Z. Angew. Math. Phys. (2020) 71:188
(© 2020 Springer Nature Switzerland AG
0044-2275/20/060001-25

published online October 20, 2020 Zeitschrift fiir angewandte

https://doi.org/10.1007 /s00033-020-01408-3 Mathematik und Physik ZAMP
Check for
updates

Global well-posedness to three-dimensional full compressible magnetohydrodynamic
equations with vacuum

Yang Liu and Xin Zhong

Abstract. This paper studies the Cauchy problem for three-dimensional viscous, compressible, and heat conducting magneto-
hydrodynamic equations with vacuum as far field density. We prove the global existence and uniqueness of strong solutions
provided that the quantity ||po||ree + ||bol| ;3 is suitably small and the viscosity coefficients satisfy 3p > . Here, the initial
velocity and initial temperature could be large. The assumption on the initial density does not exclude that the initial
density may vanish in a subset of R3 and that it can be of a nontrivially compact support. Our result is an extension of the
works of Fan and Yu (Nonlinear Anal Real World Appl 10:392-409, 2009) and Li et al. (SIAM J Math Anal 45:1356-1387,
2013), where the local strong solutions in three dimensions and the global strong solutions for isentropic case were obtained,
respectively. The analysis is based on some new mathematical techniques and some new useful energy estimates. This paper
can be viewed as the first result concerning the global existence of strong solutions with vacuum at infinity in some classes
of large data in higher dimension.
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1. Introduction

Let Q C R? be a domain, and the motion of a viscous, compressible, and heat conducting magnetohy-
drodynamic (MHD) flow in  can be described by full compressible MHD equations (see [20, Chapter
3]):

pt + div(pu) = 0,

pur + pu - Vu — pAu — (A + p)Vdivu + Vp = curl b x b,

cop(0y +u-VO) + pdivu — kA0 = Q(Vu) + v| curl b|?, (1.1)
by —b-Vu+u-Vb+bdivu = vAb,
divb =0,

where the unknowns p > 0, v € R3, § > 0, and b € R? are the density, velocity, absolute temperature,
and magnetic field, respectively; p = Rpf, with positive constant R, is the pressure, and

Q(Vu) = gwu + (V) T2 4+ Adivu)?, (1.2)

with (Vu)T being the transpose of Vu. The constant viscosity coefficients p and A satisfy the physical
restrictions

(>0, 2u+3\>0. (1.3)
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Positive constants c,, k, and v are the heat capacity, the ratio of the heat conductivity coefficient over
the heat capacity, and the magnetic diffusive coefficient, respectively.

Let Q = R3, and we consider the Cauchy problem of (1.1) with (p,u,,b) vanishing at infinity (in
some weak sense) with given initial data pg, ug, 0o, and by, as

(P7U79ab)|t:0 = <P07U0a90>b0)> HARS R3' (14)

The compressible MHD equations govern the motion of electrically conducting fluids such as plasmas,
liquid metals, and electrolytes. They consist of a coupled system of compressible Navier—Stokes equations
of fluid dynamics and Maxwell’s equations of electromagnetism. Besides their wide physical applicability
(see, e.g., [1]), the MHD system is also of great interest in mathematics. As a coupled system, the issues
of well-posedness and dynamical behaviors of compressible MHD equations are rather complicated to
investigate because of the strong coupling and interplay interaction between the fluid motion and the
magnetic field. Their distinctive features make analytic studies a great challenge but offer new opportu-
nities. Furthermore, the differences in behaviors of solutions between isentropic and non-isentropic fluid
flows are believed to be significant (see [3,11,12,20]).

On the one hand, for isentropic case, Suen and Hoff [27] proved the global-in-time existence of weak
solutions in three space dimensions with initial data small in L? and initial density positive and essen-
tially bounded. As emphasized in many related papers (refer to [8,9,23,29,30] for instance), the possible
appearance of vacuum produces new difficulty in mathematical analysis, so it is interesting to study the
solutions with vacuum. Hu and Wang [11] showed the global weak solutions with vacuum with large ini-
tial data in terms of the Lions’ compactness framework of renormalized solutions [22]. The global-in-time
weak solutions for a non-resistive fluid in two dimensions were obtained recently in [21]. Moreover, for
the global well-posedness of strong solutions with vacuum, Li et al. [17] and Lii et al. [24] established the
global existence and uniqueness of strong solutions to the 3D case and 2D case, respectively, provided
the smooth initial data are of small total energy, which generalize similar results for strong solutions of
the isentropic compressible Navier—Stokes equations obtained by Huang et al. [15] and Li and Xin [19],
respectively. Later, by removing the crucial assumption that the initial total energy is small, Hong et al.
[10] improved the result of [17] and proved the global classical solutions as long as the adiabatic exponent
is close to 1 and v is suitably large.

On the other hand, for non-isentropic case (1.1), Kawashima [16] first obtained the global existence
and uniqueness of classical solutions in multi-dimension when the initial data are close to a non-vacuum
equilibrium in H3-norm (see also [26]). Using the entropy method, Ducomet and Feireisl [3] studied the
global existence of weak solutions by introducing the entropy equation rather than the thermal equation
(1.1)3. Meanwhile, Hu and Wang [12] considered global-in-time weak solutions of (1.1) instead of the
entropy equation used in [3]. Non-uniqueness of global-in-time weak solutions for an inviscid fluid in two
dimensions was investigated in [6]. For local well-posedness of strong solutions with vacuum, Fan and Yu
[4] established the local existence and uniqueness of strong solutions to (1.1)—(1.4). Zhong [32] investigated
the 2D case of (1.1) with k = v = 0 via weighted energy method. However, to the best of our knowledge,
global well-posedness theory for strong solutions with vacuum to (1.1) in multi-dimension cannot be
available. In fact, the main aim of this paper is to deal with the global existence and uniqueness of strong
solutions to the 3D Cauchy problem (1.1)-(1.4) in some homogeneous Sobolev spaces with vacuum at
infinity for the density and the temperature.

Before formulating our main result, we first explain the notations and conventions used throughout
this paper. For simplicity, in what follows, we denote

/fdm:/fdx, cw=k=R=v=
R3
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For 1 < p < oo and integer k > 0, the standard homogeneous and inhomogeneous Sobolev spaces are as
follows:

LP = [P(R?), Wh? = [P0 D*? H* = Wh?

DFP = {u e LL (R3) : |VFul|p» < 00}, D*¥ = D*2,

D{ = {u € L°(R3) : |Vu| 2 < oo}
Let Ey be the specific energy defined by

_ Juol

Ey 5

+ 6.

