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Abstract. The evolution of a cloud of particles in a compressible fluid can be modeled with a Vlasov–Fokker–Planck equation
for the distribution function of the particles coupled with Navier–Stokes or Euler equations for the density and velocity
of the fluid. Formal calculations have established the convergence of solution to the mesoscopic model to solutions to the
macroscopic Navier–Stokes or Euler model coupled with a Smoluchowski equation as the ratio of the settling time for the
microscopic velocity fluctuation of the particles to the characteristic macroscopic time scale goes to zero. This paper provides
a rigorous asymptotic analysis for a homogeneous mesoscopic fluid–particle interaction model for particles dispersed in a
compressible fluid is provided for the bubbling regime. A relative entropy inequality for a mixed hyperbolic/parabolic system
of equations is employed.
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1. Introduction

Fluid–particle interaction phenomena arise in several areas of science, including sedimentation analysis,
biotechnology, medicine, waste-water recycling, mineral processing, atmospheric sciences, and combustion
of fuel droplets [1,2,7,8,19,20]. In this paper, models for the both mesoscopic and macroscopic scaling
are considered, in particular the relationship between the two models. In this paper, a compressible fluid,
either viscous or inviscid, in which a cloud of identical particles is dispersed is considered. For these
models, the particles are assumed to spheres of uniform mass density with radii small compared to the
scale of spatial measurement. It is also assumed that the fluid and the particles exist in some fixed,
bounded, spatial domain Ω in R

3.
In these models, the fluid is described by two quantities: the nonnegative fluid density �(x, t) where

x ∈ Ω and t > 0, and the fluid velocity field u(x, t). In the mesoscopic model, the particles are described
by a distribution function f(x, t, ξ) where ξ ∈ R

3 is the microscopic fluctuation from the fluid velocity u.
In the macroscopic model, the particles are described by their density η(x, t).

The physical interaction between the fluid and the particles manifests itself through the friction forces
the particles and fluid exert mutually on each other, leading to a coupling to the fluid and kinetic
equations. The models considered in this paper assume that the friction force follows Stokes’ law and is
proportional to the relative velocity u − ξ.

The fluid is modeled with the Navier–Stokes equations in the viscous case and the Euler equations in
the inviscid case, both of which model the evolution of the fluid density and velocity. In the mesoscopic
model, the distribution function of the particles is modeled with a Vlasov–Fokker–Planck equation. This
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system is

∂t�ε + divx(�εuε) = 0 (1.1a)
∂t(�εuε) + divx(�εuε ⊗ uε) + ∇x�γ

ε

= μΔxuε − β�ε∇xΦ +
∫

R3

(
ξ√
ε

− uε

)
fε dξ (1.1b)

∂tfε +
1√
ε

[ξ · ∇xfε − ∇xΦ · ∇ξfε] =
1
ε

divξ

[(
ξ − √

εuε

)
fε + ∇ξfε

]
. (1.1c)

The above model is valid for positive times t and for the domain Ω which is assumed to be C2,ν for
some ν > 0. The unknown quantities are the fluid density �ε and the fluid velocity field uε, which are
functions of the space coordinate x ∈ Ω and time t > 0, and the mesoscopic particle density fε, which is a
function of x, t, and the microscopic velocity fluctuation ξ ∈ R

3. These unknown quantities are identified
in terms of the positive ratio of settling time of the particles in the fluid to the characteristic observation
time ε. The constant β represents the relative effect of the external potential Φ on the fluid vis-a-vis the
effect on the particles, μ ≥ 0 is the viscosity of the fluid, which is taken to be constant, and γ is the
adiabatic constant of the fluid, which is assumed to be greater than 3

2 .
In this paper, the interest is in the ratio between the settling time for the dissipation of the particles

in the fluid and the characteristic observation time ε. In particular, this investigation is concerned with
the asymptotic limit as ε → 0, that is, when the settling time is small compared to the observation time
scale. The mesoscopic model considered in the present work is for the so-called bubbling regime. In this
scaling, the ratio of the characteristic time scale and length scale times the characteristic thermal speed
is ε−1/2. This contrasts with the flowing regime where this quantity is taken to be constant with respect
to the ratio of the settling time to the characteristic observation time. The rigorous asymptotic analysis
of the flowing regime is investigated in [18]. In the flowing regime scaling, the convergence is to solutions
to a mixed hyperbolic/parabolic model where the parabolicity arises from the viscosity term for the fluid.
In the bubbling regime, the convergence is to a mixed hyperbolic/parabolic model where in addition to
the parabolicity due to the viscosity of the fluid, there is an additional viscosity in the particle equation,
as seen below.

Through the mesoscopic particle distribution function, the macroscopic particle density ηε is defined
by integrating fε over the phase space in ξ, R3, that is,

ηε(x, t) =
∫

R3

fε(x, t, ξ) dξ. (1.2)

In [11], the authors formally show that as ε → 0, the solutions �ε, uε, and ηε to the mesoscopic model con-
verge to the quantities �, u, and η, respectively, the latter three of which are solutions to the macroscopic
system

∂t� + divx(�u) = 0 (1.3a)
∂t(�u) + divx(�u ⊗ u) + ∇x(�γ + η) = −(β� + η)∇xΦ + μΔxu (1.3b)
∂tη + divx(ηu − η∇xΦ) = Δxη. (1.3c)

In order to get their result, [11, Theorem 4], the authors assume that in the sense of distributions,
ηεuε → ηu,

∫
R3

ξfε dξ ⊗uε → 0, �εuε ⊗uε → �u⊗u, and �γ
ε → �γ . In the rigorous analysis in this current

work, these assumptions are not made.
It is noted that in the case that μ > 0, (1.3b) is a Navier–Stokes equation, and in the case of zero

viscosity, μ = 0, (1.3b) becomes an Euler equation. Thus, (1.3) is called the Navier–Stokes–Smoluchowski
system in the viscous case μ > 0 and called the Euler–Smoluchowski system in the inviscid case μ = 0.



ZAMP Asymptotic analysis for a homogeneous bubbling regime Page 3 of 22 131

Well-posedness of the system (1.3) in both the viscous and inviscid cases has been analyzed in various
previous work (see [3–6,10], for example).

