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Abstract. This paper mainly investigate positive solutions of the Cauchy problem for a fast diffusive p-Laplacian equation
with nonlocal source

ut = Δpu +

⎛
⎜⎝

∫

RN

uq(y, t)dy

⎞
⎟⎠

r−1
q

us+1, (x, t) ∈ R
N × (0, T ),

where N ≥ 1, 2N
N+1

< p < 2, q > 1, r ≥ 1, 0 ≤ s <
(
1 + 1

N

)
p− 2 and r + s > 1. We obtain the new critical Fujita exponent

by virtue of the auxiliary function method and forward self-similar solution, and then determine the second critical exponent
to classify global and non-global solutions of the problem in the coexistence region via the decay rates of an initial data at
spatial infinity. Moreover, the large time behavior of global solution and the life span of non-global solution are derived.
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1. Introduction

We consider a Cauchy problem for a fast diffusive p-Laplacian equation with nonlocal source

ut = Δpu +

⎛
⎝

∫

RN

uq(y, t)dy

⎞
⎠

r−1
q

us+1, (x, t) ∈ R
N × (0, T ), (1.1)

u(x, 0) = u0(x), x ∈ R
N , (1.2)

where N ≥ 1, 2N
N+1 < p < 2, q > 1, r ≥ 1, 0 ≤ s < (1 + 1

N )p − 2, r + s > 1, and the initial data u0(x) is
a nonnegative, continuous and nontrivial function. Then problems (1.1)–(1.2) have a unique continuous
solution in the sense of distribution, and the comparison principle is valid (see [1,2]).

Nonlocal model (1.1) describes many natural phenomena, such as the non-Newton flux in the me-
chanics of fluid, population of biological species and filtration; see [3–5] and references therein. In the
non-Newtonian fluids, the quantity p is a characteristic of the medium. Media with p > 2 are called
dilatant fluids, while p < 2 are called pseudo-plastics. If p = 2, they are Newtonian fluids. Meanwhile, in
the nonlinear diffusion theory, there exist obvious differences among the situations of slow (p > 2), fast
(1 < p < 2), and linear (p = 2) diffusions. For example, there is a finite speed propagation in the slow
and linear diffusion situations, whereas an infinite speed propagation exists in the fast diffusion situation.
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It is well known that the Cauchy problem for the local diffusion equation with power type source

ut = Δpu + us+1, (x, t) ∈ R
N × (0, T ), (1.3)

possesses the critical Fujita exponent sc = p − 2 + p
N , namely any nontrivial solutions blow up in finite

time when 0 < s ≤ sc, and there are both global and non-global solutions if s > sc, depending on the
size of initial data (see Fujita et al. [6–8] for p = 2, Galaktionov et al. [9,10] for p > 2, and Qi and
Wang [11] for 2N

N+1 < p < 2). Thus, the number sc is the cutoff between the blow-up case and the global
existence case, and it is called the critical Fujita exponent. For the study of the Cauchy problems for
nonlocal diffusion equations with nonlocal sources, Galaktionov and Levine [12] firstly considered positive
solutions of a Cauchy problem for the following parabolic equation with weighted nonlocal sources

ut = Δpu +

⎛
⎝

∫

RN

K(y)uq(y, t)dy

⎞
⎠

r−1
q

us+1, (x, t) ∈ R
N × (0, T ), (1.4)

where p ≥ 2, q, r ≥ 1, s ≥ 0 and r + s > 1. They obtained the critical Fujita exponent by the parameter
r to classify solutions of the equation. When p = 2 and the nonnegative weight function K(x) ∈ L1(RN ),
the critical Fujita exponent is rc = 1 + 2

N − s, while if K(x) /∈ L1(RN ) and K(x) ∼ |x|−σ for |x| large

enough, the critical Fujita exponent is rc = 1 + 2q(1− Ns
2 )

N(q−1)+σ for Ns
2 < 1, which is included in blow-up case.

Moreover, they derived the critical Fujita exponent rc = p−1− s+ p−2
q + p

N for s < p−2
q + p

N when p > 2
and K(x) ∈ L1(RN ), which is included in blow-up case. Afterward, Afanas’eva and Tedeev [13] obtained
the critical Fujita exponent sc = p − 2 + p

N − (σ + N(q − 1)) r−1
Nq with respect to the parameter s when

p > 2, K(x) = (1 + |x|)−σ and −N(q − 1) < σ < N , but they did not show whether the critical case
s = sc belongs to blow-up case.

Note that for the critical Fujita exponent, the region satisfying s > sc or r > rc is a coexistence
region of global and non-global solutions for the Cauchy problem. To identify the global and non-global
solutions in the coexistence region, Lee and Ni [14] introduced a new second critical exponent α∗ = 2

s for
problem (1.3) with p = 2 by virtue of the slow decay behavior of the initial data at spatial infinity. More
precisely, with initial data u0(x) = λφ(x) and s > sc = 2

N , there exist constants μ,Λ,Λ0 such that the
solution blows up in finite time whenever lim inf |x|→∞ |x|α∗

φ(x) > μ > 0 and λ > Λ, or exists globally
if lim sup|x|→∞ |x|αφ(x) < ∞ with α ≥ α∗ and λ < Λ0. Afterward, Mu et al. [15] and Yang et al. [16]
considered the slow and fast diffusion cases of Cauchy problem (1.3), respectively, and they all derived a
new second critical exponent α∗ = p

s+2−p when s > sc = p − 2 + p
N . Moreover, the life span of non-global

solution is obtained. On the nonlocal diffusion equation (1.4), recently, Yang et al. [17] studied the linear
diffusion case with r > rc, K(x) ∈ L∞(RN ) ∩ C(RN ) and K(x) ∼ |x|−σ for |x| large, and they found
a new second critical exponent α∗ = 2q+(r−1)(N−σ)+

q(r+s−1) . Lately, Ma and Fang [18] derived a new second

critical exponent α∗ = pq+(r−1)(N−σ)+
q(r+s+1−p) with r > rc when p > 2, K(x) ∈ L1(RN ) and K(x) ∼ |x|−σ for

|x| large enough. Moreover, they also found a second critical exponent α∗ = pq+(r−1)(N−σ)
q(r+s+1−p) classified by

the parameter s with s > sc when p > 2, K(x) = (1 + |x|)−σ and 0 ≤ σ < N in [19], where rc and sc

are given in [12,13]. Meanwhile, they obtained the large time behavior of the global solution and the life
span of the non-global solution.