Our main result can be stated as follows.
Theorem 1.1. Let 3u > X. For given numbers K > 0 (which may be arbitrarily large), q € (3,6), and
p > 0, assume that the initial data (py > 0,ug, 09 > 0,bg) satisfy

po <P, po € L' H nWhe (ug,6y) € DN D*2,
‘/poEo + \/Polo € L27 bo € ]{27 div by = 0,

lvPouoll3= + [[Vuoll32 + lv/PoEoll32 + lboll3 = K, (1.5)
p+ lbollzs = A%,
and the compatibility conditions
{NAuo — (u+ AV divug + V(pobo) — curlb x b = /pogu, (16)
Aby + Q(Vug) + | curlb|? = \/pogs, .

with g1, g2 € L?. There exists a small positive constant ey depending only on g1, g2, i, N, [l91llz2, 92112,
llpollz1, and K such that if

My < €,
then the problem (1.1)~(1.4) has a unique global strong solution (p > 0,u,0 > 0,b) satisfying

p € C([0,00); LN H* n W), p, € C(]0,00); L* N L),
(u,5,0) € C([0, 00); DY 1 D?) 1 L2, ([0, 50); D), b € C([0, 00); H?), (L.7)

loc

(Ut,bt,at) € LIZOC([O7OO)7D(%)7 (bt7\/ﬁut7\/,59t) € Lloc?c([05oo)5L2)

Remark 1.1. Theorem 1.1 is the first result concerning the global existence of strong solutions to the full
compressible magnetohydrodynamic equations with vacuum in spatial multi-dimension. Moreover, the
conclusion in Theorem 1.1 generalizes the theory of isentropic case in Li et al. [17] to the non-isentropic
case. In particular, the initial energy is allowed to be large when ||po|[z= + ||bo||z is suitably small.

Remark 1.2. It should be noted that there is no need to require any smallness condition on the initial
velocity ug and initial temperature 6y for the global existence of solutions.

Remark 1.3. It is very interesting to investigate the global existence and uniqueness of strong solutions
to the initial boundary value problem of (1.1) under various boundary conditions for (u, #,b). Some new
ideas are needed to handle these cases. This will be left for future studies.

If b= by = 0, Theorem 1.1 directly yields the following global existence theorem for the full compress-
ible Navier—Stokes equations.

Theorem 1.2. Let 3u > A. For given numbers K > 0 (which may be arbitrarily large), q € (3,6), and
p > 0, assume that the initial data (po,uo, 00 > 0) satisfy

0<po<p, po€ L' nH NWh,
vPoEo + /poug € L2, (Uo,ao) € D(l) N D2’2, (18)
lv/Pouoll32 + [[Vuol32 + [lv/poEoll- = K,
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and the compatibility conditions

—pAug — (p+ AV divug + V(pobo) = /pog1,
Aby + Q(Vug) = /poga,

with g1, g2 € L2. There exists a small positive constant €y depending only on i, A, ||g1|| 2, |92 z25 [P0l 1
and K such that if

(1.9)

p < €0,
then the problem (1.1)—(1.4) with b =0 has a unique global strong solution (p > 0,u,0 > 0) satisfying

peC([0,00); L' N H' nWh9), p, € C([0,00); L? N L),
u,0) € C([0,00); DN D?) N LE ([0, 00); D7), (1.10)

loc

(
(e, 00) € L2,0(10,00); DY), (/i /) € Li5a([0,00); 7).

Remark 1.4. Since the assumption 3p > M is weaker than 2y > A\ due to u > 0, Theorem 1.2
extends the result in Li [18] where the global existence of strong solution was established provided that

llpollze=(llpollzs + llpoll 2 llv/Pouoll 22 ) (VoI 72 + lpoll< llv/PoEoll72) is sufficiently small and 24 > A.

Remark 1.5. We note that in [14], Huang and Li studied the Cauchy problem of full compressible Navier—
Stokes equations in R3, and they obtained the existence and uniqueness of global classical solutions
provided that the initial energy is small. However, the initial density and initial temperature are not
allowed to vanish at infinity. Such assumptions play a crucial role for some estimates in [14].

We now make some comments on the analysis for Theorem 1.1. To prove the global existence of strong
solutions, we establish a crucial proposition (Proposition 3.1) which implies that the terms in Serrin-type
criterion (see Lemma 2.3) will never blow up in finite time when 3p > A and the initial data are small in
some sense (refer to Sect. 4 for more details). This together with the contradiction arguments indicates
that the strong solution exists globally in time. This is the main ingredient of the proof. Compared to
the isentropic case [17], due to (p(z,t),b(x,t),0(x,t)) — (0,0,0) as |z| — oo, the basic energy inequality
only provides us

[ (olul? + 167 + 208)dz = [ (poluol + of? + 20080}z,

and there is no any useful dissipation estimate on « and b. To overcome this difficulty, inspired by [18,28],
where the authors obtained dissipative estimate on u for the full Navier-Stokes equations by using L>-
norm of the density and the conservation of mass, respectively, we recover the crucial dissipation estimate
of the form fOT(p||Vu||2L2 +{|Vb||32)dt in terms of L>(0,T; L°)-norm of p (see Lemma 3.2). Moreover, as
stated in many papers (see [3,12,27] for example), compared with compressible Navier—Stokes equations,
the presence of magnetic field effects results in some new difficulties. To this end, we try to deal with
the strong coupling term u - Vb and the strong nonlinear term curlb x b by introducing the spatial
L>(0,T; L3)-norm of b. These motivate us to impose the smallness condition on ||pol|z= + ||bol|zs to get
the bound of ||p|| e + ||b|| s Furthermore, we tackle higher-order estimates with the help of the effective
viscous flux F' = (2u+ A)divu—p— %|b\2 (see Lemma 3.5) and the upper bound of the density is obtained
via commutator estimate (see Lemma 3.8). Finally, it enables us to get L>°(0,7T; L3) estimate of b from
the induction equation (1.1)4 and Kato-type inequality (see Lemma 3.9). Combining these estimates
altogether yields the desired energy-like estimate, provided that the initial data are suitably small (see
Corollary 3.1).

The rest of the paper is organized as follows: In Sect. 2, we recall some known facts and elementary
inequalities which will be used later. Section 3 is devoted to the global a priori estimates. The proof of
Theorem 1.1 is given in Sect. 4.
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2. Preliminaries
In this section, we collect some known results and elementary inequalities which will be used later.
First, the following local existence and uniqueness of strong solutions have been established in [4].

Lemma 2.1. Assume that (po,ug, 6o, bo) satisfies (1.5) and (1.6). Then, there exists a small time T > 0
and a unique strong solution (p,u,0,b) to the problem (1.1)—(1.4) on R3 x (0,T).

Next, the following well-known Gagliardo—Nirenberg inequality (see [25, Theorem]) will be used later
frequently.

Lemma 2.2. Let u belong to LI(R™) and its derivatives of order m, V™u, belong to L™ (R™), 1 < ¢,r < co.
Then for the derivatives Viu,0 < j < m, the following inequality holds:

IVl ey < OVl ol (2.1)
where
1 ] 1 1
=J+a(—m>+(1—a) (2.2)
P n ron q
for all « in the interval
L <a<i (2.3)
m

(the constant C' depends only on n,m, j,q,r, ), with the following exceptional cases: (1) If j = 0,rm < n
and q = oo, then we take the additional assumption that either u tends to zero at infinity or u € LI(R™)
for some finite ¢ > 0.

(2) If 1 < r < oo, and m — j — % is a nonnegative integer, then (2.1) holds only for a satisfying
L <a<l.

Finally, the following Serrin-type blow-up criterion (see [13]) will be used to prove the global existence
of the strong solution to (1.1)—(1.4) (see Sect. 4 for details).

