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Abstract. We consider a fluid–structure interaction model for an incompressible fluid where the elastic response of the free
boundary is given by a damped Kirchhoff plate model. Utilizing the Newton polygon approach, we first prove maximal
regularity in Lp-Sobolev spaces for a linearized version. Based on this, we show existence and uniqueness of the strong
solution of the nonlinear system for small data.
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1. Introduction and main result

We consider the system

ρ(∂tu + (u · ∇)u)) − divT (u, q) = 0, t > 0, x ∈ Ω(t),
divu = 0, t > 0, x ∈ Ω(t),

u = VΓ, t ≥ 0, x ∈ Γ(t),
1

ν·en
eτ
nT (u, q)ν = φΓ, t ≥ 0, x ∈ Γ(t),

Γ(0) = Γ0, VΓ(0) = V0, u(0) = u0, x ∈ Ω(0),

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1.1)

which represents a (one-phase) fluid–structure interaction model. The fluid with density ρ > 0 and
viscosity μ > 0 occupies at a time t ≥ 0 the region Ω(t) ⊆ R

n with boundary Γ(t) = ∂Ω(t). Furthermore,
we assume the fluid to be incompressible, and we assume the stress to be given as

T (u, q) = 2μD(u) − q, D(u) =
1
2
(∇u + (∇u)τ ).

The unknowns in the model are the velocity u, the pressure q, and the interface Γ. We denote by ν the
exterior unit normal field at Γ, by VΓ the velocity of the boundary Γ, and by ej the j-th standard basis
vector in R

n, i.e., en = (0, . . . , 0, 1).
The function φΓ describes the elastic response at Γ which is given by a damped Kirchhoff-type plate

model. Throughout the paper, we assume that Γ is given as a graph of a function η : R+ × R
n−1 → R,

that is
Γ(t) =

{
(x′, η(t, x′)); x′ ∈ R

n−1
}

, t ≥ 0, (1.2)

and that Γ(t) is sufficiently flat. Thus, Ω(t) is a perturbed upper half-plane. In these coordinates, the
elastic response is given as

φΓ = m(∂t, ∂
′)η := ∂2

t η + α(Δ′)2η − βΔ′η − γ∂tΔ′η (1.3)

for α, γ > 0, β ∈ R, where Δ′ stands for the Laplacian in R
n−1. Finally, the initial configuration and

velocity of the interface resp. the initial fluid velocity are given by Γ0 and V0 resp. u0 = (u′
0, u

n
0 ). Note

that in addition to the initial position Γ0 of the boundary, also its initial velocity V0 has to be specified as
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the equation is of second order with respect to time on the boundary. We remark that in the formulation
of the boundary conditions in lines 3 and 4 of (1.1), one has to take into account that the Kirchhoff plate
model is formulated in a Lagrangian setting, whereas for the fluid an Eulerian setting is used. This is
discussed in more detail in the beginning of Sect. 2.

The symbol of m(∂t, ∂
′) is given as

m(λ, ξ′) = λ2 + α|ξ′|4 + β|ξ′|2 + γλ|ξ′|2, λ ∈ C, ξ′ ∈ R
n−1,

which vanishes if

λ = −γ|ξ′|2
2

±
√

γ2|ξ′|4
4

− α|ξ′|4 − β|ξ′|2.

For γ > 0, the roots of m(·, ξ′) lie in some sector which is a subset of {λ ∈ C : Reλ < 0}. This indicates
that the term −γ∂tΔ′η in φΓ parabolizes the problem. Physically, one also speaks of structural damping
of the plate.

We notice that basically the same results as proved in this note can be expected by considering
layer like domains or rectangular type domains with periodic lateral boundary conditions. For simplicity,
however, we restrict the approach given here to the just introduced geometry.

Model (1.1) was introduced in [23] in connection to applications to cardiovascular systems. In the 2D
case, this system was investigated in [3] in the L2-setting. In fact, in [3, Proposition 3.12] it is proved that
the linear operator associated with (1.1) generates an analytic C0-semigroup in a suitable Hilbert space
setting. This exhibits the parabolic character of the problem. Therefore, it is reasonable to consider an
Lp-theory for the system (1.1) which is the main purpose of this note.

Alternative approaches to system (1.1) in the L2-setting also for the hyperbolic–parabolic case, i.e.,
γ = 0, are given, e.g., in [6,10,16,17,21], concerning weak solutions and, e.g., in [4,7,18,19] concerning
(local) strong solutions. A more recent approach in a two-dimensional L2-framework concerning global
strong solutions is presented in [11]. Recently, in [20] the interaction between an incompressible fluid and a
damped beam (which relates to the case of a one-dimensional boundary) was studied in the Lp-Lq-setting.

In the present paper, we develop an Lp-approach in general dimension for system (1.1). In order to
formulate the main result, for k, � ∈ N0 non-cylindrical spaces are defined as

Hk
p (J,H�

p(Ω(t)))

:=
{

u :
⋃

t∈J

{t} × Ω(t) → R
n; u measurable and ‖u‖k,� < ∞

}
,

where

‖u‖p
k,� := ‖u‖p

Hk
p (J,H�

p(Ω(t)))
:=

∑

m≤k

∑

|α|≤�

∫

J

∫

Ω(t)

∣
∣∂m

t ∂α
x u(t, x)

∣
∣p dx dt.

The space Lp(J ; Ḣ1
p (Ω(t))) for the pressure is defined accordingly. We show the existence of strong

solutions for small data and give a precise description of the maximal regularity spaces for the unknowns.
More precisely, we prove the following main result for (1.1).

Theorem 1.1. Let n ≥ 2, p ≥ (n + 2)/3, T > 0, and J = (0, T ). Assume that

‖u0‖W
2−2/p
p (Ω(0))

+ ‖η0‖W
5−3/p
p (Rn−1)

+ ‖η1‖W
3−3/p
p (Rn−1)

< κ,
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for some κ > 0, where Γ0 = graph(η0) and V0 = {(0, η1(x′)); x′ ∈ R
n−1} in (1.1). Then, there exists a

unique solution (u, q,Γ) of system (1.1) such that Γ = graph(η) and such that

u ∈ H1
p (J ;Lp(Ω(t))) ∩ Lp(J ;H2

p (Ω(t))),

q ∈ Lp(J ; Ḣ1
p (Ω(t))),

η ∈ Eη := W 9/4−1/(4p)
p (J ;Lp(Rn−1)) ∩ H2

p (J ;W 1−1/p
p (Rn−1))

∩ Lp(J ;W 5−1/p
p (Rn−1)),

provided that κ = κ(T ) is small enough and that the following compatibility conditions are satisfied:

(1) div u0 = 0,
(2) if p > 3

2 , then u′
0|Γ0 = 0 and un

0 |Γ0 − η1 = 0 almost everywhere,
(3) there exists an η∗ ∈ Eη with η∗|t=0 = η0, ∂tη∗|t=0 = η1 and

∂tη∗ ∈ H1
p (J ;H−1

p,0(Rn
+)),

where

∂tη∗(φ) := −
∫

Rn−1

∂tη∗φdx′, φ ∈ Ḣ1
p′(Rn

+).

