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Abstract. This paper is concerned with an initial value problem of the compressible full Hall-MHD equations in three-
dimensional whole space. Both the global existence and the optimal decay rates of solutions are obtained, when the smooth
initial data are sufficiently close to the non-vacuum equilibrium in H1. As a by-product of the uniform estimates, the
vanishing limit of Hall coefficient is also justified.
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1. Introduction

The Hall effect was firstly discovered by Edwin Hall in 1879 (cf. [19]) and is the production of a volt-
age difference (the Hall voltage) across an electrical conductor, transverse to an electric current in the
conductor and to an applied magnetic field perpendicular to the current. It restores the influence of the
electric current in the Lorentz force occurring in Ohm’s law. The motion of a conducting fluid with Hall
effects in magnetic field is governed by the mathematical model of Hall magnetohydrodynamics (for short,
Hall-MHD, cf. [1,23]):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) + ∇p = μΔu + (μ + λ)∇div u + (∇ × b) × b,

cV [(ρθ)t + div(ρuθ)] + p div u = κΔθ +
μ

2

∣
∣∇u + (∇u)�∣

∣2 + λ(div u)2 + ν|∇ × b|2,
bt − ∇ × (u × b) + ε∇ × (

ρ−1(∇ × b) × b
)

= νΔb,

div b = 0,

(1.1)

where the unknown functions ρ, u ∈ R
3, θ and b ∈ R

3 are the density of the fluid, velocity, temperature
and magnetic field, respectively. In this paper, we focus our interest on the polytropic ideal fluids which
satisfy the equations of states p = Rρθ and e = cVθ, where p and e denote the pressure and internal
energy of the fluids, respectively. The constants μ and λ are the viscosity coefficients, κ > 0 is the
heat conductivity, ν > 0 is the resistivity coefficient acting as the diffusion coefficient of the magnetic
field, ε > 0 is the Hall coefficient, while R and cV are the perfect gas constant and the specific heat at
constant volume, respectively. For simplicity, we assume throughout this paper that the physical constants
κ = ν = R = cV ≡ 1. Moreover, the viscosity coefficients μ and λ are assumed to satisfy the physical
conditions:

μ > 0, 2μ + 3λ ≥ 0,
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which ensures that (1.1)2 is a Láme system.
In this paper, we consider an initial value problem of (1.1) with the far-field behavior

(ρ, u, θ, b)(x, t) → (ρ∞, 0, θ∞, 0) as |x| → ∞, (1.2)

and the initial conditions
(ρ, u, θ, b)|t=0 = (ρ0, u0, θ0, b0)(x), x ∈ R

3. (1.3)

The Hall-MHD system (1.1) can be derived from fluid mechanics with appropriate modifications to
account for electrical forces and Hall effects, and is believed to be an essential feature in the problems
of magnetic reconnection in space plasmas, star formulation, neutron stars and geo-dynamo (see, for ex-
ample, [3,16,20,23,30,33]). From the mathematical point of view, the Hall term is quadratic in magnetic
field and involves second-order derivatives. So, the mathematical analysis of Hall-MHD is more compli-
cated than that of the conventional MHD system, where the Hall effect is small and can be neglected
(e.g., in the laminar situation). We refer to [15,21,26,27,29,31] and among others for the studies of com-
pressible MHD equations without Hall term. In the past few years, the incompressible Hall-MHD system
has been studied by Chae and his coauthors (cf. [4–9] and among others), where the global weak/local
strong solutions with large data, the global strong solutions with small data, the blow-up criteria and the
singularity analysis results were obtained. Compared with the incompressible case, the compressible Hall-
MHD system receives less attention from mathematicians. For the compressible isentropic case, the global
existence and asymptotic behavior were proved in [13,18,34], when the initial data are sufficiently close
to the non-vacuum equilibrium. The aim of this paper is to treat the compressible heat-conductive case
and to study the large-time behavior of global classical solutions to the initial value problem (1.1)–(1.3).

Without loss of generality, it is assumed that ρ∞ = θ∞ = 1. Then, the main result of this paper can
be stated as follows.

Theorem 1.1. (I. Global Existence) For any given positive number M0 > 0 (not necessarily small), assume
that the initial data (ρ0 − 1, u0, θ0 − 1, b0) ∈ H3 satisfy

‖∇2(ρ0 − 1, u0, θ0 − 1, b0)‖H1 ≤ M0, (1.4)

then there exists a positive constant η0 > 0, depending on M0, such that the problem (1.1)–(1.3) has a
unique global solution (ρ, u, θ, b) on R

