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Stoneley waves at the generalized Wiechert condition
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Abstract. A generalization of the Wiechert condition by introducing two independent dimensionless parameters instead of
one parameter in the original Wiechert condition is proposed. Variation of Stoneley wave velocity at varying two parameters
of the generalized Wiechert condition at different Poisson’s ratios is studied revealing a substantial discrepancy in Stoneley
wave velocity profiles.
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1. Introduction

Herein, propagation of the interfacial Stoneley waves in layered media satisfying a more general condition,
than the original Wiechert condition, is analyzed. (In more details, Wiechert condition is discussed in the
next subsection.) The Wiechert condition [1,2] plays an important role in various applications in acoustics
and, especially in studies of the interfacial Stoneley waves. In this respect, in the pioneering Stoneley work
[3] existence of Stoneley waves propagating on an interface between two dissimilar isotropic halfspaces
was studied at an assumption that physical properties of the halfspaces obey Wiechert condition; in [3]
an explicit algebraic secular equation for Stoneley wave velocity was also derived.

The vast majority of the subsequent studies on Stoneley wave propagation in layered isotropic media
were concerned with the Wiechert condition [4–16]. In [4,5], regions of existence for Stoneley waves plotted
in terms of their relative physical parameters were constructed numerically, revealing that the Wiechert
line belongs to the region of existence. Various forms of secular equations for Stoneley wave velocity were
constructed in [6–12]. Several analytical methods for solving secular equations for Stoneley wave velocity
were suggested in [13–15]. In [16], it was demonstrated that the studied regions of existence for Stoneley
waves are multiply connected, instead of the previously assumed simply connected ones. Appearance of
high-frequency Stoneley waves generated by propagation of Lamb waves in layered plates was studied
numerically in [17–19] and by constructing high-frequency asymptotics in [20,21].

Stoneley waves propagating on an interface between anisotropic halfspaces were mainly studied by
applying either three-dimensional formalism [22] or by complex sextic formalisms [23–25].

1.1. Wiechert condition

The original Wiechert condition asserts that the dimensionless physical parameters responsible for acous-
tic properties of the contacting media are proportional to a single parameter q. Consider inhomogeneous
space consisting of two isotropic homogeneous halfspaces in a contact. Acoustical properties of the con-
tacting halfspaces can be described by the following dimensionless parameters

ρ̃ =
ρ1
ρ2

, μ̃ =
μ1

μ2
, λ̃ =

λ1

λ2
, (1.1)
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where ρk are the material densities, and μk, λk, k = 1, 2 are the corresponding Lame’s constants of the
contacting halfspaces.

The Wiechert condition imposes the following restriction on the dimensionless parameters

ρ̃ = μ̃ = λ̃ = q. (1.2)

where q is the dimensionless variable, known also as the Wiechert parameter; see [15].
Taking into account definitions (1.1), Eq. (1.2) ensures

μ1

ρ1
=

μ2

ρ2
,

λ1

ρ1
=

λ2

ρ2
. (1.3)

Equation (1.3) ensures that the corresponding bulk wave velocities in the contacting halfspaces coincides

α1 = α2, β1 = β2. (1.4)

where αk and βk are correspondingly P and S wave velocities in the contacting halfspaces.
It can be easily shown that condition (1.4) implies also

cR1 = cR2 , (1.5)

where cRk
, k = 1, 2 are the corresponding Rayleigh wave velocities. Thus, Wiechert condition imposes

strong restrictions on the possible values of P , S and Rayleigh wave velocities.

Remarks 1.1. (A) Despite equal P , S and Rayleigh wave velocities of the halfspaces obeying Wiechert
condition (1.2), the corresponding acoustic impedances Zk ≡ αkρk and Z∗

k ≡ βkρk, k = 1, 2 need
not be equal.

(B) Condition (1.2) does not necessary require equal Poisson’s ratios of the contacting media. However,
if Poisson’s ratios are identical, condition (1.2) implies:

ρ̃ = Ẽ, (1.6)

herein, Ẽ is relative Young’s modulus

Ẽ =
E1

E2
(1.7)

and Ek, k = 1, 2 are Young’s moduli of the contacted media.
(C) Considering 3D space defined by the dimensionless parameters ρ̃, λ̃, μ̃, it can be observed that

Wiechert condition in this space corresponds to a straight line with guide cosines

l1 = l2 = l3 = 1/
√

3. (1.8)

The line passing through the origin with guide cosines (1.8) is known as Wiechert line [16].

1.2. Generalization of the Wiechert condition

In [15], variation of Stoneley wave velocity along Wiechert line analyzed by the freezing coefficient method
[26] revealed unimodal (single extremum) behavior with extremal value reached at q → 1 ± 0 when both
media have identical physical properties and Stoneley wave degenerates into S wave. However, Stoneley
wave velocity variation along other directions in the 3D space defined by the dimensionless Lame’s
constants λ̃; μ̃ and dimensionless density ρ̃, remains unexplored.