To the best of our knowledge, the research on the critical exponents for the Cauchy problem (1.1)–
(1.2) of a fast situation has not been proceeded yet. Our main difficulty lies in finding the effects of
the fast diffusive p-Laplace operator, nonlocal source and the behavior of initial data at spatial infinity
on the global existence and nonexistence of solutions. Motivated by these observations, we establish the
critical Fujita exponent by means of the auxiliary function method and forward self-similar solution, and
by virtue of the decay rates of an initial data at spatial infinity to seek a new second critical exponent.
Moreover, we derive the large time behavior of global solution as well as a life span of non-global solution.
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Throughout the rest of this paper, we denote by Cb(RN ) the space of all bounded continuous functions
in R

N , and define

Πα := {ψ ∈ Cb(RN )|ψ(x) ≥ 0, lim inf
|x|→∞

|x|αψ(x) > 0},

Πα := {ψ ∈ Cb(RN )|ψ(x) ≥ 0, lim sup
|x|→∞

|x|αψ(x) < ∞}.

Moreover, let

rc := 1 +
q[p − N(s + 2 − p)]

N(q − 1)
, α∗ :=

pq + N(r − 1)
q(r + s + 1 − p)

,

and u(x, t) denotes the solution of problem (1.1)–(1.2). Our main results are summarized as follows.

• If 1 < r ≤ rc, then every nontrivial solution u(x, t) blows up in finite time.
• If r > rc, then there exists a global solution u(x, t) for small initial data u0(x), and a non-global

solution for large initial data.
• Suppose r > rc and u0 = λφ(x), λ > 0.

(1) If φ(x) ∈ Πα and 0 < α < α∗ or α ≥ α∗ with λ large enough, then u(x, t) blows up in finite time;
(2) If φ(x) ∈ Πα and α∗ < α < N , then there exist positive constants λ0 = λ0(φ) and C such that

u(x, t) exists globally for λ ∈ (0, λ0) satisfying

‖u(x, t)‖L∞(RN ) ≤ Ct−αβ for all t > 0,

where β = 1
p−α(2−p) . Furthermore, if lim|x|→∞ |x|αφ(x) = M > 0, then u(x, t) satisfies

tαβ |u(x, t) − Uλ,M,α(x, t)| → 0 as t → ∞
uniformly in compact set of RN for λ ∈ (0, λ0), where Uλ,M,α(x, t) is the solution of the following
Cauchy problem

{
Ut = div(|∇U |p−2∇U), x ∈ R

N , t > 0,

U(x, 0) = λM |x|−α, x ∈ R
N .

• Let u(x, t) is a solution of problem (1.1)–(1.2) with initial data u0 = λφ(x) which blows up at finite
time T , and ‖φ‖L∞(RN ) = lim|x|→∞ φ = φ∞. Then the life span of u(x, t) satisfies

c4

r + s − 1
(λφ∞(1 + λφ∞) + 1)−(r+s−1) ≤ T ≤ c5

r + s − 1
(λφ∞)−(r+s−1),

where c4, c5 are the positive constants given below.

Note that the new critical Fujita exponent rc = 1 + q[p−N(s+2−p)]
N(q−1) and the second critical exponent

α∗ = pq+N(r−1)
q(r+s+1−p) established in this paper are in full accord with the conclusions in the previous studies

[10–12,14–17]. Indeed, by simple calculations, one can see that the critical Fujita exponent rc classified
by parameter r is equivalent to the critical Fujita exponent sc := p − 2 + p

N − (r−1)(q−1)
q classified by

parameter s. Take r = 1 in sc and α∗, we can derive the critical exponents of local diffusion equation
in [10,11,14–16]. Let p → 2− in rc and α∗, then the critical exponents are consistent with [12,17] when
K(x) /∈ L1(RN ) and σ = 0.

The rest of this paper is organized as follows. In Sects. 2 and 3, we establish the new critical Fujita
exponent and a second critical exponent for problem (1.1)–(1.2). In Sect. 4, we derive the large time
behavior of the global solution and a life span of the non-global solution of problem (1.1)–(1.2).
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2. Critical Fujita exponent

In this section, we are devoted to seek the new critical Fujita exponent for problem (1.1)–(1.2) by virtue
of the auxiliary function method and forward self-similar solution.

Firstly, we try to construct an appropriate auxiliary function to guarantee that the solution u(x, t)
blows up in finite time.

Theorem 2.1. For N ≥ 1, 2N
N+1 < p < 2, q > 1, and 0 ≤ s < (1 + 1

N )p − 2, suppose that 1 < r ≤ rc, then
every nontrivial solution u(x, t) of Cauchy problem (1.1)–(1.2) blows up in finite time.

Proof. Let ϕ(x) = ϕ(|x|) be a smooth, radially symmetric and non-increasing function such that

0 ≤ ϕ(x) ≤ 1, ϕ(x) ≡ 1 for |x| ≤ 1, and ϕ(x) ≡ 0 for |x| ≥ 2.

Define ϕR(x) = ϕ( x
R ), then for R ≥ 1, ϕR(x) is a smooth, radially symmetric, and non-increasing function,

which satisfies

0 ≤ ϕR(x) ≤ 1, ϕR(x) ≡ 1 for |x| ≤ R, and ϕR(x) ≡ 0 for |x| ≥ 2R.

Moreover, let ϕ0(x) = ϕ0(|x|) be a smooth, radially symmetric, and non-decreasing function satisfying

0 ≤ ϕ0(x) ≤ 1, ϕ0(x) ≡ 0 for |x| ≤ 1, and ϕ0(x) ≡ 1 for |x| ≥ 2.