In this work, it will be assumed that there is no external forcing term, that is, ∇xΦ ≡ 0 on Ω. This
will avoid complications of a flux term dependent explicitly on the spatial variable x. (Hyperbolic models
with the complication are analyzed in [16].) Adopting the terminology for hyperbolic conservation laws
(see [13], for example), this paper considers the homogeneous mesoscopic model

∂t�ε + divx(�εuε) = 0 (1.4a)

∂t(�εuε) + divx(�εuε ⊗ uε) + ∇x�γ
ε = μΔxuε +

∫

R3

(
ξ√
ε

− uε

)
fε dξ (1.4b)

∂tfε +
1√
ε
ξ · ∇xfε =

1
ε

divξ

[(
ξ − √

εuε

)
fε + ∇ξfε

]
(1.4c)

and the homogeneous macroscopic model

∂t� + divx(�u) = 0 (1.5a)
∂t(�u) + divx(�u ⊗ u) + ∇x (�γ + η) = μΔxu (1.5b)
∂tη + divx(ηu) = Δxη (1.5c)

and how solutions of (1.4) converge to solutions to (1.5).

1.1. Hyperbolic/parabolic systems

The proof of convergence relies upon relative entropy methods for mixed hyperbolic/parabolic systems.
It is clear that (1.3) can be written as a mixed hyperbolic/parabolic system

∂tU +
3∑

i=1

∂xi
Fi(U, x) −

3∑
i=1

∂xi
(B(U)∂xi

DH(U)) = G(U, x) (1.6)

where

U =
[
� mT = �uT η

]T
and the fluxes Fi, the viscosity matrix B, and the external forcing term G are appropriately defined.
While the literature on relative entropy methods generally assumes a flux explicitly dependent on the
solution only, the paper of Kruzhkov [16] explores relative entropy ideas for more general hyperbolic
systems. These ideas along with their applications to the non-homogeneous problem are discussed in
Sect. 4.

The homogeneous macroscopic model (1.5) can be written as

∂tU +
3∑

i=1

∂xi
Fi(U) −

3∑
i=1

∂xi
(B(U)∂xi

DH(U)) = 0 (1.7)

with U defined as before,

B(U) =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 μ 0 0 0
0 0 μ 0 0
0 0 0 μ 0
0 0 0 0 η

⎤
⎥⎥⎥⎥⎦ ,

and

F1(U) =
[
m1

m2
1

� + �γ + η m1m2
�

m1m3
�

η
�m1

]T

,
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F2(U) =
[
m2

m1m2
�

m2
2

� + �γ + η m2m3
�

η
�m2

]T

,

F3(U) =
[
m3

m1m3
�

m2m3
�

m2
3

� + �γ + η η
�m3

]T

.

It is clear that B is a positive semidefinite matrix for nonnegative μ and η, so this is indeed a
mixed hyperbolic/parabolic system. Results using relative entropy inequalities for general mixed hyper-
bolic/parabolic systems have been obtained by Christoforou and Tzavaras in [12] and prior to that, Mellet
and Vasseur investigated the special case where the viscosity term is of the form B(U)∂xi

DH(U) where
H is an entropy of the system (see [18]). However, in these results, the flux is a function of the solution
U only and has no explicit dependence on the position x. But the flux in (1.6) does have such explicit
dependence through the external forcing term in the flux of the Smoluchowski equation.

The goal is to show the convergence of solutions to the mesoscopic model (1.4) to solutions of the
macroscopic model (1.5), noting that the interest of the convergence of the particle density is the con-
vergence of the zero moment ηε instead of the density function fε. The method followed here is based
upon the method used in [18]: It uses a relative entropy inequality comparing the entropies to a smooth
solution of the macroscopic model to the solutions to the mesoscopic model at level ε. However, relative
entropies generally are used to compare weak solutions with smooth solutions and the derivations of the
needed relative entropy inequalities rely on this fact (see [12,13], for instance). Here and in [18], the role
of the weak solution is filled by functions that solve a related, but different problem. Thus, the derivation
of the relative entropy inequality must be altered to reflect this fact.

1.2. Boundary conditions

In much of the previous work on the Navier–Stokes–Smoluchowski system (see [3–6,10]) and the Euler–
Smoluchowski system (see [5]), the boundary conditions depend upon whether the fluid is viscous or
inviscid. There are two types of boundary conditions on the spatial domain Ω: the no-slip conditions or
the no-stick conditions. The no-slip conditions are for any positive t

u|∂Ω = ∇xη · n = 0 (1.8)

where n is the outward normal to Ω on the boundary. For unbounded Ω, the analogous condition at
infinity

lim
|x|→∞

u = lim
|x|→∞

∇xη = 0 (1.9)

applies.
The no-stick boundary conditions are

u · n|Ω = ∇xη · n = 0 (1.10)

on the boundary ∂Ω, or at infinity (taking the obvious limit) for unbounded Ω

lim
|x|→∞

u · n = lim
|x|→∞

∇xη · n = 0 (1.11)

For the mesoscopic system (1.4), the boundary conditions for each ε > 0 are

uε|∂Ω = ∇x

⎛
⎝
∫

R3

fε dξ

⎞
⎠ = 0 (1.12)

or

uε · n|∂Ω = ∇x

⎛
⎝
∫

R3

fε dξ

⎞
⎠ = 0 (1.13)
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for the no-slip and no-stick conditions, respectively, with the appropriate conditions at infinity for
unbounded domains.

In terms of the system form of the model (1.7), the boundary conditions satisfy
3∑

i=1

Fi(U)ni =
3∑

i=1

B(U)∂xi
DH(U)ni = 0 (1.14)

on ∂Ω (or at infinity), in both the no-slip and no-stick conditions. These boundary conditions differ from
the Dirichlet condition U = 0 on the spatial boundary for (1.7) in [18].

1.3. Admissible solutions and formal asymptotics

In this paper, so-called admissible weak solutions to (1.4) are considered.

Definition 1.1. (Admissible Weak Solutions) Let ε > 0 and consider initial data �0, u0, f0. Let γ be a
constant greater than 3

2 . The functions �ε, uε, fε are admissible weak solutions to (1.4) if and only if �ε,
uε, fε solve (1.4) in the sense of distributions and they obey the entropy inequality

d
dt

∫

Ω

1
2
�ε|uε|2 +

1
γ − 1

�γ
ε dx +

d
dt

∫

Ω

∫

R3

fε ln fε +
|ξ|2
2

fε dξ dx

+μ

∫

Ω

|∇xuε|2 dx +
1
ε

∫

Ω

∫

R3

∣∣(ξ − √
εuε)fε + ∇ξfε

∣∣2 1
fε

dξ dx ≤ 0 (1.15)

Remark 1.1. The entropy inequality is the energy inequality for (1.4). A basic calculation shows that
smooth solutions to (1.4) obey (1.15) as an equality. The interested reader is referred also to [11] for more
discussion on the mesoscopic energy inequality.