Lemma 2.3. Let the initial data (po,uo, 6o, bo) satisfy conditions in Theorem 1.1. If T* < oo is the mai-
mal time of existence for that solution obtained in Lemma 2.1, then we have

li 00 (0. T oo s(0.T-Lr)) =
TLHT{( lpllL (0,1;L) T [lul L (0,T;L )) = 00,
with r and s satisfying

2 3

-+-<1,s>1 3<r<oo.

s T

3. A priori estimates
This section is devoted to deriving the following a priori estimates for the solutions to the Cauchy problem
(1.1)—(1.4). For simplicity, we denote

Yr = Sup (Ivpulz: + IVulZz + IVPE(Z: + 1bl1F:)-

Proposition 3.1. Assume 3pu > A, and let the conditions in Theorem 1.1 be in force. There exists a positive
constant €y depending only on 1, A, ||pollrr, and K, such that if

sup |[|pllz~ < 2p, Yp < 20K, sup |[bl|s < 2Mo, (3.1)
0<t<T 0<t<T
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then one has

3_ 7 3
swp_lollz~ < 55, wr < (hE, sup bl < 5 Mo, (32)
<t<T 0<t<T

provided that My < €y. Here, the constant h = w.

The proof of Proposition 3.1 will be done by a series of lemmas below. For simplicity, we will use the
conventions that C' and C; (¢ = 1,2,...) denote various positive constants, which may depend on p, A,
llpoll 1, and K, but are independent of T" and M.

We begin with the following lemma concerning the mass is conserved for all time, which could be
found in [28, Lemma 3.1], and so we omit the detail of proof.

Lemma 3.1. Under the conditions of Proposition 3.1, it holds that

/ o — / poda (3.3)

Lemma 3.2. Under the conditions of Proposition 3.1, it holds that

T
(I/pulla + [b]22) + / (I Vul2e + Vb2 )dt

sup
0<t<T
2 2 s (T 2
< [[Vpouollz2 + llbollz2 + C My /O [VO||72dt. (3.4)

Proof. Multiplying (1.1)5 by u, (1.1)4 by b, respectively, then adding the two resulting equations together,
and integrating over R?, and noting that x + A > 0, we obtain from (3.3) that

1d .
5 g IVPulie +1Ibl22) + plVullze + (p+ M divulzz + [ V0] 12

= /pdivudx < el 1]l Lo || div wl| 12
< (p+ Ml divuls + Cliplls VOl
a 2
< (p+ Ml divullzs + Clipllillpll 71 VOl
8
< (p+ Ml divulZs + CMG (VO]
which implies that
4 2, +|Ib|]2 VulZs + ||Vb|22 < OMG ||V 3.5
3 IVpullze +11blIz2) + uVulz: + [[Vbl[z. < CMg VL. (3.5)
Hence, the desired (3.4) follows from (3.5) integrated in ¢. O
Lemma 3.3. Under the conditions of Proposition 3.1, it holds that

T T T
5 16
sup [VEEIE: + [ VO < |l + 5 [ el VullEade + 0217 [ 963t
- 0 0 0

T T
+CMg/|\v2b||§2dt+cM§/||vu||2det, (3.6)
0 0

where B = % + 6.

IFrom (1.3) and 3u > A, we have 5y + 2\ > 0. Then, by (1.3) again one gets 7u + 5\ > 0, which combined with (1.3)
again implies 9u + 8\ > 0. This together with (1.3) once more gives 11x + 11X > 0. Thus, the result follows.
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Proof. For E = % + 0, we infer from (1.1) that
p(E; +u-VE) + div(up) — A = div(S - u) + curl b x b+ | curl b|?, (3.7)

where S = p(Vu + (Vu) ") + Adivuls with I3 being the identity matrix of order 3. Multiplying (3.7) by
E and integrating the resultant over R3, it follows from integration by parts and Young’s inequality that

1d 1
§a||\/ﬁE||2Lz +[|Vo]3. < —§/V9 - Vlul*dx + /(up —S§-u)-VEdz
+ C’/(|u\|b|2\VE\ + |Vul|b*E)dx + / | curl b|? Edz
1 2 3 2 202 12
< glIVOIlze + glllullValllz: + C [ p°60%[ul"dz

+C/(|u\|b|2\VE\ +|Vu||b\2E)dx+C/\VE||Vb|\b|dx

6
+C/|E\|V2b\|b\dx =Y I (3.8)
i=1
Using Holder’s, the Sobolev, and the Cauchy inequalities, we have
3
Is < Clly/o0l 2|01 Lol lul|| o |l 7o
1 4
< CllVobll L2 VOl 2 [ul[Vulll 2l ol £ ol 2o
1 8 1
Sl Vullze + Cp3 llpll g IV/polI7: VOl 72

IN

1 2 ¥ 2
gllullVulllz: + CMg* [VOI7:, (3.9)

Cllullzs 6P| 2 IV Ell 22 + Cl[Vull 22 ][1b] ]| s | E |l 2o
IVull L2 [[]] Lo 1] 2o [V E]| 2

Iy

IAIN

IN

c

4 2
ClIblI 2 V28l 72 [Vl 2|V E| 2
1

IN

SIVE|2s + C|Ibl2, IV a2 V20 ¢
6H 72 + Clbll 2s | Vull 72 V0] } 2

IN

1 1
IVOIZ= + SllullVaullZ: + CMGV2b] 72 + OMg || Vulz:

IN

1 1
gHV9H%2 + 6|||u||VuH|%2 + CMG||V?b||72 + CMg||Vul)7-, (3.10)
Is + I < C||E||1s | V?b]| 12 |b]| 15 + C|IVE|| £2]|Vb]| Lo]|b]| .3

< C|IVE| 2[[b]l 22| V0| 2

1 1
< 5IVOIZ: + lllul[VulllZ: + CMG(IVb| 7. (3.11)
Inserting (3.9)—(3.11) into (3.8) gives rise to

d 5 16
&H\prHiz +[IVe]7- < glllullvullliz +CMy* |VO||72 + CMG[|V?b]7: + CMg|[VulF..  (3.12)

Then, integrating (3.12) in ¢ leads to the desired (3.6). O

Next, motivated by [31], we can improve the basic estimate obtained in Lemma 3.2.
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Lemma 3.4. Under the conditions of Proposition 3.1, there exists a positive constant ¢1 depending on i,
A, lpollzr, and K, but independent of T and My, such that

16
s otull +o, / [Vl dt < CMS || Vo[£ + CM? / V6|2t

+CM0/||V2b||L2dt+CMO/||Vu||L2dt (3.13)

Proof. Multiplying (1.1)s by 4|u|?u and integrating the resulting equation over R? yield
d
o plul*dz +4/ lul? (1| Vul? + (1 + A)|divul® + 2u}V|u|’ )da
< 4/div(|u|2u)pdx —8(\+ u)/divu|u|u - Vl]u|dz + C’/ [ul?|Vu||b|?d. (3.14)

For the last term of the right-hand side of (3.14), one obtains from Hoélder’s and Gagliardo-Nirenberg
inequalities that, for any n; € (0,1),

