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Abstract. Two triangular factorizations of the deformation gradient tensor are studied. The first, termed the Lagrangian
formulation, consists of an upper-triangular stretch premultiplied by a rotation tensor. The second, termed the Euler-
ian formulation, consists of a lower-triangular stretch postmultiplied by a different rotation tensor. The corresponding
stretch tensors are denoted as the Lagrangian and Eulerian Laplace stretches, respectively. Kinematics (with physical in-
terpretations) and work-conjugate stress measures are analyzed and compared for each formulation. While the Lagrangian
formulation has been used in prior work for constitutive modeling of anisotropic and hyperelastic materials, the Eulerian
formulation, which may be advantageous for modeling isotropic solids and fluids with no physically identifiable reference
configuration, does not seem to have been used elsewhere in a continuum mechanical setting for the purpose of constitutive
development, though it has been introduced before in a purely kinematic setting.
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1. Introduction

Lagrangian formulations (i.e., constitutive models based on Lagrangian measures of strain) are typically
preferred for modeling anisotropic solids, as well as certain isotropic solids that have a clearly defined
initial, stress-free, or ‘reference’ state. This is readily apparent for single crystals, e.g., where a reference
state is identified with a regular lattice geometry occupied by atoms in their minimum energy (ground)
state. Hyperelasticity [1,2] is typically invoked in this context, where energy potentials that depend upon
a Lagrangian strain are employed. Eulerian formulations (i.e., constitutive models based on Eulerian
measures of strain), in contrast, are often preferred for modeling isotropic solids (and fluids) that have
no obvious initial or reference state. Hypoelasticity [3,4] is often invoked in this context for the purpose
of solving initial-boundary value problems numerically.

Motivation for this study is a continued need to develop constitutive models for biological tissues that
can be understood and used by those who work in the medical profession. In vivo, soft tissues are under
tension perpetually, and a stress-free reference state is never physically realized. In such cases, it becomes
advantageous to choose a ‘reference’ state with clinical relevance, e.g., at max systole for cardiac analyses,
or at total lung capacity for pulmonary analyses, etc. Consequently, an Eulerian formulation would be
optimal in such cases. The intent of this paper is to create a theoretical framework suitable for such
constitutive developments. It is not the intent of this paper to create said models nor to apply them. With
regard to creating a framework capable of producing constitutive equations that can be understood by
those working in the medical profession, we choose to extend the conjugate pair approach that comes from
a Lagrangian decomposition of the deformation gradient whose stretch is triangular, seeking an analogous
construction that will now be based upon an Eulerian decomposition of the deformation gradient that is
triangular, too.
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Deformation gradient F admits four different triangular decompositions: upper- and lower-triangular
decompositions can be derived in terms of both the Lagrangian and Eulerian, Cauchy–Green, deforma-
tion tensors C = FTF and B = FFT, respectively. In each case, the full deformation gradient tensor
is decomposed into a product between an orthogonal tensor and a triangular stretch tensor. Restricting
analysis to those deformation gradients with a positive determinant, each orthogonal tensor is a rota-
tion, and each corresponding stretch, either upper- or lower-triangular, is unique for its corresponding
rotation. Two of these four triangular decompositions are used here. They are selected so as to have
physical attributes with like interpretations, but with different values. The first decomposition consid-
ered here splits deformation gradient F into an upper-triangular stretch U followed (i.e., premultiplied)
by a rotation tensor RL such that F = RLU . This kinematic construction is referred to here as the
Lagrangian formulation of triangular decomposition, also known as a Gram–Schmidt factorization. The
second decomposition studied here splits deformation gradient F into a rotation tensor RE followed
(premultiplied) by a lower-triangular stretch tensor V such that F = VRE . This construction is referred
to as the Eulerian formulation of triangular decomposition. Consequently, F = RLU = VRE where, in
general, RL �= RE .

The upper-triangular Lagrangian decomposition of F was first introduced in the context of continuum
mechanics by McClellan [1,5] in 1976. Souchet [6] introduced the lower-triangular Lagrangian decomposi-
tion of F in 1993. In 2012, Srinivasa [7] used a Cholesky decomposition of the right Cauchy–Green tensor
C to obtain components for the upper-triangular stretch tensor and found this stretch tensor to be very
appealing for modeling anisotropic hyperelastic materials. Since then, the upper-triangular decomposition
of F has found preference over its lower-triangular counterpart. Recent applications of this Lagrangian
decomposition address: shape memory polymers [8], anisotropy [9] and composites [10], finite elasticity
[7,9,11], biological membranes [12], soft biological tissues including viscoelastic and damage effects [13],
and inelastic materials [8,14]. Even the conditions for compatibility have been established [15].

Both upper- and lower-triangular, Eulerian decompositions of the deformation gradient F were intro-
duced into the literature by Boulanger and Hayes [16] in 2006 as 2D examples of their general 3D theory
that they call extended polar decomposition of F, of which there are an infinite number [17]. To the best
of our knowledge, these 2D versions are the only appearance of an Eulerian triangular decomposition of
F to be found in the literature. Their 3D theory was further generalized by Jarić et al. [18] through the
introduction of projection operators. In Boulanger and Hayes’ original paper [17], the authors studied
unsheared triads and showed that the classic polar decomposition F = RU = VR (with rotation R be-
ing orthogonal, and with Lagrangian U and Eulerian V stretches being symmetric positive definite) has
unsheared triads that associate with U before deformation and with V after deformation, and that these
triads are orthonormal. They then introduced a general decomposition of F that obeys F = QG = HQ,
where Q is an orthogonal rotation with G and H being non-symmetric descriptions for stretch. They
proved that stretches G and H associate with unsheared triads that are oblique, of which there are an
infinite number. It is worth pointing out that, in general, if G is triangular, then H is not, and vice versa.
An exception is given Eqs. (10.13 & 10.14) of Ref. [16]: under simple shear, both G and H are lower
triangular. Consequently, to map between Eulerian and Lagrangian triangular stretches requires knowing
both the Eulerian and Lagrangian rotations, as determined herein. Also of interest, Freed and Zamani
[19] took an orthonormal triad that deforms into an oblique triad and used this information to construct
a convected metric for the deformation.