Remark 1.2. The energy for (1.4) will be denoted as

E(�,u, f) def=
1
2
�|u|2 +

1
γ − 1

�γ +
∫

R3

f ln f +
|ξ|2
2

f dξ.

Next, equations for the moments of particle distribution fε are considered. First, integrating (1.4c)
with respect to ξ yields

∂tηε + divx Jε = 0 (1.16)

where

Jε =
1√
ε

∫

R3

ξfε dξ

is the first moment of fε. Multiplying (1.4c) by ξ and integrating with respect to ξ gives

ε∂tJε + divx Pε = ηεuε − Jε (1.17)

where Pε is the second moment of fε

Pε =
∫

R3

ξ ⊗ ξfε dξ.

It is noted that the admissible weak solutions in the sense of Definition 1.1 obey the above moment
equations in the sense of distributions.
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In [11], it is shown that in the bubbling regime, the particle distribution can be approximated by the
Gaussian

fε 
 ηε
1

(2π)3/2
e−|ξ|2/2. (1.18)

For simplicity, the quantity

η
1

(2π)3/2
e−|ξ|2/2

will be denoted as Mη. Additionally, the second moment of fε,

Pε =
∫

R3

ξ ⊗ ξfε dξ

can be approximated by

Pε 
 ηεI3.

Using a minimization principle from [9],

E(�,u,Mη) ≤ E(�,u, f)

if ∫

R3

f dξ + E(�,u, f) < ∞,

which means after a straightforward calculation,

H(�,u, η) ≤ E(�,u, f) (1.19)

where

η =
∫

R3

f dξ.

Remark 1.3. It is noted that admissible weak solutions to (1.1) in the sense of Definition 1.1 also obey
the zero and first moment equations (1.16) and (1.17) in the sense of distributions.

1.4. Plan of the paper

The main result of the paper is as follows.

Theorem 1.1. Let {�ε,uε, fε}ε>0 be admissible weak solutions to (1.4) where γ > 3
2 in the sense of

Definition 1.1 obeying one of the sets of boundary conditions in Sect. 1.2 with initial data {�0,u0, f0} and
define ηε with (1.2) with

η0(x) def=
∫

R3

f0(x, ξ) dξ. (1.20)

If the system (1.4) with the initial data {�0,u0, η0} admits a smooth solution {�,u, η} to (1.5) where � is
bounded from below away from zero, then

{�ε,uε, ηε} → {�,u, η}
as ε → 0.
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As part of the work, it will be shown that

∂tUε +
3∑

i=1

∂xi
Fi(Uε) − ∂xi

(B(Uε)∂xi
DH(Uε)) → 0 (1.21)

in the sense of distributions as ε → 0.
The rest of the paper is devoted to proving Theorem 1.1 and is organized as follows.

(1) In Sect. 2, the relative entropy inequality that forms the key to the analysis in the problem is derived.
Much of the work follows the work in [18], but the relative viscosity terms provide more difficulty in
the current problem, as such, with the inclusion of these terms, the calculations need to be redone.
A relative entropy inequality for general hyperbolic/parabolic systems (1.7) is derived which is used
to find a relative entropy inequality for the homogeneous macroscopic model (1.5).

(2) In Sect. 3, bounds on terms in the relative entropy inequality are calculated, and the convergence
of the kinetic approximation term in (1.21) is shown. These results are used in conjunction with
Gronwall’s inequality to prove Theorem 1.1.

(3) In Sect. 4, discussion on the issues with a non-homogeneous problem is provided.

2. Relative entropy inequality

The key tool in showing the convergence of mesoscopic solutions to (1.4) to solutions to the homogeneous
Navier–Stokes/Euler–Smoluchowski equations (1.7) is a relative entropy inequality. This part parallels
the work in [18] which uses the fact that the viscosity term of the system is of the form

3∑
i=1

∂xi
(B(U)∂xi

DH(U))

where B is a positive semidefinite matrix and H is the mechanical entropy.
Since the solution U under consideration is in R

5, it is well known that the only convex entropy is the
mechanical entropy

H(U) def= H(�,m, η) def=
1
2

|m|2
�

+
1

γ − 1
�γ + η ln η − 3

2
η ln(2π)

= H(�,u, η) def=
1
2
�|u|2 +

1
γ − 1

�γ + η ln η − 3
2
η ln(2π). (2.1)

This means that

DH(U) =

⎡
⎢⎣

− |m|2
2�2 + γ

γ−1�γ−1

m
�

ln η + 1 − 3
2 ln(2π)

⎤
⎥⎦ =

⎡
⎣− 1

2 |u|2 + γ
γ−1�γ−1

u
ln η + 1 − 3

2 ln(2π)

⎤
⎦ (2.2)

and

D2H(U) =

⎡
⎢⎣

− |m|2
�3 + γ�γ−2 −mT

�2 0
m
�2

1
�2 I3 0

0 0 1
η

⎤
⎥⎦ =

⎡
⎢⎣

− |u|2
� + γ�γ−2 −uT

� 0
u
�

1
� I3 0

0 0 1
η

⎤
⎥⎦ . (2.3)

This means that after some straightforward calculations involving the definition of the entropy flux
that

Qi(U) def= Qi(�,m, η) =
[ |m|2

2�2
+

γ

γ − 1
+

η

�
(ln η + 1)

]
mi

= Q(�,u, η) =
[
1
2
�|u|2 +

γ

γ − 1
�γ + η(ln η + 1)

]
ui. (2.4)
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In light of the boundary conditions (1.14), the boundary condition
3∑

i=1

Qi(U)ni = 0 (2.5)

arises.
The relative entropy compares the entropies of two solutions. More specifically, the relative entropy

can be seen as the difference of the entropy for the first solution and the first-order Taylor approximation
for the entropy of the first solution centered at the second solution. It is defined as

H(U |U) def= H(U) − H(U) − DH(U) · (U − U) (2.6)

meaning for the current problem

H(�,u, η|�,u, η)

=
1
2
�|u − u|2 +

1
γ − 1

[
�γ − �γ − γ�γ−1(� − �)

]

+ η ln η − η ln η − (ln η + 1)(η − η). (2.7)

First, a relative entropy inequality for the general hyperbolic/parabolic system (1.7) is found.

