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Abstract. This paper studies the Cauchy problem for three-dimensional viscous, compressible, and heat conducting magneto-
hydrodynamic equations with vacuum as far field density. We prove the global existence and uniqueness of strong solutions
provided that the quantity ‖ρ0‖L∞ + ‖b0‖L3 is suitably small and the viscosity coefficients satisfy 3μ > λ. Here, the initial
velocity and initial temperature could be large. The assumption on the initial density does not exclude that the initial
density may vanish in a subset of R3 and that it can be of a nontrivially compact support. Our result is an extension of the
works of Fan and Yu (Nonlinear Anal Real World Appl 10:392–409, 2009) and Li et al. (SIAM J Math Anal 45:1356–1387,
2013), where the local strong solutions in three dimensions and the global strong solutions for isentropic case were obtained,
respectively. The analysis is based on some new mathematical techniques and some new useful energy estimates. This paper
can be viewed as the first result concerning the global existence of strong solutions with vacuum at infinity in some classes
of large data in higher dimension.
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1. Introduction

Let Ω ⊂ R
3 be a domain, and the motion of a viscous, compressible, and heat conducting magnetohy-

drodynamic (MHD) flow in Ω can be described by full compressible MHD equations (see [20, Chapter
3]): ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,
ρut + ρu · ∇u − μΔu − (λ + μ)∇div u + ∇p = curl b × b,
cvρ(θt + u · ∇θ) + p div u − κΔθ = Q(∇u) + ν| curl b|2,
bt − b · ∇u + u · ∇b + b div u = νΔb,
div b = 0,

(1.1)

where the unknowns ρ ≥ 0, u ∈ R
3, θ ≥ 0, and b ∈ R

3 are the density, velocity, absolute temperature,
and magnetic field, respectively; p = Rρθ, with positive constant R, is the pressure, and

Q(∇u) =
μ

2
|∇u + (∇u)�|2 + λ(div u)2, (1.2)

with (∇u)� being the transpose of ∇u. The constant viscosity coefficients μ and λ satisfy the physical
restrictions

μ > 0, 2μ + 3λ ≥ 0. (1.3)
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Positive constants cν , κ, and ν are the heat capacity, the ratio of the heat conductivity coefficient over
the heat capacity, and the magnetic diffusive coefficient, respectively.

Let Ω = R
3, and we consider the Cauchy problem of (1.1) with (ρ, u, θ, b) vanishing at infinity (in

some weak sense) with given initial data ρ0, u0, θ0, and b0, as

(ρ, u, θ, b)|t=0 = (ρ0, u0, θ0, b0), x ∈ R
3. (1.4)

The compressible MHD equations govern the motion of electrically conducting fluids such as plasmas,
liquid metals, and electrolytes. They consist of a coupled system of compressible Navier–Stokes equations
of fluid dynamics and Maxwell’s equations of electromagnetism. Besides their wide physical applicability
(see, e.g., [1]), the MHD system is also of great interest in mathematics. As a coupled system, the issues
of well-posedness and dynamical behaviors of compressible MHD equations are rather complicated to
investigate because of the strong coupling and interplay interaction between the fluid motion and the
magnetic field. Their distinctive features make analytic studies a great challenge but offer new opportu-
nities. Furthermore, the differences in behaviors of solutions between isentropic and non-isentropic fluid
flows are believed to be significant (see [3,11,12,20]).

On the one hand, for isentropic case, Suen and Hoff [27] proved the global-in-time existence of weak
solutions in three space dimensions with initial data small in L2 and initial density positive and essen-
tially bounded. As emphasized in many related papers (refer to [8,9,23,29,30] for instance), the possible
appearance of vacuum produces new difficulty in mathematical analysis, so it is interesting to study the
solutions with vacuum. Hu and Wang [11] showed the global weak solutions with vacuum with large ini-
tial data in terms of the Lions’ compactness framework of renormalized solutions [22]. The global-in-time
weak solutions for a non-resistive fluid in two dimensions were obtained recently in [21]. Moreover, for
the global well-posedness of strong solutions with vacuum, Li et al. [17] and Lü et al. [24] established the
global existence and uniqueness of strong solutions to the 3D case and 2D case, respectively, provided
the smooth initial data are of small total energy, which generalize similar results for strong solutions of
the isentropic compressible Navier–Stokes equations obtained by Huang et al. [15] and Li and Xin [19],
respectively. Later, by removing the crucial assumption that the initial total energy is small, Hong et al.
[10] improved the result of [17] and proved the global classical solutions as long as the adiabatic exponent
is close to 1 and ν is suitably large.

On the other hand, for non-isentropic case (1.1), Kawashima [16] first obtained the global existence
and uniqueness of classical solutions in multi-dimension when the initial data are close to a non-vacuum
equilibrium in H3-norm (see also [26]). Using the entropy method, Ducomet and Feireisl [3] studied the
global existence of weak solutions by introducing the entropy equation rather than the thermal equation
(1.1)3. Meanwhile, Hu and Wang [12] considered global-in-time weak solutions of (1.1) instead of the
entropy equation used in [3]. Non-uniqueness of global-in-time weak solutions for an inviscid fluid in two
dimensions was investigated in [6]. For local well-posedness of strong solutions with vacuum, Fan and Yu
[4] established the local existence and uniqueness of strong solutions to (1.1)–(1.4). Zhong [32] investigated
the 2D case of (1.1) with κ = ν = 0 via weighted energy method. However, to the best of our knowledge,
global well-posedness theory for strong solutions with vacuum to (1.1) in multi-dimension cannot be
available. In fact, the main aim of this paper is to deal with the global existence and uniqueness of strong
solutions to the 3D Cauchy problem (1.1)–(1.4) in some homogeneous Sobolev spaces with vacuum at
infinity for the density and the temperature.

Before formulating our main result, we first explain the notations and conventions used throughout
this paper. For simplicity, in what follows, we denote

∫

R3

fdx =
∫

fdx, cv = κ = R = ν = 1.
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For 1 ≤ p ≤ ∞ and integer k ≥ 0, the standard homogeneous and inhomogeneous Sobolev spaces are as
follows:

⎧
⎨

⎩

Lp = Lp(R3), W k,p = Lp ∩ Dk,p, Hk = W k,2

Dk,p = {u ∈ L1
loc(R

3) : ‖∇ku‖Lp < ∞}, Dk = Dk,2,
D1

0 = {u ∈ L6(R3) : ‖∇u‖L2 < ∞}.

Let E0 be the specific energy defined by

E0 =
|u0|2

2
+ θ0.

Our main result can be stated as follows.

Theorem 1.1. Let 3μ > λ. For given numbers K > 0 (which may be arbitrarily large), q ∈ (3, 6), and
ρ̄ > 0, assume that the initial data (ρ0 ≥ 0, u0, θ0 ≥ 0, b0) satisfy

⎧
⎪⎪⎨

⎪⎪⎩

ρ0 ≤ ρ̄, ρ0 ∈ L1 ∩ H1 ∩ W 1,q, (u0, θ0) ∈ D1
0 ∩ D2,2,√

ρ0E0 +
√

ρ0u0 ∈ L2, b0 ∈ H2, div b0 = 0,
‖√

ρ0u0‖2L2 + ‖∇u0‖2L2 + ‖√
ρ0E0‖2L2 + ‖b0‖2H1 = K,

ρ̄ + ‖b0‖L3 = M2
0 ,

(1.5)

and the compatibility conditions
{

−μΔu0 − (μ + λ)∇div u0 + ∇(ρ0θ0) − curl b × b =
√

ρ0g1,

Δθ0 + Q(∇u0) + | curl b|2 =
√

ρ0g2,
(1.6)

with g1, g2 ∈ L2. There exists a small positive constant ε0 depending only on g1, g2, μ, λ, ‖g1‖L2 , ‖g2‖L2 ,
‖ρ0‖L1 , and K such that if

M0 ≤ ε0,

then the problem (1.1)–(1.4) has a unique global strong solution (ρ ≥ 0, u, θ ≥ 0, b) satisfying
⎧
⎨

⎩

ρ ∈ C([0,∞);L1 ∩ H1 ∩ W 1,q), ρt ∈ C([0,∞);L2 ∩ Lq),
(u, b, θ) ∈ C([0,∞);D1

0 ∩ D2) ∩ L2
loc([0,∞);D2,q), b ∈ C([0,∞);H2),

(ut, bt, θt) ∈ L2
loc([0,∞);D1

0), (bt,
√

ρut,
√

ρθt) ∈ L∞
loc([0,∞);L2).

(1.7)

Remark 1.1. Theorem 1.1 is the first result concerning the global existence of strong solutions to the full
compressible magnetohydrodynamic equations with vacuum in spatial multi-dimension. Moreover, the
conclusion in Theorem 1.1 generalizes the theory of isentropic case in Li et al. [17] to the non-isentropic
case. In particular, the initial energy is allowed to be large when ‖ρ0‖L∞ + ‖b0‖L3 is suitably small.

Remark 1.2. It should be noted that there is no need to require any smallness condition on the initial
velocity u0 and initial temperature θ0 for the global existence of solutions.

Remark 1.3. It is very interesting to investigate the global existence and uniqueness of strong solutions
to the initial boundary value problem of (1.1) under various boundary conditions for (u, θ, b). Some new
ideas are needed to handle these cases. This will be left for future studies.

If b ≡ b0 ≡ 0, Theorem 1.1 directly yields the following global existence theorem for the full compress-
ible Navier–Stokes equations.