3 × (0,∞) satisfying infx,t ρ(x, t) > 0, infx,t θ(x, t) > 0, and

‖(ρ − 1, u, θ − 1, b)(t)‖2
H3 +

t∫

0

(‖∇ρ(τ)‖2
H2 + ‖∇(u, θ, b)(τ)‖2

H3)dτ

≤ C‖(ρ0 − 1, u0, θ0 − 1, b0)‖2
H3

(1.5)

for all t ≥ 0, provided
‖(ρ0 − 1, u0, θ0 − 1, b0)‖H1 ≤ η0, (1.6)

where C > 0 is a generic positive constant independent of t.
(II. Decay Rates) Assume further that Λ � ‖(ρ0 − 1, u0, θ0 − 1, b0)‖L1 is bounded. Then, there exists

a positive constant 0 < η1 ≤ η0, depending on M0 and Λ, such that for any t ≥ 0

‖∇k(ρ − 1, u, θ − 1, b)(t)‖L2 ≤ C(1 + t)−( 3
4+ k

2 ), k = 0, 1, (1.7)

and that for any t ≥ T̄ with T̄ > 0 being large enough and depending on M0,Λ,

‖∇2(ρ − 1, u, θ − 1)(t)‖H1 ≤ C(1 + t)− 7
4 , (1.8)

‖∇kb(t)‖L2 ≤ C(1 + t)−( 3
4+ k

2 ), k = 2, 3, (1.9)

provided ‖(ρ0 − 1, u0, θ0 − 1, b0)‖H1 ≤ η1.
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Remark 1.1. Compared with the decay estimates of linearized system (cf. Lemma 2.1), the decay rates
stated in the second part of Theorem 1.1 are optimal, except the one of ‖∇3(ρ − 1, u, θ − 1)‖L2 . Indeed,
if the initial data are more regular, say (ρ0 − 1, u0, θ0 − 1, b0) ∈ Hk with k ≥ 4, then one can obtain the
optimal decay rates of the solutions up to the (k − 1)th order derivatives of (ρ − 1, u, θ − 1) and the kth
order derivatives of b. The lack of the optimal decay estimates of ‖∇k(ρ − 1, u, θ − 1)‖L2 is mainly due to
the insufficient dissipation of density and the strong coupling of fluid quantities.

As a by-product, we can study the vanishing limit of Hall coefficient (i.e., ε → 0).

Theorem 1.2. Let (ρ, u, θ, b) be the classical solution of Hall-MHD system (1.1) obtained in Theorem 1.1.
Then, as ε → 0, it holds that

(ρ, u, θ, b) → (ρ̄, ū, θ̄, b̄) strongly in C([0, T ];H2) (1.10)

for any 0 < T < ∞, where (ρ̄, ū, θ̄, b̄) is the classical solution of MHD system (4.1) without Hall effects
(cf. Theorem 4.1). Moreover,

sup
0≤t≤T

‖(ρ − ρ̄, u − ū, θ − θ̄, b − b̄)(t)‖2
H2 ≤ C(T )ε2, (1.11)

where C(T ) is a positive constant depending on T .

The proofs of Theorems 1.1 and 1.2 are similar to the ones in [34,35], based on the standard L2-method
and the origin ideas developed by Matsumura-Nishida [28]. It is worth noting that though the H1-
perturbation of initial data is small, the higher-order derivatives could be of large oscillations. Compared
with the results in [11,35] where the authors only obtained the optimal decay estimates for the Lp-
norm (2 ≤ p ≤ 6) of the solution and the L2-norm of its first-order derivative, the decay rates of both
‖∇2(ρ, u, θ, b)(t)‖L2 and ‖∇3b(t)‖L2 for large t > 0 are also optimal in the present paper. This will be
achieved by making a full use of the H1-decay estimates and the Sobolev interpolation inequality (see
(3.74) and (3.75)). The key point here is that all the estimates are uniform in the Hall coefficient ε.

The rest of this paper is organized as follows. In Sect. 2, we first reformulate the problem and recall
some known results about the linear system. Theorems 1.1 and 1.2 will be shown in Sects. 3 and 4,
respectively, based on the global uniform-in-ε estimates.

2. Reformulation

In order to estimate the solutions, we set

φ � ρ − 1, ψ � θ − 1 with φ0 � ρ0 − 1, ψ0 � θ0 − 1.

Then, the system (1.1)–(1.3) can be reformulated in the form:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φt + div u = S1,

ut − μΔu − (μ + λ)∇div u + ∇φ + ∇ψ = S2,

ψt − Δψ + div u = S3,

bt − Δb = S4,

div b = 0,

(2.1)

with the initial data
(φ, u, ψ, b)|t=0 = (φ0, u0, ψ0, b0) (2.2)

and the far-field boundary conditions

(φ, u, ψ, b) → (0, 0, 0, 0), as |x| → ∞, (2.3)
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where the nonlinear terms Si(i = 1, 2, 3, 4) on the right-hand side are defined as follows:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S1 � −φ div u − u · ∇φ,

S2 � −u · ∇u − h(φ) [μΔu + (μ + λ)∇div u] + g(φ)(∇ × b) × b + [h(φ) − ψg(φ)] ∇φ,

S3 � −u · ∇ψ − ψ div u − h(φ)Δψ + g(φ)
[μ

2

∣
∣∇u + (∇u)�∣

∣2 + λ(div u)2 + |∇ × b|2
]
,

S4 � −u · ∇b + b · ∇u − b div u − ε∇ × [g(φ)((∇ × b) × b)] ,

(2.4)

and h(·), g(·) are the functions of φ given by

h(φ) =
φ

φ + 1
and g(φ) =

1
φ + 1

. (2.5)

