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Abstract. We investigate a time-harmonic wave problem in a waveguide. We work at low frequency so that only one mode
can propagate. It is known that the scattering matrix exhibits a rapid variation for real frequencies in a vicinity of a complex
resonance located close to the real axis. This is the so-called Fano resonance phenomenon. And when the geometry presents
certain properties of symmetry, there are two different real frequencies such that we have either R = 0 or T = 0, where R
and T denote the reflection and transmission coefficients. In this work, we prove that without the assumption of symmetry
of the geometry, quite surprisingly, there is always one real frequency for which we have T = 0. In this situation, all
the energy sent in the waveguide is backscattered. However in general, we do not have R = 0 in the process. We provide
numerical results to illustrate our theorems.
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1. Introduction

The Fano resonance is a universal phenomenon in physics which appears in many areas. For a general
presentation, we refer the reader to [18] for the seminal paper and to [26,27] for recent reviews. In
this work, we consider its expression on a model problem of propagation of time-harmonic waves in
a waveguide, which is unbounded in one direction. This problem appears naturally, for instance, in
acoustics, in water-waves theory or in electromagnetism. In this context, the Fano resonance mechanism
can be described as follows. Assume that the Neumann Laplacian (for the problem we consider below) has
a real eigenvalue λ0 embedded in the continuous spectrum. In this case, the corresponding eigenfunctions
are the so-called trapped modes which are exponentially decaying at infinity. Then perturbing slightly
the setting, for example, the geometry or the material index, in general this real eigenvalue will turn
into a complex resonance [2,36,45]. And for real spectral parameters λ (proportional to the square of
the frequency) varying in a neighbourhood of λ0, the scattering matrix will exhibit a rapid variation.
This variation is even quicker as the imaginary part of the complex resonance is small. When λ0 is
between the first and the second thresholds in the continuous spectrum, so that only two conjugated
waves can propagate in the waveguide, the symmetric scattering matrix is composed of two reflection
coefficients R, R̃ and one transmission coefficient T (see the notation in (3)). In this case, under certain
properties of symmetry of the configuration, one can show that the scattering coefficients take zero values
for some real λ around λ0. Such particular values for R, R̃ are studied in particular in the context
of perfect transmission resonances (PTRs), see, for example, [24,28,38,39,44]. For the presentation of
simple models in optics explaining the Fano resonance phenomenon, we refer the reader to [16,17]. For
more mathematical approaches, one can consult [1,7,40–42]. For computations of complex resonances
and numerical investigations of the Fano resonance phenomenon in waveguides, we refer the reader
to [6,12,13,19–21]. For results concerning the existence of trapped modes associated with eigenvalues
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Fig. 1. Example of geometry Ω

embedded in the continuous spectrum, see, for example, [11,14,15,25,29,34,35,43]. Finally, note that
another approach to get rigorously a zero transmission coefficient can be found in [8–10]. It relies on
asymptotic results of the usual scattering matrix in geometries with long branches and is not related to
the Fano resonance phenomenon considered in this work.

The goal of this note is to show that without assumption of symmetry of the configuration, the
transmission coefficient T still takes the zero value throughout the Fano resonance phenomenon. This
was intuited in [23] using a continuation idea from a symmetric setting. In the present work, we prove
rigorously the result using a different approach which does not require to start from a symmetric setting.
The outline of the article is as follows. First, we present the setting in Sect. 2. Then, we perturb the
geometry and the frequency of the configuration supporting trapped modes via a small parameter ε > 0
and we recall the results of [7] providing an asymptotic expansion of the scattering matrix with respect
to ε tending to zero. In Sect. 4, we show that miraculously (we have no physical explanation for that),
the main asymptotic term in the expansion of the transmission coefficient passes through zero for real
λ around λ0. Then, in Sect. 5, working as in [10], we demonstrate that the unitary structure of the
scattering matrix is enough to deduce that the transmission coefficient itself passes through zero for real
λ around λ0. We provide some numerical results to illustrate this analysis in Sect. 6. Finally, we give
short concluding remarks. The main result of this work is Theorem 5.1.