Then we set φR(x) = ϕ0(x)ϕR(x), it follows that φR(x) is a smooth and radially symmetric function
which satisfies for R > 2,

0 ≤ φR(x) ≤ 1, φR(x) ≡ 0 for |x| ≤ 1,

φR(x) ≡ 1 for 2 ≤ |x| ≤ R, φR(x) ≡ 0 for |x| ≥ 2R,

and φR(x) is non-decreasing for 1 ≤ |x| ≤ 2 and non-increasing for R ≤ |x| ≤ 2R.
Next, we introduce the auxiliary function

ΘR(t) =
∫

Ω

uφR(x)dx, (2.1)

where Ω = R
N\B1/2 with B1/2 being the ball with radius 1/2 and center at the origin. Without loss of

generality, we may assume u is radially symmetric and non-increasing in r = |x|. Indeed, similar to the
argument in [11, Section 1, Remark], by the comparison principle we need only consider that u0(x) is
radially symmetric and non-increasing, i.e., u0(x) = u0(r) and u0(r) non-increasing in r, and the solution
u of (1.1)–(1.2) is also radially symmetric and non-increasing in r = |x|. Therefore, ΘR is an increasing
function of R.

Firstly, differentiating ΘR(t), using (1.1) and Green’s formula, we obtain

Θ′
R(t) = −

∫

Ω

|∇u|p−2∇u · ∇φRdx +

⎛
⎝

∫

RN

uqdx

⎞
⎠

r−1
q ∫

Ω

us+1φRdx

= −ωN

2R∫

1

|u′|p−2u′φ′
RτN−1dτ +

⎛
⎝

∫

RN

uqdx

⎞
⎠

r−1
q ∫

Ω

us+1φRdx

= ωN

2R∫

1

|u′|p−1φ′
RτN−1dτ +

⎛
⎝

∫

RN

uqdx

⎞
⎠

r−1
q ∫

Ω

us+1φRdx
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≥ −ωN

2R∫

1

|u′|p−1|φ′
R|τN−1dτ +

⎛
⎝

∫

RN

uqφRdx

⎞
⎠

r−1
q

‖φR‖− r−1
q

L∞(RN )

∫

Ω

us+1φRdx, (2.2)

where ωN is the area of the unit sphere in R
N .

Thanks to the calculation in [11], we get the inequality

2R∫

1

|u′|p−1|φ′
R|τN−1dτ ≤ c0R

(2−p)(N−1)

⎛
⎝
∫

Ω

u|ΔφR|dx

⎞
⎠

p−1

, (2.3)

where c0 is independent of R. Thus, substituting (2.3) into (2.2), we have

Θ′
R(t) ≥ −c0R

(2−p)(N−1)

⎛
⎝
∫

Ω

u|ΔφR|dx

⎞
⎠

p−1

+

⎛
⎝

∫

RN

uqφRdx

⎞
⎠

r−1
q

‖φR‖− r−1
q

L∞(RN )

∫

Ω

us+1φRdx. (2.4)

Let us estimate each integral on the right side of (2.4) by Höldre’s inequality, we derive

⎛
⎝
∫

Ω

u|ΔφR|dx

⎞
⎠

p−1

≤
⎛
⎝
∫

Ω

|ΔφR| s+1
s φ

− 1
s

R dx

⎞
⎠

s(p−1)
s+1

⎛
⎝
∫

Ω

us+1φRdx

⎞
⎠

p−1
s+1

≤ R( Ns
s+1−2)(p−1)‖|Δφ1|φ− 1

s+1
1 ‖p−1

L
s+1

s (Ω)

⎛
⎝
∫

Ω

us+1φRdx

⎞
⎠

p−1
s+1

, (2.5)

⎛
⎝
∫

RN

uqφRdx

⎞
⎠

r−1
q

≥ ‖φR‖− (r−1)(q−1)
q

L1(RN )
Θr−1

R (t)

= R− N(r−1)(q−1)
q ‖φ1‖− (r−1)(q−1)

q

L1(RN )
Θr−1

R (t), (2.6)

and
∫

Ω

us+1φRdx ≥ ‖φR‖−s
L1(Ω)Θ

s+1
R (t)

= R−Ns‖φ1‖−s
L1(Ω)Θ

s+1
R (t). (2.7)

Therefore, substituting (2.5)–(2.7) into (2.4), one can deduce the inequality

Θ′
R(t) ≥ −c1R

(2−p)(N−1)+( Ns
s+1−2)(p−1)

⎛
⎝
∫

Ω

us+1φRdx

⎞
⎠

p−1
s+1

+ c2R
− N(r−1)(q−1)

q Θr−1
R (t)

∫

Ω

us+1φRdx
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≥ R− N(r−1)(q−1)
q − Ns(s+2−p)

s+1

⎛
⎝
∫

Ω

us+1φRdx

⎞
⎠

p−1
s+1

Θr+s+1−p
R (t)

× [c2 − c1R
2N−(1+N)p+ N(r−1)(q−1)

q +NsΘ−(r+s+1−p)
R (t)], (2.8)

where c1 = c0‖|Δφ1|φ− 1
s+1

1 ‖p−1

L
s+1

s (Ω)
, c2 = ‖φ1‖− (r−1)(q−1)

q

L1(RN )
‖φR‖− r−1

q

L∞(RN )
‖φ1‖−s

L1(Ω).

For 1 < r < rc , we have 2N − (1 + N)p + N(r−1)(q−1)
q + Ns < 0. Because of

ΘR(0) =
∫

Ω

u0φR(x)dx ≥ ε > 0

for some ε > 0. Thus, we see from (2.8) that there exist a large R0 and C0 such that

Θ′
R(t) ≥ C0Θr+s

R (t) for R > R0, t > 0.