It is clear that for smooth solutions, the problem (1.1)–(1.3) is equivalent to the one (2.1)–(2.3).
Moreover, the left-hand side of (2.1) is indeed the linearized Navier–Stokes equations coupled with a heat
equation. In fact, let

A �

⎛

⎝
0 div 0
∇ −μΔ − (μ + λ)∇div ∇
0 div −Δ

⎞

⎠ . (2.6)

Then, it is easy to see that (U � (φ, u, ψ))

U(t) = e−tAU(0) and B(t) = e−tΔB(0)

solve the linearized Navier–Stokes equations Ut + AU = 0 (cf. [11,24,25]) and the heat equations Bt −
ΔB = 0 (cf. [32]), respectively. Thus, it follows from [11,24,25] and [35] that

Lemma 2.1. Assume that (U0, B0) ∈ L1 ∩H3. Let U � U(x, t) and B(t) � B(x, t) be the smooth solutions
of Ut + AU = 0 and Bt − ΔB = 0, respectively. Then, for any k ∈ {0, 1, 2, 3},

‖∇k(U,B)(t)‖L2 ≤ C(1 + t)−( 3
4+ k

2 )
(‖(U0, B0)‖L1 + ‖∇k(U0, B0)‖L2

)
, (2.7)

where C is a generic positive constant depending only on μ and λ.

Based on Lemma 2.1, it is easily deduced from the Duhamel’s principle that

Lemma 2.2. Assume that the pair of functions (φ, u, ψ, b) is the smooth solution of (2.1) with initial data
(φ0, u0, ψ0, b0) ∈ L1 ∩ H3. Then, for any k ∈ {0, 1, 2, 3},

‖∇k(φ, u, ψ, b)(t)‖L2 ≤ C(1 + t)−( 3
4+ k

2 )‖(φ0, u0, ψ0, b0)‖L1∩Hk

+ C

t∫

0

(1 + t − τ)−( 3
4+ k

2 )‖(S1, S2, S3, S4)‖L1∩Hkdτ,
(2.8)

where C is a generic positive constant depending only on μ and λ.

The following product and commutator estimates [22] will be used repeatedly in the derivations of the
global a priori estimates.

Lemma 2.3. Let f, g be the smooth functions in Schwartz class. Then, for any s > 0 and p ∈ (1,+∞),
there exists a generic positive constant C > 0 such that

‖Ds(fg)‖Lp ≤ C(‖f‖Lp1 ‖Dsg‖Lq1 + ‖Dsf‖Lp2 ‖g‖Lq2 ) (2.9)

and
‖Ds(fg) − fDsg‖Lp ≤ C(‖∇f‖Lp1 ‖Ds−1g‖Lq1 + ‖Dsf‖Lp2 ‖g‖Lq2 ), (2.10)

where p1, p2 > 1 satisfy
1
p

=
1
p1

+
1
q1

=
1
p2

+
1
q2

. (2.11)
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We also need the following simple facts (see, for example, [35]), which will be used to derive the decay
rates.

Lemma 2.4. Assume that a, b, c ∈ R satisfy 0 ≤ a ≤ b, b > 1 and c > 0. Then, there exists a positive
constant C, depending only on a, b, c, such that for any t > 0,

t∫

0

(1 + t − τ)−a(1 + τ)−bdτ +

t∫

0

(1 + τ)−ae−c(t−τ)dτ ≤ C(1 + t)−a. (2.12)

Finally, we recall the local existence theorem of (1.1)–(1.3) [also cf. the problem (2.1)–(2.3)], which
can be proved by using the Schauder fixed-point theorem (see, e.g., [12–15]).

Lemma 2.5. Assume that the initial data satisfy

(ρ0 − 1, u0, θ0 − 1, b0) ∈ H3, inf
x∈R3

ρ0(x) > 0, div b0 = 0. (2.13)

Then, there exists a small positive time T ∗ > 0 such that the problem (1.1)–(1.3) has a unique classical
solution (ρ, u, θ, b) on R

3 × [0, T ∗] satisfying

(ρ − 1, u, θ − 1, b) ∈ C([0, T ∗];H3) ∩ L2(0, T ∗;H4), inf
x∈R3,t∈[0,T ∗]

ρ(x, t) > 0. (2.14)

3. Proof of Theorem 1.1

3.1. Global existence of classical solutions

To establish the global well-posedness of classical solutions stated in Theorem 1.1, it suffices to prove
Theorem 3.1.