2. Setting

Let Ω ⊂ R
2 be a domain, that is a connected open set, with Lipschitz boundary ∂Ω which coincides with

the reference strip

{(x, y) ∈ R × (0; 1)}
for |x| ≥ d where d > 0 is fixed (see Fig. 1). We assume that the propagation of time-harmonic waves in
Ω is governed by the Helmholtz equation with Neumann boundary conditions

Δu + λu = 0 in Ω
∂νu = 0 on ∂Ω.

(1)

In this problem, u is the quantity of interest (acoustic pressure, velocity potential, component of the
electromagnetic field, etc.), Δ denotes the 2D Laplace operator, λ is a parameter which is proportional
to the square of the frequency and ν stands for the normal unit vector to ∂Ω directed to the exterior of
Ω. Note that from time to time, abusively we will call λ the frequency. We emphasize that we consider
an academic 2D problem only to simplify the presentation. Other configurations can be dealt with in a
completely similar way. In particular, the analysis is the same in higher dimension and in waveguides for
which the two unbounded branches are not aligned. Moreover, we can also impose Dirichlet or periodic
boundary conditions in (1) to study quantum waveguides or gratings. For λ ∈ (0;π2), only the plane
waves w± defined by
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Fig. 2. Example of perturbed waveguide Ωε

w±(x, y) = e±ix
√

λ (2)

can propagate in Ω. For λ ∈ (0;π2), the problem (1) has solutions u± admitting the decompositions

u+ =
w+ + R+ w− + . . . , for x < −d

T w+ + . . . , for x > d,
u− =

T w− + . . . , for x < −d
w− + R− w+ + . . . , for x > d.

(3)

Here, R± ∈ C are reflection coefficients and T ∈ C, which is the same both for u+ and u− due to the
reciprocity relation, is the transmission coefficient. Moreover, the dots stand for remainders in H1(Ω)
which decay as O(e−|x|√π2−λ) when |x| → +∞. Physically, u+ (resp. u−) models the scattering of the
incident rightgoing wave w+ (resp. leftgoing wave w−) by the perturbation in the geometry with respect
to the reference strip R × (0; 1). We define the scattering matrix

s :=
(

R+ T
T R−

)
∈ C

2×2.

It is a classical exercise to show that s is unitary (ss� = Id) and symmetric (s = s�). The functions u± are
uniquely defined if and only if trapped modes (nonzero solutions of (1) which are in L2(Ω)) do not exist
at the chosen λ. If trapped modes exist, we define uniquely u± as the functions admitting the expansions
(3) and which are orthogonal to the linear space of trapped modes (which is of finite dimension) in L2(Ω).

We assume that the geometry Ω is such that λ = λ0 ∈ (0;π2) is a simple eigenvalue of the Neumann
Laplacian. In other words, we assume there is a nonzero utr ∈ L2(Ω) satisfying Δutr + λ0utr = 0 in Ω,
∂νutr = 0 on ∂Ω and that any L2 solution of (1) is proportional to utr. Note that since the continuous
spectrum of the Neumann Laplacian in Ω is σc = [0;+∞), the eigenvalue is embedded in σc. To set ideas,
we impose that ‖utr‖L2(Ω) = 1. Using decomposition in Fourier series, we obtain the expansion

utr = K e−x
√

π2−λ0
cos(πy) + ũtr for x ≥ d, (4)

where K is a constant and ũtr is a remainder which decays as O(e−x
√

4π2−λ0) when x → +∞. We assume
that utr has a slow decay as x → +∞, i.e. K �= 0. In case K = 0, the analysis below must be adapted
but can be done. Without lost of generality, we can impose that K > 0. Note that the choice of making
an assumption on the decay of utr as x → +∞ is arbitrary. Considering the change x 	→ −x, the analysis
below can be developed completely similarly imposing the behaviour as x → −∞.