C [P vulpPe <t [ P (9ulds+ Con) [ fuPiplids

< tyomy [ JuPValPde + Clom) ulalllF ~ |81
<ty [ JuPVulPde + OO Tl 9251 .
< dpm / ul?|Vul*dz + C|b]|7 V0] 72 + CIbl|7s [Vl 32,

which together with (3.14) leads to

S5 [pludia 44 1P (u( = n)Vu + o+ VldivaP + 2/ Vu][*)da
< 4/div(|u|2u)pdx -8\ + u)/divu|u|u - Vuldz + C||b]|2:(|V3b]|22 + Cl1b]| 75| Vul/S2.  (3.15)
Consequently, we arrive at

pluldz + 4 / [,41 — )|Vl + (i + N)ul?|divel® + 2pu?| V]l |2] da

dt
R3O {[u|>0}
<4 / div(jul?u)pdz — 8(\ + ) / divululu - V|u|dz + C||b]|2]|V2b||3
R3A{ju|>0} R3A{ju|>0}
+ Cbll 751Vt - (3.16)

Direct calculations give that for # € R® N {|u| > 0},
2 2 4 u |2 2 2
[ul?|Val? = Jul jv(;)‘ + [ul?|Vul|, (3.17)

lu|divu = |u|?div ( ) +u- Viul. (3.18)
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For 11,12 € (0,1), we now define a nonnegative function as follows:

pna(3 —m)
HIRAS 7). e X oy > 0,
(1, m2) = AFnip ' e (3.19)
, otherwise.
We prove (3.13) in two cases.
Case 1 We assume that
u 2
|u|4(v(m)\ dz < ¢(m,m2) / Juf?| V[l |*da. (3.20)
R3N{|u|>0} R3N{|u|>0}

It follows from (3.16) that
plul*dz + 4 / Gdx
R3N{|u|>0}

<4 / div(|ul*u)pdz + Cl[b||Zs [ V20l L2 + ClblI s [Vullf, (3.21)

R3N{|u|>0}

dt

where
G = p(1 = no)[ul*|Vul* + (u + A)|ul?|divul® + 2p|ul*|V|u| |2 +2(A + p)divu|ulu - Vi]ul.
To let [ps, {ju>0) G4z become a good term, we shall consider G first. It follows from (3.17) that
G = p(1 =) u*|Vul® + (u+ N|ul?|divel* + 2p|ul®|V]u]|?

+2N+ u)|u|2d1v(| |)u -V ul + 200 + p)u - V]l

(0= m) (Juf* ]v( )] [l [l ) + O+ ) (Jul? dw(l |)—|—u V|u|)

+ 20fuP |Vl [2 4+ 200 + o) ufdiv (= )u - Flul + 200+ ) Vlul?

ul
=t = )9 ()[4 3 = 91l = 2l ()

+3(>\+u)< 1yl d1v(| ‘)—i-u V|u|>
—Ov il ()| (3 = )19l (3.22)

Here, we have used the following facts:

Bu—XA)+42u+3X)=11(p+ ) >0

(i)l <2 v (Gl

Thus, we obtain from (3.22) and (3.20) that
[ ctez [0 metmm) +anG-m)] [ VP
R3N{|u|>0} R3N{|u|>0}

> (3 — m)(1 - 1) / 2|V ul2dz. (3.23)

R3N{|u|>0}
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Inserting (3.23) into (3.21), we have

d
5 [elts G -ma-m) [ PV

R3N{|u|>0}
<4 / div(fulu)pdz + Clb]|2[[V2B]22 + bl L [|Vul ¢
R3N{|u|>0}
<c / 2 [Vl pBdz + Cb][2 V28122 + Clbl| % [Vl S
R3N{|u|>0}
<7 / 2| Vuf?dz + C / 0 |ul2da + Cb|2 [ V325 + O[B4 | Vul
R3N{|u|>0} R3N{|u|>0}

</ Il Vull3e + C% ol I V/B013 V61132 + Clbll3s IV 2Bl132 + Cllbll%s | Vull
= L2 pellpllz:llvefllz L2 Ls L2 L3l VU2

2 8 1
< ' (L+ ¢(m,m2)) / [ul?[V]ul[*dz + Co5 ||} 1v/p0lI7: [ VO 72
R3N{|u|>0}
+ ClBILsIV2BIIZ2 + ClIblIzs |Vl 22 (3.24)

Taking 7’ = W, then we infer from (3.24) that

d
S [t -ma - [ PV

R3N{|u|>0}
_8 1
< Cp3lpllF lIvPol1721IV0l1 7= + Clbll7s Vbl 72 + ClIbl 7 |V 2 (3.25)
Case 2 We assume that
w2
/ ol [V ()] > ot [ w9 (3.26)
R3N{|u|>0} R3N{|u|>0}

It follows from (3.14) that

d : 2
S [ otttz 4 [ GulaPIVul? + G Vlul? v + 24?9l
< 4/div(|u\2u)pdx —8(A+p) /divu|u\u - V|u|dz + 2um / |ul?|Vu|*dz
R3N{|u|>0}
+ ClblIZsIV2blIZ> + ClIblIzs [ Vul g2
<C / plul?|Vaulde + 4(pu + ) / [ul |V |u||*dz 4 2pum; / [ul?|Vu|*da
R3N{|u|>0} R3N{|u|>0} R3N{|u|>0}
+4(p+ ) / [ul?|divu|*dz + C|bl[7s[IV2bIIZ> + ClIblI s [ Vul g2
R3N{|u|>0}
<c [ apPvmaese [ aal|v(E) |+ [ wEvepas
R3N{|u|>0} R3N{|u|>0} R3N{|u|>0}
+4(p+N) / [ul?|V |u||*dz 4+ 4(p + N) / ul?|divu|?da

R3N{|u|>0} R3N{|u|>0}
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+CblIZs [IV?0l1Z2 + ClIbllzs IVl

2 4 LATE
<C / plul*|V]u||dz + 4p(1 — n1)n3 / Jul ‘V(mﬂ dz

R3N{|u|>0} R3N{|u|>0}
+4(p+N) / [ul?|V |u||*dz 4 4(p + N) / ul?|divu|?da
R3N{|u|>0} R3N{|u|>0}
HCnm) [ PO+ IRV + bl Vall
R3N{|u|>0}
+2um / lu|?|Vu|*dz
R3N{|u|>0}
<4 2 2 _ 4 u 2
< dpm [ul*IVuldz + 4u(1 — m)ns ul*|V l dz
R3N{|u|>0} R3N{|u|>0}
+4(p+A) / [ul?|V |u||*dz 4+ 4(p + N) / ul?|divu|?da
R3N{|u|>0} R3N{|u|>0}
_8 1
vC [ pPIVlullde + ool VA8 VO
R3N{|u|>0}
+ C|Ibl17s V28] 72 + Clbll 7 IV ull$s, (3.27)

which together with (3.17) and (3.26) yields

d 2
— [ plul*dz + f (11,12, 13, 74) / |u|2‘V\u|| dx

dt
R3N{|u|>0}
u 2
+4p(1l —n1) (1 —n3)na / |U|4‘V(m)‘ dx
R3N{|u|>0}
_8 1
<C / plul?|V]ulldz + Cp3 [|pll 3. [|v/P0 |72 1V O] 72
R3N{|u|>0}
+ C|IblI7s 1920172 + Clbll 7 IV ull3s, (3.28)
where

FCn,m2,m3,ma) = 4p(1 — ) (1 —n3) (1 — na)d(n1, m2) + 8 — 4(A + mup), (3.29)

for n; € (0,1) (i =1,2,3,4) to be decided later.
(Sub-case 11) If A\ < 0, take n; = _%u € (0,1), with the positive integer m large enough, and then,
we have

—1
mp+r="""x<o, (3.30)
m
which combined with (3.19) implies ¢(n1,72) = 0, and hence,

(1, m2,m3,ma) = 8 — 4(A + 1) > 8u > 0. (3.31)
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(Sub-case 15) If A = 0, then ¢(n1,12) = %, and thus,

4p(1 = 1) (1 = n3)(1 = 1) (3 —m1)n2
m

f(n1,m2,m3,m0) = + 8 —4Anip > 4p > 0.