Proposition 2.1. (Relative Entropy Inequality) Let U be a C1 function and let U be a smooth solution to
(1.7) such that both U and U satisfy the boundary condition (1.14). Then, the relative entropy inequality

d
dt

∫

Ω

H(U |U) dx

+
∫

Ω

3∑
i=1

[
B(U)∂xi

(DH(U) − DH(U))
] · ∂xi

[
DH(U) − DH(U)

]
dx

≤ d
dt

∫

Ω

H(U) dx +
∫

Ω

3∑
i=1

[B(U)∂xi
DH(U)] · ∂xi

DH(U) dx

−
∫

Ω

DH(U) ·
[
∂tU +

3∑
i=1

∂xi
Fi(U) −

3∑
i=1

∂xi
(B(U)∂xi

DH(U))

]
dx

−
∫

Ω

3∑
i=1

∂xi

[
DH(U)

] · [Fi(U) − Fi(U) − DFi(U)(U − U)
]

dx

+
∫

Ω

3∑
i=1

DH(U |U) · ∂xi
(B(U)∂xi

DH(U)) dx

−
∫

Ω

3∑
i=1

[
(B(U) − B(U))∂xi

DH(U)
] · ∂xi

[
DH(U) − DH(U)

]
dx (2.8)

holds.

Remark 2.1. The attentive reader will notice that U is not assumed to be a solution of any system of
equations. This differs from the standard use of the relative entropy where U is a weak solution. However,
for the present work, the idea is that U will represent

[
�ε, �εuT

ε , ηε

]T
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where �ε, uε, fε is a solution of (1.4) and ηε defined through (1.2). Thus, it is not expected that U would
be a weak solution of (1.7). Also, this proposition is independent of the definitions of F , B, and H.

Proof. The proof starts with taking U and U to be smooth functions of x and t. After performing the
calculations and letting U be a solution to (1.7), a standard density argument is taken to allow U to be
an arbitrary function with the regularity of an admissible solution to (1.4).

Letting U and U be smooth functions of x and t, taking the time derivative of the relative entropy
gives

∂tH(U |U) = ∂tH(U) − ∂tH(U)

− [
D2H(U)∂tU

] · (U − U) − DH(U) · (∂tU − ∂tU)

= ∂tH(U) − ∂tH(U)

−
[
D2H(U)

(
∂tU +

3∑
i=1

∂xi
Fi(U) −

3∑
i=1

∂xi

(
B(U)∂xi

DH(U)
))] · (U − U)

−DH(U) ·
[
∂tU +

3∑
i=1

∂xi
Fi(U) −

3∑
i=1

∂xi
(B(U)∂xi

DH(U))

]

+DH(U) ·
[
∂tU +

3∑
i=1

∂xi
Fi(U) −

3∑
i=1

∂xi

(
B(U)∂xi

DH(U)
)]

+

[
D2H(U)

3∑
i=1

∂xi
Fi(U)

]
· (U − U)

−
[
D2H(U)

3∑
i=1

∂xi

(
B(U)∂xi

DH(U)
)] · (U − U)

+DH(U) ·
3∑

i=1

∂xi
Fi(U) − DH(U) ·

3∑
i=1

∂xi
(B(U)∂xi

DH(U))

−DH(U) ·
3∑

i=1

∂xi
Fi(U) + DH(U) ·

3∑
i=1

∂xi

(
B(U)∂xi

DH(U)
)
. (2.9)

Next, to help rewrite the previous equation, it is noted following the work in [18] that for each i,

∂xi

[
DQi(U) · (U − U)

]
= DH(U) · ∂xi

[
DFi(U)(U − U)

]
+
[
D2H(U)∂xi

FiU)
] · (U − U) (2.10)

and using the work in [18] along with some rearranging of viscosity terms

−
[
D2H(U)

3∑
i=1

∂xi
(B(U)∂xi

DH(U)

]
· (U − U)

−DH(U) ·
3∑

i=1

∂xi
(B(U)∂xi

DH(U)) + DH(U) ·
3∑

i=1

∂xi
(B(U)∂xi

DH(U))

= −DH(U) ·
3∑

i=1

∂xi
(B(U)∂xi

DH(U)) + DH(U) ·
3∑

i=1

∂xi
(B(U)∂xi

DH(U))

+
[
DH(U) − DH(U)

] ·
3∑

i=1

∂xi

(
B(U)∂xi

DH(U) − B(U)∂xi
DH(U)

)
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+DH(U |U) ·
3∑

i=1

∂xi
(B(U)∂xi

DH(U)), (2.11)

where

DH(U |U) def= DUH(U) − DUH(U) − D2
U

H(U)(U − U).

Using the appropriate substitutions into (2.9) from the previous two equations yields

∂tH(U |U) = ∂tH(U) − ∂tH(U)

−
[
D2H(U)

(
∂tU +

3∑
i=1

∂xi
Fi(U) −

3∑
i=1

∂xi

(
B(U)∂xi

DH(U)
))] · (U − U)

−DH(U) ·
[
∂tU +

3∑
i=1

∂xi
Fi(U) −

3∑
i=1

∂xi
(B(U)∂xi

DH(U))

]

+DH(U) ·
[
∂tU +

3∑
i=1

∂xi
Fi(U) −

3∑
i=1

∂xi

(
B(U)∂xi

DH(U)
)]

+
3∑

i=1

∂xi

[
DQi(U) · (U − U)

]

+DH(U) ·
3∑

i=1

∂xi

[
Fi(U) − Fi(U) − DFi(U)(U − U)

]

−DH(U) ·
3∑

i=1

∂xi
(B(U)∂xi

DH(U))

+DH(U) ·
3∑

i=1

∂xi
(B(U)∂xi

DH(U))

+
[
DH(U) − DH(U)

] ·
3∑

i=1

∂xi

(
B(U)∂xi

DH(U) − B(U)∂xi
DH(U)

)

+DH(U |U) ·
3∑

i=1

∂xi
(B(U)∂xi

DH(U)). (2.12)

The attentive reader will notice that up to this point, the proof has only relied upon U and U being
smooth. In order to continue the proof, the next step is to assume that U is a classical solution of (1.4).
With this assumption, the above becomes

∂tH(U |U) = ∂tH(U) +
3∑

i=1

∂xi
Qi(U) − DH(U) ·

3∑
i=1

∂xi
(B(U)∂xi

DH(U))

−DH(U) ·
[
∂tU +

3∑
i=1

∂xi
Fi(U) −

3∑
i=1

∂xi
(B(U)∂xi

DH(U))