3. Perturbation of the frequency and of the geometry

Now, we perturb slightly the original setting supporting trapped modes. First, the spectral parameter λ0

is changed for

λε = λ0 + ελ′ (5)
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where λ′ ∈ R is given and ε > 0 is small. Second, we make a perturbation of amplitude ε of the geometry to
change Ω into some new waveguide Ωε. More precisely, consider γ ⊂ ∂Ω a smooth arc. In a neighbourhood
V of γ, we introduce natural curvilinear coordinates (n, s) where n is the oriented distance to γ such that
n > 0 outside Ω and s is the arc length on γ. Additionally, let H ∈ C∞

0 (γ) be a smooth profile function
which vanishes in a neighbourhood of the two endpoints of γ. Outside V , we assume that ∂Ωε coincides
with ∂Ω and inside V , ∂Ωε is defined by the equation

n(s) = εH(s). (6)

(See Fig. 2) In other words, if γ is parametrized as γ = {P (s) ∈ R
2 | s ∈ I} where I is a given interval of

R, then γε := {P (s)+ εH(s)ν(s) | s ∈ I}. Here, ν(s) is the unit vector normal to γ at point P (s) directed
to the exterior of Ω. Finally, we consider the perturbed problem

Δuε + λεuε = 0 in Ωε

∂νεuε = 0 on ∂Ωε,
(7)

where νε stands for the normal unit vector to ∂Ωε directed to the exterior of Ωε. We denote by

s(ε, λ), T (ε, λ), R+(ε, λ), R−(ε, λ)

the scattering parameters introduced in the previous section in the geometry Ωε at frequency λ. And for
short, we set

s0 := s(0, λ0), T 0 := T (0, λ0), R0
+ := R+(0, λ0), R0

− := R−(0, λ0).

To recall Theorem 5.1 of [7] describing the behaviour of the scattering matrix s(ε, λ0 + ελ′) as ε goes
to zero, and which will be the basis of our analysis below, we need to introduce a few quantities. Set
U := (u+, u−) where u± are the functions introduced in (3) for λ = λ0. Set also

κ(H) :=
∫

I

H(s)(|∂sutr(0, s)|2 − λ0 |utr(0, s)|2) ds ∈ R, (8)

α :=
∫

Ω

utr(x, y)U(x, y) dxdy ∈ C × C, (9)

β(H) :=
∫

I

H(s)(∂sutr(0, s)∂sU(0, s) − λ0 utr(0, s)U(0, s)) ds ∈ C × C. (10)

Theorem 3.1. � Assume that λ′ �= κ(H). Then, we have

lim
ε→0

s(ε, λ0 + ελ′) = s0.

� Assume that H is such that κ(H)α �= β(H) ∈ C × C. Then, we have

lim
ε→0

s(ε, λ0 + εκ(H) + ε2μ) = s0 +
τ�τ

iμ̃ − |τ |2/2
,

with τ := (κ(H)α − β(H)) s and μ̃ := Aμ + B for some unimportant real constants A, B with A �= 0. We
emphasize that A, B are independent of ε, μ.

Let us comment this result. To be precise, we should mention that Theorem 5.1 of [7] is stated in a
geometry which is symmetric with respect to the (Oy) axis. Therefore, Theorem 3.1 is a bit different.
However, the proof is completely similar and is as follows. First, we compute an asymptotic expansion
of an auxiliary object called the augmented scattering matrix, which has been introduced in [22,37] and
[30,32] as ε → 0. The essential property is that this augmented scattering matrix considered as a function
of (ε, λ) is smooth at (0, λ0). The procedure and the proof of error estimates are detailed in [31–33]. Then,
using the relation existing between the usual scattering matrix and the augmented scattering matrix, we
can get the statement of the theorem.

As explained in [7], Theorem 3.1 shows that the scattering matrix s(·, ·) is not continuous at the point
(0, λ0) (setting where trapped modes exist). Indeed, the function s(·, ·) valued on different parabolic paths
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Fig. 3. The limit of s(ε, λ0 + εκ(H) + ε2μ) as ε → 0 depends on the parabolic curve chosen for the frequency

{(ε, λ0 + εκ(H) + ε2μ), ε ∈ (0; ε0)} (see Fig. 3) has different limits when ε tends to zero. And for ε0 �= 0
small fixed, the usual scattering matrix λ 	→ s(ε0, λ) exhibits a quick change in a neighbourhood of
λ0 + ε0κ(H). Indeed, the map μ 	→ s(ε0, λ

0 + ε0κ(H) + ε2
0μ) has a large variation for μ ∈ [−Cε−1

0 ;Cε−1
0 ]

for some arbitrary C > 0 (which is only a small change for λε0). Said differently, a change of order ε
of the frequency leads to a change of order one of the scattering matrix. This is nothing but the Fano
resonance phenomenon. For a given C > 0, outside an interval of length Cε0 centred at λ0 + ε0κ(H),
s(ε0, ·) is approximately equal to s0.