Herein, a natural generalization of the Wiechert condition by introducing two independent dimension-
less variables

λ̃ = μ̃ = q1; ρ̃ = q2 (1.9)

is proposed, and in more details generalization (1.9) is discussed in Sec. 4.
Numerical analysis of Stoneley wave velocity variation under condition (1.9) is given in Sec. 5. Com-

putations at different Poisson’s ratios revealed almost identical regions of existence of Stoneley waves and
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similar shapes (not values) of the corresponding 3D plots. However, Stoneley wave velocity values heavily
depend upon Poisson’s ratios.

2. Stoneley secular equation

Stoneley waves propagate along a plane interface of two dissimilar halfspaces in a contact with constant
velocity that depends solely on physical properties of the contacting media. The secular equation for
Stoneley wave velocity constructed in [3] may be represented the following form

P (c) ≡ c4
(
(ρ1 − ρ2)

2 − (ρ1A2 + ρ2A1) (ρ1B2 + ρ2B1)
)

−2Kc2 (ρ1A2B2 − ρ2A1B1 − ρ1 + ρ2) + K2 (A1B1 − 1) (A2B2 − 1) = 0
, (2.1)

where c is the Stoneley wave velocity, and

K = 2
(
ρ2β

2
2 − ρ1β

2
1

)
, Ak =

√
1 − c2

α2
k

, Bk =

√
1 − c2

β2
k

, k = 1, 2. (2.2)

In Eqs. (2.1), (2.2) ρk, k = 1, 2 are material densities; αk, βk, k = 1, 2 are, respectively, longitudinal
and shear bulk wave velocities:

αk =

√
λk + 2μk

ρk
, βk =

√
μk

ρk
, (2.3)

herein, λk, μk, k = 1, 2 are the corresponding Lame’s constants.
A more convenient form of the secular equation was proposed by Scholte [6–8] in the dimensionless

form

P (c̃) ≡ Lc̃4 + 2M c̃2 + N = 0, (2.4)

where c̃ is the dimensionless velocity

c̃ =
c

β2
(2.5)

and

L =
(
(1 − ρ̃)2 −

(
ρ̃Ã2 + Ã1

) (
ρ̃B̃2 + B̃1

))

M = K̃
(
1 + ρ̃Ã2B̃2 − Ã1B̃1 − ρ̃

)

N = K̃2
(
1 − Ã1B̃1

)(
1 − Ã2B̃2

) . (2.6)

In (2.6), coefficient K̃ has the form

K̃ = 2
(
1 − ρ̃β̃2

)
(2.7)

and

Ãk =

√
1 − c̃2

β2
2

α2
k

, B̃k =

√
1 − c̃2

β2
2

β2
k

, k = 1, 2. (2.8)

Secular equation in a form (2.4) will be used in the further analysis.
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3. Generalized Wiechert condition

A better suited for modeling real geophysical formations is the generalized Wiechert condition containing
two independent dimensionless parameters:

ρ̃, λ̃ = μ̃. (3.1)

It will also be assumed that both media have identical Poisson’s ratios.
Taking into account expressions (2.3) for bulk waves yields

α̃ ≡ α1

α2
= χ, β̃ ≡ β1

β2
= χ, (3.2)

where

χ =

√
μ̃

ρ̃
. (3.3)

Taking into account Eqs. (3.2), the adjacent media can have different velocities of bulk waves, and
consequently different Rayleigh wave velocities, obeying the analogous relation

c̃R ≡ cR1

cR2

= χ. (3.4)

The natural physical restrictions imply

ρ̃ > 0, μ̃ > 0, (3.5)

and in view of (3.1)2 both media may have either positive or negative, but identical Poisson’s ratios; thus,
the case when one medium has positive Poisson’s ratio, while another negative one, is prohibited.

Remarks 3.1. (A) Condition (3.1) defines a Q-plane in the 3D space of dimensionless parameters ρ̃, λ̃, μ̃.
It is easy to show that the Q-plane contains a straight line defined by the Wiechert condition (1.2);
see Remark 1.1.C.