]

+
3∑

i=1

∂xi

[
DQi(U) · (U − U)

]

+DH(U) ·
3∑

i=1

∂xi

[
Fi(U) − Fi(U) − DFi(U)(U − U)

]



ZAMP Asymptotic analysis for a homogeneous bubbling regime Page 11 of 22 131

+
3∑

i=1

∂xi

[
B(U)∂xi

(DH(U) − DH(U))
] · [DH(U) − DH(U)

]

+
3∑

i=1

[
(B(U) − B(U))∂xi

DH(U)
] · [DH(U) − DH(U)

]

×
3∑

i=1

∂xi

(
B(U)∂xi

DH(U)
) · DH(U |U). (2.13)

Using the boundary conditions after integrating the above equation over Ω and standard density
arguments allowing the use of U which has weak derivatives completes the proof. �

Next, the result of the previous lemma is applied to the particular problem considered in this paper.
From this point forward, U represents a smooth solution to the homogeneous version of (1.3) and U will
be replaced by Uε which represents an admissible weak solution of (1.4). In the next proposition, the
main result of this section of the paper, a specific relative entropy inequality comparing a solution of the
mesoscopic model with a smooth solution to the macroscopic model, is stated.

Proposition 2.2. For each ε > 0, let U = Uε =
[
�ε �εuε fε

]T where �ε,uε, fε is an admissible weak
solution to (1.4) with

ηε =
∫

R3

fε dξ

and let U =
[
� �uT η

]T
where �, u, η is a smooth solution to (1.5). Then,

∫

Ω

H(Uε|U)(T ) dx + μ

T∫

0

∫

Ω

|∇xuε − ∇xu|2 dx dt

+

T∫

0

∫

Ω

ηε|∇x ln ηε − ∇x ln η|2 dx dt

≤ −
T∫

0

∫

Ω

DH(U) ·
[
∂tUε +

3∑
i=1

∂xi
Fi(Uε) − ∂xi

(B(Uε)∂xi
DH(Uε))

]
dx dt

−
T∫

0

∫

Ω

3∑
i=1

∂xi
[DH(U)] · [Fi(Uε) − Fi(U) − DFi(U)(Uε − U)

]
dx dt

+

T∫

0

∫

Ω

3∑
i=1

DH(Uε|U) · ∂xi
(B(U)∂xi

DH(U)) dx dt

−
T∫

0

∫

Ω

(ηε − η)∇x ln η · ∇x(ln ηε − ln η) dx dt. (2.14)

Proof. Using the definitions of H and B with U = Uε and U defined as mentioned in the proposition,
(2.8) becomes after integrating over [0, T ]

∫

Ω

H(Uε|U)(T ) dx + μ

T∫

0

∫

Ω

|∇xuε − ∇xu|2 dx dt
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+

T∫

0

∫

Ω

ηε|∇x ln ηε − ∇x ln η|2 dx dt ≤
∫

Ω

H(Uε|U)(0) dx

+
∫

Ω

H(Uε)(T ) dx −
∫

Ω

H(Uε)(0) dx

+μ

T∫

0

∫

Ω

|∇xuε|2 dx dt +

T∫

0

∫

Ω

ηε |∇x ln ηε|2 dx dt

−
T∫

0

∫

Ω

DH(U) ·
[
∂tUε +

3∑
i=1

∂xi
Fi(Uε) − ∂xi

(B(U)∂xi
DH(Uε))

]
dx dt

−
T∫

0

∫

Ω

3∑
i=1

∂xi
[DH(U)] · [Fi(Uε) − Fi(U) − DFi(U)(Uε − U)

]
dx dt

+

T∫

0

∫

Ω

3∑
i=1

DH(Uε|U) · ∂xi
(B(U)∂xi

DH(U)) dx dt

−
T∫

0

∫

Ω

(ηε − η)∇x ln η · ∇x(ln ηε − ln η) dx dt. (2.15)

It is noted that using the initial conditions, H(Uε|U)(0) = 0 a.e. on Ω. Next, the term

∫

Ω

H(Uε)(T ) dx −
∫

Ω

H(Uε)(0) dx + μ

T∫

0

∫

Ω

|∇xuε|2 dx dt

is shown to be non-positive. Indeed, with a couple of clever additions of zero,∫

Ω

H(Uε)(T ) − H(Uε)(0) dx

+μ

T∫

0

∫

Ω

|∇xuε|2 dx dt +

T∫

0

∫

Ω

ηε|∇x ln ηε|2 dx dt

=
∫

Ω

H(Uε)(T ) − E(�ε,uε, fε)(T ) dx +

T∫

0

∫

Ω

ηε|∇x ln ηε|2 dx dt

−1
ε

T∫

0

∫

Ω

∫

R3

∣∣∣(ξ − √
εuε)

√
fε + 2∇ξ

√
fε

∣∣∣2 dξ dx dt

+E(�ε,uε, fε)(T ) dx + μ

∫

Ω

|∇xuε|2 dx

+
1
ε

T∫

0

∫

Ω

∫

R3

∣∣∣(ξ − √
εuε)

√
fε + 2∇ξ

√
fε

∣∣∣2 dξ dx dt − E(�0,u0, f0)
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+E(�0,u0, f0) − H(Uε)(0). (2.16)

By following the minimization principle from Bouchut [9], the first two lines of the right side of (2.16)
are non-positive. By the energy inequality for solutions to the mesoscopic problem (1.15),

∫

Ω

E(�ε,uε, fε) − E(�0,u0, f0) dx + μ

T∫

0

∫

Ω

|∇xuε|2 dx dt

+
1
ε

T∫

0

∫

Ω

∫

R3

∣∣∣(ξ − √
εuε)

√
fε + 2∇ξ

√
fε

∣∣∣2 dξ dx dt ≤ 0. (2.17)

Additionally, the initial conditions give

E(�0,u0, f0) − H(Uε)(0) = 0,

which after plugging into (2.15) completes the proof. �

3. Convergence

This section is dedicated to bounding the right side of (2.14), which can be broken down into the kinetic
approximation term, the relative flux term, and the relative viscosity term, respectively. The bulk of the
analysis for this paper is in showing the kinetic approximation term converges to zero as ε tends to zero.
This analysis is saved for the last subsection of Sect. 3. The relative flux term and the relative viscosity
term are shown to be bounded by the relative entropy, allowing the use of Gronwall’s inequality to show
that if the relative entropy is zero initially, the relative entropy at any time T converges to zero as ε → 0.
This will prove Theorem 1.1 in light of the following lemma illustrating properties of the relative entropy
following from taking derivatives and recalling that γ > 3

2 .