Remark 3.1. When H is such that κ(H)α = β(H) ∈ C×C, in general, a fast Fano resonance phenomenon
appears. More precisely, for a given ε0 �= 0 small, the variation of s(ε0, ·) of order one occurs on a range of
frequencies of length O(ε2

0) (instead of O(ε0) when κ(H)α �= β(H)). We write “in general” because we can
also show that for well-chosen geometric perturbations, obtained solving a fixed-point problem, no Fano
resonance phenomenon happens and the real eigenvalue embedded in the continuous spectrum keeps this
property instead of becoming a complex resonance. In particular, this latter result allows one to construct
non-symmetric waveguides with eigenvalues embedded in the continuous spectrum (see [32,33]).

From now, we denote by τ1, τ2 ∈ C the two components of τ , so that τ = (τ1, τ2), and we set

sε(μ) := s(ε, λ0 + εκ(H) + ε2μ)
T ε(μ) := T (ε, λ0 + εκ(H) + ε2μ)
Rε

+(μ) := R+(ε, λ0 + εκ(H) + ε2μ)
Rε

−(μ) := R−(ε, λ0 + εκ(H) + ε2μ).

With this notation, the analysis developed in [7] provides the estimate

|sε(μ) − sasy(μ)| ≤ Cε with sasy(μ) = s0 +
τ�τ

iμ̃ − |τ |2/2
, (11)

where in (11), for any compact set I ⊂ R, the constant C > 0 can be chosen independent of μ ∈ I. In
particular, we have

|T ε(μ) − T asy(μ)| ≤ Cε with T asy(μ) = T 0 +
τ1τ2

iμ̃ − (|τ1|2 + |τ2|2)/2
. (12)

In order to prove that we have T ε(μ) = 0 for some μ ∈ R for ε small enough, we first show that the map
μ 	→ T asy(μ) vanishes in R. This is the object of the next section.
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4. Asymptotic behaviour of the transmission coefficient

Proposition 4.1. Assume that T 0 �= 0. Then, we have

{T asy(μ), μ ∈ R} = C asy \ {T 0}
where C asy is a circle passing through T 0 and zero.

Proof. Using the expression (12) for T asy(μ) and classical results concerning the Möbius transform, one
can show that {T asy(μ), μ ∈ R} coincides with C asy \ {T 0}, where C asy is a circle passing through T 0.
Let us show that C asy also passes through zero. From (12), one finds that T asy(μ) = 0 for some μ ∈ R if
and only if there holds

|τ1|2 + |τ2|2
2

= �e

(
τ1τ2

T 0

)
. (13)

In order to establish (13), we need to derive some relations between T 0 and τ = (τ1, τ2). To proceed, first
we notice that U = (u+, u−) satisfies

Us0 = U. (14)

Indeed, the first component of Us0 is equal to R0
+ u+ + T 0 u−, and using (3), one finds that this function

admits the expansion

R0
+ u+ + T 0 u− =

R0
+ (w− + R0

+ w+) + T 0 (T 0 w+) + . . . , for x < −d

R0
+ (T 0 w−) + T 0 (w+ + R0− w−) + . . . , for x > d.

From the unitarity of s0, we infer that R0
+ u+ + T 0 u− has the same expansion as u+ at infinity. Using

that u± are orthogonal to utr in L2(Ω), we deduce that R0
+ u+ + T 0 u− = u+. Similarly, we show that

T 0 u+ +R0
− u− = u−, which allows us to conclude to (14). Now, we exploit (14) to establish the identity

τs0 = τ. (15)

From the expressions (8)–(10) of κ(H), α, β(H) and the properties of s0, we obtain

τs0 = (κ(H)α − β(H)) s0s0 = κ(H)α − β(H).