(B) The following condition that is actually due to Stoneley [3] ensures attenuation of Stoneley wave
with depth in both halfspaces

c̃ < min(χ; 1). (3.6)

4. Stoneley secular equation at the generalized Wiechert condition

At conditions (3.1) coefficients (2.6) of the secular equation (2.4) take the form

L =
(
(1 − ρ̃)2 −

(
ρ̃Ã2 + Ã1

) (
ρ̃B̃2 + B̃1

))

M = K̃
(
1 + ρ̃Ã2B̃2 − Ã1B̃1 − ρ̃

)

N = K̃2
(
1 − Ã1B̃1

)(
1 − Ã2B̃2

) . (4.1)

In (4.1) coefficient K̃ becomes

K̃ = 2
(
1 − ρ̃χ̃2

)
(4.2)

and

Ã1 =

√
1 − c̃2

χ2γ2
, Ã2 =

√
1 − c̃2

γ2
, B̃1 =

√
1 − c̃2

χ2
, , B̃2 =

√
1 − c̃2, (4.3)
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Fig. 1. Poisson’s ratio 0.0; a region of existence; b 3D plot for velocity variation; c projection onto the Wiechert plane

where

γ =
√

2

√
1 − ν

1 − 2ν
. (4.4)

In (4.4), ν is the common Poisson’s ratio of both media; at ν ∈ (−1; 0.5)parameter γ ∈
(

2√
3
; ∞

)
.

With coefficients (4.1)–(4.3), the considered secular equation (2.4) becomes a three parametric one
with parameters ρ̃, χ̃ and γ or ν.

5. Stoneley waves at the generalized Wiechert condition

This section concerns with numerical analysis of the real and positive root of secular equation (2.4) with
coefficients defined by Eq. (4.1). In view of the non-monotonic behavior of the algebraic function P (c̃)
in the left-hand side of Eq. (2.4), search of the appropriate root was done by the dichotomy algorithm
coupled with the secant line method at the interval where the negative product

P (c̃j)P (c̃j+1) < 0 (5.1)
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Fig. 2. Poisson’s ratio 0.25; a region of existence; b 3D plot for velocity variation; c projection onto the Wiechert plane

at two adjacent values c̃j ; c̃j+1 is achieved along with condition ImP (c̃j) = 0; ImP (c̃j+1) = 0. In
view of condition (3.6), search of a root was done in the interval (0; min(χ; 1)); at the first dichotomy
stage, the speed interval was divided into 103 subintervals; and 10–20 iterations at second stage of root
refinement by the secant line method. With these parameters, accuracy of the root determination

|P (c̃root)| ≤ ε (5.2)

was about 10−20. To minimize effect of possible round off errors, all computations were performed with
long mantissas having more than 60 decimal digits [27,28].

Plots in Figs. 1, 2 and 3 show (a) regions of existence in a 2D space defined by those values of param-
eters μ̃, ρ̃ that ensure existence of Stoneley wave; (b) 3D plots of dimensionless Stoneley wave velocity
variation c̃ (vertical axis) vs dimensionless parameters μ̃, ρ̃; and (c) projection of the corresponding 3D
plots onto vertical plane containing vertical axis c̃ and Wiechert line [15]; the latter is defined as line
μ̃ = ρ̃; see Figs. 1c, 2c and 3c. This vertical plane will be called Wiechert plane.

The plots correspond to three Poisson’s values ν = 0; 0.25; 0.49
The plots in Figs. 1a, 2a and 3a reveal that the regions of existence have almost identical shapes;

large similarity can be observed at comparing shapes (not values) of the corresponding 3D velocity
plots (Figs. 1b, 2b, 3b), while projections of the velocity plots onto the Wiechert plane are substantially
different, see Figs. 1c, 2c and 3c.
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Fig. 3. Poisson’s ratio 0.49 a region of existence; b 3D plot for velocity variation; c projection onto the Wiechert plane

6. Concluding remarks

A generalization of the Wiechert condition by introducing two independent dimensionless parameters
λ̃ = μ̃ = q1; ρ̃ = q2 instead of a single parameter λ̃ = μ̃ = ρ̃ = q in the original Wiechert condition is
proposed.

Variation of Stoneley wave velocity at varying two parameters of the generalized Wiechert condition
at different Poisson’s ratios reveals a substantial discrepancy in the Stoneley wave velocity profiles. While
regions of existence (Figs. 1a, 2a, 3a) are visually almost undistinguishable, the Stoneley wave velocity
profiles show a substantial discrepancy (Figs. 1c, 2c, 3c) in both shape and values.

Considering 3D plots showing variation of Stoneley wave velocity c̃ vs two varying parameters λ̃ = μ̃
and ρ̃ (Figs. 1b, 2b, 3b), it should be noted that their shapes are similar; however, velocity values are
different, as plots in Figs. 1c, 2c and 3c show.

And the final remark concerns an assertion [6,7] that Poisson’s ratio does not considerably affect
Stoneley wave velocity. Such a conclusion was inspired by comparison of regions of existence at different
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Poisson ratios. However, as our analysis reveals, Stoneley wave velocity heavily depends upon Poisson’s
ratio; see Figs. 1c, 2c and 3c.
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