Lemma 3.1. Consider the relative entropy

H(Uε|U) = H(�ε,uε, ηε|�,u, η) =
1
2
�|uε − u|2 + HF (�ε, �) + HP (ηε, η)

where

HF (�, �) def=
1

γ − 1
[
�γ − �γ − γ�γ−1(� − �)

]

and

HP (η, η) def= η ln η − η ln η − (ln η + 1)(η − η).

Then, for fixed � and η both nonnegative, HF (·, �) has an absolute minimum on [0,∞) of zero at � = �
and HP (·, η) has an absolute minimum on (0,∞) of zero at η = η. Additionally, HF and HP are convex
for positive � and η, respectively.

Since the kinetic fluid energy part of the relative entropy, 1
2 |u−u|2, is always positive except for being

zero when u = u, in light of Lemma 3.1, the three parts of the relative entropy—the kinetic fluid energy,
HF , and HP —can be considered separately.
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3.1. Relative flux

We first look to control the relative flux term
T∫

0

∫

Ω

3∑
i=1

∂xi
[DH(U)] · [Fi(Uε) − Fi(U) − DFi(U)(U − U)] dx dt.

Control of the relative flux term by the relative entropy is a well-established result (see [6,14] for more
specific examples and [12,13] for more general applications), and so the bounds are only summarized
here. A series of straightforward calculations shows that

3∑
i=1

∂xi
[DH(U)] · [Fi(Uε) − Fi(U) − DFi(U)(U − U)]

= �ε[(uε − u) ⊗ (uε − u)] : ∇xu + HF (�ε, �) divx u

+
(

ηε

η
− �ε

�

)
(uε − u) · ∇xη. (3.1)

From standard techniques from previous work (see [6,14], for example) using the fact that the deriva-
tives of u are bounded on [0, T ] × Ω,∣∣∣∣∣

3∑
i=1

∂xi
[DH(U)] · [Fi(Uε) − Fi(U) − DFi(U)(U − U)]

∣∣∣∣∣ ≤ C�ε|uε − u|2 (3.2)

for some positive constant C independent of ε.
Additionally, it is clear in light of Lemma 3.1 that

|HF (�ε, �) divx u| ≤ CHF (�ε, �) (3.3)

for some positive constant C independent of ε.
Lastly, the above sources provide the results to give the existence of a positive constant C independent

of ε such that ∣∣∣∣
(

ηε

η
− �ε

�

)
(uε − u) · ∇xη

∣∣∣∣ ≤ C(�|uε − u|2 + HP (ηε, η)) (3.4)

provided the derivatives of u and η are bounded on [0, T ] × Ω.
Combining (3.2)–(3.3) and invoking Lemma 3.1, the following lemma is obtained.

Lemma 3.2. Let U represent a smooth solution to (1.7) and let Uε represent an admissible weak solution
to (1.4). Assume that the first derivatives of u and η are bounded on [0, T ] × Ω. Then, there exists some
constant C independent of ε, but dependent on U such that∣∣∣∣∣∣

3∑
i=1

T∫

0

∫

Ω

[
Fi(Uε) − Fi(U) − DF (U)(Uε − U)

] · ∂xi
DH(U) dx dt

∣∣∣∣∣∣

≤ C

T∫

0

∫

Ω

H(Uε|U) dx dt. (3.5)

3.2. Relative entropy viscosity term

The next step is to develop coercivity estimates for the relative entropy inequality’s viscosity term. The
main lemma of this subsection is as follows.
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Lemma 3.3. Let U be a smooth solution to (1.7) and let Uε represent an admissible solution to (1.4).
Assume that � is bounded strictly below by some positive number �1. Then, there exists some constant C
independent of ε, but dependent on U such that∣∣∣∣∣∣

T∫

0

∫

Ω

DH(Uε|U) ·
3∑

i=1

∂xi
(B(U)∂xi

DH(U)) dx dt

−
T∫

0

∫

Ω

(ηε − η)∇x ln η · ∇x(ln ηε − ln η) dx dt

∣∣∣∣∣∣

≤ C

T∫

0

∫

Ω

H(Uε|U) dx dt +
μ

2

T∫

0

∫

Ω

|∇xuε − ∇xu|2 dx dt. (3.6)

Proof. It is first noted that a standard calculation shows that

DH(Uε|U) ·
3∑

i=1

∂xi
(B(U)∂xi

DH(U)

= μ(uε − u) · Δxu − μ

�
(�ε − �)u · Δxu − 1

�
(uε − u)

+(ln ηε − ln η)Δxη − 1
η
(ηε − η)Δxη. (3.7)

First, it is noted that the term
T∫

0

∫

Ω

(ln ηε − ln η)Δxη − 1
η
(ηε − η)Δxη dx dt

cancels with the second integral on the left of (3.6) after some integration by parts and rearranging of
terms (using the fact that ηε has one weak spatial derivative. Thus,

T∫

0

∫

Ω

DH(Uε|U) ·
3∑

i=1

∂xi
(B(U)∂xi

DH(U)) dx dt

−
T∫

0

∫

Ω

(ηε − η)∇x ln η · ∇x(ln ηε − ln η) dx dt

=

T∫

0

∫

Ω

μ(uε − u) · Δxu − μ

�
(�ε − �)u · Δxu − 1

�
(uε − u) · Δxu dx dt. (3.8)

These remaining terms are handled with the use of Hölder’s, Young’s, and Poincare’s inequalities to
find the bound proving the lemma. �

3.3. Kinetic approximation

Before handling the kinetic approximation term, bounds arising from the mesoscopic energy inequality
(1.15) need to be determined. However, the energy functional contains the quantity fε ln fε that is not
always nonnegative. However, the negative part of this quantity can be controlled as the following classical
lemma (proven, example in [15]) shows.
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Lemma 3.4. Let Ω be bounded and �ε, uε, fε be an admissible solution to (1.4). Then, there is some
positive constant C such that for any ε > 0∫

Ω

∫

R3

|ξ|2
4

fε + |fε ln fε| dξ dx dt(T )

+
1
ε

T∫

0

∫

Ω

∫

R3

∣∣∣√εuε − ξ)
√

fε − 2∇ξ

√
fε

∣∣∣2 dξ dx dt ≤ C. (3.9)