Then, replacing U by Us0 (identity (14)) in κ(H)α − β(H), we get τs0 = (κ(H)α − β(H))s0 = τ . This
proves (15) or equivalently

R0
+ τ1 + T 0 τ2 = a

T 0 τ1 + R0
− τ2 = b.

(16)

Finally, we use (16) to establish (13). The unitarity of s0 imposes R0
− = −R0

+T 0/T 0. Inserting this
relation in the second line of (16) gives

T 0 τ1 − R0
+T 0

T 0
τ2 = τ2. (17)

The first line of (16) implies

R0
+ =

τ1 − T 0τ2

τ1
. (18)

Inserting (18) in (17) and multiplying by τ1 lead to

T 0 (|τ1|2 + |τ2|2) − T 0

T 0
τ1τ2 = τ1τ2 ⇔ |τ1|2 + |τ2|2 = 2�e

(
τ1τ2

T 0

)
.

This is identity (13). �
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Remark 4.1. The reason why C asy passes through zero is quite mysterious. When Ω, Ωε are symmetric
with respect to the (Oy) axis, this can be shown quite simply working with half-waveguides problems
(see, for example, [7]). But without assumption of symmetry, we cannot provide a physical interpretation
of this fact.

Denote μ� the value of μ such that T asy(μ�) = 0 and for ε > 0, define the interval Iε := (μ�−√
ε;μ�+

√
ε).

From (12), for ε > 0 small, we know that the curve

Cε = {T ε(μ), μ ∈ Iε}
passes close to zero. It remains to show that Cε passes exactly through zero for ε small enough.

5. Exact zero transmission

Now, we state and prove the main result of the article. Its proof relies on Proposition 4.1 and an argument
presented in [10] (see also [23]).

Theorem 5.1. Assume that T 0 �= 0. Then, there is ε0 > 0 such that for all ε ∈ (0; ε0], there exists μ ∈ R

(depending on ε) such that T ε(μ) = 0.

Proof. Let us first give the general idea of the proof. Assume by contradiction that for all ε > 0, μ 	→ T ε(μ)
does not pass through zero in Iε. Since sε(μ) is unitary, there holds Rε

+(μ)T ε(μ) + T ε(μ)Rε−(μ) = 0 and
so

− Rε
+(μ)/Rε−(μ) = T ε(μ)/T ε(μ) ∀μ ∈ Iε. (19)

But if μ 	→ T ε(μ) does not pass through zero on Iε, using Proposition 4.1, one can verify that the point
T ε(μ)/T ε(μ) = e2iarg(T ε(μ)) must run rapidly on the unit circle for μ ∈ Iε as ε → 0. On the other hand,
Rε

+(μ)/Rε−(μ) tends to a constant in Iε as ε → 0. This way we obtain a contradiction. We emphasize that
the unitary structure of sε(μ) is the key ingredient of this step of the proof. Now, we make this discussion
more rigorous.
Since the circle C asy passes through zero, there is η ∈ (−π/2;π/2] such that C asy is tangent to the line
{ρ eiη ∈ C, ρ ∈ R}. Define the quadrants

Q1 := {ρ eiθ ∈ C | ρ > 0, η − π/4 < θ < η + π/4}
Q2 := {ρ eiθ ∈ C | ρ < 0, η − π/4 < θ < η + π/4},

see Fig. 4. The graph of the map μ 	→ T asy(μ) crosses both quadrants Q1 and Q2 in Iε. On the other
hand, we have |T ε(μ) − T asy(μ)| ≤ Cε where C > 0 is independent of μ ∈ Iε for all ε ∈ (0; ε0]. As a
consequence, there is ε0 such that for all ε ∈ (0; ε0], the graph of the map μ 	→ T ε(μ) intersects both Q1

and Q2 on Iε.
If μ 	→ T ε(μ) does not vanish in Iε, since μ 	→ T ε(μ) is continuous, we deduce that for all ε ∈ (0; ε0],

there are aε, bε ∈ Iε such that T ε(aε) = tε ei(η−π/4) and T ε(bε) = t̃ε ei(η+π/4), with tε, t̃ε ∈ R \ {0}.
Taking successively μ = aε, μ = bε in the relation preceding (19), we obtain

Rε
+(aε) = −ie2iηRε−(aε) and Rε

+(bε) = ie2iηRε−(bε). (20)

Introduce the functions Rasy
± such that

Rasy
+ (μ) = R0

+ +
a2

iμ̃ − (|a|2 + |b|2)/2
and Rasy

− (μ) = R0
− +

b2

iμ̃ − (|a|2 + |b|2)/2
.