(Sub-case 13) If 3 > X\ > 0, then we have

4p2 (1 — 1) (1 —n3) (1 —14) (3 — 11)m2
A mp

SOy m2,m3,m4) = + 8 — AN+ nup).

Since f(n1, 12, 13,74) is continuous w.r.t. (11, n2,13,M4) over [0,1] x [0,1] x [0,1] x [0,1], and

1242
£(0,1,0,0) = =2

8 — 4\ >0,

there exists some (11,72,m3,14) € (0,1) x (0,1) x (0,1) x (0,1) such that
f(n,m2,ms,m4) > 0.

By (3.28), Cauchy—Schwarz inequality, and Holder’s inequality, we have

d 2
T plul*dz + (01, 12,13, 14) / [ul?|V|ul|"dz

R3N{|u|>0}
4 u |2
+4p(1 = n1)(1 = n3)ns / |ul )V(m)‘ dz
R3N{|u|>0}
m, 9 ) 1] 2 —5 3
< L teets) [ |l s + Ca ol VA1 19012
R3N{ju|>0}
+ bl 92002: + Cloll s Fulls,

that is,
d 4 2 2
M plul*dz + f(n1,m2,73,14) |ul?|Vul|"da
R3N{|u|>0}
4 u |2
+4p(1 =) (1 —m3)ma / |ul ‘V(m)‘ dz
R3N{|u|>0}

_8 i
< Cpa ol 34 VP01 7211V Ol 72 + ClIBlITs [ V2Bl 72 + Clb s [V 22

ZAMP

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

From (3.25), (3.36), and (3.17), for Case I and Case 2, we conclude that if 3p > A, there exists a constant

¢y such that

T
1
sup [lotulds +er / el V] |2t
0<t<T )

T T T
< _8
< lfullts +Cp¥ [ VAo VO3t +C [ [b3aIT2bl3at +C [ 1Ll Tulfaa
0 0 0

16
3

T T T
2
< CM§ || Vuo[Ls + CM, /||V€||izdt+CM§/||V2bH%2dt+CM§/HVuH%zdt.
0 0 0

(3.37)
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Here, we have used the following fact:

1 5 2 5
/po\uo\4dx < llpoll 2 lv/pouol 2 uollzs < Cllpoll < llpoll 72 I Va0l 2 < CMg || Vuol|7.
The proof of Lemma 3.4 is complete. g

Lemma 3.5. Under the conditions of Proposition 3.1, it holds that
T

2
sup (19l + [9813) + [ (Slvpule + [bils + 9253 )ae
0<t<T W

0

15p 4 9A 2 2 6Mg 2 2 2
</ 2+ 2| Vbo |22 + ——2— 1 /pobo |22 + CMZ||Vhbo||?-
< [Vuollz2 + 2[|Vbol[72 + u(2u+A)II\/pT> ollz2 + CMy[| Vo7,
1
+C’M0||\/ﬁt9||%z+CMO4/|||u||VuH|%2dt+C’M§’/||Vu||%2dt, (3.38)
0 0

2 2
prom'dedMO§62:min{€l?(ﬁ)77(ﬁ) }

Proof. Multiplying (1.1)2 by u; and integrating resultant over R3, we get from integration by parts that

1d .
(Ve + G+ N dival3a) + 1Bl
d
== (§|b|2divu—b-Vu-b—&-pdivu)da:—/ptdivudx

—l—/(bt-Vu~b—|—b-Vu-bt—b-btdivu)dx—/pu-Vu-utda:

d , 1 d
—a/( |b]*divu — b - Vu - b+pd1vu)dx mdt/p dz
+/( -Vu-b+b-Vu-b —b-bdivu) dx— /\/pthx
1 2
- m/ptlbl dx—/pu-Vu~utdx —.;Jw (3.39)

where F' = (2p 4+ A)divu — p — 3[b]°.
By (3.1) and Gagliardo—Nirenberg inequality, we have

I3 < O[] Loe [1be]| 2] Vul| 22
1 2
< ClIbl 25 1V20l1 22 10l 2] Vul| 2

1 2 4
< SlBelze + CllblZ V201 22 Vul 72

IN

1 1
§Hbtlli2 + bl V0172 + ClIbl| s [ V|2

IN

1 1
3 [bellZ + CMG [[V2b][ 72 + CMo|[Vul[Ze.
Noticing that (1.1)3 and p = pf implies that
pr = —div(pu) — pdivu + p(Vu + (Vu) ") : Vu + M(divu)? + A0 4 | curl b (3.40)
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Substituting (3.40) into Jy, and using Holder’s, Young’s, and Gagliardo—Nirenberg inequalities, (3.9), and
integration by parts, one obtains

Ju= —2u1+)\/I7U~VFdx+ QMiA/pHdiqudz
* 2,/1 ) /(W+ (Vu) ") (VF @ u)da + Y /divuu - VFdz
+ 2u1+/\ /(uAu+ (11 + A)Vdivu) - uFda + 2u1+/\ /vg.VFdx
+ 2M1+)\/|curlb\2Fdx
N _2,u2—|—)\ /pu~VFda:+ Qulj_)\ /(Vu—|— (Vu)") : (VF @ u)da
+ 2M/:_>\/divuu-VFdx—|— 2M1+>\/V9-VFdx+ 2M1+A/put.uFdx
+ 2M+/\/pu.Vu.uFdx+ 2u1—|—)\/b®b:v(UF)dx