Consequently, ΘR(t) blows up in finite time by the fact that r + s > 1.
For r = rc , we have 2N − (1 + N)p + N(r−1)(q−1)

q + Ns = 0. Now, we give the proof by contradiction.
Suppose ΘR(t) cannot blow up in finite time. According to (2.8), there must be

ΘR(t) ≤ (
c1

c2
)

1
r+s+1−p . (2.9)

On the other hand, making use of (2.4), (2.6) and (2.7), we deduce

ΘR(t) ≥ −c0R
2N−(1+N)pC(R) + c2R

2N−(1+N)pΘr+s
R (t)

= R2N−(1+N)p(c2Θr+s
R (t) − c0C(R)), (2.10)

where C(R) = (
∫
Ω

u|ΔφR|dx)p−1. Combining with (2.9) and the definition of φR(x) yields

C(R) → 0 as R → ∞,

and therefore, there exists a sufficient large R1 to satisfy

C(R) <
c2

2c0
Θr+s

R (t) for R > R1. (2.11)

It follows from (2.10) and (2.11) that

Θ′
R(t) ≥ c2

2
R2N−(1+N)pΘr+s

R (t).

Hence, ΘR(t) blows up at t = T = 2R−2N+(1+N)p

c2(r+s−1) Θ−(r+s−1)
R (0) due to r + s > 1, which contradicts with

our assumption. �

Next, we show that there exists a global solution utilizing the forward self-similar solution.

Theorem 2.2. For N ≥ 1, 2N
N+1 < p < 2, q > 1, and 0 ≤ s < (1 + 1

N )p − 2, suppose that r > rc, then
there exists a global solution u(x, t) of Cauchy problem (1.1)–(1.2) for small initial data u0(x) ≤ V (|x|),
and a non-global solution u(x, t) for large initial data u0(x) satisfying ΘR(0) ≥ c, where ΘR(0), V (|x|)
and c are defined by (2.1), (2.13) and (2.20), respectively.

Proof. We first show that there exists a global solution for small initial data. To this end, consider the
forward self-similar solution of problem (1.1)–(1.2). It takes the form

u(x, t) = (1 + t)−av

( |x|
(1 + t)b

)
,



ZAMP New critical exponents for a fast diffusive p-Laplacian equation Page 7 of 17 144

where

a =
pq + N(r − 1)

pq(r + s − 1) − N(2 − p)(r − 1)
, b =

q(r + s + 1 − p)
pq(r + s − 1) − N(2 − p)(r − 1)

.

Set η = |x|
(1+t)b , after an appropriate scaling, the resulting ODE for v is

{
(p − 1)|v′|p−2v′′ + N−1

η |v′|p−2v′ + av + bηv′ + Jvs+1 = 0,

v(0) = ζ > 0, |v′|p−2v′(0) = − limη→0+
Jηvs+1(η)

N ,

where J = (
∫
RN

vq(|x|)dx)
r−1

q .

We observe that a function ū(x, t) = (1 + t)−aV ( |x|
(1+t)b ) is a supersolution of problem (1.1)–(1.2) if

and only if V (η) satisfies the inequality

(p − 1)|V ′|p−2V ′′ +
N − 1

η
|V ′|p−2V ′ + aV + bηV ′ + JV s+1 ≤ 0, η > 0. (2.12)

Next, we try to find a positive solution of (2.12). Choosing

V (η) = ε(1 + Bηk)−A, (2.13)

where k = p
p−1 , A = p−1

2−p , and ε and B are positive constants to be determined later. A serial computation
shows that V (η) satisfies (2.12) if and only if

εABk[εp−2(ABk)p−1 − b]ηk(1 + Bηk)−A−1

+ ε(a − Nεp−2(ABk)p−1)(1 + Bηk)−A

+ εr+s

⎛
⎝
∫

RN

(1 + B|x|k)−Aqdx

⎞
⎠

r−1
q

(1 + Bηk)−A(s+1) ≤ 0. (2.14)

Since Akq = pq
2−p > 1 and As = (p−1)s

2−p > 0, there exist C1, C2 > 0 such that
∫

RN

(1 + B|x|k)−Aqdx ≤ C1, (2.15)

and

(1 + Bηk)−As ≤ C2 for all η ≥ 0. (2.16)

Then, we pick B = B(ε) to satisfy

εp−2(ABk)p−1 = b, i.e. B = ε
2−p
p−1 b

1
p−1 (Ak)−1.

For this choice of B, and in view of (2.15) and (2.16), (2.14) is equivalent to

a − Nb + Cεr+s−1 ≤ 0, (2.17)

where C is a positive constant. Throughout this paper, we assume that C denotes a positive constant
that is independent of x and t for convenience, which may be different from line to line.

Note that r > rc, it implies

a =
pq + N(r − 1)

q(r + s + 1 − p)
b <

(
N(q − 1)(p − N

q (s + 2 − p))

pq − N(s + 2 − p)
+

N

q

)
b = Nb.

Therefore, there exists ε0 such that (2.17) holds for all ε ∈ (0, ε0]. These arguments show that V (η) =
ε(1 + Bηk)−A satisfies (2.12) for all ε ∈ (0, ε0]. Using the comparison principle ([2]) we see that the
solution u(x, t) of problem (1.1)–(1.2) exists globally provided that u0(x) ≤ V (|x|).
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Next, we prove that the solution u(x, t) of problem (1.1)–(1.2) blows up in finite time for large initial
data when r > rc. Recalling (2.8) in the proof of Theorem 2.1, we have

Θ′
R(t) ≥ R2N−(1+N)p+Ns− Ns(s+2−p)

s+1

⎛
⎝
∫

Ω

us+1φRdx

⎞
⎠

p−1
s+1

× (c2R
−2N+(1+N)p− N(r−1)(q−1)

q −NsΘr+s+1−p
R (t) − c1)

≥ 1
2
c′Θr+s

R (t), (2.18)

with c′ = c2R
− N(r−1)(q−1)

q −Ns, as long as
1
2
c2R

−2N+(1+N)p− N(r−1)(q−1)
q −NsΘr+s+1−p

R (t) ≥ c1 for all t ∈ [0, T ). (2.19)

By virtue of (2.19), we are led to

ΘR(t) ≥
(

2c1

c2
R2N−(1+N)p+ N(r−1)(q−1)

q +Ns

) 1
r+s+1−p

.