From (11), we know that there is ε0 > 0 such that, for all ε ∈ (0; ε0], we have

Rε
+(aε), Rε

+(bε) ∈ B(Rasy
+ (μ�), ε1/4) and Rε

−(aε), Rε
−(bε) ∈ B(Rasy

− (μ�), ε1/4),
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Fig. 4. Notation used in the proof of Theorem 5.1

where for z0 ∈ C, B(z0, r) denotes the open disk of C of radius r > 0 centred at z0. From (20), we deduce
that we must have both

B(Rasy
+ (μ�), ε1/4) ∩ B(ie2iηRasy

− (μ�), ε1/4) �= ∅ and B(Rasy
+ (μ�), ε1/4) ∩ B(−ie2iηRasy

− (μ�), ε1/4) �= ∅.

This is impossible for ε small enough because |Rasy
− (μ�)| = 1 (remember that T asy(μ�) = 0). Thus, we

deduce that for all ε ∈ (0; ε0], μ 	→ T ε(μ) cancels in Iε. �

Concerning the zeros of μ 	→ Rε
+(μ), we can make the following comments. When ε tends to zero,

from (11), we know that the curve {Rε
+(μ), μ ∈ R} gets closer and closer to {Rasy

+ (μ), μ ∈ R}. The set
{Rasy

+ (μ), μ ∈ R} is a circle. It passes through zero if and only if we have

|a|2 + |b|2
2

= �e

(
a2

R0
+

)
. (21)

Dividing the first line of (16) by R0
+ and computing the square of the modulus, we obtain the identity

|a|2
(

1 +
1

|R0
+|2

)
− 2�e

(
a2

R0
+

)
=

|T 0|2
|R0

+|2 |b|2.

Using the above equality, we obtain that (21) is satisfied if and only if there holds

|a| = |b|. (22)

As a consequence, if |a| �= |b|, for ε small enough, μ 	→ Rε
+(μ) does not pass through zero. Using the

definition of τ in Theorem 3.1, we observe that we have |a| = |b| if Ω and H are symmetric with respect
to the (Oy) axis. However, surely it is not necessary to consider symmetric geometries to have (22).
But we emphasize that if (22) holds in a non-symmetric setting, then we cannot work as in the proof
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Fig. 5. Left: geometry of Ωε. Right: real part of a trapped mode for ε = 0 and
√

λ0 ≈ 1.9939

of Theorem 5.1 to get exactly Rε
+(μ) = 0 for some μ ∈ R. Everything lies in the fact that the identity

(19) cannot be exploited similarly for the reflection and the transmission coefficients. Therefore, a priori
nothing guarantees that exact zero reflection occurs during the Fano resonance phenomenon in a non-
symmetric waveguide, even when (22) is satisfied.

6. Numerical results

In this section, we illustrate the results obtained above. In the first series of experiments, we work in the
geometry

Ωε := R × (0; 1) \ ([−0.5; 0.5] × [0.35 + ε; 0.65 + ε] ∪ [0; 0.5] × [0.15 + ε; 0.85 + ε])

pictured in Fig. 5 left. In Ω := Ω0, the obstacle is symmetric with respect to the line R × {1/2}.
According to the results of the literature (see, for example, [15]), we know that there are trapped modes
for certain real frequencies in this geometry. Using perfectly matched layers [3–5], we find that they exist
for

√
λ0 ≈ 1.9939. Figure 5 right represents such a trapped mode in Ω.