The solution depends continuously on the data.

Remark 1.2. (a) The compatibility conditions (1)–(3) are natural in the sense that they are also necessary
for the existence of a strong solution. Condition (3) appears in a similar way for the two-phase Stokes
problem, see, e.g., [22], Section 8.1. Note that the regularity for η∗ in (3) does not follow from η∗ ∈ Eη.

(b) We remark that the maximal regularity space Eη for η describing the boundary is not a standard
space. It is given as an intersection of three Sobolev spaces. This is due to the fact that the symbol of the
complete system has an inherent inhomogeneous structure, and therefore the Newton polygon method is
the correct tool to show maximal regularity. For the details, see Sect. 3.

c) We note that in the physically relevant situations n = 2 and n = 3, the case p = 2 is included. This
might be of importance when considering the singular limit γ → 0 for vanishing damping of the plate.

d) We formulated the result in the form of existence for fixed time and small data. By similar methods,
one can also show short time existence for arbitrarily large data. This is more intricate, since then while
estimating nonlinearities one has to carefully track the dependence of the constants on related smallness
parameters. But we think that the known strategies, as elaborated, e.g., in [22], can be adapted.

The proof of Theorem 1.1 is based on several ingredients: First, we transform the system to a fixed
domain and consider the linearization of the transformed system. By an application of the Newton polygon
approach (see, e.g., [8] and [9]), we obtain maximal regularity for the linearized system. To deal with the
nonlinearities, we employ embedding results on anisotropic Sobolev spaces given in [15].

Remark 1.3. a) The half-space model problem considered here can also be regarded as a first step towards
an analysis on domains of more general geometry. By applying a suitable localization procedure, similar
results are expected to hold, e.g., on bounded domains. On bounded domains, even global solvability for
small data might be available.

b) An Lp-Lq-theory with p 
= q might be available as well. For the linear theory, in particular concerning
the Newton polygon approach, the use of [9] then has to be replaced by the generalized approach developed
in [8], see the proof of Lemma 3.2. Concerning the nonlinear system, so far there is no Lp-Lq analogon of
the results on multiplication in [15] available in the existing literature. For this purpose, the corresponding
estimates of the nonlinearities then had to be derived by more direct methods.
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2. The transformed system

We start with a short discussion of the boundary conditions, where the Eulerian approach for the fluid
has to be coupled with the Lagrangian description for the plate (see also [17] and [10]). Let Γ be given as
in (1.2) and assume that η is sufficiently smooth. Following the Kirchhoff plate model, in-plate motions
are ignored, and the velocity of the plate at the point (x′, η(t, x′))τ is parallel to the vertical direction
and given by (0, ∂tη(t, x′))τ = ∂tη(t, x′)en. As the fluid is assumed to adhere to the plate, we have no-slip
boundary conditions for the fluid, and the equality of the velocities yields the first boundary condition

u(t, x′, η(t, x′)) = ∂tη(t, x′)en (t > 0, x′ ∈ R
n). (2.1)

The exterior normal at the point (x′, η(t, x′)) of the boundary Γ(t) is given by

ν = ν(t, x′) =
1

√
1 + |∇′η(t, x′)|2

(∇′η(t, x′)
−1

)

.

We define the transform of variables

θ : J × R
n
+ →

⋃

t∈J

{t} × Ω(t), (t, x′, xn) �→ θ(t, x′, xn) := (t, x′, xn + η(t, x′)).

Obviously, we have θ−1(t, x′, y) = (t, x′, y − η(t, x′)). As it was discussed in [17], Section 1.2, the force
F exerted by the fluid on the boundary is given by the evaluation of the stress tensor at the deformed
boundary in the direction of the inner normal −ν(t, x′). More precisely, we obtain ( [17], Eq. (1.4))

F = −
√

1 + |∇′η(t, x′) eτ
n(T (u, q) ◦ θ(t, x))ν(t, x′).

As
√

1 + |∇′η|2 = −ν(t, x′) · en, the equality of the forces gives the second boundary condition

1
ν(t, x′) · en

eτ
n[T (u, q)](t, x′, η(t, x′)) ν(t, x′) = [m(∂t, ∂

′)η](t, x′)

(t > 0, x′ ∈ R
n−1).

(2.2)

Conditions (2.1) and (2.2) are the precise formulation of the boundary conditions in (1.1).
To solve the problem (1.1), we first note that by a re-scaling argument we may assume that ρ = μ = 1

for the density ρ and viscosity μ from now on. Next, we transform the problem (1.1) to a problem on
the fixed half-space R

n
+, using the above transformation θ. To this end, we set J := (0, T ) and write

x = (x′, xn) ∈ R
n
+ with x′ ∈ R

n−1. With the corresponding meaning, we write v′, ∇′, etc. The pull-back
is then defined as

v := Θ∗u := u ◦ θ, p := Θ∗q := q ◦ θ,

and correspondingly the push-forward as

u := Θ∗v := v ◦ θ−1, q := Θ∗p := p ◦ θ−1.

We also set Γ0 = Γ(0) = {(x′, η0(x′)); x′ ∈ R
n−1} and V0 = VΓ(0) = (0, η1(·))τ .

Applying the transform of variables to (1.1) leads to the following quasilinear system for (v, p, η):

∂tv − Δv + ∇p = Fv(v, p, η) in J × R
n
+,

div v = G(v, η) in J × R
n
+,

v′ = 0 on J × R
n−1,

∂tη − vn = 0 on J × R
n−1,

−2∂nvn + p − m(∂t, ∂
′)η = Hη(v, η) on J × R

n−1,
v|t=0 = v0 in R

n
+,

η|t=0 = η0 in R
n−1,

∂tη|t=0 = η1 in R
n−1.

(2.3)
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The nonlinear right-hand sides are given as

Fv(v, p, η) = (∂tη − Δ′η)∂nv − 2(∇′η · ∇′)∂nv + |∇′η|2∂2
nv

−(v · ∇)v + (v′ · ∇′η)∂nv + (∇′η, 0)τ∂np,
G(v, η) = ∇′η · ∂nv′,

Hη(v, η) = −∇′η · ∂nv′ − ∇′η · ∇′vn.

3. The linearized system

The aim of this section is to derive maximal regularity for the linearized system

∂tv − Δv + ∇p = fv in R+ × R
n
+,

div v = g in R+ × R
n
+,

v′ = 0 on R+ × R
n−1,

∂tη − vn = 0 on R+ × R
n−1,

−2∂nvn + p − m(∂t, ∂
′)η = fη on R+ × R

n−1,
v|t=0 = v0 in R

n
+,

η|t=0 = η0 in R
n−1,

∂tη|t=0 = η1 in R
n−1.