Theorem 1.2. Let 3μ > λ. For given numbers K > 0 (which may be arbitrarily large), q ∈ (3, 6), and
ρ̄ > 0, assume that the initial data (ρ0, u0, θ0 ≥ 0) satisfy

⎧
⎨

⎩

0 ≤ ρ0 ≤ ρ̄, ρ0 ∈ L1 ∩ H1 ∩ W 1,q,√
ρ0E0 +

√
ρ0u0 ∈ L2, (u0, θ0) ∈ D1

0 ∩ D2,2,
‖√

ρ0u0‖2L2 + ‖∇u0‖2L2 + ‖√
ρ0E0‖2L2 = K,

(1.8)
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and the compatibility conditions
{

−μΔu0 − (μ + λ)∇div u0 + ∇(ρ0θ0) =
√

ρ0g1,

Δθ0 + Q(∇u0) =
√

ρ0g2,
(1.9)

with g1, g2 ∈ L2. There exists a small positive constant ε0 depending only on μ, λ, ‖g1‖L2 , ‖g2‖L2 , ‖ρ0‖L1 ,
and K such that if

ρ̄ ≤ ε0,

then the problem (1.1)–(1.4) with b ≡ 0 has a unique global strong solution (ρ ≥ 0, u, θ ≥ 0) satisfying
⎧
⎨

⎩

ρ ∈ C([0,∞);L1 ∩ H1 ∩ W 1,q), ρt ∈ C([0,∞);L2 ∩ Lq),
(u, θ) ∈ C([0,∞);D1

0 ∩ D2) ∩ L2
loc([0,∞);D2,q),

(ut, θt) ∈ L2
loc([0,∞);D1

0), (
√

ρut,
√

ρθt) ∈ L∞
loc([0,∞);L2).

(1.10)

Remark 1.4. Since the assumption 3μ > λ is weaker than 2μ > λ due to μ > 0, Theorem 1.2
extends the result in Li [18] where the global existence of strong solution was established provided that
‖ρ0‖L∞(‖ρ0‖L3 + ‖ρ0‖2L∞‖√

ρ0u0‖2L2)(‖∇u0‖2L2 + ‖ρ0‖L∞‖√
ρ0E0‖2L2) is sufficiently small and 2μ > λ.

Remark 1.5. We note that in [14], Huang and Li studied the Cauchy problem of full compressible Navier–
Stokes equations in R

3, and they obtained the existence and uniqueness of global classical solutions
provided that the initial energy is small. However, the initial density and initial temperature are not
allowed to vanish at infinity. Such assumptions play a crucial role for some estimates in [14].

We now make some comments on the analysis for Theorem 1.1. To prove the global existence of strong
solutions, we establish a crucial proposition (Proposition 3.1) which implies that the terms in Serrin-type
criterion (see Lemma 2.3) will never blow up in finite time when 3μ > λ and the initial data are small in
some sense (refer to Sect. 4 for more details). This together with the contradiction arguments indicates
that the strong solution exists globally in time. This is the main ingredient of the proof. Compared to
the isentropic case [17], due to (ρ(x, t), b(x, t), θ(x, t)) → (0, 0, 0) as |x| → ∞, the basic energy inequality
only provides us

∫
(
ρ|u|2 + |b|2 + 2ρθ

)
dx =

∫
(
ρ0|u0|2 + |b0|2 + 2ρ0θ0

)
dx,

and there is no any useful dissipation estimate on u and b. To overcome this difficulty, inspired by [18,28],
where the authors obtained dissipative estimate on u for the full Navier–Stokes equations by using L3-
norm of the density and the conservation of mass, respectively, we recover the crucial dissipation estimate
of the form

∫ T

0
(μ‖∇u‖2L2 +‖∇b‖2L2)dt in terms of L∞(0, T ;L∞)-norm of ρ (see Lemma 3.2). Moreover, as

stated in many papers (see [3,12,27] for example), compared with compressible Navier–Stokes equations,
the presence of magnetic field effects results in some new difficulties. To this end, we try to deal with
the strong coupling term u · ∇b and the strong nonlinear term curl b × b by introducing the spatial
L∞(0, T ;L3)-norm of b. These motivate us to impose the smallness condition on ‖ρ0‖L∞ + ‖b0‖L3 to get
the bound of ‖ρ‖L∞ + ‖b‖L3 . Furthermore, we tackle higher-order estimates with the help of the effective
viscous flux F = (2μ+λ)divu−p− 1

2 |b|2 (see Lemma 3.5) and the upper bound of the density is obtained
via commutator estimate (see Lemma 3.8). Finally, it enables us to get L∞(0, T ;L3) estimate of b from
the induction equation (1.1)4 and Kato-type inequality (see Lemma 3.9). Combining these estimates
altogether yields the desired energy-like estimate, provided that the initial data are suitably small (see
Corollary 3.1).

The rest of the paper is organized as follows: In Sect. 2, we recall some known facts and elementary
inequalities which will be used later. Section 3 is devoted to the global a priori estimates. The proof of
Theorem 1.1 is given in Sect. 4.
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2. Preliminaries

In this section, we collect some known results and elementary inequalities which will be used later.
First, the following local existence and uniqueness of strong solutions have been established in [4].

Lemma 2.1. Assume that (ρ0, u0, θ0, b0) satisfies (1.5) and (1.6). Then, there exists a small time T > 0
and a unique strong solution (ρ, u, θ, b) to the problem (1.1)–(1.4) on R

3 × (0, T ).

Next, the following well-known Gagliardo–Nirenberg inequality (see [25, Theorem]) will be used later
frequently.

Lemma 2.2. Let u belong to Lq(Rn) and its derivatives of order m,∇mu, belong to Lr(Rn), 1 ≤ q, r ≤ ∞.
Then for the derivatives ∇ju, 0 ≤ j < m, the following inequality holds:

‖∇ju‖Lp(Rn) ≤ C‖∇mu‖α
Lr(Rn)‖u‖1−α

Lq(Rn), (2.1)

where
1
p

=
j

n
+ α

(
1
r

− m

n

)

+ (1 − α)
1
q

(2.2)

for all α in the interval
j

m
≤ α ≤ 1 (2.3)

(the constant C depends only on n,m, j, q, r, α), with the following exceptional cases: (1) If j = 0, rm < n
and q = ∞, then we take the additional assumption that either u tends to zero at infinity or u ∈ Lq̃(Rn)
for some finite q̃ > 0.

(2) If 1 < r < ∞, and m − j − n
r is a nonnegative integer, then (2.1) holds only for α satisfying

j
m ≤ α < 1.

Finally, the following Serrin-type blow-up criterion (see [13]) will be used to prove the global existence
of the strong solution to (1.1)–(1.4) (see Sect. 4 for details).

Lemma 2.3. Let the initial data (ρ0, u0, θ0, b0) satisfy conditions in Theorem 1.1. If T ∗ < ∞ is the maxi-
mal time of existence for that solution obtained in Lemma 2.1, then we have

lim
T→T ∗

(‖ρ‖L∞(0,T ;L∞) + ‖u‖Ls(0,T ;Lr)) = ∞,

with r and s satisfying
2
s

+
3
r

≤ 1, s > 1, 3 < r ≤ ∞.

3. A priori estimates

This section is devoted to deriving the following a priori estimates for the solutions to the Cauchy problem
(1.1)–(1.4). For simplicity, we denote

ψT := sup
0≤t≤T

(‖√
ρu‖2L2 + ‖∇u‖2L2 + ‖√

ρE‖2L2 + ‖b‖2H1

)
.

Proposition 3.1. Assume 3μ > λ, and let the conditions in Theorem 1.1 be in force. There exists a positive
constant ε0 depending only on μ, λ, ‖ρ0‖L1 , and K, such that if

sup
0≤t≤T

‖ρ‖L∞ ≤ 2ρ̄, ψT ≤ 2�K, sup
0≤t≤T

‖b‖L3 ≤ 2M0, (3.1)
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then one has

sup
0≤t≤T

‖ρ‖L∞ ≤ 3
2
ρ̄, ψT ≤ 7

4
�K, sup

0≤t≤T
‖b‖L3 ≤ 3

2
M0, (3.2)

provided that M0 ≤ ε0. Here, the constant � = 16μ+9λ
μ .

The proof of Proposition 3.1 will be done by a series of lemmas below. For simplicity, we will use the
conventions that C and Ci (i = 1, 2, . . .) denote various positive constants, which may depend on μ, λ,
‖ρ0‖L1 , and K, but are independent of T and M0.

We begin with the following lemma concerning the mass is conserved for all time, which could be
found in [28, Lemma 3.1], and so we omit the detail of proof.

Lemma 3.1. Under the conditions of Proposition 3.1, it holds that
∫

ρdx =
∫

ρ0dx. (3.3)

Lemma 3.2. Under the conditions of Proposition 3.1, it holds that

sup
0≤t≤T

(‖√
ρu‖2L2 + ‖b‖2L2) +

∫ T

0

(
μ‖∇u‖2L2 + ‖∇b‖2L2

)
dt

≤ ‖√ρ0u0‖2L2 + ‖b0‖2L2 + CM
8
3
0

∫ T

0

‖∇θ‖2L2dt. (3.4)

Proof. Multiplying (1.1)2 by u, (1.1)4 by b, respectively, then adding the two resulting equations together,
and integrating over R

3, and noting that μ + λ > 01, we obtain from (3.3) that
1
2

d
dt

(‖√
ρu‖2L2 + ‖b‖2L2) + μ‖∇u‖2L2 + (μ + λ)‖div u‖2L2 + ‖∇b‖L2

=
∫

p div udx ≤ ‖ρ‖L3‖θ‖L6‖div u‖L2

≤ (μ + λ)‖div u‖2L2 + C‖ρ‖2L3‖∇θ‖2L2

≤ (μ + λ)‖div u‖2L2 + C‖ρ‖ 4
3
L∞‖ρ‖ 2

3
L1‖∇θ‖2L2

≤ (μ + λ)‖div u‖2L2 + CM
8
3
0 ‖∇θ‖2L2 ,

which implies that
d
dt

(‖√
ρu‖2L2 + ‖b‖2L2) + μ‖∇u‖2L2 + ‖∇b‖2L2 ≤ CM

8
3
0 ‖∇θ‖2L2 . (3.5)

Hence, the desired (3.4) follows from (3.5) integrated in t. �

Lemma 3.3. Under the conditions of Proposition 3.1, it holds that

sup
0≤t≤T

‖√
ρE‖2L2 +

T∫

0

‖∇θ‖2L2dt ≤ ‖√ρ0E0‖2L2 +
5
3

T∫

0

‖|u||∇u|‖2L2dt + CM
16
3

0

T∫

0

‖∇θ‖2L2dt

+ CM2
0

T∫

0

‖∇2b‖2L2dt + CM4
0

T∫

0

‖∇u‖2L2dt, (3.6)

where E = |u|2
2 + θ.