Note that r > rc implies 2N − (1 + N)p + N(r−1)(q−1)
q + Ns > 0. Therefore, if ΘR(0) satisfies

ΘR(0) ≥
(

2c1

c2
R2N−(1+N)p+ N(r−1)(q−1)

q +Ns

) 1
r+s+1−p

:= c, (2.20)

then ΘR(t) increases and is bounded below by c for all t ∈ [0, T ). Making use of (2.18) and the fact that
r + s > 1, we conclude that u(x, t) blows up in finite time for large enough initial data u0(x). �

3. Second critical exponent

In this section, by means of the slow decay behavior of an initial data at spatial infinity, we find a second
critical exponent using test function method and comparison principle. Note that the case r > rc results
in α∗ < N.

First of all, we derive a sufficient condition to guarantee that the solution u(x, t) blows up at finite
time in the coexistence region.

Theorem 3.1. For N ≥ 1, 2N
N+1 < p < 2, q > 1, 0 ≤ s < (1 + 1

N )p − 2, r > rc and u0 = λφ(x), λ > 0. If
φ(x) ∈ Πα and 0 < α < α∗ or α ≥ α∗ with λ large enough, then the solution u(x, t) of Cauchy problem
(1.1)–(1.2) blows up in finite time.

Proof. We define the following test function

ψε(x) = Dεe
−ε|x|, ε > 0,

where Dε = 1∫
RN

e−ε|x|dx
= εN

∫
ωN

∞∫
0

e−τ τN−1dτds
. Then it is not difficult to verify that

∇ψε(x) = −εψε(x)
x

|x| , (3.1)

and ∫

RN

ψε(x)dx = 1. (3.2)
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Next, we introduce the auxiliary function

Φ(t) =
1
σ

∫

RN

uσψε(x)dx,

where 2 − p < σ < 1
p . Firstly, differentiating Φ(t), using (3.1) and Green’s formula, we obtain

Φ′(t) =
∫

RN

uσ−1ψεdiv(|∇u|p−2∇u)dx +

⎛
⎝

∫

RN

uqdx

⎞
⎠

r−1
q ∫

RN

uσ+sψεdx

= −(σ − 1)
∫

RN

uσ−2ψε|∇u|pdx + ε

∫

RN

uσ−1ψε
|∇u|p−2

|x| ∇u · xdx

+

⎛
⎝

∫

RN

uqdx

⎞
⎠

r−1
q ∫

RN

uσ+sψεdx

≥ (1 − σ)
∫

RN

uσ−2ψε|∇u|pdx − ε

∫

RN

uσ−1ψε|∇u|p−1dx

+

⎛
⎝

∫

RN

uqdx

⎞
⎠

r−1
q ∫

RN

uσ+sψεdx. (3.3)

Afterward, using Young’s inequality to the second term in the right side of (3.3), we get

ε

∫

RN

uσ−1ψε|∇u|p−1dx ≤ p − 1
p

∫

RN

uσ−2ψε|∇u|pdx +
εp

p

∫

RN

uσ+p−2ψεdx. (3.4)

Thus, substituting (3.4) into (3.3) and by the fact that 2 − p < σ < 1
p yields the following inequality

Φ′(t) ≥
⎛
⎝
∫

RN

uqdx

⎞
⎠

r−1
q ∫

RN

uσ+sψεdx − εp

p

∫

RN

uσ+p−2ψεdx. (3.5)

Then applying Hölder’s inequality to the last term in the right side of (3.5), and by (3.2), we see

∫

RN

uσ+p−2ψεdx =
∫

RN

uσ+p−2ψ
σ+p−2

σ+s
ε ψ

s+2−p
σ+s

ε dx ≤
⎛
⎝
∫

RN

uσ+sψεdx

⎞
⎠

σ+p−2
σ+s

. (3.6)

In view of 2 − p < σ < 1
p , 2N

N+1 < p < 2 and 0 ≤ s < (1 + 1
N )p − 2, it follows that σ+p−2

σ+s ∈ (0, 1). Hence,
substituting (3.6) into (3.5), we deduce

Φ′(t) ≥
⎛
⎝
∫

RN

uσ+sψεdx

⎞
⎠

σ+p−2
σ+s

⎡
⎢⎣
⎛
⎝
∫

RN

uqdx

⎞
⎠

r−1
q
⎛
⎝
∫

RN

uσ+sψεdx

⎞
⎠

s+2−p
σ+s

− εp

p

⎤
⎥⎦ . (3.7)
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Then we estimate each integral in the right side of (3.7) by virtue of inverse Hölder’s inequality, one can
see that

∫

RN

uσ+sψεdx ≥
⎛
⎝

∫

RN

uσψεdx

⎞
⎠

σ+s
σ

= (σΦ(t))
σ+s

σ , (3.8)

∫

RN

uqdx ≥
⎛
⎝

∫

RN

uσψεdx

⎞
⎠

q
σ
⎛
⎝
∫

RN

ψ
q

q−σ
ε dx

⎞
⎠

− q−σ
σ

, (3.9)

and calculate ∫

RN

ψ
q

q−σ
ε dx = Cε

Nq
q−σ

∫

RN

e− q
q−σ ε|x|dx = Cε

Nσ
q−σ

∫

RN

e− q
q−σ |y|dy ≤ Cε

Nσ
q−σ . (3.10)

Now, combining with (3.7)–(3.10) gives

Φ′(t) ≥ (σΦ(t))
σ+p−2

σ

[
Cε− N(r−1)

q (σΦ(t))
r+s+1−p

σ − εp

p

]

≥ c3

2
(Φ(t))

r+s+σ−1
σ ,

with c3 = Cσ
r+s+σ−1

σ ε− N(r−1)
q , as long as

1
2
Cε− N(r−1)

q (σΦ(t))
r+s+1−p

σ ≥ εp

p
,

which yields

Φ(t) ≥ 1
σ

(
2

Cp

) σ
r+s+1−p

ε(p+ N(r−1)
q ) σ

r+s+1−p .

Thus, if Φ(0) satisfies

Φ(0) ≥ 1
σ

(
2

Cp

) σ
r+s+1−p

ε(p+ N(r−1)
q ) σ

r+s+1−p , (3.11)

then Φ(t) blows up in finite time follows from r+s+σ−1
σ > 1.