(3.1)

In the sequel for k ∈ N0, 1 < p < ∞, a domain Ω ⊂ R
n, and a Banach space X,

Hk
p (Ω,X) :=

{
u : Ω → X; ‖u‖Hk

p
< ∞

}
, ‖u‖p

Hk
p

:=
∑

|α|≤k

‖∂αu‖p
Lp

denotes the standard X-valued Sobolev space. Here, Lp(Ω,X) denotes the standard Bochner–Lebesgue
space. We also put W k

p (Ω,X) := Hk
p (Ω,X) for k ∈ N0. For s > 0, s 
∈ N, Sobolev (or Bessel potential)

and Sobolev–Slobodeckii spaces of fractional order are defined via complex and real interpolation, i.e., by

Hs
p(Ω,X) :=

[
Hk

p (Ω,X), Hk+1
p (Ω,X)

]

s−k
and

W s
p (Ω,X) :=

(
Hk

p (Ω,X), Hk+1
p (Ω,X)

)

s−k,p
,

respectively, where k < s < k+1. Also as usual, we set Hs
p,0(Ω,X) := C∞

c (Ω,X)
Hs

p(Ω,X)
and W s

p,0(Ω,X) :=

C∞
c (Ω,X)

W s
p (Ω,X)

, where C∞
c stands for the space of smooth and compactly supported functions in Ω.

In case X = R
n, corresponding dual spaces are defined as

H−k
p (Ω) :=

(
Hk

p′,0(Ω)
)′ and H−k

p,0 (Ω) :=
(
Hk

p′(Ω)
)′

,

where 1/p + 1/p′ = 1. Accordingly, the spaces W−k
p (Ω) and W−k

p,0 (Ω) are defined. If Ω = J = (0, T ) is an
interval, we also set

0H
s
p(J,X) := C∞

c ((0, T ],X)
Hs

p(Ω,X)

and 0W
s
p(J,X) accordingly. Observe that then we have 0H

1
p(J,X) = {u ∈ H1

p (J,X); u(0) = 0}. As
references for vector-valued scales of Sobolev spaces, we mention [2], Chapter VII, and [13], Chapter 2.

We will consider system (3.1) in spaces with exponential weight with respect to the time variable. Let
ρ ∈ R and X be a Banach space. For u ∈ Lp(R+,X), we define Ψρ as the multiplication operator with
e−ρt, i.e., Ψρu(t) := e−ρtu(t), t ∈ R+. The spaces with exponential weights are defined by

Hs
p,ρ(R+,X) := Ψ−ρ(Hs

p(R+,X)),

W s
p,ρ(R+,X) := Ψ−ρ(W s

p (R+,X))

with canonical norms ‖u‖Hs
p,ρ(R+,X) := ‖Ψρu‖Hs

p(R+,X) and ‖u‖W s
p,ρ(R+,X) := ‖Ψρu‖W s

p (R+,X). For ρ ≥ 0
and s > 0, we define 0H

s
p,ρ(R+,X) and 0W

s
p,ρ(R+,X) analogously, replacing Hs

p and W s
p by 0H

s
p and
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0W
s
p , respectively. For mapping properties and interpolation results under the condition that X is a UMD

space, we refer, e.g., to [9], Lemma 2.2. We also make use of homogeneous spaces, e.g., for Ω ⊂ R
n we

set

Ḣ1
p (Ω) := {v ∈ L1

loc(Ω) : ∇v ∈ Lp(Ω)}, ‖v‖Ḣ1
p

:= ‖∇v‖p,

and Ḣ1
p,0(Ω) := C∞

c (Ω)
‖∇·‖p . The corresponding dual spaces are defined as

Ḣ−1
p (Ω) :=

(
Ḣ1

p′,0(Ω)
)′ and Ḣ−1

p,0(Ω) :=
(
Ḣ1

p′(Ω)
)′

,

see [22] Section 7.2. The homogeneous Sobolev–Slobodeckii spaces Ẇ s
p (Rn) contain all functions u : Rn →

R such that

‖u‖p

Ẇ s
p

=
∑

|α|=[s]

∫

Rn

∫

Rn

|∂α(v(x) − v(y))|p
|x − y|n+(s−[s])p

dx dy < ∞,

where [s] = max{k ∈ N0; k < s}, see [26]. Note that we have

Ẇ s
p (Rn) = Ḃs

pp(R
n)

for 1 < p < ∞, n ∈ N, and s ∈ R\Z, where the latter one denotes the homogeneous Besov space.
We refer to the pertinent monographs [1,5,24] for the scalar case and [2,13] for the X-valued case for

properties, characterizations, and relations of the just introduced spaces.
In the following, we denote the time trace u �→ ∂k

t u|t=0 by γt
k and the trace to the boundary u �→

∂k
nu|Rn−1 by γk. We set J = (0, T ) for T > 0. The solution (v, p, η) of (3.1) will belong to the spaces

v ∈ Ev := H1
p,ρ(J ;Lp(Rn

+)) ∩ Lp
ρ(J ;H2

p (Rn
+)),

p ∈ Ep := Lp
ρ(J ; Ḣ1

p (Rn
+)),

η ∈ Eη := W 9/4−1/(4p)
p,ρ (J ;Lp(Rn−1)) ∩ H2

p,ρ(J ;W 1−1/p
p (Rn−1))

∩ Lp
ρ(J ;W 5−1/p

p (Rn−1)).

The function spaces for the right-hand side of (3.1) are given by

fv ∈ Fv := Lp
ρ(J ;Lp(Rn

+)),

g ∈ Fg := H1
p,ρ(J ; Ḣ−1

p (Rn
+)) ∩ Lp

ρ(J ;H1
p (Rn

+)),

fη ∈ γ0Ep := Lp
ρ(J ; Ẇ 1−1/p

p (Rn−1)).

By trace results with respect to the time trace, the spaces for the initial values are given by

v0 ∈ γt
0Ev := W 2−2/p

p (Rn
+),

η0 ∈ γt
0Eη := W 5−3/p

p (Rn−1),

η1 ∈ γt
1Eη := W 3−3/p

p (Rn−1),

see the proof of Theorem 3.1 below (necessity part). Note also that in this section we have T = ∞ and that
we skipped indicating the ρ dependence in Ev, Ep, etc., since we only deal with weighted time-dependent
spaces for the rest of this section. We will also need the following compatibility conditions:

(C1) div v0 = g|t=0 in Ḣ−1
p (Rn

+).
(C2) If p > 3

2 , then v′
0|Rn−1 = 0 almost everywhere in R

n−1.
(C3) If p > 3

2 , then vn
0 |Rn−1 − η1 = 0 almost everywhere in R

n−1.
(C4) There exists an η∗ ∈ Eη with η∗|t=0 = η0, ∂tη∗|t=0 = η1 and

(g, ∂tη∗) ∈ H1
p,ρ(J ; Ḣ−1

p,0(Rn
+)). (3.2)
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Here, we define

(g, ∂tη∗)(φ) :=
∫

R
n
+

gφdx −
∫

Rn−1

∂tη∗φdx′

for φ ∈ Ḣ1
p′(Rn

+). Additionally, we have (g|t=0, η1) = (g|t=0, v
n
0 |Rn−1) in Ḣ−1

p,0(Rn
+).