1From (1.3) and 3μ > λ, we have 5μ + 2λ > 0. Then, by (1.3) again one gets 7μ + 5λ > 0, which combined with (1.3)
again implies 9μ + 8λ > 0. This together with (1.3) once more gives 11μ + 11λ > 0. Thus, the result follows.
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Proof. For E = |u|2
2 + θ, we infer from (1.1) that

ρ(Et + u · ∇E) + div(up) − Δθ = div(S · u) + curl b × b + | curl b|2, (3.7)

where S = μ(∇u + (∇u)�) + λ div uI3 with I3 being the identity matrix of order 3. Multiplying (3.7) by
E and integrating the resultant over R

3, it follows from integration by parts and Young’s inequality that

1
2

d
dt

‖√
ρE‖2L2 + ‖∇θ‖2L2 ≤ −1

2

∫

∇θ · ∇|u|2dx +
∫

(up − S · u) · ∇Edx

+ C

∫

(|u||b|2|∇E| + |∇u||b|2E)dx +
∫

| curl b|2Edx

≤ 1
6
‖∇θ‖2L2 +

3
8
‖|u||∇u|‖2L2 + C

∫

ρ2θ2|u|2dx

+ C

∫

(|u||b|2|∇E| + |∇u||b|2E)dx + C

∫

|∇E||∇b||b|dx

+ C

∫

|E||∇2b||b|dx =:
6∑

i=1

Ii. (3.8)

Using Hölder’s, the Sobolev, and the Cauchy inequalities, we have

I3 ≤ C‖√ρθ‖L2‖θ‖L6‖|u|2‖L6‖ρ‖ 3
2
L9

≤ C‖√ρθ‖L2‖∇θ‖L2‖|u||∇u|‖L2‖ρ‖ 1
6
L1‖ρ‖ 4

3
L∞

≤ 1
8
‖|u||∇u|‖2L2 + Cρ̄

8
3 ‖ρ‖ 1

3
L1‖√

ρθ‖2L2‖∇θ‖2L2

≤ 1
8
‖|u||∇u|‖2L2 + CM

16
3

0 ‖∇θ‖2L2 , (3.9)

I4 ≤ C‖u‖L6‖|b|2‖L3‖∇E‖L2 + C‖∇u‖L2‖|b|2‖L3‖E‖L6

≤ C‖∇u‖L2‖b‖L∞‖b‖L3‖∇E‖L2

≤ C‖b‖ 4
3
L3‖∇2b‖ 2

3
L2‖∇u‖L2‖∇E‖L2

≤ 1
6
‖∇E‖2L2 + C‖b‖ 8

3
L3‖∇u‖2L2‖∇2b‖ 4

3
L2

≤ 1
6
‖∇θ‖2L2 +

1
6
‖|u||∇u|‖2L2 + CM2

0 ‖∇2b‖2L2 + CM4
0 ‖∇u‖6L2

≤ 1
6
‖∇θ‖2L2 +

1
6
‖|u||∇u|‖2L2 + CM2

0 ‖∇2b‖2L2 + CM4
0 ‖∇u‖2L2 , (3.10)

I5 + I6 ≤ C‖E‖L6‖∇2b‖L2‖b‖L3 + C‖∇E‖L2‖∇b‖L6‖b‖L3

≤ C‖∇E‖L2‖b‖L3‖∇2b‖L2

≤ 1
6
‖∇θ‖2L2 +

1
6
‖|u||∇u|‖2L2 + CM2

0 ‖∇2b‖2L2 . (3.11)

Inserting (3.9)–(3.11) into (3.8) gives rise to

d
dt

‖√
ρE‖2L2 + ‖∇θ‖2L2 ≤ 5

3
‖|u||∇u|‖2L2 + CM

16
3

0 ‖∇θ‖2L2 + CM2
0 ‖∇2b‖2L2 + CM4

0 ‖∇u‖2L2 . (3.12)

Then, integrating (3.12) in t leads to the desired (3.6). �

Next, motivated by [31], we can improve the basic estimate obtained in Lemma 3.2.



188 Page 8 of 25 Y. Liu and X. Zhong ZAMP

Lemma 3.4. Under the conditions of Proposition 3.1, there exists a positive constant c1 depending on μ,
λ, ‖ρ0‖L1 , and K, but independent of T and M0, such that

sup
0≤t≤T

‖ρ
1
4 u‖4L4 + c1

T∫

0

‖|u||∇u|‖2L2dt ≤ CM
5
3
0 ‖∇u0‖4L2 + CM

16
3

0

T∫

0

‖∇θ‖2L2dt

+ CM2
0

T∫

0

‖∇2b‖2L2dt + CM4
0

T∫

0

‖∇u‖2L2dt. (3.13)

Proof. Multiplying (1.1)2 by 4|u|2u and integrating the resulting equation over R
3 yield

d
dt

∫

ρ|u|4dx + 4
∫

|u|2(μ|∇u|2 + (μ + λ)|divu|2 + 2μ
∣
∣∇|u|∣∣2)dx

≤ 4
∫

div(|u|2u)pdx − 8(λ + μ)
∫

divu|u|u · ∇|u|dx + C

∫

|u|2|∇u||b|2dx. (3.14)

For the last term of the right-hand side of (3.14), one obtains from Hölder’s and Gagliardo–Nirenberg
inequalities that, for any η1 ∈ (0, 1),

C

∫

|u|2|∇u||b|2dx ≤ 4μη1

∫

|u|2|∇u|2dx + C(η1)
∫

|u|2|b|4dx

≤ 4μη1

∫

|u|2|∇u|2dx + C(η1)‖u‖2L6‖b‖2L∞‖b‖2L3

≤ 4μη1

∫

|u|2|∇u|2dx + C(η1)‖∇u‖2L2‖b‖ 8
3
L3‖∇2b‖ 4

3
L2

≤ 4μη1

∫

|u|2|∇u|2dx + C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2 ,

which together with (3.14) leads to

d
dt

∫

ρ|u|4dx + 4
∫

|u|2(μ(1 − η1)|∇u|2 + (μ + λ)|divu|2 + 2μ
∣
∣∇|u|∣∣2)dx

≤ 4
∫

div(|u|2u)pdx − 8(λ + μ)
∫

divu|u|u · ∇|u|dx + C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2 . (3.15)

Consequently, we arrive at

d
dt

∫

ρ|u|4dx + 4
∫

R3∩{|u|>0}

[
μ(1 − η1)|u|2|∇u|2 + (μ + λ)|u|2|divu|2 + 2μ|u|2∣∣∇|u|∣∣2

]
dx

≤ 4
∫

R3∩{|u|>0}

div(|u|2u)pdx − 8(λ + μ)
∫

R3∩{|u|>0}

divu|u|u · ∇|u|dx + C‖b‖2L3‖∇2b‖2L2

+ C‖b‖4L3‖∇u‖6L2 . (3.16)

Direct calculations give that for x ∈ R
3 ∩ {|u| > 0},

|u|2|∇u|2 = |u|4
∣
∣
∣∇

( u

|u|
)∣
∣
∣
2

+ |u|2∣∣∇|u|∣∣2, (3.17)

|u|divu = |u|2div
(

u

|u|
)

+ u · ∇|u|. (3.18)
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For η1, η2 ∈ (0, 1), we now define a nonnegative function as follows:

φ(η1, η2) =

⎧
⎨

⎩

μη2(3 − η1)
λ + η1μ

, if λ + η1μ > 0,

0, otherwise.
(3.19)

We prove (3.13) in two cases.
Case 1 We assume that

∫

R3∩{|u|>0}

|u|4
∣
∣
∣∇

( u

|u|
)∣
∣
∣
2

dx ≤ φ(η1, η2)
∫

R3∩{|u|>0}

|u|2∣∣∇|u|∣∣2dx. (3.20)

It follows from (3.16) that

d
dt

∫

ρ|u|4dx + 4
∫

R3∩{|u|>0}

Gdx

≤ 4
∫

R3∩{|u|>0}

div(|u|2u)pdx + C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2 , (3.21)

where

G = μ(1 − η1)|u|2|∇u|2 + (μ + λ)|u|2|divu|2 + 2μ|u|2∣∣∇|u|∣∣2 + 2(λ + μ)divu|u|u · ∇|u|.
To let

∫

R3∩{|u|>0} Gdx become a good term, we shall consider G first. It follows from (3.17) that

G = μ(1 − η1)|u|2|∇u|2 + (μ + λ)|u|2|divu|2 + 2μ|u|2|∇|u||2

+ 2(λ + μ)|u|2div
( u

|u|
)
u · ∇|u| + 2(λ + μ)|u · ∇|u||2

= μ(1 − η1)
(
|u|4

∣
∣
∣∇

( u

|u|
)∣
∣
∣
2

+ |u|2∣∣∇|u|∣∣2
)

+ (λ + μ)
(
|u|2div

( u

|u|
)

+ u · ∇|u|
)2

+ 2μ|u|2|∇|u||2 + 2(λ + μ)|u|2div
( u

|u|
)
u · ∇|u| + 2(λ + μ)|u · ∇|u||2

= μ(1 − η1)|u|4
∣
∣
∣∇

( u

|u|
)∣
∣
∣
2

+ μ(3 − η1)|u|2|∇|u||2 − λ + μ

3
|u|4

∣
∣
∣div

( u

|u|
)∣
∣
∣
2

+ 3(λ + μ)
(2

3
|u|2div

( u

|u|
)

+ u · ∇|u|
)2

≥ −(λ + η1μ)|u|4
∣
∣
∣∇

( u

|u|
)∣
∣
∣
2

+ μ(3 − η1)|u|2|∇|u||2. (3.22)

Here, we have used the following facts:

(3μ − λ) + 4(2μ + 3λ) = 11(μ + λ) > 0;
∣
∣
∣div

( u

|u|
)∣
∣
∣
2

≤ 3
∣
∣
∣∇

( u

|u|
)∣
∣
∣
2

.