Advantages and drawbacks, when using an upper-triangular Lagrangian decomposition of the de-
formation gradient in constitutive construction, are discussed in the many papers by the authors cited
here. Notably, triangular decompositions, unlike the classic and extended polar decompositions, require
no eigenvector analysis to invoke. This is a consequence of the ability to apply Laplace’s technique of
successive orthogonal projections. Also, the set of all upper-triangular matrices with positive diagonal
elements forms a group under multiplication [1], and therefore, the product of two upper-triangular ma-
trices is an upper-triangular matrix. A like statement applies to the set of all lower-triangular matrices
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with positive diagonal elements, which is distinct from the group of upper-triangular matrices. However,
closure under multiplication is not preserved for symmetric matrices, and as such, they do not constitute
a group. Another useful feature resulting from triangular decompositions is that they lead to sets of six,
independent, stress–strain, conjugate pairs that are scalar valued, whereas symmetric decompositions
lead to, at best, scalar and deviatoric conjugate pairs. In addition, our conjugate pairs, which result from
triangular decompositions, allow for a decoupling between simple and pure shears. This is not permitted
when using symmetric deconstructions, and which is essential when modeling some materials, e.g., soft
biological tissues. Furthermore, the components of triangular stretch have an obvious physical interpre-
tation that facilitates direct and unambiguous parameterization of constitutive response data. Actually,
there are 24, possible, physical interpretations of a triangular stretch in 3D [20], of which we have found
two to be most useful, adopting one here.

This paper is organized as follows. Section 2 establishes components for the Eulerian and Lagrangian
deformations B and C in terms of inner products between the row and column vectors of a deformation
gradient F. This is done in a manner that is useful for constructing the Eulerian and Lagrangian Laplace
(triangular) stretches and their associated rotations. Section 3 introduces these Laplace stretches, whose
components are quantified via Cholesky decompositions, with their associated rotations being determined
via Gram factorizations. Section 4 assigns physical interpretations to the components of these Laplace
stretches. A lower-triangular Eulerian stretch is chosen (over its upper-triangular counterpart) because
its physical attributes are analogous to those of the upper-triangular Lagrangian stretch; however, their
values are different—they are quantified in different coordinate systems. Section 5 provides three example
problems to illustrate these kinematics. The 3D Eulerian kinematics presented in Sects. 3–5 are new to
the literature. Section 6 presents one admissible set of conjugate pairs that the authors have found
useful. Bijective maps between these physical attributes and components from their associated tensor
fields are provided for both the Eulerian and Lagrangian fields, with the Eulerian results being new to
the literature. It is in terms of these scalar-valued physical attributes for stress and strain (Eulerian or
Lagrangian) that constitutive equations can be derived, thereby completing our theoretical framework for
constitutive development. The fact that these attributes are scalar fields instead of tensor fields, and that
they have unique physical interpretations, measurable in experiments, goes a long way toward making
this constitutive development framework user-friendly for those in the medical community.

2. Deformation

Consider a body B embedded in a three-dimensional, Euclidean, point space oriented against a triad of
orthogonal, unit, base vectors (�ı,�j, �k). The motion x = χ(X, t) of some particle P located in B describes
a homeomorphism that takes its original location X = X1�ı+X2�j+X3

�k belonging to the body’s reference
configuration κr and places it into another location x = x1�ı + x2�j + x3

�k where P resides in the body’s
current configuration κt.

For convenience, we write these two position vectors as X = Xi�ei and x = xi�ei by selecting an
indexing strategy, e.g., (�ı,�j, �k) �→ (�e1,�e2,�e3), to ensure that the 1 material direction and the 12 material
surface embed with the motion, as they are invariant under transformations of Laplace stretch [1]. How
to select an appropriate indexing strategy is the topic of Ref. [21]. This selection technique has been
applied to our example problems.

A deformation gradient F maps the set of all tangent vectors located at particle P in body B from its
reference configuration κr into the current configuration κt. We assume that a body is simply connected
and its motion χ is sufficiently differentiable so that F = ∂χ(X, t)/∂X exists, and therefore

Fij =
∂χi(X, t)

∂Xj
=

⎡
⎣

F11 F12 F13

F21 F22 F23

F31 F32 F33

⎤
⎦ =

⎡
⎣

fr
1

fr
2

fr
3

⎤
⎦ =

[
f c
1 f c

2 f c
3

]
(1)
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where vectors fr
i = Fij �ej contain the rows of tensor F = Fij �ei ⊗�ej , while vectors f c

i = Fji�ej contain its
columns, i = 1, 2, 3, with repeated indices being summed according to Einstein’s summation convention.

It follows straightaway that the right, Cauchy–Green, deformation tensor C := FTF = Cij �ei ⊗ �ej ,
which is a Lagrangian description of deformation, has components of

Cij =

⎡
⎣

f c
1 · f c

1 f c
1 · f c

2 f c
1 · f c

3

f c
2 · f c

1 f c
2 · f c

2 f c
2 · f c

3

f c
3 · f c

1 f c
3 · f c

2 f c
3 · f c

3

⎤
⎦ (1.2a)

while the left, Cauchy–Green, deformation tensor B := FFT = Bij �ei⊗�ej , which is an Eulerian description
of deformation, has components of

Bij =

⎡
⎣

fr
1 · fr

1 fr
1 · fr

2 fr
1 · f r

3

fr
2 · fr

1 fr
2 · fr

2 fr
2 · f r

3

fr
3 · fr

1 fr
3 · fr

2 fr
3 · f r

3

⎤
⎦ (1.2b)

both of which are symmetric because, for example, fr
1 · fr

2 = fr
2 · fr

1 where fr
1 · fr

2 = F1iF2i = F11F21 +
F12F22 + F13F23, etc.

3. Laplace stretch

Laplace stretch, as it has been used in the literature to date, e.g., [1,5,7,8,10–14,19,21,22], derives from
a Gram–Schmidt (or QR) decomposition of the deformation gradient F, where matrix Q is orthogonal,
and matrix R is upper triangular.