We remark that only (3.2) is an additional condition, as it was shown in [9], Theorem 4.5, that for every
η0 ∈ γt

0Eη and η1 ∈ γt
1Eη there exists an η∗ ∈ Eη with η∗|t=0 = η0 and ∂tη∗|t=0 = η1.

The main result of this section is the following maximal regularity result.

Theorem 3.1. Let p > 1, p 
= 3/2, and T = ∞. Then, there exists a ρ0 > 0 such that for every ρ ≥ ρ0,
system (3.1) has a unique solution (v, p, η) ∈ Ev ×Ep ×Eη if and only if the data fv, g, fη, v0, η0, η1 belong
to the spaces above and satisfy the compatibility conditions (C1)–(C4). The solution depends continuously
on the data.

The proof of this theorem will be done in several steps and follows from Sects. 3.1–3.4.

3.1. Necessity

Let (v, p, η) ∈ Ev × Ep × Eη be a solution of (3.1). By standard continuity and trace results, the right-
hand sides fv, and g as well as the time trace v0 belong to the spaces above. Noting that div : Lp(Rn

+) →
Ḣ−1

p (Rn
+) is continuous, we have g = div u ∈ H1

p,ρ(R+; Ḣ−1
p (Rn

+)) ⊂ C([0,∞); Ḣ−1
p (Rn

+)), and as for all

p > 1 we also have v0 ∈ W
2−2/p
p (Rn

+) ⊂ Lp(Rn
+), we obtain the compatibility condition (C1) for all p > 1

(see also [22], Theorem 7.2.1).
For fη, note that we have Eη ⊂ H1

p,ρ(R+;W 3−1/p
p (Rn−1) by the mixed derivative theorem (see, e.g.,

[9], Lemma 4.3), and therefore

∂tΔ′η ∈ Lp
ρ(R+;W 1−1/p

p (Rn−1) ⊂ γ0Ep.

It is easy to see that the other terms of m(∂t, ∂
′)η belong to the same space. By standard trace results,

we also obtain γ1u ∈ γ0Ep. Concerning the pressure, we remark that γ0 : Ḣ1
p (Rn

+) → Ẇ
1−1/p
p (Rn−1) is

a retraction, see, e.g., [14], Theorem 2.1, and therefore γ0p ∈ γ0Ep. This yields fη ∈ γ0Ep. For the time
traces of η, by putting F = K = W and

s1 = 0, r1 = 5 − 1/p, s2 = 2, r2 = 1 − 1/p, s3 = 9/4 − 1/4p, r3 = 0,

we can apply [9], Theorem 4.5 which gives η0 ∈ γt
0Eη and η1 ∈ γt

1Eη.
If p > 3

2 , then the boundary trace of v0 exists in the space W
2−3/p
p (Rn−1). This yields the compatibility

conditions (C2) and (C3) as equality in the space W
2−3/p
p (Rn−1), hence in particular as equality almost

everywhere.
To show (C4), we can set η∗ := η. For φ ∈ Ḣ1

p′(Rn
+), we obtain

(g, ∂tη)(φ) =
∫

R
n
+

div uφdx −
∫

Rn−1

unφdx′ = −
∫

R
n
+

u · ∇φdx

and therefore (g, ∂tη) ∈ H1
p,ρ(R+; Ḣ−1

p,0(Rn
+)). Setting t = 0, we obtain (g|t=0, η1) = (g|t=0, v

n
0 ) as equality

in Ḣ−1
p,0(Rn

+).
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3.2. Reductions

We can reduce some part of the right-hand side of (3.1) to zero by applying known results on the Stokes
system. For this, let (v(1), p(1)) ∈ Ev × Ep be the unique solution of the Stokes problem in the half space

∂tv
(1) − Δv + ∇p(1) = fv in R+ × R

n
+,

div v(1) = g in R+ × R
n
+,

(v(1))′ = 0 on R+ × R
n−1,

(v(1))n = ∂tη∗ on R+ × R
n−1,

v(1)|t=0 = v0 in R
n
+.

(3.3)

The unique solvability of (3.3) follows from [22], Theorem 7.2.1. To show that this theorem can be
applied, we remark in particular that the compatibility condition (e) in [22, p. 324] holds because of
(C4). Moreover, by the embedding Eη ⊂ H

2−1/(2p)
p,ρ (R+;Lp(Rn−1) ∩ H1

p,ρ(R+;W 2−1/p
p (Rn−1) and the

compatibility condition (C3), we see that also the compatibility condition (d0) in [22, p. 324] holds.
Let ṽ := v − v(1), p̃ := p − p(1), and η̃ := η − η∗. Then, (v, p, η) is a solution of (3.1) if and only if

(ṽ, p̃, η̃) is a solution of
∂tṽ − Δṽ + ∇p̃ = 0 in R+ × R

n
+,

div ṽ = 0 in R+ × R
n
+,

ṽ′ = 0 on R+ × R
n−1,

ṽn − ∂tη̃ = 0 on R+ × R
n−1,

−2∂nṽn + p̃ − m(∂t, ∂
′)η̃ = f̃η on R+ × R

n−1,
ṽ|t=0 = 0 in R

n
+,

η̃|t=0 = 0 in R
n−1,

∂tη̃|t=0 = 0 in R
n−1.

(3.4)

Here,

f̃η := fη + 2∂n(v(1))n − p(1) + m(∂t, ∂
′)η∗.

By the trace results in Subsection 3.1, we have f̃η ∈ γ0Ep.

3.3. Solution operators for the reduced linearized problem

In the following, we show solvability for the reduced problem (3.4), omitting the tilde again. An application
of the Laplace transform formally leads to the resolvent problem

λv − Δv + ∇p = 0 in R
n
+,

div v = 0 in R
n
+,

v′ = 0 on ∂Rn
+,

vn − λη = 0 on ∂Rn
+,

−2∂nvn + p − m(λ, ∂′)η = fη on ∂Rn
+

(3.5)

with

m(λ, ∂′)η = λ2η + α(Δ′)2η − βΔ′η − γλΔ′η.

We observe that the second and the third line of (3.5) imply that

∂nvn(·, 0) = −∇′ · v′(·, 0) = 0.