Thus, we obtain from (3.22) and (3.20) that
∫

R3∩{|u|>0}

Gdx ≥
[

− (λ + η1μ)φ(η1, η2) + 4μ(3 − η1)
] ∫

R3∩{|u|>0}

|u|2|∇|u||2dx

≥ μ(3 − η1)(1 − η2)
∫

R3∩{|u|>0}

|u|2|∇|u||2dx. (3.23)



188 Page 10 of 25 Y. Liu and X. Zhong ZAMP

Inserting (3.23) into (3.21), we have
d
dt

∫

ρ|u|4dx + 4μ(3 − η1)(1 − η2)
∫

R3∩{|u|>0}

|u|2|∇|u||2dx

≤ 4
∫

R3∩{|u|>0}

div(|u|2u)pdx + C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2

≤ C

∫

R3∩{|u|>0}

|u|2|∇u|ρθdx + C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2

≤ η

∫

R3∩{|u|>0}

|u|2|∇u|2dx + C

∫

R3∩{|u|>0}

ρ2θ2|u|2dx + C‖b‖2L3‖∇3d‖2L2 + C‖b‖4L3‖∇u‖6L2

≤ η′‖|u||∇u|‖2L2 + Cρ̄
8
3 ‖ρ‖ 1

3
L1‖√

ρθ‖2L2‖∇θ‖2L2 + C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2

≤ η′(1 + φ(η1, η2))
∫

R3∩{|u|>0}

|u|2∣∣∇|u|∣∣2dx + Cρ̄
8
3 ‖ρ‖ 1

3
L1‖√

ρθ‖2L2‖∇θ‖2L2

+ C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2 . (3.24)

Taking η′ = 2μ(3−η1)(1−η2)
1+φ(η1,η2)

, then we infer from (3.24) that

d
dt

∫

ρ|u|4dx + 2μ(3 − η1)(1 − η2)
∫

R3∩{|u|>0}

|u|2|∇|u||2dx

≤ Cρ̄
8
3 ‖ρ‖ 1

3
L1‖√

ρθ‖2L2‖∇θ‖2L2 + C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2 . (3.25)

Case 2 We assume that
∫

R3∩{|u|>0}

|u|4
∣
∣
∣∇

( u

|u|
)∣
∣
∣
2

dx > φ(η1, η2)
∫

R3∩{|u|>0}

|u|2∣∣∇|u|∣∣2dx. (3.26)

It follows from (3.14) that
d
dt

∫

ρ|u|4dx + 4
∫

(
μ|u|2|∇u|2 + (μ + λ)|u|2|divu|2 + 2μ|u|2∣∣∇|u|∣∣2)dx

≤ 4
∫

div(|u|2u)pdx − 8(λ + μ)
∫

divu|u|u · ∇|u|dx + 2μη1

∫

R3∩{|u|>0}

|u|2|∇u|2dx

+ C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2

≤ C

∫

R3∩{|u|>0}

p|u|2|∇u|dx + 4(μ + λ)
∫

R3∩{|u|>0}

|u|2|∇|u||2dx + 2μη1

∫

R3∩{|u|>0}

|u|2|∇u|2dx

+ 4(μ + λ)
∫

R3∩{|u|>0}

|u|2|divu|2dx + C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2

≤ C

∫

R3∩{|u|>0}

p|u|2|∇|u||dx + C

∫

R3∩{|u|>0}

p|u|3
∣
∣
∣∇

( u

|u|
)∣
∣
∣ + 2μη1

∫

R3∩{|u|>0}

|u|2|∇u|2dx

+ 4(μ + λ)
∫

R3∩{|u|>0}

|u|2|∇|u||2dx + 4(μ + λ)
∫

R3∩{|u|>0}

|u|2|divu|2dx
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+ C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2

≤ C

∫

R3∩{|u|>0}

p|u|2|∇|u||dx + 4μ(1 − η1)η3
∫

R3∩{|u|>0}

|u|4
∣
∣
∣∇

( u

|u|
)∣
∣
∣
2

dx

+ 4(μ + λ)
∫

R3∩{|u|>0}

|u|2|∇|u||2dx + 4(μ + λ)
∫

R3∩{|u|>0}

|u|2|divu|2dx

+ C(η1, η3)
∫

R3∩{|u|>0}

ρ2θ2|u|2dx + C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2

+ 2μη1

∫

R3∩{|u|>0}

|u|2|∇u|2dx

≤ 4μη1

∫

R3∩{|u|>0}

|u|2|∇u|2dx + 4μ(1 − η1)η3
∫

R3∩{|u|>0}

|u|4
∣
∣
∣∇

( u

|u|
)∣
∣
∣
2

dx

+ 4(μ + λ)
∫

R3∩{|u|>0}

|u|2|∇|u||2dx + 4(μ + λ)
∫

R3∩{|u|>0}

|u|2|divu|2dx

+ C

∫

R3∩{|u|>0}

p|u|2|∇|u||dx + Cρ̄
8
3 ‖ρ‖ 1

3
L1‖√

ρθ‖2L2‖∇θ‖2L2

+ C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2 , (3.27)

which together with (3.17) and (3.26) yields

d
dt

∫

ρ|u|4dx + f(η1, η2, η3, η4)
∫

R3∩{|u|>0}

|u|2∣∣∇|u|∣∣2dx

+ 4μ(1 − η1)(1 − η3)η4
∫

R3∩{|u|>0}

|u|4
∣
∣
∣∇

( u

|u|
)∣
∣
∣
2

dx

≤ C

∫

R3∩{|u|>0}

p|u|2|∇|u||dx + Cρ̄
8
3 ‖ρ‖ 1

3
L1‖√

ρθ‖2L2‖∇θ‖2L2

+ C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2 , (3.28)

where

f(η1, η2, η3, η4) = 4μ(1 − η1)(1 − η3)(1 − η4)φ(η1, η2) + 8μ − 4(λ + η1μ), (3.29)

for ηi ∈ (0, 1) (i = 1, 2, 3, 4) to be decided later.
(Sub-case 11) If λ < 0, take η1 = − λ

mμ ∈ (0, 1), with the positive integer m large enough, and then,
we have

η1μ + λ =
m − 1

m
λ < 0, (3.30)

which combined with (3.19) implies φ(η1, η2) = 0, and hence,

f(η1, η2, η3, η4) = 8μ − 4(λ + η1μ) > 8μ > 0. (3.31)
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(Sub-case 12) If λ = 0, then φ(η1, η2) = η2(3−η1)
η1

, and thus,

f(η1, η2, η3, η4) =
4μ(1 − η1)(1 − η3)(1 − η4)(3 − η1)η2

η1
+ 8μ − 4η1μ > 4μ > 0. (3.32)

(Sub-case 13) If 3μ > λ > 0, then we have

f(η1, η2, η3, η4) =
4μ2(1 − η1)(1 − η3)(1 − η4)(3 − η1)η2

λ + η1μ
+ 8μ − 4(λ + η1μ). (3.33)

Since f(η1, η2, η3, η4) is continuous w.r.t. (η1, η2, η3, η4) over [0, 1] × [0, 1] × [0, 1] × [0, 1], and

f(0, 1, 0, 0) =
12μ2

λ
+ 8μ − 4λ > 0, (3.34)

there exists some (η1, η2, η3, η4) ∈ (0, 1) × (0, 1) × (0, 1) × (0, 1) such that

f(η1, η2, η3, η4) > 0. (3.35)

By (3.28), Cauchy–Schwarz inequality, and Hölder’s inequality, we have

d
dt

∫

ρ|u|4dx + f(η1, η2, η3, η4)
∫

R3∩{|u|>0}

|u|2∣∣∇|u|∣∣2dx

+ 4μ(1 − η1)(1 − η3)η4
∫

R3∩{|u|>0}

|u|4
∣
∣
∣∇

( u

|u|
)∣
∣
∣
2

dx

≤ f(η1, η2, η3, η4)
2

∫

R3∩{|u|>0}

|u|2∣∣∇|u|∣∣2dx + Cρ̄
8
3 ‖ρ‖ 1

3
L1‖√

ρθ‖2L2‖∇θ‖2L2

+ C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2 ,

that is,

d
dt

∫

ρ|u|4dx + f(η1, η2, η3, η4)
∫

R3∩{|u|>0}

|u|2∣∣∇|u|∣∣2dx

+ 4μ(1 − η1)(1 − η3)η4
∫

R3∩{|u|>0}

|u|4
∣
∣
∣∇

( u

|u|
)∣
∣
∣
2

dx

≤ Cρ̄
8
3 ‖ρ‖ 1

3
L1‖√

ρθ‖2L2‖∇θ‖2L2 + C‖b‖2L3‖∇2b‖2L2 + C‖b‖4L3‖∇u‖6L2 . (3.36)