Theorem 3.1. Given any positive number K > 0 (not necessarily small), assume that

(φ0, u0, ψ0, b0) ∈ H3, ‖∇2(φ0, u0, ψ0, b0)‖H1 ≤ K. (3.1)

Then, there exists a positive constant η > 0, depending only on μ, λ and K, such that the problem
(2.1)–(2.3) has a unique global classical solution (φ, u, ψ, b) on R

3 × [0,∞) satisfying
⎧
⎪⎪⎨

⎪⎪⎩

‖∇(φ, u, ψ, b)(t)‖2
H2 +

t∫

0

(‖∇2(u, ψ, b)‖2
H2 + ‖∇2φ‖2

H1

)
ds ≤ C‖∇(φ0, u0, ψ0, b0)‖2

H2 ,

‖(φ, u, ψ, b)(t)‖2
H1 +

t∫

0

(‖∇(u, ψ, b)‖2
H1 + ‖∇φ‖2

L2

)
ds ≤ C‖(φ0, u0, ψ0, b0)‖2

H1 ,

(3.2)

for any t ≥ 0, provided
‖(φ0, u0, ψ0, b0)‖H1 ≤ η. (3.3)

In order to prove Theorem 3.1, we make the following a priori assumptions. For any given M > 1 (not
necessarily small), assume that

sup
0≤t≤T

‖∇2(φ, u, ψ, b)(t)‖H1 ≤ M (3.4)

and
sup

0≤t≤T
‖(φ, u, ψ, b)(t)‖H1 ≤ δ, (3.5)

where δ > 0 is a positive constant, depending on M , and satisfies

0 < δ ≤ δ0 � (4C2M)−1, (C is the Sobolev embedding constant of (3.7)). (3.6)
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Our main purpose is to close the a priori assumptions (3.4) and (3.5) by choosing ‖(φ0, u0, ψ0, b0)‖H1

suitably small. To begin, we first observe that due to (3.4)–(3.6) and Sobolev embedding inequality (cf.
[2]),

‖φ(t)‖L∞ ≤ C‖∇φ‖ 1
2
L2‖∇2φ‖ 1

2
L2 ≤ 1

2
, ∀ t ∈ [0, T ], (3.7)

which indicates that
1
2

≤ inf
x,t

φ(x, t) + 1 ≤ sup
x,t

φ(x, t) + 1 ≤ 3
2
, (3.8)

and moreover,
|h(φ)| ≤ C|φ|, |h(k)(φ)|, |g(k−1)(φ)| ≤ C, ∀ 1 ≤ k ∈ Z

+. (3.9)

First of all, we derive the elementary L2-estimates of (φ, u, ψ, b).

Lemma 3.1. Under the assumptions (3.4) and (3.5), one has

d
dt

‖(φ, u, ψ, b)‖2
L2 + ‖∇(u, ψ, b)‖2

L2 ≤ Cδ
1
2 M

1
2 ‖∇(φ, u, ψ, b)‖2

L2 . (3.10)

Proof. Multiplying (2.1)1, (2.1)2, (2.1)3, (2.1)4 by φ, u, ψ, b in L2, respectively, and integrating by parts,
we obtain after adding them together that

1
2

d
dt

‖(φ, u, ψ, b)‖2
L2 +

(
μ‖∇u‖2

L2 + (μ + λ)‖div u‖2
L2 + ‖∇ψ‖2

L2 + ‖∇b‖2
L2

)

= 〈S1, φ〉 + 〈S2, u〉 + 〈S3, ψ〉 + 〈S4, b〉,
(3.11)

where 〈·, ·〉 denotes the standard L2-inner product.
We are now in a position of estimating each term on the right-hand side of (3.11). First, integrating

by parts and using Sobolev inequality, by (3.5) we easily get

〈S1, φ〉 ≤ C‖φ‖L3‖∇u‖L2‖φ‖L6 ≤ C‖φ‖H1‖∇u‖L2‖∇φ‖L2 ≤ Cδ(‖∇u‖2
L2 + ‖∇φ‖2

L2). (3.12)

Integrating by parts and using Sobolev inequality (cf. [2]), we infer from (3.4), (3.5), (3.8) and (3.9)
that

〈S2, u〉 ≤ C

∫
(|u|2|∇u| + |φ||∇u|2 + |u||∇u||∇φ| + |b||∇b||u| + |φ||∇φ||u| + |ψ||∇φ||u|) dx

≤ C‖u‖L3‖∇u‖L2‖u‖L6 + C‖∇u‖L3 (‖φ‖L6‖∇u‖L2 + ‖u‖L6‖∇φ‖L2)

+ C‖b‖L3‖∇b‖L2‖u‖L6 + C (‖φ‖L3 + ‖ψ‖L3) ‖∇φ‖L2‖u‖L6

≤ C
(
‖(φ, u, ψ, b)‖H1 + ‖∇u‖1/2

L2 ‖∇2u‖1/2
L2

) (‖∇φ‖2
L2 + ‖∇u‖2

L2 + ‖∇b‖2
L2

)

≤ Cδ
1
2 M

1
2

(‖∇φ‖2
L2 + ‖∇u‖2

L2 + ‖∇b‖2
L2

)
,

(3.13)

since δ ∈ (0, 1) and M > 1. In a similar manner, we also have

〈S3, ψ〉 + 〈S4, b〉

≤ C

∫
(|ψ||u||∇ψ| + |ψ|2|∇u| + |φ||∇ψ|2 + |ψ||∇ψ||∇φ| + |∇b|2|ψ| + |∇u|2|ψ|) dx

+ C

∫
(|b||u||∇b| + |b|2|∇u| + |∇b|2|b|) dx

≤ C (‖(ψ, b)‖H1 + ‖(∇u,∇ψ,∇b)‖L3)
(‖∇φ‖2

L2 + ‖∇u‖2
L2 + ‖∇ψ‖2

L2 + ‖∇b‖2
L2

)

≤ Cδ
1
2 M

1
2

(‖∇φ‖2
L2 + ‖∇u‖2

L2 + ‖∇ψ‖2
L2 + ‖∇b‖2

L2

)
.