1 1
— ——— | bPdiv(uF)d 16]2Fd
2(2M+)\)/H iv(u )$+2u+/\/|cur |*Fdz

1
< CIVFlzz(llpubll L2 + [[lul|Vulllz2 + V0|2 + [[[ul[b*] £2) + E/ﬂIUtIde

+ C/ﬂ\U|2|F|2d$ + Cplllul|VullZ: + ClIVull 2 |[bll Lo [1B]] Lol F | e
+ C|IVF| 2 ]b] 3 [ V0] o + CI| F | 2o [V ?0]| 2 [b] 2o
1 _ 4 1 1 1
< (CMg +Cp+ Coo)[ullVulllZ: + SllVoulli: + CMy HIVF|72 + CM (VO] 72
2 5 o2 2 1022 NN 2 2
+ ClIVull 2216l 2: V70l 22 + Cllbllzs [V70lz2 + Cp® ol 14 1Pl 721 VO 72
1 1 1
< CMg |[[ul[VullZ: + CMy *|VF|[72 + CM[[VO7> + CMg|[Vul| -
8 1
+ OMG (V2032 + CMG IV + o llv/pud 7 (3.41)
Taking the operator div on both sides of (1.1)2 gives rise to
AF =div(pu; + pu- Vu+b- Vb), (3.42)
which together with the standard elliptic estimates yields
IVF|lz2 < Cp2 | V/puel 2 + Colllul| Vulll 22 + C[bll s [ V] o
< CMylly/purll sz + CMolllul | Vulllz2 + CMo[[ 925 2. (3.43)
Substituting (3.43) into (3.41), and using (3.1), we have

1 d 1 s
Ja < OOl (a3 + (G + -5 a3 + OO 9203 + O [Vl
Similarly, putting (3.40) into J5, one obtains

Js =

/pu - V|b2dz + m /(Vu + (Vo)) : (Vo2 ® w)da

1
1 . 2 —_— . 2
/le'LL’LL V|b|“dx + TSy /V0 V|b|“dx

_2u+)\
LA
22p+A)
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1 1
- - . -ulbl?d -
+2(2u+/\)/p“ V- ulplde + 55 s

1 1

— ————— [ [p|*div(ulb*)d 7/ tb|2|b2d

Ty | e + g [ ot flps
1

- -ulbl?d

+2(2H+)\)/put ulb|*dx

1
< ClIplIVolll 2 (llpudll e + lllul Vel + [1V0]l2 + l[ul b 22) + 75 /plutl2daC

/b@b 2V (ulb?)da

+C/p\ul2|b|4dw+CﬁIIIUI|VUHI%z + C||Vull 2 I[b[* |2 + Cl[b]|7: (| V176
<CZ\ﬁIHuIIVuIIF +CM_iH|b|\Vb|H2 +CMi||V9||2 + CllullZ6bl|7 16117
— 0 L2 0 L2 0 L2 L6 Lo L3

1

+ C||Vul| 2]bl|7s + C|bl|7s]I V0] 72 + 2 /plutIde
<CM%IH IVul[17 +CM—£HbII2 1V20]7 +C’M%IIV9||2 + C|b||75]1 V0|7
= o Y[ VUlllzz 0 3 L2 0 L2 L3 L2

ST RVEINTE 5 w23, 4 L 2

+ C|[Vul| 2210l 2 [IV70[| 2 + Cl|Vul| 2 ([0]| s [[V=0] £ + 5 plug|“dx
< CM|[|u||Vul|2s + CM. T(|b]|25 | V2b]125 + CMI V6|22 + C|lbl|2s [ V22
< OMg [[ul[Vul[[z2 + CMy *[[bl| s IVZbl 72 + CMG [|VO[|72 + Cl[b]| 75 I V7b]| 72

+ ClbllsIVullg> + Clbl|7s11Vbl1 72 + ClIbl| 7s [ Vul|$

7 1
+ CIBIEIV2bI3: + o5 [ lulPda

1 7 1
<5 plug|?dx + C M |||ul|Vul||2: + CMg || V20|22 + CM || V0|22 + CM||VulS., (3.44)

where we have used the following fact:

10

4 3l 3 5 3 3 5 w23
1Bllzs < Noll ZslIBll 2o < ClIBI Es BV 2 < ClDI s VO 2o < CHBIZs V70 22
Using Young’s inequality and (3.1), we have
1 1
Jo < g5 [ pluPde+C [l IVaPds < Gl pula + OBl Vul.
Substituting the above estimates on J; (i = 3,4,5,6) into (3.39) yields
1d . 1
5 g WIVullZe + (ut VldivallZe) + 5 lVoullZ:
d 1 1 d
< = [ (5PPdive—b- Vu- b+ pdiva)de — = [ 5%
<3 <2|| ivu Vu - b+ pdivu |dz 2(2u+)\)dt/p x
1 1
+ CMg [l Vull[Z> + CMg [ V2b]|72 + CMo|Vull7:, (3.45)

4
provided My < €; = min {61, (ﬁ) ! } Integrating (3.45) over [0, T, and using Cauchy—Schwarz inequal-
ity, we have

T
Il + oot Vldivals + [ 117l
0

1
< sl + G+ vl —2 [ pobodivuods + 5= [ pighda
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+Clbollzs ol ol 2 -+ Clbl o [Vl + - / 2024y

bt ) /\dlvu| dz + C M /|||u\|Vu|||L2dt+CM0 /||V2bHL2dt

+ CM, / V|3 .dt
0

u+ 3p
Idivesol + 5= I VAobo 3

. 2
< | Vuol|Zs + (1 + Nlldivuo|[7 + =—5—
I C C
+ 5 lIVuollzz + EM(?HVbOH%Z + *IIVUIILz + ﬁMo IVBI7

CMy

o H\fGIILz+(u+>\)IIdIVUI\L2+CM4/||IUI|VUI||det

+CMO%/Hv2b||’~;2dt+0Mo/||vu||izdt, (3.46)
0 0
which yields that

t
1 1
SIVuls + - [ Ivpuliaar
0

3M2
(2 +

32+ A)
2p

3 3+ A
< 31Tz, + 2T

- IVuoll3: +

Vol + )\)Ilﬁ ollZ

1
+ MG (| Vbollz> + C2MG (Vb7 + CMollv/pd 72 + CMg / [l [Vl |- dt

T
+02M0%/||v2b||izdt+CM0/HquiZdt, (3.47)
0

where we have used
| divuol[32 < 3||Vug||32.

It follows from (1.1)4 that
d
SIVBIE: + el + V253 = [ 16— Abpda
= / b+ Vu —u- Vb — bdivu|*dz
< O Vul[Fellbll < + Cllull7s Vb2
2 4
< O Vul|Fallbll 3512013
1
< Olbllzs [ Vullge + Cl1bll 25 V0] 22
< OMo||Vul2e + CMg | V?b]|2-. (3.48)
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Integrating (3.48) over [0, T leads to
T

sup [[Vb|72 +/(Hbt||%2 + ([ V20]|72)dt
0<t<T )

T T
< |Vbo| % +0M0/|\wui2dt+03Mg/||v2bui2dt. (3.49)
0 0

Adding (3.49) to (3.47), we get
T

1 1 1 1 1
IVl + 51903 + [ (SIvBuls + 3 + 512003 )t
2 2 L 2 2

0

154 + 9A 2 2 3Mg 2 2 2
< === b — 0 CM3||Vb
< LVl + Vbl + s IVl + OME Vil
T T
1
+ OMy|ly/p0|% + CME / |||u||wu|§2dt+CMO/||Vu||§2dt, (3.50)
0 0
2 2
provided My < €5 = min {61, (ﬁ) , (ﬁ) } Hence, the desired (3.38) follows from (3.50). O

Lemma 3.6. Under the conditions of Proposition 3.1, it holds that

swp (IVpulhe + IVABIE: + 0l + IVullZ: + V012

T
M 1 C1C2
+ [ (BITulle + 19003 + 519612 + 2Vl |32 de
0
’ 2 1 7
+ [ Civaulis + Il + 5 IVl )at < gh (3.51)
0

provided

. w2+ A) 3 3 \3 3 3 2 1
Mo s e = mm{ez, V™ a0 Vaooy (20()4) " 20hCy (20hK04> "\ 2cy,
e (3(:102 — 5)4}.
2C,° 6Cy
Here, ¢y is an absolute constant and ¢y is the same as that of in Lemma 3.4.