Hence, the fifth line reduces to

p − m(λ, ∂′)η = fη on ∂Rn
+.
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Applying partial Fourier transform in x′ ∈ R
n−1, we obtain the following system of ordinary differential

equations in xn for the transformed functions v̂, p̂ and η̂:

ω2v̂ − ∂2
nv̂ + (iξ′, ∂n)τ p̂ = 0, xn > 0,

iξ · v̂′ + ∂nv̂n = 0, xn > 0,

v̂′ = 0, xn = 0,

λη̂ − v̂n = 0, xn = 0,

p̂ − m(λ, |ξ′|)η̂ = f̂η, xn = 0,

Here, we have set ω := ω(λ, ξ′) :=
√

λ + |ξ′|2 and

m(λ, ξ′) := λ2 + α|ξ′|4 + γλ|ξ′|2 + β|ξ′|2.
Multiplying the first equation with (iξ′, ∂n) and combining it with the second one yields (−|ξ′|2 +

∂2
n)p̂ = 0 for xn > 0. The only stable solution of this equation is given by

p̂(ξ′, xn) = p̂0(ξ′)e−|ξ′|xn , ξ′ ∈ R
n−1, xn > 0. (3.6)

Putting the pressure term on the right-hand side, v formally solves a vector-valued heat equation. Hence,
to solve the above system we employ the ansatz

v̂′(ξ′, xn) = −
∞∫

0

k+(λ, ξ′, xn, s)iξ′p̂(ξ′, s)ds + φ̂′(ξ′)e−ωxn , (3.7)

v̂n(ξ′, xn) = −
∞∫

0

k−(λ, ξ′, xn, s)∂np̂(ξ′, s)ds + φ̂n(ξ′)e−ωxn (3.8)

with the Green functions subject to Dirichlet resp. Neumann conditions

k±(λ, ξ, xn, s) :=
1
2ω

(
e−ω|xn−s| ± e−ω(xn+s)

)
.

Here, the traces p̂0 and φ̂ = (φ̂′, φ̂n)τ still have to be determined. Note that by choosing k+ in tangential
and k− in normal components, the integral parts in formulas (3.7) and (3.8) have vanishing divergence.
This follows by a straight-forward calculation, see, e.g., [12], Section 2.6. Thus, div v = 0 enforces

iξ′ · φ̂′(ξ′) = ωφ̂n(ξ′). (3.9)

The kinematic boundary condition instantly gives us

λη̂ − φ̂n = 0. (3.10)

Next, by utilizing (3.6), from the tangential boundary condition we obtain

0 = v̂′(ξ′, 0) = −
∞∫

0

e−ωs

ω
iξ′p̂(ξ′, s)ds + φ̂′(ξ′),

which implies
iξ′

ω + |ξ′| p̂0 = ωφ̂′. (3.11)

Multiplying this with iξ′ and employing the relations (3.9), (3.10) yields

− |ξ′|2
ω + |ξ′| p̂0 = ω2φ̂n = λω2η̂. (3.12)
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Plugging this into the last line of the transformed system, we obtain
(

λω2(ω + |ξ′|)
|ξ′|2 + m(λ, ξ′)

)

η̂ = −f̂η. (3.13)

This yields

η̂ = − |ξ′|2
NL(λ, |ξ′|) f̂η (3.14)

with

NL(λ, |ξ′|) = |ξ′|2m(λ, ξ′) + λω2(ω + |ξ′|).
Formula (3.14) defines the solution operator for η as a function of fη on the level of its Fourier–

Laplace transform. The following result is based on the Newton polygon approach and shows that the
solution operator is continuous on the related Sobolev spaces. In the following, we consider (−Δ′)1/2

as an unbounded operator in Lp
ρ(R+;Lp(Rn−1) and define NL(∂t, (−Δ′)1/2) by the joint H∞-calculus

of ∂t and (−Δ′)1/2 (for details, we refer to, e.g., [9], Corollary 2.9). We will apply the Newton polygon
approach on the Bessel potential scale Hs

p with respect to time and on the Besov scale Br
pp with respect

to space.

Lemma 3.2. (a) There exists a ρ0 > 0 such that for all ρ ≥ ρ0, the operator NL(∂t, (−Δ′)1/2) : HN →
Lp

ρ(R+;B−1−1/p
pp (Rn−1)) is an isomorphism, where

HN := 0H
5/2
p,ρ (R+;B−1−1/p

pp (Rn−1)) ∩ 0H
2
p,ρ(R+;B1−1/p

pp (Rn−1))

∩ Lp
ρ(R+;B5−1/p

pp (Rn−1)).

(b) Let ρ ≥ ρ0. Then, for every fη ∈ γ0Ep, we have

η := Δ′[NL(∂t, (−Δ′)1/2)
]−1

fη ∈ Eη,

φn := ∂tη ∈ γ0Ev,

p0 := fη + m(∂t, ∂
′)η ∈ γ0Ep.

Proof. (a) We apply the Newton polygon approach developed in [9]. Replacing z = |ξ′|, the r-principle
symbols, i.e., the leading terms of NL associated with the relation λ ∼ zr are easily calculated as

Pr(λ, z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αz6, 0 < r < 2,
m0(λ, z)z2, r = 2,
λ2z2, 2 < r < 4,
λ2z2 + λ5/2, r = 4,
λ5/2, r > 4,

where m0 = m for β = 0, that is

m0(λ, z) := λ2 + αz4 + γλz2.

In other words, the associated Newton polygon has the three relevant vertices (6, 0), (2, 2), and (0, 5
2 )

and two relevant edges which again reflects the quasi-homogeneity of NL.
Now, let ϕ ∈ (0, π/2) and θ ∈ (0, ϕ/4) and put

Σψ := {z ∈ C\{0}; | arg z| < ψ}, 0 < ψ < π.

For r 
= 2, we then obviously have

Pr(λ, z) 
= 0 ((λ, z) ∈ Σπ−ϕ × Σθ) . (3.15)

For r = 2, we deduce

P2(λ, z) = 0 ⇔ λ =
z2

2

(
−γ ∓

√
γ2 − 4α

)
.
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By the fact that γ > 0, we see that

ϕ0 := π − arg
(
−γ ∓

√
γ2 − 4α

)
<

π

2
.

Thus, assuming ϕ ∈ (ϕ0, π/2) and θ ∈ (0, (ϕ − ϕ0)/4) we see that (3.15) is satisfied for all r > 0. This
allows for the application of [9, Theorem 3.3] (setting s = 0 and r = −1 − 1/p in the notation of [9])
which yields (a).

(b) By (3.14), we have

η = [NL(∂t, (−Δ′)1/2)
]−1Δ′fη.

As Δ′ is an isomorphism from Ḣ2+t
p (Rn−1) to Ḣt

p(R
n−1) for each t ∈ R, by real interpolation of these

spaces (see [14], Lemma 1.1) we see that it is also an isomorphism from Ḃt
pp(R

n−1) to Ḃt−2
pp (Rn−1) for

each t ∈ R. In particular, Δ′fη ∈ Lp
ρ(R+; Ḃ−1−1/p

pp (Rn−1)). Using the fact that for s < 0 the embedding
Ḃs

pp(R
n−1) ⊂ Bs

pp(R
n−1) holds (see [25, p. 104, (3.339)], [26, Section 3.1]), we obtain the embedding

Lp
ρ(R+; Ḃ−1−1/p

pp (Rn−1)) ⊂ Lp
ρ(R+;B−1−1/p

pp (Rn−1)).