It remains to verify the blow-up condition (3.11). Since φ(x) ∈ Πα and 0 < α < α∗, then there exist
constants C3 and R2 such that φ(x) ≥ C3|x|−α for all |x| ≥ R2. We compute that

Φ(0) =
1
σ

∫

RN

uσ
0ψε(x)dx

≥ λσCσ
3

σ
εN

∫

|x|≥R2

|x|−ασe−ε|x|dx

=
λσCσ

3

σ
εασ

∫

|y|≥εR2

|y|−ασe−|y|dy. (3.12)

Comparing (3.11) with (3.12), when 0 < α < α∗ = pq+N(r−1)
q(r+s+1−p) , we have

ασ <

(
p +

N(r − 1)
q

)
σ

r + s + 1 − p
=

pq + N(r − 1)
q(r + s + 1 − p)

σ,

then we may choose ε > 0 so small that (3.11) holds. If α ≥ α∗, there exists λε > 0 for any fixed ε > 0
such that (3.11) holds for all λ > λε. �
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Next, we prove the existence of the global solution by constructing an upper solution of the problem
(1.1)–(1.2).

Theorem 3.2. For N ≥ 1, 2N
N+1 < p < 2, q > 1, 0 ≤ s < (1 + 1

N )p − 2, r > rc and u0 = λφ(x), λ > 0. If
φ(x) ∈ Πα and α∗ < α < N , then there exist positive constants λ0 = λ0(φ) and C such that the solution
u(x, t) of Cauchy problem (1.1)–(1.2) exists globally for λ ∈ (0, λ0), and satisfies

‖u(x, t)‖L∞(RN ) ≤ Ct−αβ for all t > 0,

where β = 1
p−α(2−p) .

Proof. Since φ(x) ∈ Πα and α∗ < α < N , there exists a positive constant C4 such that φ(x) ≤ C4(1 +
|x|)−α for all x ∈ R

N . Choosing M > C4 and considering the following Cauchy problem
{

Ut = div(|∇U |p−2∇U), x ∈ R
N , t > 0,

U(x, 0) = M |x|−α, x ∈ R
N .

(3.13)

It is known that the existence and uniqueness of the solution of (3.13) have been well established and the
radially symmetric self-similar solution

UM,α(x, t) = t−αβfM (
|x|
tβ

) (3.14)

was given in [20,21], where β = 1
p−α(2−p) and the positive function fM satisfies

{
(|f ′

M |p−2f ′)′ + N−1
ξ |f ′

M |p−2f ′(ξ) + βξf ′
M (ξ) + αβfM (ξ) = 0, ξ > 0,

fM ≥ 0, ξ ≥ 0, f ′
M (0) = 0, limξ→∞ ξαfM (ξ) = M.

Note that β > 0, since 2N
N+1 < p < 2 and α < N . Then by limξ→∞ ξαfM (ξ) = M > C4, there is a positive

constant R3 such that

ξαfM (ξ) > C4 for any ξ ≥ R3.

Let γ = fM (R3) = min{fM (ξ)|ξ ∈ [0, R3]} > 0, it is not difficult to verify that

φ(x) ≤ UM,α(x, t0) for all x ∈ R
N ,

where t0 ∈ (0, 1) and t−αβ
0 γ > ‖φ‖∞.

Next, through a simple calculation, we obtain
∫

RN

Uq
M,α(x, t + t0)dx = (t + t0)−αβq

∫

RN

fq
M

( |x|
(t + t0)β

)
dx

= (t + t0)β(N−αq)

∫

RN

fq
M (|y|)dy

≤ C(t + t0)β(N−αq). (3.15)

Now, let h(t) be the solution of the following ordinary differential equation
{

h′(t) = Cλr+s−1(t + t0)−θhr+s(t), t > 0,

h(0) = 1,
(3.16)

where θ > 1. The local existence and uniqueness of solution h(t) for (3.16) follow from the standard
theory of initial value problem on ordinary differential equation.
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Afterward, we claim that there exists λ0 = λ0(φ) > 0 such that h(t) is bounded in [0,+∞) for all
λ ∈ [0, λ0). Integrating (3.16) over [0, t] to compute

1 − h−(r+s−1)(t) = C(r + s − 1)λr+s−1

t∫

0

(τ + t0)−θdτ ≤ C(r + s − 1)λr+s−1t−θ+1
0

θ − 1
.

Let λ0 = λ0(φ) > 0 satisfies C(r+s−1)λr+s−1
0 t−θ+1

0
θ−1 = 1, and define

Cλ =
C(r + s − 1)λr+s−1t−θ+1

0

θ − 1
, hλ = (

1
1 − Cλ

)
1

r+s−1 ,

for λ ∈ [0, λ0). It is easy to verify that h(t) ≤ hλ in [0,+∞).
Then, we construct the following global solution

ū(x, t) = λh(t)UM,α(x, t + t0),

where UM,α(x, t + t0) is the solution of (3.13) and h(t) solves (3.16) with θ = αqs−(N−αq)(r−1)
pq−αq(2−p) . Note that

θ > 1 for α > α∗ = pq+N(r−1)
q(r+s+1−p) . Combining with (3.15), it is easy to verify that

ūt − div(|∇ū|p−2∇ū) −
⎛
⎝
∫

RN

ūq(x, t)dx

⎞
⎠

r−1
q

ūs+1

= λh′(t)UM,α − λr+shr+s(t)

⎛
⎝
∫

RN

Uq
M,α(x, t + t0)dx

⎞
⎠

r−1
q

Us+1
M,α

≥ λUM,α[h′(t) − Cλr+s−1(t + t0)
β(N−αq)(r−1)

q hr+s(t)‖UM,α‖s
∞]

= λUM,α[h′(t) − Cλr+s−1(t + t0)−(θ−αβs)hr+s(t)‖UM,α‖s
∞]

≥ λUM,α[h′(t) − Cλr+s−1(t + t0)−θhr+s(t)]

= 0. (3.17)

Moreover, the initial data ū(x, 0) satisfy

ū(x, 0) = λUM,α(x, t0) ≥ λφ(x) = u0. (3.18)

Therefore, it follows from (3.17) and (3.18) that ū(x, t) is a global supersolution of Cauchy problem
(1.1)–(1.2). Furthermore, we derive the decay estimate for the solution u(x, t) as follows

‖u(x, t)‖L∞(RN ) ≤ λhλ‖UM,α(x, t)‖L∞(RN ) ≤ Ct−αβ , (3.19)

for all t > 0. �

4. Large time behavior and life span

In this section, we give the large time behavior of the global solution and a life span of the non-global
solution by the scaling technique and constructing a blow-up supersolution of problem (1.1)–(1.2).