Proof. Based on Lemmas 3.1-3.5, and adding (3.4)+(3.6)+c2x(3.13)+(3.38) altogether for enough large
constant co, it follows from (3.1) that

swp (IlVpulls +IVAEIE: + bl + [ VullZ: + Vb2

[ (vl + 190022 + V613 + cacalllul [ Vul 32 ) at

2
+ [ (G IvpuliEs + s + 192152 )ar

St~ T —
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154 + 9A
< IVpoEol7z + lvVpouoll 7= + [Iboll 72 + THVUOHiz +2[Vbol|7-
6M§ 2 2 2 2 2 2
7”«//)090”[/2 + CMO ||Vb0||L2 + CMO ||V’LL0||L2 + CMO sup ||\/59||L2
(20 + X) 0<t<T

T T
8 5 1
v [IVOlEadt+C sup [ptullbe+ (5 +00a ) [ luliTull3ade
0 o 0

T T
+CM§/|\v2b||%2dt+CMg/||Vu||2det
0 0

62

_ OO0 g O MRK + CuMS K + CyuMohK + CoM3 h2 K2
M(2M+)\) + Cy 0 + Cy 0 + Cy My + Cy 0

< hK +

T T T
8 5 1
+CaM§ [ 961t + (5 -+ Cadf) [ lullVullde + Caddg [ 1973t
0 0 0

T
+C4M0/Hvu\|%2dt, (3.52)
0

where we have used
14 3 3 g 3 4 532502
lp*ullze < lloll i IVpullezlullze < ClipliEe Il L Vullze < CMg A K.
Thus, it follows from (3.52) that
OiltlET(H\/ﬁullQLz +IVPEIIL: + [1bl72 + [ VullZ2 + IVDIIZ)

1 1 c1C2
[ (Bl + 1901 + SI901 + S22l vl ) o

Tt—5 TT—x

2 1
# [ (Zvaudis + Il + 519701 ) a
3 7
<hK + -hK = -hK
< + 1 FREAS
provided
. w(2u+ A) 3 3 V8 3 3 2 1
My < ey = _
0= mm{ez’ V" a0 "V aocy (20()4) " 20hC,’ (20hK04> Ve,
I 3cico — 5\ 4
ser (“oer ) )
The proof of Lemma 3.6 is finished. g

Lemma 3.7. Under the conditions of Proposition 3.1, it holds that
T
sup ] Vb|2s + /t(||bt||2L2 1 IV%)2.)dt < C. (3.53)
0<t<T )
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Proof. Using Holder’s and Gagliardo—Nirenberg inequalities, we have
d
CITBIZa + Il + 1975032 = / b Vu— u- Vb — bdivu|2dz
< CllullZs I VOlZs + ClIVul g2 blI7
< OIVulZ: Vbl 2 V20| 2
1
< S IV2blZe + ClIVulz2 VO] Z,
which implies that
d t
S (HIVBI:) + bl + S92 < VB + CIVul (1 Vbl3)
This together with Gronwall’s inequality and (3.51) leads to the desired (3.53). O
Lemma 3.8. Under the conditions of Proposition 3.1, it holds that

.
0<p< L, (3.54)

(log%)‘g}.

provided My < €4 = min {63, o3
5

Proof. The first inequality of (3.54) is obvious (see [5, p. 43]). We only need to prove the second inequality
of (3.54). To this end, motivated by [2,22] (see also [28]), for any given (z,t) € R? x [0, T], denote

p‘s(y7 s)=ply,s) + 5exp{ - /diV(X(T; x,t),T)dT} >0 (3.55)
0

where X (s;x,t) is given by

Using the fact that i(f(X(s;x,t),s) =(fs+u-V)(X(s;z,t),s), it follows from (1.1); that
%(log(p‘s(X(s;x,t), s)) = —divu(X(s;z,t), s), (3.57)
which leads to
Y'(s) = g(s) +b'(s), (3.58)
where
Y(s) = log ! (X(s,1),5), - glo) = 2L
bs) =5 | (G t) )P + F(X (i, t),m) )dr, (3.59)
oW+ A ) 2

and F'= (2u+ ) divu —p — $[b]* = (2 + X) divu — pf — 1[b|2.
Rewrite (1.1); as

O [A™ div(pu)] — (2u+ N)divu+p+ %\bF = A" tdivdiv(pu @ u) + A" divdiv(b®b),  (3.60)

which implies that
F(X(r;2,t),7) = = [(=A) " div(pu)] _ — (—A) " divdiv(pu ® u) + (=A)~divdiv(b ® b)
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=— [(—A)_ldiv(pu)]T —u- V(=A)"tdiv(pu) +u - V(=A) " tdiv(pu)
— (—=A) tdivdiv(pu @ u) + (=A) " divdiv(b ® b)
= —% [(—A)'div(pu)] + [ui, Rij](pu;) + (—A) " divdiv(b @ b), (3.61)

where [u;, R;j] = w;R;j — R;ju;, and R;j = 82-(—A)*18j is the Riesz transform on R3. Hence, we derive
from (3.59) and (3.61) that

b(t) — b(0) <

<o/ lar (—=A) " div(pu)] — [wi, Rij](pu;) — (—=A)~ divdiv(b @ b) |dr
0

t
1
— bl od
0

t

1 1
< AV _ “A) g R M 7 oo
< G () i) = 5 (=) (o) + g [ s Rl 1
0
1 / 1
—A)Hdivdiv(b @ b)||peedT + = [ [|B]|7d
+2MH/||< ) Hivdiv(b @ B) =7 + 5o [ [blEdr
0 0
1
~Ldi oo — —A —Ldi oo
< g I v + 5 (-A) v
1 ; 1 /
7 71 y oo _A _1 i i oo
s / s Rl 1w+ s [ 1=8) " divdiv(b )
0 0
1 / >
7 SE— b||2 wdr = Z;. 3.62
* oty | =i =3 (3.62)
0 =

By Gagliardo—Nirenberg, Sobolev’s, Calderén-Zygmund, and Hélder’s inequalities, (3.3), and (3.1),
one obtains

21 < 55 I-8) i) [V (-8) v

< Cloul Blloulf. < Clol Ll ool sl
< Clpll NPl lIVul 2 < CMp” (3.63)
Similar to (3.63), we have
Zy < CM,? . (3.64)
For Z3, we deduce from Gagliardo—Nirenberg inequality and Calderén—Zygmund inequality that

Zs =5, +A/H i, Rig)(pus) |5 |V o, Rig) (o) | ol

1 1 4 4
_C/HUIIEGIIPUIIEGIIVUIIZGHPU\Iide
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4
5