(3.14)

Thus, substituting (3.12)–(3.14) into (3.11) immediately leads to (3.10). �
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Lemma 3.2. Under the assumptions (3.4) and (3.5), one has

d
dt

‖∇(φ, u, ψ, b)‖2
L2 + ‖∇2(u, ψ, b)‖2

L2 ≤ Cδ
1
2 M

3
2

(‖∇2(u, ψ, b)‖2
L2 + ‖∇φ‖2

L2

)
. (3.15)

Proof. Operating ∇ to (2.1)1, (2.1)2, (2.1)3 and (2.1)4, multiplying them by ∇φ, ∇u, ∇ψ and ∇b in L2,
respectively, and integrating by parts, we have

1
2

d
dt

‖∇(φ, u, ψ, b)‖2
L2 +

(
μ‖∇2u‖2

L2 + (μ + λ)‖∇div u‖2
L2 + ‖∇2ψ‖2

L2 + ‖∇2b‖2
L2

)

= 〈∇S1,∇φ〉 − 〈S2,∇2u〉 − 〈S3,∇2ψ〉 − 〈S4,∇2b〉.
(3.16)

Upon integration by parts, we infer from (3.4) and (3.5) that

〈∇S1,∇φ〉 ≤C

∫
(|∇u||∇φ|2 + |φ||∇2u||∇φ|) dx

≤C‖∇φ‖L3

(‖∇φ‖L2‖∇u‖L6 + ‖φ‖L6‖∇2u‖L2

)

≤C‖∇φ‖1/2
L2 ‖∇2φ‖1/2

L2

(‖∇φ‖2
L2 + ‖∇2u‖2

L2

)

≤Cδ
1
2 M

1
2 ‖ (‖∇φ‖2

L2 + ‖∇2u‖2
L2

)
.

(3.17)

By direct computations, we easily get that

‖(S2, S3, S4)‖L2 ≤ C
(‖(u, ψ, b)‖L3‖∇(u, ψ, b)‖L6 + ‖(φ, b)‖L∞‖∇2(u, ψ, b)‖L2 + ‖∇(u, b)‖2

L4

)

+ C (‖(φ, ψ)‖L∞‖∇φ‖L2 + ‖b‖L∞‖∇b‖L∞‖∇φ‖L2)

≤ C
(
‖(u, ψ, b)‖H1 + ‖∇(φ, u, b)‖ 1

2
L2‖∇2(φ, u, b)‖ 1

2
L2

)
‖∇2(u, ψ, b)‖L2

+ C
(
‖∇(φ, ψ)‖ 1

2
L2‖∇2(φ, ψ)‖ 1

2
L2 + ‖∇b‖ 1

2
L2‖∇2b‖L2‖∇3b‖ 1

2
L2

)
‖∇φ‖L2

≤ Cδ
1
2 M

3
2

(‖∇2(u, ψ, b)‖L2 + ‖∇φ‖L2

)
,

(3.18)

and consequently,
∣
∣〈S2,∇2u〉∣∣ +

∣
∣〈S3,∇2ψ〉∣∣ +

∣
∣〈S4,∇2b〉∣∣ ≤ Cδ

1
2 M

3
2

(‖∇2(u, ψ, b)‖2
L2 + ‖∇φ‖2

L2

)
. (3.19)

Now, putting (3.17) and (3.19) into (3.16), we arrive at the desired result of (3.15). �

Remark 3.1. In fact, it can be also deduced from (3.17) that

〈∇S1,∇φ〉 ≤C

∫
(|∇u||∇φ|2 + |φ||∇2u||∇φ|) dx

≤ C
(‖∇u‖L3‖∇φ‖2

L3 + ‖φ‖L3‖∇2u‖L2‖∇φ‖L6

)

≤ C
(
‖∇u‖ 1

2
L2‖∇2u‖ 1

2
L2‖∇φ‖L2‖∇2φ‖L2 + ‖φ‖H1‖∇2u‖L2‖∇2φ‖L2

)

≤ C
(
‖∇u‖ 1

2
L2‖∇2u‖ 1

2
L2‖φ‖ 1

2
L2‖∇2φ‖ 3

2
L2 + ‖φ‖H1‖∇2u‖L2‖∇2φ‖L2

)

≤ Cδ
(‖∇2φ‖2

L2 + ‖∇2u‖2
L2

)
,

(3.20)

where we have used the Sobolev interpolation inequality ‖∇φ‖2
L2 ≤ C‖φ‖L2‖∇2φ‖L2 . Similarly,

‖(S2, S3, S4)‖L2 ≤ Cδ
1
2 M

3
2

(‖∇2(u, ψ, b)‖L2 + ‖∇2φ‖L2

)
.