From (3.25), (3.36), and (3.17), for Case 1 and Case 2, we conclude that if 3μ > λ, there exists a constant
c1 such that

sup
0≤t≤T

‖ρ
1
4 u‖4L4 + c1

T∫

0

‖|u||∇u|‖2L2dt

≤ ‖ρ 1
4
0 u0‖4L4 + Cρ̄

8
3

T∫

0

‖√
ρθ‖2L2‖∇θ‖2L2dt + C

T∫

0

‖b‖2L3‖∇2b‖2L2dt + C

T∫

0

|b‖4L3‖∇u‖6L2dt

≤ CM
2
3
0 ‖∇u0‖4L2 + CM

16
3

0

T∫

0

‖∇θ‖2L2dt + CM2
0

T∫

0

‖∇2b‖2L2dt + CM4
0

T∫

0

‖∇u‖2L2dt. (3.37)
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Here, we have used the following fact:
∫

ρ0|u0|4dx ≤ ‖ρ0‖
1
2
L∞‖√

ρ0u0‖L2‖u0‖3L6 ≤ C‖ρ0‖
5
6
L∞‖ρ0‖

2
3
L1‖∇u0‖4L2 ≤ CM

5
3
0 ‖∇u0‖4L2 .

The proof of Lemma 3.4 is complete. �

Lemma 3.5. Under the conditions of Proposition 3.1, it holds that

sup
0≤t≤T

(‖∇u‖2L2 + ‖∇b‖2L2

)
+

T∫

0

( 2
μ

‖√
ρut‖2L2 + ‖bt‖2L2 + ‖∇2b‖2L2

)
dt

≤ 15μ + 9λ

μ
‖∇u0‖2L2 + 2‖∇b0‖2L2 +

6M2
0

μ(2μ + λ)
‖√

ρ0θ0‖2L2 + CM2
0 ‖∇b0‖2L2

+ CM0‖√
ρθ‖2L2 + CM

1
4
0

T∫

0

‖|u||∇u|‖2L2dt + CM3
0

T∫

0

‖∇u‖2L2dt, (3.38)

provided M0 ≤ ε2 = min
{

ε1,
(

1
4C2

) 5
7
,
(

1
4C3

)2}
.

Proof. Multiplying (1.1)2 by ut and integrating resultant over R
3, we get from integration by parts that

1
2

d
dt

(
μ‖∇u‖2L2 + (μ + λ)‖divu‖2L2

)
+ ‖√

ρut‖2L2

=
d
dt

∫ (1
2
|b|2divu − b · ∇u · b + pdivu

)
dx −

∫

ptdivudx

+
∫

(bt · ∇u · b + b · ∇u · bt − b · btdivu)dx −
∫

ρu · ∇u · utdx

=
d
dt

∫ (1
2
|b|2divu − b · ∇u · b + pdivu

)
dx − 1

2(2μ + λ)
d
dt

∫

p2dx

+
∫

(bt · ∇u · b + b · ∇u · bt − b · btdivu)dx − 1
2μ + λ

∫

ptFdx

− 1
2(2μ + λ)

∫

pt|b|2dx −
∫

ρu · ∇u · utdx =:
6∑

i=1

Ji, (3.39)

where F = (2μ + λ)divu − p − 1
2 |b|2.

By (3.1) and Gagliardo–Nirenberg inequality, we have

J3 ≤ C‖b‖L∞‖bt‖L2‖∇u‖L2

≤ C‖b‖ 1
3
L3‖∇2b‖ 2

3
L2‖bt‖L2‖∇u‖L2

≤ 1
2
‖bt‖2L2 + C‖b‖ 2

3
L3‖∇2b‖ 4

3
L2‖∇u‖2L2

≤ 1
2
‖bt‖2L2 + C‖b‖ 1

2
L3‖∇2b‖2L2 + C‖b‖L3‖∇u‖6L2

≤ 1
2
‖bt‖2L2 + CM

1
2
0 ‖∇2b‖2L2 + CM0‖∇u‖2L2 .

Noticing that (1.1)3 and p = ρθ implies that

pt = −div(pu) − ρθdivu + μ(∇u + (∇u)�) : ∇u + λ(div u)2 + Δθ + | curl b|2. (3.40)
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Substituting (3.40) into J4, and using Hölder’s, Young’s, and Gagliardo–Nirenberg inequalities, (3.9), and
integration by parts, one obtains

J4 = − 1
2μ + λ

∫

pu · ∇Fdx +
1

2μ + λ

∫

ρθdivuFdx

+
μ

2μ + λ

∫

(∇u + (∇u)�) : (∇F ⊗ u)dx +
λ

2μ + λ

∫

divuu · ∇Fdx

+
1

2μ + λ

∫

(μΔu + (μ + λ)∇divu) · uFdx +
1

2μ + λ

∫

∇θ · ∇Fdx

+
1

2μ + λ

∫

| curl b|2Fdx

= − 2
2μ + λ

∫

pu · ∇Fdx +
μ

2μ + λ

∫

(∇u + (∇u)�) : (∇F ⊗ u)dx

+
λ

2μ + λ

∫

divuu · ∇Fdx +
1

2μ + λ

∫

∇θ · ∇Fdx +
1

2μ + λ

∫

ρut · uFdx

+
1

2μ + λ

∫

ρu · ∇u · uFdx +
1

2μ + λ

∫

b ⊗ b : ∇(uF )dx

− 1
2(2μ + λ)

∫

|b|2div(uF )dx +
1

2μ + λ

∫

| curl b|2Fdx

≤ C‖∇F‖L2(‖ρuθ‖L2 + ‖|u||∇u|‖L2 + ‖∇θ‖L2 + ‖|u||b|2‖L2) +
1
12

∫

ρ|ut|2dx

+ C

∫

ρ|u|2|F |2dx + Cρ̄‖|u||∇u|‖2L2 + C‖∇u‖L2‖b‖L∞‖b‖L3‖F‖L6

+ C‖∇F‖L2‖b‖L3‖∇b‖L6 + C‖F‖L6‖∇2b‖L2‖b‖L3

≤ (CM
1
4
0 + Cρ̄ + Cρ̄

4
3 )‖|u||∇u|‖2L2 +

1
12

‖√
ρut‖2L2 + CM

− 1
4

0 ‖∇F‖2L2 + CM
1
4
0 ‖∇θ‖2L2

+ C‖∇u‖2L2‖b‖ 8
3
L3‖∇2b‖ 4

3
L2 + C‖b‖2L3‖∇2b‖2L2 + Cρ̄

4
3 ‖ρ‖ 1

3
L1‖√

ρθ‖2L2‖∇θ‖2L2

≤ CM
1
4
0 ‖|u||∇u|‖2L2 + CM

− 1
4

0 ‖∇F‖2L2 + CM
1
4
0 ‖∇θ‖2L2 + CM4

0 ‖∇u‖6L2

+ CM2
0 ‖∇2b‖2L2 + CM

8
3
0 ‖∇θ‖2L2 +

1
12

‖√
ρut‖2L2 . (3.41)

Taking the operator div on both sides of (1.1)2 gives rise to

ΔF = div(ρut + ρu · ∇u + b · ∇b), (3.42)

which together with the standard elliptic estimates yields

‖∇F‖L2 ≤ Cρ̄
1
2 ‖√

ρut‖L2 + Cρ̄‖|u||∇u|‖L2 + C‖b‖L3‖∇b‖L6

≤ CM0‖√
ρut‖L2 + CM0‖|u||∇u|‖L2 + CM0‖∇2b‖L2 . (3.43)

Substituting (3.43) into (3.41), and using (3.1), we have

J4 ≤ CM
1
4
0 ‖|u||∇u|‖2L2 +

(
C1M

7
4
0 +

1
12

)
‖√

ρut‖2L2 + CM
7
4
0 ‖∇2b‖2L2 + CM4

0 ‖∇u‖2L2 .