Given a coordinate system with base vectors (�e1,�e2,�e3), we denote such a decomposition as F = RU ,
where R = Rij �ei ⊗�ej has orthogonal components, and U = Uij �ei ⊗�ej has upper-triangular components.
We select this calligraphic notation to illustrate its similarities and differences with the common polar
decomposition F = RU, where R = Rij �ei ⊗ �ej has orthogonal components, and U = Uij �ei ⊗ �ej has
symmetric components. Lagrangian fields U and U are distinct measures for stretch.

A polar decomposition of the deformation gradient, i.e., F = RU = VR, produces a Lagrangian
measure for stretch (the right-stretch tensor U) and an Eulerian measure for stretch (the left-stretch
tensor V) that share in a common, orthogonal, rotation tensor R. An extended polar decomposition [17],
viz., F = QG = HQ, produces non-symmetric, Lagrangian and Eulerian, measures for stretch G and H,
respectively, that also share in a common, orthogonal, rotation tensor Q, different from R. An objective
of this document is to develop an Eulerian measure for stretch whose components populate a triangular
matrix such that F = RLU = VRE , where U is the Lagrangian Laplace stretch, and where V is the
Eulerian Laplace stretch, both with triangular elements. In contrast with the polar rotation R and the
extended polar rotation Q, the Lagrangian RL and Eulerian RE Gram rotations are distinct rotations.
The Laplace stretches therefore relate via U = RLTVRE and V = RLURET

.

3.1. Lagrangian Laplace stretch

Here we describe a Gram–Schmidt factorization of the deformation gradient, i.e., F = RLU , wherein
U = Uij �ei ⊗�ej is called the Lagrangian Laplace stretch or the right Laplace stretch.

Srinivasa [7] applied a Cholesky decomposition to the symmetric, positive-definite, right, Cauchy–
Green, deformation tensor C to establish the components of his stretch tensor, denoted here as U =



ZAMP Laplace stretch Page 5 of 18 157

Uij �ei ⊗�ej ; in particular,1

U11 =
√

C11 U12 = C12/U11 U13 = C13/U11

U21 = 0 U22 =
√

C22 − U 2
12 U23 =

(
C23 − U12 U13

)
/U22

U31 = 0 U32 = 0 U33 =
√

C33 − U 2
13 − U 2

23 (2)

where components of the Lagrangian Laplace stretch Uij are upper triangular. Its inverse U−1 = U−1
ij �ei ⊗

�ej follows straightaway, having components that are also upper-triangular, they being

U−1
ij =

⎡
⎣

1/U11 −U12/U11U22 (U12U23 − U13U22)/U11U22U33

0 1/U22 −U23/U22U33

0 0 1/U33

⎤
⎦ (3)

thereby requiring each Uii, no sum on i, to be positive—a condition satisfied because of mass conservation.
It is easily shown that the Lagrangian Laplace stretch Uij belongs to a group under the operation of matrix
multiplication. This group is comprised of all real, 3×3, upper-triangular matrices with positive diagonal
elements [1]. Having a stretch tensor with this property has proven to be useful in applications, e.g.,
[1,14], as it does here.

A Gram factorization of the deformation gradient F = Fij �ei ⊗ �ej produces a Lagrangian rotation
tensor RL = δij �eL

i ⊗�ej = RL
ij �ei ⊗�ej described by

RL
ij =

[
�eL
1 �eL

2 �eL
3

]
(4a)

whose columns constitute unit base vectors that can be constructed via

�eL
1 :=

f c
1

‖f c
1‖

(4b)

�eL
2 :=

f c
2 − (f c

2 ·�eL
1 )�eL

1

‖f c
2 − (f c

2 ·�eL
1 )�eL

1 ‖ (4c)

�eL
3 :=

f c
3 − (f c

3 ·�eL
1 )�eL

1 − (f c
3 ·�eL

2 )�eL
2

‖f c
3 − (f c

3 ·�eL
1 )�eL

1 − (f c
3 ·�eL

2 )�eL
2 ‖ (4d)

wherein Laplace’s technique of removing successive orthogonal projections [23] is apparent, with norm
‖f c

1‖ :=
√

f c
1 · f c

1, etc. It therefore follows that the Lagrangian Laplace stretch has components which
can be expressed as

Uij =

⎡
⎣
�eL
1 · f c

1 �eL
1 · f c

2 �eL
1 · f c

3

0 �eL
2 · f c

2 �eL
2 · f c

3

0 0 �eL
3 · f c

3

⎤
⎦ (5)

that provide a means of geometric interpretation for this measure of stretch. The components Uij of
Lagrangian Laplace stretch U = Uij �ei ⊗�ej evaluated in a reference frame (�e1,�e2,�e3) are also projections
of column vectors f c

i extracted from a deformation gradient F = Fij �ei ⊗�ej projected onto its Lagrangian
coordinate axes (�eL

1 ,�eL
2 ,�eL

3 ).

1 Regarding Lagrangian stretches with triangular elements, McLellan [1,5] was the first to propose an upper-triangular
decomposition of the deformation gradient. Later, Souchet [6] constructed a stretch tensor with lower-triangular components.
We use Srinivasa’s [7] approach for populating an upper-triangular stretch because, of these three Lagrangian approaches,
this is the simplest framework to apply.
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3.2. Eulerian Laplace stretch

Now we describe a Gram–Schmidt like factorization of the deformation gradient, viz., F = VRE , wherein
V = Vij �ei ⊗�ej is called the Eulerian Laplace stretch, or the left Laplace stretch.

Applying a Cholesky factorization to the symmetric, positive-definite, left, Cauchy–Green, deformation
tensor B := FFT = VVT with components B = Bij �ei ⊗ �ej allows one can construct a stretch tensor
V = Vij �ei ⊗�ej whereby2

V11 =
√

B11 V12 = 0 V13 = 0

V21 = B21/V11 V22 =
√

B22 − V 2
21 V23 = 0

V31 = B31/V11 V32 =
(
B32 − V21V31

)
/V22 V33 =

√
B33 − V 2

31 − V 2
32 (6)

where we now select the lower-triangular matrix from a Cholesky decomposition to quantify the compo-
nents of our new stretch tensor. Its inverse V−1 = V−1

ij �ei ⊗�ej follows straightaway, it having components
of

V−1
ij =

⎡
⎣

1/V11 0 0
−V21/V11V22 1/V22 0

(V32V21 − V31V22)/V11V22V33 −V32/V22V33 1/V33

⎤
⎦ (7)

thereby requiring each Vii, no sum on i, to be positive—a condition satisfied because of mass conservation.
It is easily shown that the Eulerian Laplace stretch Vij belongs to a group under the operation of
multiplication. This group is comprised of all real, 3×3, lower-triangular matrices with positive diagonal
elements. The Eulerian and Lagrangian Laplace stretches belong to different mathematical groups.