This, combined with (3.16) and (3.20), shows

d
dt

‖∇(φ, u, ψ, b)‖2
L2 + ‖∇2(u, ψ, b)‖2

L2 ≤ Cδ
1
2 M

3
2 ‖∇2(φ, u, ψ, b)‖2

L2 , (3.21)

which will be used to close the estimate of ‖∇(φ, u, ψ, b)‖2
L2 .
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Clearly, we need to estimate ‖∇φ‖L2(0,T ;L2).

Lemma 3.3. Under the assumptions (3.4) and (3.5), one has

d
dt

〈u,∇φ〉 + ‖∇φ‖2
L2 ≤ C‖∇(u, ψ)‖2

H1 + Cδ
1
2 M

3
2

(‖∇φ‖2
L2 + ‖∇(u, ψ, b)‖2

H1

)
. (3.22)

Proof. Multiplying (2.1)2 by ∇φ in L2, we have

d
dt

〈u,∇φ〉 + ‖∇φ‖2
L2 = 〈u,∇φt〉 + 〈μΔu + (μ + λ)∇div u − ∇ψ,∇φ〉 + 〈S2,∇φ〉. (3.23)

Upon integration by parts, one infers from (2.1) that

〈u,∇φt〉 = − 〈u,∇(div u + div(φu))〉 = 〈div u, div u + div(φu)〉
≤ C‖∇u‖2

L2 + C‖∇u‖L3 (‖∇φ‖L2‖u‖L6 + ‖φ‖L6‖∇u‖L2)

≤ C‖∇u‖2
L2 + C‖∇u‖ 1

2
L2‖∇2u‖ 1

2
L2

(‖∇φ‖2
L2 + ‖∇u‖2

L2

)

≤ C‖∇u‖2
L2 + Cδ

1
2 M

1
2

(‖∇φ‖2
L2 + ‖∇u‖2

L2

)
.

(3.24)

It is easy to see that

〈μΔu + (μ + λ)∇div u − ∇ψ,∇φ〉 ≤ 1
4
‖∇φ‖2

L2 + C
(‖∇2u‖2

L2 + ‖∇ψ‖2
L2

)
, (3.25)

and moreover, it follows from (3.18) that

〈S2,∇φ〉 ≤ C‖S2‖L2‖∇φ‖L2 ≤ Cδ
1
2 M

3
2

(‖∇2(u, ψ, b)‖2
L2 + ‖∇φ‖2

L2

)
(3.26)

Hence, substituting (3.24)–(3.26) into (3.23), we obtain (3.22).

We proceed to prove the L2-estimates of the second-order derivatives.

Lemma 3.4. Under the assumptions (3.4) and (3.5), one has

d
dt

‖∇2(φ, u, ψ, b)‖2
L2 + ‖∇3(u, ψ, b)‖2

L2 ≤ Cδ
1
4 M

3
2

(‖∇3(u, ψ, b)‖2
L2 + ‖∇2φ‖2

L2

)
. (3.27)

Proof. Similarly to the proof of Lemma 3.2, we deduce from (2.1) that

1
2

d
dt

‖∇2(φ, u, ψ, b)‖2
L2 +

(
μ‖∇3u‖2

L2 + (μ + λ)‖∇2 div u‖2
L2 + ‖∇3ψ‖2

L2 + ‖∇3b‖2
L2

)

= 〈∇2S1,∇2φ〉 + 〈∇2S2,∇2u〉 + 〈∇2S3,∇2ψ〉 + 〈∇2S4,∇2b〉.
(3.28)

Using Lemma 2.3 and Gagliardo–Nirenberg inequality (cf. [2]), we find (keeping in mind that M > 1)

〈∇2S1,∇2φ〉 = −〈∇2(φ div u),∇2φ〉 − 〈∇2(u · ∇φ) − u · ∇2(∇φ),∇2φ〉 +
1
2
〈div u, |∇2φ|2〉

≤ C
(‖∇u‖L∞‖∇2φ‖L2 + ‖φ‖L∞‖∇3u‖L2 + ‖∇2u‖L6‖∇φ‖L3

) ‖∇2φ‖L2

≤ C
(
‖∇u‖ 1

4
L2‖∇3u‖ 3

4
L2‖∇2φ‖L2 + ‖∇φ‖ 1

2
L2‖∇2φ‖ 1

2
L2‖∇3u‖L2

)
‖∇2φ‖L2

≤ Cδ
1
4 M

3
4 ‖ (‖∇2φ‖2

L2 + ‖∇3u‖2
L2

)
.