Proof. For any s ≥ 0, it is clear that

|s ln s| = s ln s − 2s ln sχ[0,1](s)

where χ[0,1] is the indicator function on [0, 1]. It is also noted that there is some constant C1 > 0 such
that for any s ≥ 0 and ω > 0,

− s ln sχ[0,1](s) ≤ sω + C1

√
sχ[0,e−ω ](s) ≤ sω + C1e

−ω/2. (3.10)

Then, fixing T > 0 and taking s = fε and ω = |ξ|2
8 and integrating over Ω × R

3, the previous equation
yields ∫

Ω

∫

R3

|fε ln fε| dξ dx(T ) ≤
∫

Ω

∫

R3

fε ln fε dξ dx

+
1
4

∫

Ω

∫

R3

|ξ|2fε dξ dx + 2C1

∫

Ω

∫

R3

e−|ξ|2/16 dξ dx. (3.11)

Using this and the fact that Ω is bounded, there is some positive constant C2 such that,∫

Ω

∫

R3

|ξ|2
4

fε + |fε ln fε| dξ dx dt(T )

+
1
ε

T∫

0

∫

Ω

∫

R3

∣∣∣√εuε − ξ)
√

fε − 2∇ξ

√
fε

∣∣∣2 dξ dx dt

≤
∫

Ω

1
2
�ε|uε|2 +

1
γ − 1

�γ
ε dx(T ) +

∫

Ω

∫

R3

fε ln fε +
|ξ|2
2

fε dξ dx(T )

+
1
ε

T∫

0

∫

Ω

∫

R3

∣∣∣(√εuε − ξ)
√

fε − 2∇ξ

√
fε

∣∣∣2 dξ dx dt

+

T∫

0

∫

Ω

μ |∇xuε|2 dx dt + C2 ≤ C (3.12)

where (1.15) has been used. �

Lemma 3.5. For each ε > 0, let �ε, uε, fε be admissible weak solutions to (1.4) in the sense of Defini-
tion 1.1. Then, the following quantities are bounded by some constant C dependent only on T , Ω, and
the initial data �0, u0, f0 in the following spaces.

(
√

�εuε) in L∞(0, T ;L2(Ω;R3)) (3.13)
(�ε) in L∞(0, T ;Lγ(Ω)) (3.14)
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(uε) in L2(0, T ;W 1,2(Ω;R3)) and thus in L2(0, T ;L6(Ω;R3)) (3.15)(
1

εfε

[
(ξ − √

εuε)fε + ∇ξfε

])
in L2(0, T ;L2(Ω × R

3;R3)). (3.16)

From these bounds, particularly the last bound in the previous lemma, the following result is obtained.

Lemma 3.6. Let (�ε,uε, fε) be an admissible solution to (1.4). Then, there is some constant C dependent
on T , Ω, and the initial data such that∣∣∣∣∣∣

T∫

0

∫

Ω

∫

R3

(
√

εuε − ξ)fε dξ dx dt

∣∣∣∣∣∣ ≤ C
√

ε. (3.17)

Proof. Noting that ∫

R3

∇ξfε dξ = 0,

∣∣∣∣∣∣
∫

R3

(
√

εuε − ξ)fε dξ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫

R3

(
√

εuε − ξ)fε − ∇ξfε dξ

∣∣∣∣∣∣

≤
⎛
⎝
∫

R3

fε dξ

⎞
⎠

1/2 ⎛
⎝
∫

R3

∣∣(√εuε − ξ)fε − ∇ξfε

∣∣2 1
fε

dξ

⎞
⎠

1/2

(3.18)

by Hölder’s inequality. The result follows by noticing that the first integral on the right of the previous
inequality is just ηε and the second integral is bounded by C

√
ε by (3.16). �

The last term to be bounded is the kinetic approximation term,
T∫

0

∫

Ω

DH(U) ·
[
∂tUε +

3∑
i=1

∂xi
Fi(Uε) −

3∑
i=1

∂xi
(B(Uε)∂xi

DH(Uε))

]
dx dt

which has to be understood in the sense of distributions since Uε represents a weak solution to (1.4).
It is first noted that in the sense of distributions,

∂tUε +
3∑

i=1

∂xi
Fi(Uε) −

3∑
i=1

∂xi
(B(Uε)∂xi

DH(Uε))

=

⎡
⎢⎢⎢⎣

0∫
R3

(
ξ√
ε

− uε

)
fε + ∇xfε dξ

−divx

∫
R3

(
ξ√
ε

− uε

)
fε + ∇xfε dξ

⎤
⎥⎥⎥⎦ . (3.19)

Thus, the kinetic approximation term can be written as
T∫

0

∫

Ω

DH(U) ·
[
∂tUε +

3∑
i=1

∂xi
Fi(Uε) −

3∑
i=1

∂xi
(B(Uε)∂xi

DH(Uε))

]
dx dt

= −
T∫

0

∫

Ω

[Dm(U) − ∇xDηH(U)] ·
∫

R3

(
ξ√
ε

− uε

)
fε + ∇xfε dξ dx dt (3.20)



131 Page 18 of 22 J. Ballew ZAMP

noting that DmH(U) = u and DηH(U) = ln η+1. It is noted that the quantity in the inner-most integral
in the previous equation is the term

∇xηε − ηεuε + Jε (3.21)

where Jε is the first moment of fε. Note that using the equation for the first moment of fε (1.17), the
previous term can be written as

∇xηε + ε∂tJε + divx Pε, (3.22)

noting again that these equations and terms are to be understood in the sense of distributions. Using
this fact, the kinetic approximation term becomes

T∫

0

∫

Ω

DH(U) ·
[
∂tUε +

3∑
i=1

∂xi
Fi(Uε) −

3∑
i=1

∂xi
(B(Uε)∂xi

DH(Uε))

]
dx dt

=

T∫

0

∫

Ω

√
ε(∂tu − ∂t∇x ln η) ·

∫

R3

ξfε dξ

+(∇xu − ∇x(∇x ln η)) :
∫

R3

(ξ ⊗ ξ − I3)fε dξ dx dt. (3.23)

Thus, the problem becomes to bound the term ξfε in the appropriate space by a constant and to bound
the term (ξ × ξ)fε in the appropriate space by a positive power of ε. This in turn will force the kinetic
approximation term to zero as ε → 0.