<c / lpllzos lull oIl o (el o 9l ) *ar

¢
<c [ pIulzaVulpsa
0
Denote w = curlw, and then, we have (see, e.g., [7, Theorem 11.25])
IVul|s < Cllw||gs + C|| divul|gs.
Taking the operators div and curl on both sides of (1.1)s, respectively, we get

AF = div(pus + pu - Vu) + divdiv(b ® b),
pAw =V x (pu + pu - Vu + div(b ® b),

which together with the standard elliptic estimates implies that
1 _
IVwl[Lz + [[VF|| L2 < Cp||Vpuil 2 + Cpllul[Vul[[ L2 + C[[bVD]|| 2
< Cp7llvpurllze + Calllul Vull| 2 + ClIb 2 VB]| o
< CMo([ly/puell Lz + [l Vull| Lz + [ V2D]|2).
Substituting (3.66) and (3.67) into (3.65), we infer from (3.68) and (3.51) that

Zy < CM3 / IVl (1wl + divelo)dr

<om / IVl 2 (19wl + 5 I F o + 5 10l e )

20+ A 2+ A

t
< OM, /(HVUHLz +VwlZ: + [VFIZ2 + [ VO]72)dr
0
t
< CMg /(HVUHLz + Vol zz + [llulVull[ 72 + V2672 + [IVO]72)dr
0
< CM;.
For Z,, by Holder’s and Gagliardo—Nirenberg inequalities, (3.1), (3.51), and (3.53), we have
1 t
1
Z < _A —1 . . - _A —1 . . -
1< 5 [ I8 ivdiv(p @ B mdr + 5y [ 1(-8) divdiv(b @ ) dr
0 1
<o / 05 V281 + - / o]l 19280 2 V0] 27
¢ 5 ¢ e 2
<M} sup ||Vb||gz(/fr2-%d7) ”(/Tnv?bnim) ® oy ong ( /||V2b||L2dT)J
1<r<t

1 1

< OMJ +CMJ < OM.

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)
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Here, we have used the following Gagliardo—Nirenberg inequality:
1 2 1 1
Bl < ClIblIFslIV?0ll 72, bl < CIVOIIZ: V0|7
Similar to (3.69), we have
Zy < OMg .
Substituting the above estimates for Z; (i = 1,2,3,4,5) into (3.51) yields

" 1 L 3
b(t) — b(0) < CME + CMJ +CM," < CsMg < log :, (3.70)

a3
Integrating (3.57) w.r.t. s over [0,t], we get

(log%)s}.

provided My < €4 = min {63,

log p° (z,t) = log[po(X (t; z,0)) + 0] + /g(T)dT + b(t) — b(0)
0

3
<log(p+0) +log —.

2
Let 6 — 01, we have
3p
< ==
=5
This finishes the proof of Lemma 3.8. 0
Lemma 3.9. Under the conditions of Proposition 3.1, it holds that
3
sup_|[b][zs < 5 Mo, (3.71)
0<t<T 2

provided My < ¢y = min {64, %}
Proof. Multiplying (1.1)4 by 3|b|b and integrating by parts over R?, we have

d
prd % +3/ \b|\Vb|2dx+3/ ||| V|b]|?dz < /|b||Vb\2dx+ Cl[VullZ 1Bl 4 -
Consequently,
d
GI01Es +2 [ BvePds +3 [ BVIblPds < CITulafol? . (3.72)
To deal with the right-hand side of (3.72), we need to use the following variant of the Kato inequality
3 3.1 3.1
[V161%] = S10l2910l] < S1bl v,
which combined with Sobolev’s inequality and Gagliardo—Nirenberg inequality leads to
3 3 3 : 2 3 3 1
16112 5 < 1Bl1Z5 18] 26 = 1Bl 2511161 1o < CBIZS IV (1612) |22 < ClIb] 2111612 [V | 2 (3.73)
L2
Thus, putting (3.73) into (3.72), we obtain from Cauchy—Schwarz inequality that

d
ZIbls + / bIIVb]*dz < Of| Va2 b1 2s-
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This together with (3.51) and Gronwall’s inequality yields

T
3 3M,
sup ||bl|ze < exp{c/||vu|\§2dt}*||b0||L3 < CoM < 252,
0<t<T
0

provided My < €g = min {64, %} The lemma is completed. O

Now, Proposition 3.1 is a direct consequence of Lemmas 3.1-3.9.
Proof of Proposition 3.1. Define

T# .= max {T' € (o,:r’]‘ sup ||plloe < 25, ¥r < 20K, sup ||bl|ge < 2M0}.
0<t<T" 0<t<T"

Then, by Lemmas 3.1-3.9, we have

3_
sup |pllr=~ < =p, Y7

7 3
< —hK, sup |bllps < =My, VT’ € (0,T%), (3.74)
0<t<T’ 2 4 2

0<t<T
as long as My < ¢ is sufficiently small.
If T# < T, noticing that ¢z, sup ||b||zs, and sup ||p|/r are continuous on [0, T, there is another
0<t<T" 0<t<T’
time T## € (T#,T)] such that

sup |lpllze <2p,  hpsx <2RK,  sup [|b]|zs < 2Mo,
0<t<T## 0<t<T##

which contradicts to the definition of T#. Thus, we have T# = T, and the conclusion follows from (3.74)
and the continuity of ¢rr, sup ||b||zs, and sup ||p|lr=- O
0<t<T" 0<t<T"

The following corollary is a straightforward consequence of Proposition 3.1 and Lemma 3.6.

Corollary 3.1. Assume that 3 > A, and let the conditions in Proposition 3.1 be in force. Then, there is
a positive constant C' depending only on u, X, ||pollr:, and K such that

sup (llpllzee + lvpul2s + IIVAEIR: + [ Vuls + bl )
0<t<T
T
[ (IFls + 9005 + 19613 + [l VullEs + w2 + =) de < C.
0
provided that My < €q.

4. Proof of Theorem 1.1

Let €y be the constant stated in Proposition 3.1 and suppose that the initial data (pg, ug, 6o, bo) satisfy
(1.5) and (1.6), and

MO S €0.

According to Lemma 2.1, there is a unique local strong solution (p,u,d,b) to the problem (1.1)—(1.4).
Let Tihax be the maximal existence time to the solution. We will show that Ti,.x = o0. Suppose, by
contradiction, that Ti,.x < 0o. Then, by virtue of Lemma 2.3, there holds

PAm (ol o.ri) + ullso.rize)) = oo (4.1)
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By Corollary 3.1, for any T € (0, Tinax ), there exists a positive constant C' independent of 7" such that

s (Il + 9ul:) < €, 42
which combined with Sobolev’s inequality ||ul|ps < C||Vul|r2 gives
Tmax Tmax
lul|7edt < C / [Vu||72dt < CC?Tipax < 0. (4.3)
0 0

From (4.2) and (4.3), we derive that

TLHTH <||pHL°°(O,T;L°°) + HUHL4(O,T;L6)) < 0,

contradicting to (4.1). This contradiction provides us that Ty,.x = 00, and thus, we obtain the global
strong solution. This finishes the proof of Theorem 1.1. O
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