An application of (a) yields

η ∈ 0H
5/2
p,ρ (R+;B−1−1/p

pp (Rn−1)) ∩ 0H
2
p,ρ(R+;B1−1/p

pp (Rn−1))

∩ Lp
ρ(R+;B5−1/p

pp (Rn−1)).

Now, the mixed derivative theorem in mixed scales (see [8], Proposition 2.76) implies

0H
5/2
p,ρ (R+;B−1−1/p

pp (Rn−1)) ∩ 0H
2
p,ρ(R+;B1−1/p

pp (Rn−1))

⊂ B9/4−1/(4p)
pp,ρ (R+;Lp(Rn−1))

and we obtain η ∈ Eη.
For un := ∂tη, we immediately get

un ∈ W 5/4−1/(4p)
p,ρ (R+;Lp(Rn−1)) ∩ Lp

ρ(R+;W 3−1/p
p (Rn−1) ⊂ γ0Ev.

Finally, the fact that m(∂t, ∂
′)η ∈ γ0Ep for η ∈ Eη was already remarked in Subsection 3.1. �

Due to the last result, we obtain the existence of a solution (v, p, η) of (3.4). In fact, for η, φn, and
p0 defined as in Lemma 3.2(b), we can define p and v by (the Laplace and Fourier inverse transform of)
(3.6) and (3.7)–(3.8), respectively. Here, φ′ is given by (3.11). As we know that φn and p0 belong to the
canonical spaces by Lemma 3.2(b), we get v ∈ Ev and p ∈ Ep by standard results on the Stokes equation
(see, e.g., [12], Section 2.6, and [22], Section 7.2). By construction, (v, p, η) is a solution of (3.4).

3.4. Uniqueness of the solution

To show that the solution of (3.1) is unique, let (v, p, η) be a solution with zero right-hand side and zero
initial data. Then, the Laplace transform in t and partial Fourier transform in x′ is well-defined, and the
calculations above show, in particular, that

η̂ = − |ξ′|2
NL(λ, |ξ′|) f̂η = 0

for almost all ξ′ ∈ R
n−1. Therefore, η = 0 which implies that (v, p) is the solution of the Dirichlet Stokes

system with zero data. Therefore, v = 0 and p = 0.
This finishes the proof of Theorem 3.1.
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Remark 3.3. Theorem 3.1 was formulated on the infinite time interval (0,∞) with exponentially weighted
spaces with respect to t. As usual in the theory of maximal regularity, we obtain the same results on
finite time intervals t ∈ J = (0, T ) with T < ∞ without weights, i.e., with ρ = 0. This is due to the fact
that on finite time intervals the weighted and unweighted norms are equivalent and that there exists an
extension operator from (0, T ) to (0,∞) acting on all spaces above.

Therefore, the results of Theorem 3.1 hold with ρ = 0 on the finite interval J = (0, T ). As we
consider the nonlinear equation on a finite time interval, we will replace the function spaces above by
Ev := H1(J ;Lp(Rn

+)) ∩ Lp(J ;H2
p (Rn

+)), etc., keeping the same notation.

4. The nonlinear system

To prove mapping properties of the nonlinearities, we employ sharp estimates for anisotropic function
spaces provided in [15]. In fact, we can proceed very similar as in [15, Section 5.2, Proposition 5.6]. For
ωj ∈ N0, j = 1, . . . , ν, we define a weight vector as ω := (ω1, . . . , ων) and denote by ω̇ := lcm{ω1, . . . , ων}
the lowest common multiple. Further, for n = (n1, . . . , nν) ∈ N

ν we write

R
n = R

n1 × · · · × R
nν .

The (generalized) Sobolev index of an E-valued anisotropic function space then reads as

1
ω̇

(

s − ω · n

p

)

=:

⎧
⎨

⎩

ind(Bs,ω
p,q (Rn, E)), s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞,

ind(Hs,ω
p (Rn, E)), −∞ < s < ∞, 1 < p < ∞,

ind(W s,ω
p (Rn, E)), 0 ≤ s < ∞, 1 ≤ p < ∞,

where ω ·n =
∑ν

j=1 ωjnj . Note that we have the corresponding definition, if Rn is replaced by a Cartesian
product of intervals. For an introduction to anisotropic spaces above, we refer to [2,15] and the references
cited therein. In particular, it is possible to represent the anisotropic spaces as intersections (see [2,
Section VII.3.5]). In the situation considered here, we always have ω = (2, 1), and we obtain the equality

Hs,(2,1)
p (J × R

n−1, Lp(R+))

= Hs/2
p (J, Lp(Rn−1, Lp(R+))) ∩ Lp(J,Hs

p(Rn−1, Lp(R+)))

for s > 0, which can be seen as the definition of the anisotropic space. The analog representation holds
for the anisotropic scales W

s,(2,1)
p and B

s,(2,1)
p,q .

ind
(
H1,(2,1)

p (J × R
n−1, Lp(R+))

)
=

1
2

(

1 − 2 + n − 1
p

)

=
1
2

− n + 1
2p

.

Now, let J = (0, T ). By the mixed derivative theorem, see, e.g., [9, Lemma 4.3], we have

H2
p (J,W 1−1/p

p (Rn−1)) ∩ Lp(J,W 5−1/p
p (Rn−1))↪→H1(J,W 3−1/p

p (Rn−1)).

This yields
∂tη ∈ W 5/4−1/4p

p (J, Lp(Rn−1)) ∩ Lp(J,W 3−1/p
p (Rn−1))

↪→W 1−1/2p
p (J, Lp(Rn−1)) ∩ Lp(J,W 2−1/p

p (Rn−1))

= W 2−1/p,(2,1)
p (J × R

n−1)

(4.1)

for η ∈ E3. Again by the mixed derivative theorem, we have

H2
p (J,W 1−1/p

p (Rn−1)) ∩ Lp(J,W 5−1/p
p (Rn−1)) ↪→ W 2−1/2p

p (J,H1
p (Rn−1)),

which gives us
∂jη ∈ W 2−1/2p

p (J, Lp(Rn−1)) ∩ Lp(J,W 4−1/p
p (Rn−1))

= W 4−1/p,(2,1)
p (J × R

n−1)
(4.2)



ZAMP Fluid–structure interaction Page 13 of 18 158

for η ∈ E3 and j = 1, . . . , n − 1. Analogously, we obtain that

∂j∂kη ∈ W 3/2−1/2p
p (J, Lp(Rn−1)) ∩ Lp(J,W 3−1/p

p (Rn−1))

= W 3−1/p,(2,1)
p (J × R

n−1)

↪→ W 2−1/p,(2,1)
p (J × R

n−1)

(4.3)

for η ∈ E3 and j, k = 1, . . . , n − 1.
For the velocity, we have

v ∈ H2,(2,1)
p (J × R

n
+) ↪→ H2,(2,1)

p (J × R
n−1, Lp(R+)). (4.4)