First, the term

T∫

0

∫

Ω

√
ε(∂tu − ∂t∇x ln η) ·

∫

R3

ξfε dξ

is bounded. It is noted that∣∣∣∣∣∣
∫

R3

ξfε dξ

∣∣∣∣∣∣ ≤
∫

|ξ|≤1

|ξ|fε dξ +
∫

|ξ|>1

|ξ|fε dξ

≤
∫

|ξ|≤1

fε dξ +
∫

|ξ|>1

|ξ|2fε ≤
∫

R3

fε dξ +
∫

R3

|ξ|2fε dξ (3.24)

which is bounded by some positive constant C independent of ε by the boundary conditions and (1.15).
Thus, ∣∣∣∣∣∣

∫

R3

ξfε dξ

∣∣∣∣∣∣ ≤ C
√

ε (3.25)

where C depends on the initial data, Ω, T , ∂tu and ∂t∇x ln η.
Next the term

T∫

0

∫

Ω

(∇xu − ∇x(∇x ln η)) :
∫

R3

(ξ ⊗ ξ − I3)fε dξ dx dt
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is considered. First, it is noted that by adding zero by adding and subtracting the terms εuε ⊗ uεfε,√
εuε ⊗ ξfε, and

√
εuε

√
fε ⊗ 2∇ξ

√
fε gives that∫

R3

(ξ ⊗ ξ − I3)fε dξ =
∫

R3

ε(uε ⊗ uε)fε dξ

−
∫

R3

√
εuε

√
fε ⊗

[
(
√

εuε − ξ)
√

fε − 2∇ξ

√
fε

]

+
[
(
√

εuε − ξ)
√

fε − 2∇ξ

√
fε

]
⊗ ξ

√
fε dξ. (3.26)

Thus, there is some positive constant C dependent on the quantities �, u, and η such that∣∣∣∣∣∣
T∫

0

∫

Ω

∫

R3

(∇xu − ∇x(∇x ln η)) :
∫

R3

(ξ ⊗ ξ − I3)fε dξ dx dt

∣∣∣∣∣∣

≤ C

⎛
⎝

T∫

0

∫

Ω

∫

R3

(ε|uε|2 + |ξ|2)fε dξ dx dt

⎞
⎠

1/2

·
⎛
⎝

T∫

0

∫

Ω

∫

R3

∣∣∣(√εuε − ξ)
√

fε − 2∇ξ

√
fε

∣∣∣2 dξ dx dt

⎞
⎠

1/2

≤ C

⎛
⎝

T∫

0

∫

Ω

∫

R3

(ε|uε|2 + |ξ|2)fε dξ dx dt

⎞
⎠

1/2

√
ε. (3.27)

The task is now to bound the quantity
T∫

0

∫

Ω

∫

R3

(ε|uε|2 + |ξ|2)fε dξ dx dt.

Clearly from the energy inequality (1.15),
T∫

0

∫

Ω

∫

R3

|ξ|2fε dξ dx dt

is bounded by a constant uniformly in ε. Thus, it is enough to show that
T∫

0

∫

Ω

∫

R3

∣∣√εuε − ξ
∣∣2 fε dξ dx dt

is bounded uniformly in ε. Following the idea of the process in [18], this term can be written as
T∫

0

∫

Ω

∫

R3

∣∣√εuε − ξ
∣∣2 fε dξ dx dt

=

T∫

0

∫

Ω

∫

R3

(
√

εuε − ξ)
√

fε ·
[
(
√

εuε − ξ)
√

fε − 2∇ξ

√
fε

]
dξ dx dt
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+

T∫

0

∫

Ω

∫

R3

(
√

εuε − ξ) · ∇ξfε dξ dx dt

≤
T∫

0

∫

Ω

∫

R3

fε dξ dx dt +

⎛
⎝

T∫

0

∫

Ω

∫

R

∣∣√εuε − ξ
∣∣2 fε dξ dx dt

⎞
⎠

1/2

·
⎛
⎝

T∫

0

∫

Ω

∫

R3

∣∣∣(√εuε − ξ)
√

fε − 2∇ξ

√
fε

∣∣∣2 dξ dx dt

⎞
⎠

1/2

, (3.28)

which after a use of Young’s inequality, some rearranging of terms, and (1.15) gives
∣∣∣∣∣∣

T∫

0

∫

Ω

∫

R3

∣∣√εuε − ξ
∣∣2 fε dξ dx dt

∣∣∣∣∣∣ ≤ C(1 +
√

ε) (3.29)

The work in this subsection leads to the following lemma.

Lemma 3.7. Let �ε, uε, fε be an admissible solution to (1.1) and �, u, η a smooth solution to (1.3) where
Φ ≡ 0 and with the same corresponding initial data. Then,∣∣∣∣∣∣

T∫

0

∫

Ω

DH(U)

·
[
∂tUε +

3∑
i=1

∂xi
Fi(Uε) −

3∑
i=1

∂xi
(B(Uε)∂xi

DH(Uε))

]
dx dt

∣∣∣∣∣ ≤ C
√

ε (3.30)

where the left side of (3.30) is understood in the sense of distributions and C is some positive constant
independent of ε.

4. Concluding comments

4.1. Weak solutions to the mesoscopic model

One avenue of future work is to prove the existence of admissible weak solutions to the mesoscopic model
(1.4) for each ε > 0. This was done for the related flowing-regime model in [17]. The flowing-regime model
is similar to (1.4). However, in the bubbling regime, the ratio of the thermal speed to the characteristic
velocity scale depends on ε, unlike the flowing regime in which this ratio is independent of ε.

4.2. Inhomogeneous case

In this paper, the external potential is assumed to be zero, leading to a lack of modeling of any external
forces such as gravity and buoyancy. While these effects are easily introduced into the model (see [6,10,11],
for example), the mathematical analysis of this term is not so trivial. Much of the work with relative
entropies for arbitrary systems relies on the flux being a function of the solution only. However, adding
the effects of external forces gives a Smoluchowski equation for the macroscopic model with a flux of
ηu − η∇xΦ. Since Φ is generally taken to be a function of the position, the flux of (1.3) now depends
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explicitly on x. Thus, much of the work in deriving the relative entropy inequality (2.8) is complicated
by the fact that

∂xi
Fi(U, x) = DFi∂xi

U + Fxi
.

In [16], problems involving hyperbolic equations with fluxes dependent on the independent variables of
the problem are shown to have an L1 contraction property; however, the work does not consider using
a general entropy and the corresponding relative entropy. In other papers, work has been done on the
inhomogeneous (1.3) using a relative entropy to obtain weak–strong uniqueness [6], but in this case both
solutions obey the equation, albeit one only weakly.
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