Firstly, the large time behavior of the global solution is represented in the following theorem.

Theorem 4.1. Suppose that the conditions in Theorem 3.2 hold, and lim|x|→∞ |x|αφ(x) = M > 0, then
the solution u(x, t) of Cauchy problem (1.1)–(1.2) satisfies

tαβ |u(x, t) − Uλ,M,α(x, t)| → 0 as t → ∞
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uniformly in compact set of RN for λ ∈ (0, λ0), where λ0, β are same as in Theorem 3.2, and Uλ,M,α(x, t)
is the solution of the following Cauchy problem

{
Ut = div(|∇U |p−2∇U), x ∈ R

N , t > 0,

U(x, 0) = λM |x|−α, x ∈ R
N .

Proof. We define uk(x, t) = kαu(kx, kp−α(2−p)t) with k > 1. Then uk(x, t) solves
⎧⎨
⎩

ukt = div(|∇uk|p−2∇uk) + kp−α(r+s+1−p)(
∫
RN

uq
kdx)

r−1
q us+1

k , x ∈ R
N , t > 0,

uk(x, 0) = λkαφ(kx), x ∈ R
N .

(4.1)

Applying the decay estimate (3.19) for the global solution u(x, t), we have

‖uk(x, t)‖L∞(RN ) = kα‖u(kx, kp−α(2−p)t)‖L∞(RN ) ≤ Ct−αβ .

Thus, {uk(x, t)} is uniformly bounded in R
N × [δ,∞) for any δ > 0. As was shown in [2], we conclude

that uk(x, t) is relatively compact in L∞
loc(R

N × (0,∞)). Then using the Ascoli–Arzela theorem and a
diagonal sequence method in δ, we see that for any sequence kj → ∞, there exist a subsequence k′

j → ∞
and a function ω(x, t) ∈ C(RN × (0,∞)) such that

uk′
j
(x, t) → ω(x, t) as k′

j → ∞
local uniformly in R

N × (0,∞).
Next, we show that ω(x, t) = Uλ,M,α(x, t). Firstly, the weak solution uk(x, t) satisfies (4.1) in the

distribution sense
∫

RN

uk(x, t)ψ(x, t)dx −
∫

RN

uk(x, 0)ψ(x, 0)dx =

t∫

0

∫

RN

ukψτdxdτ

−
t∫

0

∫

RN

|∇uk|p−2∇uk · ∇ψ + kp−α(r+s+1−p)

⎛
⎝
∫

RN

uq
kdx

⎞
⎠

r−1
q

us+1
k ψdxdτ, (4.2)

for any nonnegative function ψ(x, t) ∈ C∞
0 (RN × [0,∞)). Then by virtue of the assumption

lim|x|→∞ |x|αφ(x) = M > 0, it follows that
∫

RN

uk(x, 0)ψ(x, 0)dx =
∫

RN

λkαφ(kx)ψ(x, 0)

→ λM

∫

RN

|x|−αψ(x, 0)dx (4.3)

as k = k′
j → ∞. On the other hand, using variable transformation to the last term on the right side of

(4.2), we deduce that

t∫

0

∫

RN

kp−α(r+s+1−p)

⎛
⎝
∫

RN

uq
kdx

⎞
⎠

r−1
q

us+1
k ψdxdτ

=

kp−α(2−p)t∫

0

⎛
⎝
∫

RN

uq(kx, τ)dx

⎞
⎠

r−1
q ∫

RN

kαus+1(kx, τ)ψ(x, k−p+α(2−p)τ)dxdτ. (4.4)
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We know from the proof of Theorem 3.2 that ū(x, t) is a supersolution of Cauchy problem (1.1)–(1.2),
and the condition limξ→∞ ξαfM (ξ) = M , then we get

kαus+1(kx, t) ≤ kαūs+1(kx, t) = kαλs+1hs+1(t)(t + t0)−αβ(s+1)fs+1
M

( |kx|
(t + t0)β

)

= k−αsλs+1|x|−α(s+1)hs+1(t)
[( |kx|

(t + t0)β

)α

fM

( |kx|
(t + t0)β

)]s+1

→ 0 (4.5)

as k = k′
j → ∞. Similarly, we have

uq(kx, t) → 0 as k = k′
j → ∞. (4.6)

Thus, by (4.5), (4.6) and the Lebesgue-dominated convergence theorem, (4.4) turns into

t∫

0

∫

RN

kp−α(r+s+1−p)

⎛
⎝
∫

RN

uq
kdx

⎞
⎠

r−1
q

us+1
k ψdxdτ → 0 (4.7)

as k = k′
j → ∞. Let k = k′

j → ∞ in (4.2), it follows from (4.3) and (4.7) that
∫

RN

ω(x, t)ψ(x, t)dx − λM

∫

RN

|x|−αψ(x, 0)dx

=

t∫

0

∫

RN

ωψτ − |∇ω|p−2∇ω · ∇ψdxdτ. (4.8)

This implies that ω(x, t) is the weak solution to the problem
{

ωt = div(|∇ω|p−2∇ω), x ∈ R
N , t > 0,

ω(x, 0) = λM |x|−α, x ∈ R
N ,

(4.9)

then by the uniqueness of the weak solution of (4.9), we deduce that ω(x, t) = Uλ,M,α(x, t). Thus, we
have proved that

uk(x, t) → Uλ,M,α(x, t) as k → ∞ (4.10)

uniformly in compact set of RN × (0,∞). Let t = 1 in (4.10), we obtain

uk(x, 1) → Uλ,M,α(x, 1) as k → ∞,

that is

kαu(kx, kp−α(2−p)) → fλ,M (|x|) as k → ∞ (4.11)

uniformly in compact set of RN . Setting y = kx and τ = kp−α(2−p) in (4.11), then we get

τ
α

p−α(2−p) u(y, τ) → fλ,M

( |y|
τ

1
p−α(2−p)

)
as τ → ∞.