Another application of the mixed derivative theorem yields

∂jv ∈ H1,(2,1)
p (J × R

n
+) ↪→ H1,(2,1)

p (J × R
n−1, Lp(R+)), (4.5)

∂j∂kv ∈ Lp(J × R
n
+) = Lp(J × R

n−1, Lp(R+)), (4.6)

for j, k = 1, . . . , n. Taking trace, this also implies

v|∂Rn
+

∈ W 1−1/2p
p (J, Lp(Rn−1)) ∩ Lp(J,W 2−1/p

p (Rn−1))

= W 2−1/p,(2,1)
p (J × R

n−1) (4.7)

∂jv|∂Rn
+

∈ W 1/2−1/2p
p (J, Lp(Rn−1)) ∩ Lp(J,W 1−1/p

p (Rn−1))

= W 1−1/p,(2,1)
p (J × R

n−1) (4.8)

for j = 1, . . . , n.
Now, we denote by L the linear operator on the left-hand side of system (2.3) and by N = (Fv, G, 0, 0,

Hη, 0, 0, 0) its nonlinear right-hand side. Then, (2.3) is reformulated as

L(v, p, η) = N(v, p, η) + (0, 0, 0, 0, 0, v0, η0, η1).

We also set

Ẽ := Ev × Ep × Eη,

F̃ := Fv × Fg × {0} × {0} × γ0Ep × γt
0Ev × γt

0Eη × γt
1Eη.

The nonlinearity admits the following properties.

Theorem 4.1. Let p ≥ (n+2)/3. Then, N ∈ Cω(Ẽ, F̃), N(0) = 0, and we have DN(0) = 0 for the Fréchet
derivative of N .

Proof. Mapping properties of Fv. Gathering (4.1), (4.3), and (4.5), we can estimate the term

(∂tη − Δ′η) ∂nv,

as desired, provided the vector-valued embedding

W 2−1/p,(2,1)
p (J × R

n−1)
︸ ︷︷ ︸

ind1=1− n+2
2p

·H1,(2,1)
p (J × R

n−1, Lp(R+))
︸ ︷︷ ︸

ind2=
1
2− n+1

2p

↪→ H0,(2,1)
p (J × R

n−1, Lp(R+))
︸ ︷︷ ︸

ind=− n+1
2p

(4.9)

does hold. Applying [15, Theorem 1.7], this readily follows if at least one of the two indices ind1, ind2 is
non-negative. The strictest condition to be fulfilled by [15, Theorem 1.7], however, is ind1 + ind2 ≥ ind
in case that both of the indices on the left-hand side are negative which can occur for small p. It is easily
seen that this condition is equivalent to

p ≥ n + 2
3

. (4.10)
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For the terms
2(∇′η · ∇′) ∂nv, |∇′η|2∂2

nv, (∇′η, 0)τ ∂np,

we employ (4.2), (4.6) and the vector-valued embeddings
[
W 4−1/p,(2,1)

p (J × R
n−1)

︸ ︷︷ ︸
ind1=2− n+2

2p

]m · H0,(2,1)
p (J × R

n−1, Lp(R+))
︸ ︷︷ ︸

ind2=− n+1
2p

↪→ H0,(2,1)
p (J × R

n−1, Lp(R+))
︸ ︷︷ ︸

ind=− n+1
2p

(4.11)

for m = 1, 2. Due to [15, Theorem 1.9], the above embeddings are valid, provided that ind1 > 0 or,
equivalently,

p >
n + 2

4
. (4.12)

Next, (4.4) and (4.5) show that we obtain the desired estimate of the term (v · ∇)v, if

H2,(2,1)
p (J × R

n
+)

︸ ︷︷ ︸
ind1=1− n+2

2p

·H1,(2,1)
p (J × R

n
+)

︸ ︷︷ ︸
ind2=

1
2− n+2

2p

↪→ H0,(2,1)
p (J × R

n
+)

︸ ︷︷ ︸
ind=− n+2

2p

.

This is guaranteed by [15, Theorem 1.7] if max { ind1, ind2 } ≥ 0. Again, for small values of p both of the
indices on the left-hand side can become negative. Then, [15, Theorem 1.7] implies the embedding above
if ind1 + ind2 ≥ ind, which is equivalent to (4.10).

Thanks to (4.2) and (4.5), the term (v′ · ∇′η)∂nv can be estimated by utilizing the embedding

H1,(2,1)
p (J × R

n−1,H1
p (R+))

︸ ︷︷ ︸
ind1=

1
2− n+1

2p

·W 4−1/p,(2,1)
p (J × R

n−1)
︸ ︷︷ ︸

ind2=2− n+2
2p

· H1,(2,1)
p (J × R

n−1, Lp(R+))
︸ ︷︷ ︸

ind3=
1
2− n+1

2p

↪→ H0,(2,1)
p (J × R

n−1, Lp(R+))
︸ ︷︷ ︸

ind=− n+1
2p

.
(4.13)

Note that here we also employ

H2,(2,1)
p (J × R

n
+) ↪→ H1,(2,1)

p (J × R
n−1,H1

p (R+))

and H1
p (R+) · Lp(R+)↪→Lp(R+) which is valid due to the Sobolev embedding H1

p (R+)↪→L∞(R+) for
p > 1. Thanks to [15, Theorem 1.7] (4.13) holds, if min { ind1, ind2, ind3 } ≥ 0. If at least one of the
three indices on the left-hand side is negative, then the sum of the negative indices on the left-hand
side has to exceed the index on the right-hand side. The most restrictive constraint hence results from
ind1 + ind2 + ind3 ≥ ind, which is fullfilled if

p ≥ 2n + 3
6

. (4.14)

Consequently, by our assumptions Fv has the desired mapping properties, since (4.10) also yields (4.12)
and (4.14).

Mapping properties of G. First, we show G(v, η) ∈ H1
p (J, Ḣ−1

p (Rn
+)). Integration by parts yields

∂n ∈ L (Lp(J × R
n
+), Lp(J, Ḣ−1

p (Rn
+))). Using this property and the fact that η does not depend on xn,

it is sufficient to estimate the terms
∂t∇′η · v′, ∇′η · ∂tv

′

in Lp(J × R
n
+). Thanks to (4.1) and the mixed derivative theorem, we know

∂t∇′η ∈ W 1−1/p,(2,1)
p (J × R

n−1).
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The first term can thus be estimated by the vector-valued embedding

W 1−1/p,(2,1)
p (J × R

n−1)
︸ ︷︷ ︸

ind1=
1
2− n+2

2p

·H2,(2,1)
p (J × R

n−1, Lp(R+))
︸ ︷︷ ︸

ind2=1− n+1
2p

↪→ H0,(2,1)
p (J × R

n−1, Lp(R+))
︸ ︷︷ ︸

ind=− n+1
2p

.