Similarly, putting (3.40) into J5, one obtains

J5 = − 1
2μ + λ

∫

pu · ∇|b|2dx +
μ

2(2μ + λ)

∫

(∇u + (∇u)�) : (∇|b|2 ⊗ u)dx

+
λ

2(2μ + λ)

∫

divuu · ∇|b|2dx +
1

2(2μ + λ)

∫

∇θ · ∇|b|2dx
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+
1

2(2μ + λ)

∫

ρu · ∇u · u|b|2dx +
1

2(2μ + λ)

∫

b ⊗ b : ∇(u|b|2)dx

− 1
4(2μ + λ)

∫

|b|2div(u|b|2)dx +
1

2(2μ + λ)

∫

|rotb|2|b|2dx

+
1

2(2μ + λ)

∫

ρut · u|b|2dx

≤ C‖|b||∇b|‖L2(‖ρuθ‖L2 + ‖|u||∇u|‖L2 + ‖∇θ‖L2 + ‖|u||b|2‖L2) +
1
12

∫

ρ|ut|2dx

+ C

∫

ρ|u|2|b|4dx + Cρ̄‖|u||∇u|‖2L2 + C‖∇u‖L2‖|b|4‖L2 + C‖b‖2L3‖∇b‖2L6

≤ CM
1
4
0 ‖|u||∇u|‖2L2 + CM

− 1
4

0 ‖|b||∇b|‖2L2 + CM
1
4
0 ‖∇θ‖2L2 + C‖u‖2L6‖b‖2L∞‖b‖2L3

+ C‖∇u‖L2‖b‖4L8 + C‖b‖2L3‖∇2b‖2L2 +
1
12

∫

ρ|ut|2dx

≤ CM
1
4
0 ‖|u||∇u|‖2L2 + CM

− 1
4

0 ‖b‖2L3‖∇2b‖2L2 + CM
1
4
0 ‖∇θ‖2L2 + C‖b‖2L3‖∇2b‖2L2

+ C‖∇u‖2L2‖b‖ 8
3
L3‖∇2b‖ 4

3
L2 + C‖∇u‖L2‖b‖ 7

3
L3‖∇2b‖ 5

3
L2 +

1
12

∫

ρ|ut|2dx

≤ CM
1
4
0 ‖|u||∇u|‖2L2 + CM

− 1
4

0 ‖b‖2L3‖∇2b‖2L2 + CM
1
4
0 ‖∇θ‖2L2 + C‖b‖2L3‖∇2b‖2L2

+ C‖b‖4L3‖∇u‖6L2 + C‖b‖2L3‖∇2b‖2L2 + C‖b‖7L3‖∇u‖6L2

+ C‖b‖ 7
5
L3‖∇2b‖2L2 +

1
12

∫

ρ|ut|2dx

≤ 1
12

∫

ρ|ut|2dx + CM
1
4
0 ‖|u||∇u|‖2L2 + CM

7
5
0 ‖∇2b‖2L2 + CM

1
4
0 ‖∇θ‖2L2 + CM4

0 ‖∇u‖6L2 , (3.44)

where we have used the following fact:

‖b‖4L8 ≤ ‖b‖ 2
3
L3‖b‖ 10

3
L12 ≤ C‖b‖ 2

3
L3‖|b||∇b|‖ 10

3
L2 ≤ C‖b‖ 7

3
L3‖∇b‖ 5

3
L6 ≤ C‖b‖ 7

3
L3‖∇2b‖ 5

3
L2 .

Using Young’s inequality and (3.1), we have

J6 ≤ 1
12

∫

ρ|ut|2dx + C

∫

ρ|u|2|∇u|2dx ≤ 1
12

‖√
ρut‖2L2 + CM2

0 ‖|u||∇u|‖2L2 .

Substituting the above estimates on Ji (i = 3, 4, 5, 6) into (3.39) yields

1
2

d
dt

(
μ‖∇u‖2L2 + (μ + λ)‖divu‖2L2

)
+

1
2
‖√

ρut‖2L2

≤ d
dt

∫ (1
2
|b|2divu − b · ∇u · b + pdivu

)
dx − 1

2(2μ + λ)
d
dt

∫

p2dx

+ CM
1
4
0 ‖|u||∇u|‖2L2 + CM

1
2
0 ‖∇2b‖2L2 + CM0‖∇u‖2L2 , (3.45)

provided M0 ≤ ε1 = min
{

ε1,
(

1
4C1

) 4
7
}

. Integrating (3.45) over [0, T ], and using Cauchy–Schwarz inequal-
ity, we have

μ‖∇u‖2L2 + (μ + λ)‖divu‖2L2 +

T∫

0

‖√
ρut‖2L2dt

≤ μ‖∇u0‖2L2 + (μ + λ)‖divu0‖2L2 − 2
∫

ρ0θ0divu0dx +
1

2μ + λ

∫

ρ20θ
2
0dx
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+ C‖b0‖L3‖b0‖L6‖∇u0‖L2 + C‖b‖L3‖b‖L6‖∇u‖L2 +
1

μ + λ

∫

ρ2θ2dx

+ (μ + λ)
∫

|divu|2dx + CM
1
4
0

T∫

0

‖|u||∇u|‖2L2dt + CM
1
2
0

T∫

0

‖∇2b‖2L2dt

+ CM0

T∫

0

‖∇u‖2L2dt

≤ μ‖∇u0‖2L2 + (μ + λ)‖divu0‖2L2 +
2μ + λ

2
‖divu0‖2L2 +

3ρ̄

2μ + λ
‖√

ρ0θ0‖2L2

+
μ

2
‖∇u0‖2L2 +

C

μ
M2

0 ‖∇b0‖2L2 +
μ

2
‖∇u‖2L2 +

C

μ
M2

0 ‖∇b‖2L2

+
CM0

μ + λ
‖√

ρθ‖2L2 + (μ + λ)‖divu‖2L2 + CM
1
4
0

T∫

0

‖|u||∇u|‖2L2dt

+ CM
1
2
0

T∫

0

‖∇2b‖2L2dt + CM0

T∫

0

‖∇u‖2L2dt, (3.46)

which yields that

1
2
‖∇u‖2L2 +

1
μ

t∫

0

‖√
ρut‖2L2dt

≤ 3
2
‖∇u0‖2L2 +

3(μ + λ)
μ

‖∇u0‖2L2 +
3(2μ + λ)

2μ
‖∇u0‖2L2 +

3M2
0

μ(2μ + λ)
‖√

ρ0θ0‖2L2

+ CM2
0 ‖∇b0‖2L2 + C2M

2
0 ‖∇b‖2L2 + CM0‖√

ρθ‖2L2 + CM
1
4
0

T∫

0

‖|u||∇u|‖2L2dt

+ C2M
1
2
0

T∫

0

‖∇2b‖2L2dt + CM0

T∫

0

‖∇u‖2L2dt, (3.47)

where we have used

‖div u0‖2L2 ≤ 3‖∇u0‖2L2 .

It follows from (1.1)4 that

d
dt

‖∇b‖2L2 + ‖bt‖2L2 + ‖∇2b‖2L2 =
∫

|bt − Δb|2dx

=
∫

|b · ∇u − u · ∇b − bdivu|2dx

≤ C‖∇u‖2L2‖b‖2L∞ + C‖u‖2L6‖∇b‖2L3

≤ C‖∇u‖2L2‖b‖ 2
3
L3‖∇2b‖ 4

3
L2

≤ C‖b‖L3‖∇u‖6L2 + C‖b‖ 1
2
L3‖∇2b‖2L2

≤ CM0‖∇u‖2L2 + CM
1
2
0 ‖∇2b‖2L2 . (3.48)
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Integrating (3.48) over [0, T ] leads to

sup
0≤t≤T

‖∇b‖2L2 +

T∫

0

(‖bt‖2L2 + ‖∇2b‖2L2)dt

≤ ‖∇b0‖2L2 + CM0

T∫

0

‖∇u‖2L2dt + C3M
1
2
0

T∫

0

‖∇2b‖2L2dt. (3.49)

Adding (3.49) to (3.47), we get

1
2
‖∇u‖2L2 +

1
2
‖∇b‖2L2 +

T∫

0

( 1
μ

‖√
ρut‖2L2 +

1
2
‖bt‖2L2 +

1
2
‖∇2b‖2L2

)
dt

≤ 15μ + 9λ

2μ
‖∇u0‖2L2 + ‖∇b0‖2L2 +

3M2
0

μ(2μ + λ)
‖√

ρ0θ0‖2L2 + CM2
0 ‖∇b0‖2L2

+ CM0‖√
ρθ‖2L2 + CM

1
4
0

T∫

0

‖|u||∇u|‖2L2dt + CM0

T∫

0

‖∇u‖2L2dt, (3.50)

provided M0 ≤ ε2 = min
{

ε1,
(

1
4C2

)2

,
(

1
4C3

)2}
. Hence, the desired (3.38) follows from (3.50). �

Lemma 3.6. Under the conditions of Proposition 3.1, it holds that

sup
0≤t≤T

(
‖√

ρu‖2L2 + ‖√
ρE‖2L2 + ‖b‖2L2 + ‖∇u‖2L2 + ‖∇b‖2L2

)

+

T∫

0

(μ

2
‖∇u‖2L2 + ‖∇b‖2L2 +

1
2
‖∇θ‖2L2 +

c1c2
2

‖|u||∇u|‖2L2

)
dt

+

T∫

0

( 2
μ

‖√
ρut‖2L2 + ‖bt‖2L2 +

1
2
‖∇2b‖2L2

)
dt ≤ 7

4
�K, (3.51)

provided

M0 ≤ ε3 = min
{

ε2,

√
μ(2μ + λ)

40
,

√
3

20C4
,
( 3

20C4

) 3
5
,

3
20�C4

,
( 3

20�KC4

) 3
5
,

√
1

2C4
,

μ

2C4
,
(3c1c2 − 5

6C4

)4}
.

Here, c2 is an absolute constant and c1 is the same as that of in Lemma 3.4.