(3.29)

Next, we estimate some terms involving in ∇Si for i = 2, 3, 4. Indeed, by making use of the Sobolev
interpolation inequality (cf. [10,17])

‖Djf‖L2 ≤ C‖f‖
m−j
m

L2 ‖Dmf‖
j
m

L2 , ∀ 0 ≤ j ≤ m,
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we get that

‖∇(u · ∇u)‖L2 ≤‖u‖L3‖∇2u‖L6 + ‖∇u‖L3‖∇u‖L6

≤ C
(
‖u‖ 1

2
L2‖∇u‖ 1

2
L2‖∇3u‖L2 + ‖∇u‖ 1

2
L2‖∇2u‖ 3

2
L2

)

≤ C
(
‖u‖ 1

2
L2‖∇u‖ 1

2
L2‖∇3u‖L2 + ‖∇u‖ 1

2
L2‖u‖ 1

2
L2‖∇3u‖L2

)

≤ Cδ‖∇3u‖L2 .

(3.30)

Similarly to the derivation of (3.30), we also have

‖∇(u · ∇ψ)‖L2 + ‖∇(u · ∇b)‖L2 + ‖∇(b · ∇u)‖L2 + ‖∇(ψ div u)‖L2 + ‖∇(b div u)‖L2

≤ C‖(u, ψ, b)‖ 1
2
L2‖∇(u, ψ, b)‖ 1

2
L2‖∇3(u, ψ, b)‖L2 ≤ Cδ‖∇3(u, ψ, b)‖L2 .

(3.31)

It is easy to deduce from (3.7)–(3.9) and the interpolation inequality that

‖∇(h(φ)∇φ)‖L2 + ‖∇(ψg(φ)∇φ)‖L2 + ‖∇(g(φ)|∇(u, b)|2)‖L2

≤ C
(‖(φ, ψ)‖L∞‖∇2φ‖L2 + ‖∇(φ, ψ)‖L3‖∇φ‖L6 + ‖ψ‖L∞‖∇φ‖L3‖∇φ‖L6

)

+C
(‖∇φ‖L6‖∇(u, b)‖2

L6 + ‖∇(u, b)‖L3‖∇2(u, b)‖L6

)

≤ C
(
‖∇(φ, ψ)‖ 1

2
L2‖∇2(φ, ψ)‖ 1

2
L2 + ‖∇ψ‖ 1

2
L2‖∇2ψ‖ 1

2
L2‖∇φ‖ 1

2
L2‖∇2φ‖ 1

2
L2

)
‖∇2φ‖L2

+C
(
‖∇2φ‖L2‖∇(u, b)‖L2 + ‖∇(u, b)‖ 1

2
L2‖∇2(u, b)‖ 1

2
L2

)
‖∇3(u, b)‖L2

≤ Cδ
1
2 M

(‖∇2φ‖L2 + ‖∇3(u, b)‖L2

)
, (3.32)

‖∇(h(φ)(Δu,∇div u,Δψ))‖L2 ≤ C
(‖φ‖L∞‖∇3(u, ψ)‖L2 + ‖∇φ‖L3‖∇2(u, ψ)‖L6

)

≤ C‖∇φ‖ 1
2
L2‖∇2φ‖ 1

2
L2‖∇3(u, ψ)‖L2 ≤ Cδ

1
2 M

1
2 ‖∇3(u, ψ)‖L2 , (3.33)

‖∇(g(φ)((∇ × b) × b))‖L2 ≤ C
(‖∇φ‖L6‖b‖L6‖∇b‖L6 + ‖b‖L3‖∇2b‖L6 + ‖∇b‖L3‖∇b‖L6

)

≤ C
(
‖∇2φ‖L2‖∇b‖L2‖∇2b‖L2 + ‖b‖ 1

2
L2‖∇b‖ 1

2
L2‖∇3b‖L2

)

≤ Cδ
1
2 M

(‖∇2φ‖L2 + ‖∇3b‖L2

)
(3.34)

and
‖∇2(g(φ)((∇ × b) × b))‖L2 ≤C

(‖∇2φ‖L2‖b‖L∞ + ‖∇φ‖L6‖∇φ‖L∞‖b‖L3

) ‖∇b‖L∞

+ C
(‖b‖L∞‖∇3b‖L2 + ‖∇b‖L3‖∇2b‖L6

)

+ C
(‖∇φ‖L6‖b‖L∞‖∇2b‖L3 + ‖∇φ‖L6‖∇b‖2

L6

)

≤ Cδ
1
2 M

3
2

(‖∇2φ‖L2 + ‖∇3b‖L2

)
.

(3.35)

Collecting (3.30)–(3.35) together, we arrive at

‖∇(S2, S3, S4)‖L2 ≤ Cδ
1
2 M

3
2

(‖∇3(u, ψ, b)‖L2 + ‖∇2φ‖L2

)
, (3.36)

from which and (3.28), (3.29), we obtain (3.27) after integrating by parts and using Cauchy–Schwarz
inequality. �

The next lemma is concerned with the estimate of ‖∇2φ‖L2(0,T ;L2), which can be achieved in a similar
manner as that used in the proof of Lemma 3.3.

