (2001)
[10] da Dilberto, S.A., Santos, M.L., Rivera, J.E.M.: Stability to 1-D thermoelastic Timoshenko beam acting on shear force.

Z. Angew. Math. Phys. 65, 1233–1249 (2014)
[11] Almeida, D.S., Santos, M.L., Rivera, J.E.M.: Stability to weakly dissipative Timoshenko systems. Math. Methods Appl.

Sci. 36, 1965–1976 (2013)
[12] Liu, Z., Zheng, S.: Exponential stability of semigroup associated with thermoelastic system. Quart. Appl. Math. 51(3),

535–545 (1993)
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