Proof. Based on Lemmas 3.1–3.5, and adding (3.4)+(3.6)+c2×(3.13)+(3.38) altogether for enough large
constant c2, it follows from (3.1) that

sup
0≤t≤T

(
‖√

ρu‖2L2 + ‖√
ρE‖2L2 + ‖b‖2L2 + ‖∇u‖2L2 + ‖∇b‖2L2

)

+

T∫

0

(
μ‖∇u‖2L2 + ‖∇b‖2L2 + ‖∇θ‖2L2 + c1c2‖|u||∇u|‖2L2

)
dt

+

T∫

0

( 2
μ

‖√
ρut‖2L2 + ‖bt‖2L2 + ‖∇2b‖2L2

)
dt
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≤ ‖√ρ0E0‖2L2 + ‖√
ρ0u0‖2L2 + ‖b0‖2L2 +

15μ + 9λ

μ
‖∇u0‖2L2 + 2‖∇b0‖2L2

+
6M2

0

μ(2μ + λ)
‖√

ρ0θ0‖2L2 + CM2
0 ‖∇b0‖2L2 + CM

5
3
0 ‖∇u0‖2L2 + CM0 sup

0≤t≤T
‖√

ρθ‖2L2

+ CM
8
3
0

T∫

0

‖∇θ‖2L2dt + C sup
0≤t≤T

‖ρ
1
4 u‖4L4 +

(5
6

+ CM
1
4
0

) T∫

0

‖|u||∇u|‖2L2dt

+ CM2
0

T∫

0

‖∇2b‖2L2dt + CM3
0

T∫

0

‖∇u‖2L2dt

≤ �K +
6M2

0

μ(2μ + λ)
K + C4M

2
0K + C4M

5
3
0 K + C4M0�K + C4M

5
3
0 �

2K2

+ C4M
8
3
0

T∫

0

‖∇θ‖2L2dt +
(5

6
+ C4M

1
4
0

) T∫

0

‖|u||∇u|‖2L2dt + C4M
2
0

T∫

0

‖∇2b‖2L2dt

+ C4M0

T∫

0

‖∇u‖2L2dt, (3.52)

where we have used

‖ρ
1
4 u‖4L4 ≤ ‖ρ‖ 1

2
L∞‖√

ρu‖L2‖u‖3L6 ≤ C‖ρ‖ 5
6
L∞‖ρ‖ 2

3
L1‖∇u‖4L2 ≤ CM

5
3
0 �

2K2.

Thus, it follows from (3.52) that

sup
0≤t≤T

(‖√
ρu‖2L2 + ‖√

ρE‖2L2 + ‖b‖2L2 + ‖∇u‖2L2 + ‖∇b‖2L2)

+

T∫

0

(
μ

2
‖∇u‖2L2 + ‖∇b‖2L2 +

1
2
‖∇θ‖2L2 +

c1c2
2

‖|u||∇u|‖2L2

)

dt

+

T∫

0

(
2
μ

‖√
ρut‖2L2 + ‖bt‖2L2 +

1
2
‖∇2b‖2L2

)

dt

≤ �K +
3
4

�K =
7
4

�K,

provided

M0 ≤ ε3 = min
{

ε2,

√
μ(2μ + λ)

40
,

√
3

20C4
,
( 3

20C4

) 3
5
,

3
20�C4

,
( 3

20�KC4

) 3
5
,

√
1

2C4
,

μ

2C4
,
(3c1c2 − 5

6C4

)4}
.

The proof of Lemma 3.6 is finished. �

Lemma 3.7. Under the conditions of Proposition 3.1, it holds that

sup
0≤t≤T

t‖∇b‖2L2 +

T∫

0

t
(‖bt‖2L2 + ‖∇2b‖2L2

)
dt ≤ C. (3.53)
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Proof. Using Hölder’s and Gagliardo–Nirenberg inequalities, we have
d
dt

‖∇b‖2L2 + ‖bt‖2L2 + ‖∇2b‖2L2 =
∫

|b · ∇u − u · ∇b − bdivu|2dx

≤ C‖u‖2L6‖∇b‖2L3 + C‖∇u‖2L2‖b‖2L∞

≤ C‖∇u‖2L2‖∇b‖L2‖∇2b‖L2

≤ 1
2
‖∇2b‖2L2 + C‖∇u‖4L2‖∇b‖2L2 ,

which implies that
d
dt

(
t‖∇b‖2L2

)
+ t‖bt‖2L2 +

t

2
‖∇2b‖2L2 ≤ ‖∇b‖2L2 + C‖∇u‖4L2(t‖∇b‖2L2).

This together with Gronwall’s inequality and (3.51) leads to the desired (3.53). �

Lemma 3.8. Under the conditions of Proposition 3.1, it holds that

0 ≤ ρ ≤ 3ρ̄

2
, (3.54)

provided M0 ≤ ε4 = min
{

ε3,

(
log 3

2

)3

C3
5

}
.

Proof. The first inequality of (3.54) is obvious (see [5, p. 43]). We only need to prove the second inequality
of (3.54). To this end, motivated by [2,22] (see also [28]), for any given (x, t) ∈ R

3 × [0, T ], denote

ρδ(y, s) = ρ(y, s) + δ exp
{

−
s∫

0

div(X(τ ;x, t), τ)dτ
}

> 0 (3.55)

where X(s;x, t) is given by
{ d

ds
X(s;x, t) = u(X(s;x, t), s), 0 ≤ s < t,

X(t;x, t) = x.
(3.56)

Using the fact that d

ds
(f(X(s;x, t), s) = (fs + u · ∇f)(X(s;x, t), s), it follows from (1.1)1 that

d
ds

(
log(ρδ(X(s;x, t), s)

)
= −div u(X(s;x, t), s), (3.57)

which leads to

Y ′(s) = g(s) + b′(s), (3.58)

where

Y (s) = log ρδ(X(s;x, t), s), g(s) = −p(X(s;x, t), s)
2μ + λ

,

b(s) = − 1
2μ + λ

s∫

0

(1
2
|b(X(τ ;x, t), τ)|2 + F (X(τ ;x, t), τ)

)
dτ, (3.59)

and F = (2μ + λ) div u − p − 1
2 |b|2 = (2μ + λ) div u − ρθ − 1

2 |b|2.
Rewrite (1.1)2 as

∂t

[
Δ−1div(ρu)

] − (2μ + λ) div u + p +
1
2
|b|2 = −Δ−1 div div(ρu ⊗ u) + Δ−1 div div(b ⊗ b), (3.60)

which implies that

F (X(τ ;x, t), τ) = −[
(−Δ)−1 div(ρu)

]

τ
− (−Δ)−1divdiv(ρu ⊗ u) + (−Δ)−1divdiv(b ⊗ b)
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= −[
(−Δ)−1div(ρu)

]

τ
− u · ∇(−Δ)−1div(ρu) + u · ∇(−Δ)−1div(ρu)

− (−Δ)−1divdiv(ρu ⊗ u) + (−Δ)−1divdiv(b ⊗ b)

= − d
dτ

[
(−Δ)−1div(ρu)

]
+ [ui, Rij ](ρuj) + (−Δ)−1divdiv(b ⊗ b), (3.61)

where [ui, Rij ] = uiRij − Rijui, and Rij = ∂i(−Δ)−1∂j is the Riesz transform on R
3. Hence, we derive

from (3.59) and (3.61) that

b(t) − b(0) ≤ 1
2μ + λ

t∫

0

[ d
dτ

[
(−Δ)−1div(ρu)

] − [ui, Rij ](ρuj) − (−Δ)−1divdiv(b ⊗ b)
]
dτ

+
1

2(2μ + λ)

t∫

0

‖b‖2L∞dτ

≤ 1
2μ + λ

(−Δ)−1div(ρu) − 1
2μ + λ

(−Δ)−1div(ρ0u0) +
1

2μ + λ

t∫

0

‖[ui, Rij ](ρuj)‖L∞dτ

+
1

2μ + λ

t∫

0

‖(−Δ)−1divdiv(b ⊗ b)‖L∞dτ +
1

2(2μ + λ)

t∫

0

‖b‖2L∞dτ

≤ 1
2μ + λ

‖(−Δ)−1div(ρu)‖L∞ +
1

2μ + λ
‖(−Δ)−1div(ρ0u0)‖L∞

+
1

2μ + λ

t∫

0

‖[ui, Rij ](ρuj)‖L∞dτ +
1

2μ + λ

t∫

0

‖(−Δ)−1divdiv(b ⊗ b)‖L∞dτ

+
1

2(2μ + λ)

t∫

0

‖b‖2L∞dτ =
5∑

i=1

Zi. (3.62)

By Gagliardo–Nirenberg, Sobolev’s, Calderón–Zygmund, and Hölder’s inequalities, (3.3), and (3.1),
one obtains

Z1 ≤ C

2μ + λ
‖(−Δ)−1div(ρu)‖ 1

3
L6‖∇(−Δ)−1div(ρu)‖ 2

3
L4

≤ C‖ρu‖ 1
3
L2‖ρu‖ 2

3
L4 ≤ C‖ρ‖ 1

3
L3‖u‖ 1

3
L6‖ρ‖ 2

3
L12‖u‖ 2

3
L6

≤ C‖ρ‖ 15
18
L∞‖ρ‖ 1

6
L1‖∇u‖L2 ≤ CM

15
9

0 . (3.63)

Similar to (3.63), we have

Z2 ≤ CM
15
9

0 . (3.64)

For Z3, we deduce from Gagliardo–Nirenberg inequality and Calderón–Zygmund inequality that

Z3 ≤ C

2μ + λ

t∫

0

‖[ui, Rij ](ρuj)‖
1
5
L3‖∇[ui, Rij ](ρuj)‖

4
5
L4dτ

≤ C

t∫

0

‖u‖ 1
5
L6‖ρu‖ 1

5
L6‖∇u‖ 4

5
L6‖ρu‖ 4

5
L12dτ
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≤ C

t∫

0

‖ρ‖L∞‖u‖ 1
5
L6‖∇u‖ 4

5
L6

(
‖u‖ 3

4
L6‖∇u‖ 1

4
L6

) 4
5
dτ

≤ C

t∫

0

ρ̄‖∇u‖L2‖∇u‖L6dτ. (3.65)

Denote w = curlu, and then, we have (see, e.g., [7, Theorem 11.25])

‖∇u‖L6 ≤ C‖w‖L6 + C‖div u‖L6 . (3.66)

Taking the operators div and curl on both sides of (1.1)2, respectively, we get
{