A Gram-like3 factorization of the deformation gradient F = Fij �ei ⊗�ej can also describe an Eulerian
rotation tensor RE = δij �ei ⊗�eE

j = RE
ij �ei ⊗�ej constructed as

RE
ij =

[
�eE1
�eE2
�eE
3

]
=
[
�eE
1 �eE

2 �eE
3

]T
(8a)

whose rows constitute unit base vectors that can be constructed via

�eE
1 :=

fr
1

‖fr
1‖

(8b)

�eE
2 :=

fr
2 − (fr

2 ·�eE
1 )�eE

1

‖fr
2 − (fr

2 ·�eE
1 )�eE

1 ‖ (8c)

�eE
3 :=

fr
3 − (fr

3 ·�eE
1 )�eE

1 − (fr
3 ·�eE

2 )�eE
2

‖fr
3 − (fr

3 ·�eE
1 )�eE

1 − (fr
3 ·�eE

2 )�eE
2 ‖ (8d)

where, again, Laplace’s solution strategy of removing successive orthogonal projections [23] is apparent.
It follows that the Eulerian Laplace stretch has components which can be expressed as

Vij =

⎡
⎣

fr
1 ·�eE

1 0 0
fr
2 ·�eE

1 fr
2 ·�eE

2 0
fr
3 ·�eE

1 fr
3 ·�eE

2 fr
3 ·�eE

3

⎤
⎦ (9)

that provide a means of geometric interpretation for this measure of stretch. The components Vij of
Eulerian Laplace stretch V = Vij �ei ⊗ �ej evaluated in a reference frame (�e1,�e2,�e3) are also projections

2 The upper-left 2×2 matrix in Eq. (6) is equivalent to Eq. (9.3) in Boulanger and Hayes [16].
3 The Gram factorization of a square matrix results in an orthogonal matrix and an upper-triangular matrix. Here we

apply the same strategy, but we secure a different orthogonal matrix and a lower-triangular matrix; hence, the terminology
‘Gram like.’
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of row vectors fr
i extracted from a deformation gradient F = Fij �ei ⊗ �ej projected onto its Eulerian

coordinate axes (�eE
1 ,�eE

2 ,�eE
3 ).

Obviously, rotations RL and RE are distinct, as are stretches U and V , given that the deformation
gradient F decomposes as F = RLU = VRE , and whose stretch tensors have triangular components Uij

and Vij in (�e1,�e2,�e3).

4. Physical interpretation of Laplace stretch components

Each Laplace stretch has six, independent, physical attributes. There are three, orthogonal, elongation
ratios a, b and c, and there are three, orthogonal, simple shears α, β and γ. Their Lagrangian inter-
pretations are quantified in a coordinate system with base vectors (�eL

1 ,�eL
2 ,�eL

3 ), and are distinguished
with an underline, viz., a, b, c, α, β and γ. Their Eulerian interpretations are quantified in a coordinate
system with base vectors (�eE

1 ,�eE
2 ,�eE

3 ), and are distinguished with an overline, viz., a, b, c, α, β and γ.
In general, Lagrangian stretch attributes are distinct from their Eulerian counterparts. However, their
geometric interpretations are the same. They differ only in their coordinate systems through which they
are evaluated.

4.1. Lagrangian stretch attributes

The Lagrangian Laplace stretch has geometric interpretations that arise from Eq. (5) whereby one can
assign [22]

Uij =

⎡
⎣

a aγ aβ
0 b bα
0 0 c

⎤
⎦ =

⎡
⎣

a 0 0
0 b 0
0 0 c

⎤
⎦
⎡
⎣

1 0 β
0 1 α
0 0 1

⎤
⎦
⎡
⎣

1 γ 0
0 1 0
0 0 1

⎤
⎦ (10a)

with an inverse of

U−1
ij =

⎡
⎣

1/a −γ/b −(β − αγ)/c
0 1/b −α/c
0 0 1/c

⎤
⎦ (10b)

whose constituents are measured in a coordinate frame with base vectors [19]

�eL
1 = f c

1

/
a (11a)

�eL
2 =

(
f c
2 − γf c

1

) /
b (11b)

�eL
3 =

(
f c
3 − αf c

2 − (β − αγ)f c
1

) /
c (11c)

all of which are described in terms of physical attributes defined as

a := U11, b := U22, c := U33, α :=
U23

U22
, β :=

U13

U11
, γ :=

U12

U11
(12)

where a, b and c are elongations, while α, β and γ are magnitudes of shear, i.e., they are the extents
of shear at unit elongation. From conservation of mass, the three elongations must be positive (a ∈ R+,
b ∈ R+, c ∈ R+), while the three shears may be of either sign (α ∈ R, β ∈ R, γ ∈ R). Equation (10a)
represents one of twenty-four, admissible, physical interpretations that one can assign to the components
of Laplace stretch [20]. It is the interpretation that we find most useful.

According to Eq. (10), the Lagrangian Laplace stretch arises from the following sequence of deforma-
tions: it starts with an in-plane shear γ, followed by two out-of-plane shears α and β, and then finishes
with three elongations a, b and c, as illustrated in Fig. 1. Two vectors remain invariant under mappings
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Fig. 1. A geometric interpretation for Lagrangian Laplace stretch

of the Lagrangian Laplace stretch; they are: vector �eL
1 establishes the direction of in-plane shear, while

vector �eL
1 ×�eL

2 points normal to the plane of in-plane shear [1].