Therefore, we conclude from (3.14) that

tαβ |u(x, t) − Uλ,M,α(x, t)| → 0 as t → ∞
uniformly in compact set of RN , where β = 1

p−α(2−p) . �

Finally, we give a life span of the non-global solution by constructing a blow-up supersolution of
problem (1.1)–(1.2).
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Theorem 4.2. Suppose that u(x, t) is a solution of problem (1.1)–(1.2) under the conditions of Theo-
rem 3.1, which blows up at finite time T , and ‖φ‖L∞(RN ) = lim|x|→∞ φ = φ∞. Then the life span of
u(x, t) satisfies

c4

r + s − 1
(λφ∞(1 + λφ∞) + 1)−(r+s−1) ≤ T ≤ c5

r + s − 1
(λφ∞)−(r+s−1),

where

c4 ≤ min

⎧⎪⎪⎨
⎪⎪⎩

3
c6((2 − p)L4 + L3)L

p−2
2

,
3

2(p − 1)Lp
2

,
3

(
∫
RN

(1 + φ)−qdx)
r−1

q

, c5

⎫⎪⎪⎬
⎪⎪⎭

,

c5 =
2σ

r+s+σ−1
σ

c3
,

c6 = max{1, (1 + L1)3−2p},

L1 = max φ, L2 = max |∇φ|, L3 = max |Δφ|, L4 = max |D2φ|.
Proof. Firstly, in the proof of Theorem 3.1, we have already obtained an upper bound of the blow-up
time for u(x, t) in the measure of Φ(t) as follows

T ≤ 2σ

c3(r + s − 1)

⎛
⎝λσ

σ

∫

RN

φσψεdx

⎞
⎠

− r+s−1
σ

.

Then, it follows from ‖φ‖L∞(RN ) = lim|x|→∞ φ = φ∞ that there exists R4 such that |φ − φ∞| < ε for
|x| > R4 and any ε > 0. Meanwhile, by the definition of test function ψε(x), we have

T ≤ 2σ

c3(r + s − 1)

(
λσ

σ
(φ∞ − ε)σ

)− r+s−1
σ

for R2 > R4. Thus, from the arbitrariness of ε, let ε → 0 can yield that

T ≤ c5

r + s − 1
(λφ∞)−(r+s−1), (4.12)

where c5 = 2σ
r+s+σ−1

σ

c3
.

On the other hand, in order to estimate T from below, we shall construct a suitable supersolution of
(1.1)–(1.2). To this end, we consider the following ordinary differential equation

{
z′(t) = 1

c4
zr+s(t), t > 0,

z(0) = λφ∞(1 + λφ∞) + 1.
(4.13)

By a direct calculation, one can see that the solution z(t) of (4.13) is given by

z(t) = [(λφ∞(1 + λφ∞) + 1)−(r+s−1) − r + s − 1
c4

t]−
1

r+s−1 ,

and z(t) > 1 for all 0 < t < c4
r+s−1 (λφ∞(1 + λφ∞) + 1)−(r+s−1).

Next, we define

w(x) =
1

1 + φ(x)
,

and let

L1 = max φ, L2 = max |∇φ|, L3 = max |Δφ|, and L4 = max |D2φ|.
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Now, we construct the following blow-up supersolution

ū(x, t) = z(t)w(x).

Since z(t) > 1, 0 < w(x) ≤ 1 and r + s > 1, we then deduce

ūt − div
(|∇ū|p−2∇ū

)−
⎛
⎝
∫

RN

ūqdx

⎞
⎠

r−1
q

ūs+1

= z′w + zp−1div
(
|∇φ|p−2∇φw2(p−1)

)
− zr+s

⎛
⎝
∫

RN

wqdx

⎞
⎠

r−1
q

ws+1

≥ 1
c4

zr+sw − ((2 − p)L4 + L3) Lp−2
2 zp−1w2(p−1) − 2(p − 1)Lp

2z
p−1w2p−1

− zr+s

⎛
⎝
∫

RN

wqdx

⎞
⎠

r−1
q

ws+1

≥
(

3
c4

− c6((2 − p)L4 + L3)L
p−2
2

)
zp−1w +

(
3
c4

− 2(p − 1)Lp
2

)
zp−1w

+

⎛
⎜⎝ 3

c4
−
⎛
⎝
∫

RN

(1 + φ)−qdx

⎞
⎠

r−1
q

⎞
⎟⎠ zr+sw

by a simple calculation, where c6 = max{1, (1 + L1)3−2p}. Therefore, applying the comparison principle
([2]) and

c4 ≤ min

⎧⎪⎪⎨
⎪⎪⎩

3
c6((2 − p)L4 + L3)L

p−2
2

,
3

2(p − 1)Lp
2

,
3

(
∫
RN

(1 + φ)−qdx)
r−1

q

⎫⎪⎪⎬
⎪⎪⎭

,

it can be easily shown that ū(x, t) = z(t)w(x) is a supersolution of problem (1.1)–(1.2). We then obtain
a lower bound of the blow-up time, i.e.,

T ≥ c4

r + s − 1
(λφ∞(1 + λφ∞) + 1)−(r+s−1). (4.14)

Therefore, combining (4.12), (4.14) and c4 ≤ c5 , we get the life span of the non-global solution for
problem (1.1)–(1.2) as follows

c4

r + s − 1
(λφ∞(1 + λφ∞) + 1)−(r+s−1) ≤ T ≤ c5

r + s − 1
(λφ∞)−(r+s−1).
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