According to [15, Theorem 1.7], this embedding is again valid, if we have max { ind1, ind2 } ≥ 0 or if
ind1 + ind2 ≥ ind in case that both indices on the left-hand side are negative. The latter condition is
again equivalent to (4.10).

The second term may be estimated by employing (4.2), the vector-valued embedding (4.11) for m = 1,
and ∂tv ∈ Lp(J × R

n−1, Lp(R+)) under constraint (4.12).
To see that also G(v, η) ∈ Lp(J,H1

p (Rn
+)), we estimate the terms

∂j∇′η · ∂nv′, ∇′η · ∂j∂nv′, ∇′η · ∂2
nv′, j = 1, . . . , n − 1,

in Lp(J × R
n
+). Similar as above, this may be accomplished by utilizing (4.2), (4.3), (4.5), (4.6) in

combination with the vector-valued embeddings (4.9), and (4.11). Once more, this is feasible if (4.10)
holds.

Mapping properties of Hη. Note that W
1−1/p,(2,1)
p (J × R

n−1)) ↪→ γ0Ep. Hence, according to (4.2) and
(4.5) we can estimate the terms

−∇′η · ∂nv′, −∇′η · ∇′vn

as desired provided that the embedding
[
W 4−1/p,(2,1)

p (J × R
n−1)

︸ ︷︷ ︸
ind1=2− n+2

2p

] · W 1−1/p,(2,1)
p (J × R

n−1))
︸ ︷︷ ︸

ind2=
1
2− n+2

2p

↪→ W 1−1/p,(2,1)
p (J × R

n−1))
︸ ︷︷ ︸

ind= 1
2− n+2

2p

is at our disposal. By [15, Theorem 1.9], this is the case if ind1 > 0. Hence, the nonlinearity Hη has the
desired mapping properties, provided that p > (n + 2)/4. This, in turn, is true since (4.10) is satisfied.

Altogether we have proved the asserted embeddings, i.p. that N(Ẽ) ⊂ F̃. The claimed smoothness
of N as well as N(0) = 0 and DN(0) = 0 follows obviously by the fact that N consists of polynomial
nonlinearities which are of quadratic or higher order. �

For a Banach space E, we denote by BE(x, r) the open ball in E with radius r > 0 centered in x ∈ E.
Based on Theorems 3.1 and 4.1, we can derive well-posedness of (2.3) for small data. For simplicity, we
also set

E :=
{
(v, p, η) ∈ Ev × Ep × Eη; ∂tη = vn, v′ = 0 on ∂Rn

+

}
,

F :=
{

(fv, g, 0, 0, fη, v0, η0, η1) ∈ F̃; fv, g, 0, 0, fη, v0, η0, η1 satisfy

the compatibility conditions (C1)-(C4)
}

.

Theorem 4.2. Let p ≥ (n+2)/3 and T > 0. Then, there is a κ = κ(T ) > 0 such that for (fv, g, 0, 0, fη, v0,
η0, η1) ∈ B

F̃
(0, κ) satisfying the compatibility conditions (C2)–(C4) and

div v0 = ∇′η0 · ∂nv′
0 + g|t=0 in Ḣ−1

p (Rn
+) (4.15)

there is a unique solution (v, p, η) ∈ E of system (2.3). The solution depends continuously on the data.
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Proof. We pick f := (fv, g, 0, 0, fη, v0, η0, η1) as assumed. System (2.3) (including exterior forces) reads
as

L(v, p, η) = N(v, p, η) + f. (4.16)

We first have to verify that the right-hand side belongs to F. Observe that (4.15) gives (C1). Hence,
by our assumptions the compatibility conditions (C1)–(C3) are satisfied. To see compatibility condition
(C4), we have to verify that there exists an η∗ ∈ Eη satisfying (η∗, ∂tη∗)|t=0 = (η0, η1) and

(g + G(v, η), ∂tη∗) ∈ H1
p (J ; Ḣ−1

p,0(Rn
+))

for every triple (v, p, η) ∈ E such that (v, η, ∂tη)|t=0 = (v0, η0, η1). Note that by assumption there is an
extension η∗ ∈ Eη with the prescribed traces such that

(g, ∂tη∗) ∈ H1
p (J ; Ḣ−1

p,0(Rn
+)).

Hence, it suffices to prove that
(∇′η · ∂nv′, 0) ∈ H1

p (J ; Ḣ−1
p,0(Rn

+)) (4.17)

For φ ∈ Ḣ1
p (Rn

+), we observe that thanks to v′(x′, 0) = 0 we obtain
∫

R+

φ(x)∇′η(x′) · ∂nv′(x) dxn = −
∫

R+

∇′η(x′) · v′(x)∂nφ(x) dxn.

In order to deduce (4.17), it hence suffices to prove that

∇′η · v′ ∈ H1
p (J ;Lp(Rn

+)).

Thanks to (4.2) and (4.4), this follows from the embedding

W 4−1/p,(2,1)
p (J × R

n−1) · H2,(2,1)
p (J × R

n−1;Lp(R+))

↪→H2,(2,1)
p (J × R

n−1;Lp(R+)) ↪→ H1
p (J ;Lp(Rn

+)).

Applying once again [15, Theorem 1.9], we see that this is fulfilled if ind
(
W

4−1/p,(2,1)
p (J × R

n−1)
)

> 0.
This, in turn, holds if p > (n + 2)/4 which is implied by our assumption p ≥ (n + 2)/3. Thus, (4.17)
follows.

Altogether we have proved that (fv, g, 0, 0, fη, v0, η0, η1) ∈ B
F̃
(0, κ) satisfying the compatibility con-

ditions (C2)–(C4) and (4.15) implies that N(w) + f ∈ F for w ∈ BE(0, r). Hence, the right-hand side of
(4.16) belongs to F, and we can define

K(w) = L−1(N(w) + f), w ∈ BE(0, r).

We now prove that K is a contraction on BE(0, r) for r > 0 small enough. Theorem 3.1 yields that
L ∈ Lis(E,F). This and the mean value theorem imply

‖K(w) − K(z)‖E ≤ C‖N(w) − N(z)‖E
≤ C sup

v∈BE(0,r)

‖DN(v)‖L (E,F̃)‖w − z‖E (w, z ∈ BE(0, r)).

Fixing r > 0 such that supv∈BE(0,r) ‖DN(v)‖L (E,F̃) ≤ 1/2C, which is possible thanks to Theorem 4.1, we
see that K is contractive. The estimate above and Theorem 4.1 also imply

‖K(w)‖E ≤ ‖K(w) − K(0)‖E + C‖f‖F
≤ r

2
+ Cκ (w ∈ BE(0, r)).

Choosing κ ≤ r/2C, we see that K is indeed a contraction on BE(0, r). The contraction mapping principle
gives the result. �
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By the equivalence of the systems (1.1) and (2.3) given through the diffeomorphic transform introduced
in Sect. 2, it is clear that Theorem 4.2 implies our main result Theorem 1.1.
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