4.2. Eulerian stretch attributes

The Eulerian Laplace stretch has geometric interpretations that arise from Eq. (9) whereby one can assign

Vij =

⎡
⎣

a 0 0
aγ b 0
aβ bα c

⎤
⎦ =

⎡
⎣

1 0 0
γ 1 0
0 0 1

⎤
⎦
⎡
⎣

1 0 0
0 1 0
β α 1

⎤
⎦
⎡
⎣

a 0 0
0 b 0
0 0 c

⎤
⎦ (13a)

with an inverse of

V−1
ij =

⎡
⎣

1/a 0 0
−γ/b 1/b 0

−(β − αγ)/c −α/c 1/c

⎤
⎦ (13b)

whose constituents are measured in a coordinate frame with base vectors

�eE
1 = fr

1

/
a (14a)

�eE
2 =

(
fr
2 − γfr

1

) /
b (14b)

�eE
3 =

(
fr
3 − αfr

2 − (β − αγ)fr
1

) /
c (14c)

all of which are described in terms of physical attributes defined as

a := V11, b := V22, c := V33, α :=
V32

V22
, β :=

V31

V11
, γ :=

V21

V11
(15)

where a, b and c are elongations, while α, β and γ are magnitudes of shear, i.e., they are the extents
of shear at unit elongation. From conservation of mass, the three elongations must be positive (a ∈ R+,
b ∈ R+, c ∈ R+), while the three shears may be of either sign (α ∈ R, β ∈ R, γ ∈ R).
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Fig. 2. A geometric interpretation for Eulerian Laplace stretch

According to Eq. (13), the Eulerian Laplace stretch arises from the following sequence of deformations:
it starts with three elongations a, b and c, followed by two out-of-plane shears α and β, and then finishes
with an in-plane shear γ, as illustrated in Fig. 2. This sequence of deformations is the reverse of those
occurring with the Lagrangian Laplace stretch, as one ought to expect. Two vectors remain invariant
under mappings of the Eulerian Laplace stretch, too; they are: vector �eE

1 establishes the direction of
in-plane shear, and vector �eE

1 ×�eE
2 points normal to the plane of in-plane shear.

5. Examples

5.1. Shear-free deformations

Any motion χ(X, t) described by the following deformation gradient quantified in an orthonormal coor-
dinate system with base vectors (�e1,�e2,�e3) is said to be shear free; specifically,

Fij =

⎡
⎣

λ1 0 0
0 λ2 0
0 0 λ3

⎤
⎦ ∴ Bij = Cij =

⎡
⎣

λ2
1 0 0
0 λ2

2 0
0 0 λ2

3

⎤
⎦ (16)

where λ1, λ2 and λ3 are the three principal stretches that, in this case, obey a = a = λ1, b = b = λ2 and
c = c = λ3. The Laplace stretch tensors and their Gram rotations have components of

Uij = Vij =

⎡
⎣

λ1 0 0
0 λ2 0
0 0 λ3

⎤
⎦ with RL

ij = RE
ij =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ . (17)

Consequently, there is no distinction between the triangular Laplace stretches U and V and the symmetric
polar stretches U and V for this class of motions. The elongations a, b and c of Laplace stretch equate
with the eigenvalues λ1, λ2 and λ3 of polar stretch. This relationship between elongations and principal
stretches disappears in the presence of shear [24].
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5.2. Pure shear

Any motion χ(X, t) described by the following deformation gradient quantified in an orthonormal coor-
dinate system with base vectors (�e1,�e2,�e3) is said to be a pure shear [22], specifically

Fij =
1√
2

⎡
⎣

√
2 0 0

0 λ λ
0 −λ−1 λ−1

⎤
⎦ (18)

where λ is the stretch of pure shear. This motion is described by Cauchy–Green deformation tensors with
components of

Bij =

⎡
⎣

1 0 0
0 λ2 0
0 0 λ−2

⎤
⎦ and Cij =

1
2

⎡
⎣

2 0 0
0 λ2 + λ−2 λ2 − λ−2

0 λ2 − λ−2 λ2 + λ−2

⎤
⎦ (19)

that produce a Lagrangian Laplace stretch and its Gram rotation of

Uij =
1√

1
2 (λ2 + λ−2)

⎡
⎢⎣

√
1
2 (λ2 + λ−2) 0 0

0 1
2 (λ2 + λ−2) 1

2 (λ2 − λ−2)
0 0 1

⎤
⎥⎦ (20a)

and

RL
ij =

1√
λ2 + λ−2

⎡
⎣
√

λ2 + λ−2 0 0
0 λ λ−1

0 −λ−1 λ

⎤
⎦ (20b)

along with an Eulerian Laplace stretch and its Gram rotation of

Vij =

⎡
⎣

1 0 0
0 λ 0
0 0 λ−1

⎤
⎦ and RE

ij =
1√
2

⎡
⎣

√
2 0 0

0 1 1
0 −1 1

⎤
⎦ (21)

where RE rotates the Eulerian coordinate frame (�eE
1 ,�eE

2 ,�eE
3 ) about the background frame (�e1,�e2,�e3) by

a fixed 45◦ in the 23 plane, whereas RL rotates the Lagrangian coordinate frame (�eL
1 ,�eL

2 ,�eL
3 ) from the

Eulerian frame (�eE
1 ,�eE

2 ,�eE
3 ) at λ = 1 toward the background frame (�e1,�e2,�e3) as λ → ∞.

The above components for Eulerian Laplace stretch Vij support Lodge’s statement that pure shear is
not a shearing deformation; it is a shear-free deformation in disguise [25,26]. Lodge justifies this position
by pointing out that the eigenvectors for stretch do not rotate in a body during pure shears like they do
during simple shears.

Here the elongations relate as a = a = 1, while b =
√

(λ2 + λ−2)/2 and b = λ with c = 1/
√

(λ2 + λ−2)/2
and c = λ−1, whereas the shears relate as α = (λ2 −λ−2)/(λ2 +λ−2) and α = 0 with β = β = γ = γ = 0.