ΔF = div(ρut + ρu · ∇u) + divdiv(b ⊗ b),
μΔw = ∇ × (ρut + ρu · ∇u + div(b ⊗ b), (3.67)

which together with the standard elliptic estimates implies that

‖∇w‖L2 + ‖∇F‖L2 ≤ Cρ̄
1
2 ‖√

ρut‖L2 + Cρ̄‖|u||∇u|‖L2 + C‖b∇b|‖L2

≤ Cρ̄
1
2 ‖√

ρut‖L2 + Cρ̄‖|u||∇u|‖L2 + C‖b‖L3‖∇b‖L6

≤ CM0(‖√
ρut‖L2 + ‖|u||∇u|‖L2 + ‖∇2b‖L2). (3.68)

Substituting (3.66) and (3.67) into (3.65), we infer from (3.68) and (3.51) that

Z3 ≤ CM2
0

t∫

0

‖∇u‖L2(‖∇w‖L6 + ‖divu‖L6)dτ

≤ CM2
0

t∫

0

‖∇u‖L2

(
‖∇w‖L2 +

1
2μ + λ

‖F‖L6 +
1

2μ + λ
‖ρθ‖L6

)
dτ

≤ CM3
0

t∫

0

(‖∇u‖2L2 + ‖∇w‖2L2 + ‖∇F‖2L2 + ‖∇θ‖2L2

)
dτ

≤ CM3
0

t∫

0

(‖∇u‖2L2 + ‖√
ρut‖2L2 + ‖|u||∇u|‖2L2 + ‖∇2b‖2L2 + ‖∇θ‖2L2

)
dτ

≤ CM3
0 .

For Z4, by Hölder’s and Gagliardo–Nirenberg inequalities, (3.1), (3.51), and (3.53), we have

Z4 ≤ 1
2μ + λ

1∫

0

‖(−Δ)−1divdiv(b ⊗ b)‖L∞dτ +
1

2μ + λ

t∫

1

‖(−Δ)−1divdiv(b ⊗ b)‖L∞dτ

≤ C

2μ + λ

1∫

0

‖b‖ 2
3
L3‖∇2b‖ 4

3
L2dτ +

C

2μ + λ

t∫

1

‖b‖ 1
2
L3‖∇2b‖ 7

6
L2‖∇b‖ 1

2
L2dτ

≤ CM
1
3
0 sup

1≤τ≤t
‖∇b‖ 1

2
L2

( t∫

1

t−
7
12 · 125 dτ

) 5
12

( t∫

1

τ‖∇2b‖2L2dτ
) 7

12
+ CM

2
3
0

( 1∫

0

‖∇2b‖2L2dτ
) 2

3

≤ CM
2
3
0 + CM

1
3
0 ≤ CM

1
3
0 . (3.69)
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Here, we have used the following Gagliardo–Nirenberg inequality:

‖b‖L∞ ≤ C‖b‖ 1
3
L3‖∇2b‖ 2

3
L2 , ‖b‖L∞ ≤ C‖∇b‖ 1

2
L2‖∇2b‖ 1

2
L2 .

Similar to (3.69), we have

Z5 ≤ CM
1
3
0 .

Substituting the above estimates for Zi (i = 1, 2, 3, 4, 5) into (3.51) yields

b(t) − b(0) ≤ CM3
0 + CM

1
3
0 + CM

15
9

0 ≤ C5M
1
3
0 ≤ log

3
2
, (3.70)

provided M0 ≤ ε4 = min
{

ε3,

(
log 3

2

)3

C3
5

}
.

Integrating (3.57) w.r.t. s over [0, t], we get

log ρδ(x, t) = log[ρ0(X(t;x, 0)) + δ] +

t∫

0

g(τ)dτ + b(t) − b(0)

≤ log(ρ̄ + δ) + log
3
2
.

Let δ → 0+, we have

ρ ≤ 3ρ̄

2
.

This finishes the proof of Lemma 3.8. �

Lemma 3.9. Under the conditions of Proposition 3.1, it holds that

sup
0≤t≤T

‖b‖L3 ≤ 3
2
M0, (3.71)

provided M0 ≤ ε0 = min
{

ε4,
3

2C6

}
.

Proof. Multiplying (1.1)4 by 3|b|b and integrating by parts over R
3, we have

d
dt

‖b‖3L3 + 3
∫

|b||∇b|2dx + 3
∫

|b||∇|b||2dx ≤
∫

|b||∇b|2dx + C‖∇u‖2L2‖b‖3
L

9
2
.

Consequently,

d
dt

‖b‖3L3 + 2
∫

|b||∇b|2dx + 3
∫

|b||∇|b||2dx ≤ C‖∇u‖2L2‖b‖3
L

9
2
. (3.72)

To deal with the right-hand side of (3.72), we need to use the following variant of the Kato inequality

|∇|b| 3
2 | =

3
2
|b| 1

2 |∇|b|| ≤ 3
2
|b| 1

2 |∇b|,
which combined with Sobolev’s inequality and Gagliardo–Nirenberg inequality leads to

‖b‖3
L

9
2

≤ ‖b‖ 3
2
L3‖b‖ 3

2
L9 = ‖b‖ 3

2
L3‖|b| 3

2 ‖L6 ≤ C‖b‖ 3
2
L3‖∇(|b| 3

2 )‖L2 ≤ C‖b‖ 3
2
L3‖|b| 1

2 |∇b|‖L2 . (3.73)

Thus, putting (3.73) into (3.72), we obtain from Cauchy–Schwarz inequality that

d
dt

‖b‖3L3 +
∫

|b||∇b|2dx ≤ C‖∇u‖4L2‖b‖3L3 .
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This together with (3.51) and Gronwall’s inequality yields

sup
0≤t≤T

‖b‖L3 ≤ exp
{

C

T∫

0

‖∇u‖4L2dt
} 1

3 ‖b0‖L3 ≤ C6M
2
0 ≤ 3M0

2
,

provided M0 ≤ ε0 = min
{

ε4,
3

2C6

}
. The lemma is completed. �

Now, Proposition 3.1 is a direct consequence of Lemmas 3.1–3.9.

Proof of Proposition 3.1. Define

T# := max
{
T ′ ∈ (0, T ]

∣
∣
∣ sup
0≤t≤T ′

‖ρ‖L∞ ≤ 2ρ̄, ψT ′ ≤ 2�K, sup
0≤t≤T ′

‖b‖L3 ≤ 2M0

}
.

Then, by Lemmas 3.1–3.9, we have

sup
0≤t≤T ′

‖ρ‖L∞ ≤ 3
2
ρ̄, ψT ′ ≤ 7

4
�K, sup

0≤t≤T ′
‖b‖L3 ≤ 3

2
M0, ∀T ′ ∈ (0, T#), (3.74)

as long as M0 ≤ ε0 is sufficiently small.
If T# < T , noticing that ψT ′ , sup

0≤t≤T ′
‖b‖L3 , and sup

0≤t≤T ′
‖ρ‖L∞ are continuous on [0, T ], there is another

time T## ∈ (T#, T ] such that

sup
0≤t≤T##

‖ρ‖L∞ ≤ 2ρ̄, ψT## ≤ 2�K, sup
0≤t≤T##

‖b‖L3 ≤ 2M0,

which contradicts to the definition of T#. Thus, we have T# = T , and the conclusion follows from (3.74)
and the continuity of ψT ′ , sup

0≤t≤T ′
‖b‖L3 , and sup

0≤t≤T ′
‖ρ‖L∞ . �

The following corollary is a straightforward consequence of Proposition 3.1 and Lemma 3.6.

Corollary 3.1. Assume that 3μ > λ, and let the conditions in Proposition 3.1 be in force. Then, there is
a positive constant C depending only on μ, λ, ‖ρ0‖L1 , and K such that

sup
0≤t≤T

(
‖ρ‖L∞ + ‖√

ρu‖2L2 + ‖√
ρE‖2L2 + ‖∇u‖2L2 + ‖b‖2H1

)

+

T∫

0

(
‖∇u‖2L2 + ‖∇b‖2H1 + ‖∇θ‖2L2 + ‖|u||∇u|‖2L2 + ‖√

ρut‖2L2 + ‖bt‖2L2

)
dt ≤ C,

provided that M0 ≤ ε0.

4. Proof of Theorem 1.1

Let ε0 be the constant stated in Proposition 3.1 and suppose that the initial data (ρ0, u0, θ0, b0) satisfy
(1.5) and (1.6), and

M0 ≤ ε0.

According to Lemma 2.1, there is a unique local strong solution (ρ, u, θ, b) to the problem (1.1)–(1.4).
Let Tmax be the maximal existence time to the solution. We will show that Tmax = ∞. Suppose, by
contradiction, that Tmax < ∞. Then, by virtue of Lemma 2.3, there holds

lim
T→Tmax

(‖ρ‖L∞(0,T ;L∞) + ‖u‖L4(0,T ;L6)

)
= ∞. (4.1)
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By Corollary 3.1, for any T ∈ (0, Tmax), there exists a positive constant C̄ independent of T such that

sup
0≤t≤T

(‖ρ‖L∞ + ‖∇u‖2L2

) ≤ C̄, (4.2)

which combined with Sobolev’s inequality ‖u‖L6 ≤ C‖∇u‖L2 gives
Tmax∫

0

‖u‖4L6dt ≤ C

Tmax∫

0

‖∇u‖4L2dt ≤ CC̄2Tmax < ∞. (4.3)

From (4.2) and (4.3), we derive that

lim
T→Tmax

(‖ρ‖L∞(0,T ;L∞) + ‖u‖L4(0,T ;L6)

)
< ∞,

contradicting to (4.1). This contradiction provides us that Tmax = ∞, and thus, we obtain the global
strong solution. This finishes the proof of Theorem 1.1. �
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