The domain Ωε is obtained from Ω by shifting by ε the obstacle along the (Oy) axis. Admittedly,
this kind of perturbation is not exactly the one considered in (6). However, since there exists an almost
identical mapping from Ω to Ωε, results are similar. We emphasize that for ε > 0, Ωε has no symmetry
property. In Fig. 6, we display the values of the complex scattering coefficients R+(ε, λ), T (ε, λ) appearing
in the decomposition (3) of u+ for ε = 0.05 and for

√
λ ∈ (1.97; 2.03) (note that this interval contains

the value
√

λ0). To proceed, we use a P2 finite element method in a truncated geometry. On the arti-
ficial boundary created by the truncation, a Dirichlet-to-Neumann operator with 20 terms serves as a
transparent condition. As expected, we observe that λ 	→ T (ε, λ) passes through zero.
In Fig. 7, we display the curves λ 	→ |T (ε, λ)| for several ε and a range of values of λ. The right picture is
a zoom of the left picture around λ0. As expected, we observe that for the different ε, we have T (ε, λ) = 0
for one λ close to λ0. We also note that the smaller ε > 0 is, the faster the Fano resonance phenomenon
occurs. This is also expected. Finally, in Fig. 8, we display the real part of u+ (see (3)) in Ωε for ε = 0.05
and

√
λ = 2.0072. In this setting, there holds T (ε, λ) ≈ 0. And indeed, we observe that the incident

rightgoing wave w+ is completely backscattered, and this is the mirror effect.
In the second series of experiments, we work in the geometry of Fig. 10. Using perfectly matched layers,
we find a complex resonance λc such that

√
λc ≈ 2.49 − 0.15i. In Fig. 9, we display the values of the

complex scattering coefficients R+(λ), T (λ) appearing in the decomposition (3) of u+ for
√

λ ∈ (2.1; 2.8)
(note that this interval contains the value �e

√
λc). Though this experiment does not strictly enter the

framework presented in this note (we do not start from a situation where trapped modes exist), we
observe that the curve λ 	→ T (λ) passes through zero for λ in a neighbourhood of �e λc. In Fig. 10, we
display the real part of u+ for

√
λ = 2.4016. In this setting, we have T (λ) ≈ 0.
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Fig. 6. Scattering coefficients T (ε, λ) (blue ×) and R+(ε, λ) (red dot) for ε = 0.05 and
√

λ ∈ (1.97; 2.03). As predicted,
λ �→ T (ε, λ) passes through zero around λ0. According to the conservation of energy, we have |R+(·, ·)|2 + |T (·, ·)|2 = 1 and
so the scattering coefficients are located inside the unit disk delimited by the black bold line
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Fig. 7. Curves λ �→ |T (ε, λ)| for several ε and
√

λ ∈ (0; π) (left),
√

λ ∈ (1.9; 2.1) (right). The vertical dotted line represents

the value of
√

λ
0

Fig. 8. Real part of u+ in Ωε for ε = 0.05 and
√

λ = 2.0072. In this setting, we have T (ε, λ) ≈ 0
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Fig. 9. Scattering coefficients T (λ) (blue ×) and R+(λ) (red dot) for
√

λ ∈ (2.1; 2.8) in the geometry of Fig. 10

Fig. 10. Real part of u+ for
√

λ = 2.4016. In this setting, we have T (λ) ≈ 0

7. Concluding remarks

In this note, we proved that during the Fano resonance phenomenon in monomode regime, without
assumption of symmetry of the geometry, the transmission coefficient passes through zero. Physically,
when the transmission coefficient is null, the energy of an incident wave propagating through the structure
is completely backscattered. As already mentioned, everything presented here is also valid in higher
dimensions and with Dirichlet or periodic boundary conditions instead of Neumann ones. We considered
a geometrical perturbation of the walls of the waveguide. We could also have worked with a penetrable
inclusion placed in the waveguide. Then perturbing the material parameter, we would have obtained
similar results. Importantly, the above analysis applies only in monomode regime, that is for our geometry
when λ0 belongs to (0;π2). It is not clear what happens in multimodal regime (λ0 > π2). Moreover, we
assumed that λ0 is a simple eigenvalue embedded in the continuous spectrum of the Neumann Laplacian.
When λ0 is not simple, the analysis has to be done.
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