5.3. Simple shear

Any motion χ(X, t) described by the following deformation gradient quantified in an orthonormal coor-
dinate system with base vectors (�e1,�e2,�e3) constitutes a shearing motion; specifically,

Fij =

⎡
⎣

1 0 β
0 1 0
0 0 1

⎤
⎦ (22)
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whose Cauchy–Green deformation tensors have components of

Bij =

⎡
⎣

1 + β2 0 β
0 1 0
β 0 1

⎤
⎦ and Cij =

⎡
⎣

1 0 β
0 1 0
β 0 1 + β2

⎤
⎦ (23)

with its Lagrangian Laplace stretch and rotation having components of

Uij =

⎡
⎣

1 0 β
0 1 0
0 0 1

⎤
⎦ and RL

ij =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ (24)

along with its Eulerian Laplace stretch and rotation having components of

Vij =

⎡
⎣

√
1 + β2 0 0
0 1 0

β/
√

1 + β2 0 1/
√

1 + β2

⎤
⎦ (25a)

and

RE
ij =

⎡
⎣

1/
√

1 + β2 0 β/
√

1 + β2

0 1 0
−β/

√
1 + β2 0 1/

√
1 + β2

⎤
⎦ (25b)

with the Eulerian Laplace stretch Vij having diagonal elements akin to those of pure shear (cf. Eq. 21),
plus an off-diagonal simple shearing that is attenuated by the extent of pure shearing present.

From a rheometric viewpoint, making stress a function of the Eulerian Laplace stretch would enable
first- and second-normal stress differences to occur, with the first exceeding the second in magnitude,
and they being of opposite sign. A Weisenberg effect would occur, because of a compressive stretch that
would set up in the hoop direction. Furthermore, the shear stress would thin, because of an effect that√

1 + γ2 would have on the shear strain γ/
√

1 + γ2. All of these ‘rheometric effects’ occur in polymeric
liquids [27].

Here the elongations relate as a = 1 and a =
√

1 + β2, while b = b = 1 with c = 1 and c = 1/
√

1 + β2,
whereas the shears relate as β = β and β = β/(1 + β2) with α = α = γ = γ = 0.

6. Frameworks for constitutive development

A time rate-of-change in the work being done at a particle by tractions applied to its body results in
a source for internal power caused by stresses, often evaluated per unit mass. Here we construct sets of
thermodynamic conjugate pairs for both the Lagrangian and Eulerian frameworks when using Laplace
stretch as one’s kinematic variable. The constituents of these pairs relate to one another via constitutive
equations. To facilitate such endeavors, bijective maps are derived that convert stress and velocity-gradient
tensor components into their associated thermodynamic stresses and strain rates, the latter of which are
scalar fields.

6.1. Lagrangian stress–strain attributes

In terms of Lagrangian fields, stress power Ẇ can be written as 1
ρ0

tr(SĖ) wherein S is the second Piola–
Kirchhoff stress, E := 1

2 (C − I) is the Green strain, and ρ0 is the initial mass density at a particle of
interest in a body.

It is easily verified that

Ẇ = 1
ρ0

tr(SĖ) = 1
ρ0

tr(SLL) where S := USUT, LL := U̇U−1 (26)
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given that F = RLU . The Lagrangian stress S is symmetric because the second Piola–Kirchhoff stress S is
symmetric, and the Lagrangian velocity gradient LL is upper-triangular—a consequence of the group that
stretch U belongs to. The above expression for stress power reduces to a sum of six scalar contributions;
specifically

ρ0Ẇ = S11LL
11 + S21LL

12 + S22LL
22 + S31LL

13 + S32LL
23 + S33LL

33 (27)

wherein

LL
ij = U̇ik U−1

kj =

⎡
⎣

ȧ/a aγ̇/b a(β̇ − αγ̇)/c

0 ḃ/b bα̇/c
0 0 ċ/c

⎤
⎦ (28)

and we observe that the diagonal rates are logarithmic, while the off-diagonal rates are not logarithmic.
(A very different triangular velocity gradient, viz., Eq. (36), arises in the Eulerian construction that
follows.) How to construct proper finite differences to approximate derivatives for the physical attributes
of Laplace stretch is discussed in Ref. [19].

Expressing Eq. (27) in terms of thermodynamic conjugate pairs is not a unique process, cf. Ref. [9].
Here we shall consider a pairing described by

ρ0Ẇ = πδ̇ +
3∑

i=1

(
σiε̇i + τ iγ̇i

)
(29)

whose seven, conjugate, stress–strain pairs are defined as follows: a uniform bulk response is governed by
a Lagrangian pressure π and a Lagrangian dilatation δ defined by

π := S11 + S22 + S33 δ := ln 3

√
a

a0

b

b0

c

c0
δ̇ =

1
3

(
ȧ

a
+

ḃ

b
+

ċ

c

)
(30a)

while the squeeze (pure shear) responses are governed by Lagrangian normal-stress differences σi and
Lagrangian squeezes εi defined by

σ1 := S11 − S22 ε1 := ln 3

√
a

a0

b0
b

ε̇1 =
1
3

(
ȧ

a
− ḃ

b

)
(30b)

σ2 := S22 − S33 ε2 := ln 3

√
b

b0

c0
c

ε̇2 =
1
3

(
ḃ

b
− ċ

c

)
(30c)

σ3 := S33 − S11 ε3 := ln 3

√
c

c0

a0

a
ε̇3 =

1
3

(
ċ

c
− ȧ

a

)
(30d)

of which two are independent because σ3 = −(σ1 + σ2) and ε3 = −(ε1 + ε2), while the (simple) shear
responses are governed by Lagrangian shear stresses τ i and Lagrangian shear strains γ

i
defined by

τ1 :=
b

c
S32 γ

1
:= α − α0 γ̇

1
= α̇ (30e)

τ2 :=
a

c
S31 γ

2
:= β − β

0
γ̇
2

= β̇ (30f)

τ3 :=
a

b
S21 − aα

c
S31 γ

3
:= γ − γ

0
γ̇
3

= γ̇ (30g)

wherein a0, b0 and c0 are their initial elongation ratios, and where α0, β
0

and γ
0

are their initial shears.
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Bijective maps exist to transform tensor components into thermodynamic stress–strain-rate attributes
that, for isotropic materials,4 are described by⎧

⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π
σ1

σ2

τ1

τ2

τ3

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 b/c 0 0
0 0 0 0 a/c 0
0 0 0 0 −aα/c a/b

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S11

S22

S33

S32

S31

S21

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(31a)

with σ3 = −σ1 − σ2, and
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ̇
ε̇1
ε̇2
γ̇
1

γ̇
2

γ̇
3

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1/3 1/3 1/3 0 0 0
1/3 −1/3 0 0 0 0
0 1/3 −1/3 0 0 0
0 0 0 c/b 0 0
0 0 0 0 c/a bα/a
0 0 0 0 0 b/a

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U̇1i U−1
i1

U̇2i U−1
i2

U̇3i U−1
i3

U̇2i U−1
i3

U̇1i U−1
i3

U̇1i U−1
i2

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(31b)

with ε̇3 = −ε̇1 − ε̇2.
These strain-rate attributes can be integrated to get the Lagrangian thermodynamic strains δ, ε1, ε2,

ε3, γ
1
, γ

2
and γ

3
by choosing initial conditions of δ|0 = ε1|0 = ε2|0 = ε3|0 = γ

1
|0 = γ

2
|0 = γ

3
|0 = 0

provided that the initial elongation ratios have been specified as a0, b0 and c0 and that the initial
magnitudes of shear have been specified as α0, β

0
and γ

0
.

At this juncture, constitutive equations between stress–strain attributes of the thermodynamic con-
jugate pairs (π, δ), (σ1, ε1), (σ2, ε2), (τ1, γ1

), (τ2, γ2
) and (τ3, γ3

) are to be introduced, e.g., Ref. [11],
to solve for the Lagrangian thermodynamic stresses π, σ1, σ2, σ3, τ1, τ2 and τ3. These updated stress
attributes map into our Lagrangian stress components Sij as

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S11

S22

S33

S23 = S32

S13 = S31

S12 = S21

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1/3 2/3 1/3 0 0 0
1/3 −1/3 1/3 0 0 0
1/3 −1/3 −2/3 0 0 0
0 0 0 c/b 0 0
0 0 0 0 c/a 0
0 0 0 0 bα/a b/a

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π
σ1

σ2

τ1

τ2

τ3

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(32)

from which the second Piola–Kirchhoff stress S = Sij �ei ⊗�ej is retrieved via S = U−1SU−T, i.e., Sij =
U−1

ik Sk� U−1
j� , such that from here any commonly used stress tensor can be gotten.

Although σ3 and ε̇3 are not needed from a constitutive perspective, they are required to correctly
calculate stress power.

6.2. Eulerian stress–strain attributes

In terms of Eulerian fields, stress power Ẇ can be written as 1
ρ0

tr(τD) wherein τ = FSFT is the Kirchhoff
stress, which relates to Cauchy stress T via τ := det(F)T = ρ0

ρ T with D := 1
2 (L + LT) = F−TĖF−1

being the symmetric part of the velocity gradient L := ḞF−1, and ρ being the current mass density.
It can be shown that

Ẇ = 1
ρ0

tr(τD) = 1
ρ0

tr
(
τLE

)
(33a)

4 See Ref. [9] for one way to extend this approach to anisotropic materials.
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given that F = VRE , where this Eulerian velocity gradient LE is defined by

LE :=
◦
VV−1 wherein

◦
V := V̇ + VΩE − ΩEV (33b)

with
◦
V being an objective co-rotational derivative for this measure of stretch, and ΩE := ṘERET

being
a spin of an Eulerian coordinate axes (�eE

1 ,�eE
2 ,�eE

3 ) about the reference axes (�e1,�e2,�e3).
Consequently, stress power ρ0Ẇ = tr

(
τLE

)
arises from two sources in this Eulerian construction, viz.

Ẇ = Ẇ1 + Ẇ2. The first is energetic, i.e.,

Ẇ1 := 1
ρ0

tr
(
τ V̇V−1

)
(34a)

while the second satisfies objectivity, viz.,

Ẇ2 := 1
ρ0

tr
(
τVΩEV−1

)
(34b)

noting that tr(τΩE) = 0. Thermodynamic stress–strain conjugate pairs can be established in terms of
energetic expression (34a). Objective correction (34b) is required to quantify the work being done, but
it plays no role when creating our Eulerian stress–strain attributes, as every term in this sum has a
component of spin in it; therefore, Ẇ2 = 0 whenever ΩE = 0.

Because V̇V−1 = V̇ikV−1
kj �ei ⊗�ej has components that are lower triangular, a consequence of the group

that tensor V belongs to, the first contribution to stress power put forward in Eq. (34a) reduces to a sum
of six scalar contributions; specifically,

ρ0Ẇ1 = τ11V̇1iV−1
i1 + τ12V̇2iV−1

i1 + τ13V̇3iV−1
i1 + τ22V̇2iV−1

i2 + τ23V̇3iV−1
i2 + τ33V̇3iV−1

i3 (35)

wherein

V̇ikV−1
kj =

⎡
⎢⎢⎣

ȧ
a 0 0

γ̇ + γ
(

ȧ
a − ḃ

b

)
ḃ
b

0

β̇ − γ α̇ + β
(

ȧ
a − ċ

c

)
− αγ

(
ḃ
b

− ċ
c

)
α̇ + α

(
ḃ
b

− ċ
c

)
ċ
c

⎤
⎥⎥⎦ (36)

which is strikingly different from that of its Lagrangian counterpart U̇U−1 found in Eq. (28).5 Present
here are the squeeze rates ε̇1 = 1

3

(
ȧ/a − ḃ/b

)
, etc., which appear in the off-diagonal terms, along with

their corresponding shear rates, e.g., γ̇, thereby substantiating our selection of conjugate pairs.
In Eq. (36), a clear delineation exists between pure and simple shearing deformations. Such a delin-

eation does not arise whenever one uses symmetric measures for stretch, where an isotropic–deviatoric
decomposition is the extent to which such fields can be deconstructed.

Expressing Eq. (35) in terms of Eulerian, thermodynamic, conjugate pairs, analogous to those consid-
ered for the Lagrangian frame, one can write

ρ0Ẇ1 = πδ̇ +
3∑

i=1

(
σiε̇i + τ iγ̇i

)
(37)

whose seven, conjugate, stress–strain pairs are defined as follows: a uniform bulk response is governed by
an Eulerian pressure π and an Eulerian dilatation δ defined by

π := τ11 + τ22 + τ33 δ := ln 3

√
a

a0

b

b0

c

c0
δ̇ =

1
3

(
ȧ

a
+

ḃ

b
+

ċ

c

)
(38a)

5 Curiously, U−1U̇ has components akin to Eq. (36), except its components are upper triangular instead of lower
triangular, and are expressed in terms of the Lagrangian stretch attributes instead of their Eulerian counterparts.
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while the squeeze (pure shear) responses are governed by Eulerian normal-stress differences σi and Euler-
ian squeezes εi defined by

σ1 := τ11 − τ22 + 3γτ12 ε1 := ln 3

√
a

a0

b0

b
ε̇1 =

1
3

(
ȧ

a
− ḃ

b

)
(38b)

σ2 :=
{

τ22 − τ33
+3α(τ23 − γτ13)

ε2 := ln 3

√
b

b0

c0
c

ε̇2 =
1
3

(
ḃ

b
− ċ

c

)
(38c)

σ3 := −τ11 + τ33 − 3βτ13 ε3 := ln 3

√
c

c0

a0

a
ε̇3 =

1
3

(
ċ

c
− ȧ

a

)
(38d)

of which only two are independent, while the (simple) shear responses are governed by Eulerian shear
stresses τ i and strains γi defined by

τ1 := τ23 − γτ13 γ1 := α − α0 γ̇1 = α̇ (38e)

τ2 := τ13 γ2 := β − β0 γ̇2 = β̇ (38f)
τ3 := τ12 γ3 := γ − γ0 γ̇3 = γ̇ (38g)

wherein a0, b0 and c0 are their initial elongation ratios, and where α0, β0 and γ0 are their initial shear
offsets.

The sets of thermodynamic conjugate pairs for the Lagrangian and Eulerian frameworks are taken to
be the same. Each set is composed of three modes: one pair to describe uniform dilatation, three pairs
to describe pure shears and three pairs to describe simple shears. In both cases, only two of the three
pure-shear pairs are independent, thereby resulting in sets of six, independent, conjugate pairs that have
direct connections with the six independent components of stress and stretch rate.

Bijective maps exist to transform tensor components into thermodynamic stress–strain-rate attributes
that, for isotropic materials, are described by⎧

⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π
σ1

σ2

τ1

τ2

τ3

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0
1 −1 0 0 0 3γ
0 1 −1 3α −3αγ 0
0 0 0 1 −γ 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τ11
τ22
τ33
τ32
τ31
τ21

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(39a)

with

σ3 = −σ1 − σ2 + 3
(
ατ1 − βτ2 + γτ3

)
(39b)

which arises from the constraint equation
⎧
⎨
⎩

σ1 − 3γτ3

σ2 − 3ατ1

σ3 + 3βτ2

⎫
⎬
⎭ =

⎡
⎣

1 −1 0
0 1 −1

−1 0 1

⎤
⎦
⎧
⎨
⎩

τ11
τ22
τ33

⎫
⎬
⎭

and where
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ̇
ε̇1
ε̇2
γ̇1

γ̇2

γ̇3

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1/3 1/3 1/3 0 0 0
1/3 −1/3 0 0 0 0
0 1/3 −1/3 0 0 0
0 −α α 1 0 0

−β 0 β γ 1 0
−γ γ 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V̇1iV−1
i1

V̇2iV−1
i2

V̇3iV−1
i3

V̇2iV−1
i3

V̇1iV−1
i3

V̇1iV−1
i2

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(39c)
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with

ε̇3 = −ε̇1 − ε̇2. (39d)

These strain rates can be integrated to get the Eulerian thermodynamic strains δ, ε1, ε2, ε3, γ1, γ2 and
γ3 by using initial conditions of δ|0 = ε1|0 = ε2|0 = ε3|0 = γ1|0 = γ2|0 = γ3|0 = 0 provided that the
initial elongation ratios have been specified as a0, b0 and c0 and that the initial magnitudes of shear have
been specified as α0, β0 and γ0.

At this juncture, constitutive equations between the Eulerian thermodynamic conjugate pairs (π, δ),
(σ1, ε1), (σ2, ε2), (τ1, γ1), (τ2, γ2) and (τ3, γ3) are to be introduced (a topic for future work) to solve for
the Eulerian thermodynamic stresses π, σ1, σ2, τ1, τ2 and τ3. After the thermodynamic stresses have
been updated, they can be mapped back into the components of Kirchhoff stress τij via

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τ11
τ22
τ33
τ23 = τ32
τ13 = τ31
τ12 = τ21

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1/3 2/3 1/3 −α 0 −2γ
1/3 −1/3 1/3 −α 0 γ
1/3 −1/3 −2/3 2α 0 γ
0 0 0 1 γ 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π
σ1

σ2

τ1

τ2

τ3

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(40)

from which any commonly used stress tensor can be easily gotten.
Although σ3 and ε̇3 are not needed from a constitutive perspective, they are required to calculate

stress power. Also, to correctly compute stress power, Eqs. (34a or 37 and 34b) must both contribute,
the former because of straining and the latter because of coordinate spin. A numerical strategy based
upon quaternion theory to acquire spin tensors from rotation tensors by using finite difference schemes
can be found in Ref. [14]. Alternatively, Haller [28] extended the idea of unsheared triads introduced by
Boulanger and Hayes [17] and constructed triads along which the stretch rates are free from shear.

7. Conclusions

Lagrangian and Eulerian triangular decompositions of deformation have been analyzed and compared.
Physically observable stretch/strain components comprising the triangular Laplace stretch of each de-
composition have been derived and then highlighted in several example problems involving homogeneous
deformations. Consideration of stress power, i.e., rate of working done by each stretch rate, has enabled
the derivation of work conjugate stress–stretch tensors, as well as thermodynamically conjugate scalar
pairs that are stress–strain attributes with physical meaning. The current results provide a theoretical
foundation for constructing constitutive models using either an Eulerian or a Lagrangian approach, as
deemed appropriate by the problem to be undertaken.
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