Lemma 3.5. Under the assumptions (3.4) and (3.5), one has

d
dt

〈div u,Δφ〉 + ‖∇2φ‖2
L2 ≤ C‖∇2(u, ψ)‖2

H1 + Cδ
1
2 M

3
2

(‖∇2(u, ψ, b)‖2
H1 + ‖∇2φ‖2

L2

)
. (3.37)
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Proof. Operating div to (2.1)2 and multiplying it by Δφ in L2, we obtain after integrating by parts that

d
dt

〈div u,Δφ〉 + ‖∇2φ‖2
L2 = − 〈∇div u,∇φt〉 − 〈Δψ,Δφ〉 + 〈div S2,Δφ〉

+ 〈div[μΔu + (μ + λ)∇div u],Δφ〉.
(3.38)

In view of (2.1)1, we have

|〈∇div u,∇φt〉| ≤ C
(‖∇2u‖L2 + ‖(φ, u)‖L∞‖∇2(φ, u)‖L2 + ‖∇φ‖L3‖∇u‖L6

) ‖∇2u‖L2

≤ C‖∇2u‖2
L2 + C‖∇(φ, u)‖ 1

2
L2‖∇2(φ, u)‖ 1

2
L2‖∇2(φ, u)‖2

L2

≤ C‖∇2u‖2
L2 + Cδ

1
2 M

1
2 ‖∇2(φ, u)‖2

L2 ,

(3.39)

and by virtue of (3.36) we see that

|〈Δψ,Δφ〉| + |〈div S2,Δφ〉| + |〈div[μΔu + (μ + λ)∇div u],Δφ〉|
≤ 1

2
‖∇2φ‖2

L2 + C
(‖∇3u‖2

L2 + ‖∇2ψ‖2
L2

)
+ Cδ

1
2 M

3
2

(‖∇3(u, ψ, b)‖2
L2 + ‖∇2φ‖2

L2

)

which, combined with (3.38) and (3.39), yields (3.37). �

Next, it remains to deal with H3-estimates of the solutions.

Lemma 3.6. Under the assumptions (3.4) and (3.5), one has

d
dt

‖∇3(φ, u, ψ, b)‖2
L2 + ‖∇4(u, ψ, b)‖2

L2 ≤ Cδ
1
4 M

5
2

(‖∇3φ‖2
L2 + ‖∇4(u, ψ, b)‖2

L2

)
. (3.40)

Proof. It follows from (2.1) that

1
2

d
dt

‖∇3(φ, u, ψ, b)‖2
L2 +

(
μ‖∇4u‖2

L2 + (μ + λ)‖∇3 div u‖2
L2 + ‖∇4ψ‖2

L2 + ‖∇4b‖2
L2

)

= 〈∇3S1,∇3φ〉 + 〈∇3S2,∇3u〉 + 〈∇3S3,∇3ψ〉 + 〈∇3S4,∇3b〉.
(3.41)

Based on Lemma 2.3 and Sobolev inequality, it is easily seen that

〈∇3S1,∇3φ〉 = − 〈∇3(φ div u),∇3φ〉 − 〈∇3(u · ∇φ) − u · ∇3(∇φ),∇3φ〉 − 1
2
〈div u, |∇3φ|2〉

≤C
(‖∇u‖L∞‖∇3φ‖L2 + ‖φ‖L∞‖∇4u‖L2 + ‖∇3u‖L6‖∇φ‖L3

) ‖∇3φ‖L2

≤C
(
‖∇u‖ 1

4
L2‖∇3u‖ 3

4
L2‖∇3φ‖L2 + ‖∇φ‖ 1

2
L2‖∇2φ‖ 1

2
L2‖∇4u‖L2

)
‖∇3φ‖L2

≤Cδ
1
4 M

3
4

(‖∇3φ‖2
L2 + ‖∇4u‖2

L2

)
.

(3.42)

In the following, similarly to the proofs of Lemma 3.4, we estimate the terms involved in ‖∇2Si‖L2

for i = 2, 3, 4. First, by virtue of the interpolation inequality we have

‖∇2(u · ∇u)‖L2 ≤ C
(‖∇u‖L3‖∇2u‖L6 + ‖u‖L3‖∇3u‖L6

)

≤ C
(
‖∇u‖ 1

2
L2‖∇2u‖ 1

2
L2‖∇3u‖L2 + ‖u‖ 1

2
L2‖∇u‖ 1

2
L2‖∇4u‖L2

)

≤ C‖u‖ 1
2
L2‖∇u‖ 1

2
L2‖∇4u‖L2 ≤ Cδ‖∇4u‖L2

(3.43)

and similarly,

‖∇2(u · ∇ψ)‖L2 + ‖∇2(u · ∇b)‖L2 + ‖∇2(b · ∇u)‖L2 + ‖∇2(ψ div u)‖L2 + ‖∇2(b div u)‖L2

≤ C‖(u, ψ, b)‖ 1
2
L2‖∇(u, ψ, b)‖ 1

2
L2‖∇4(u, ψ, b)‖L2 ≤ Cδ‖∇4(u, ψ, b)‖L2 .

(3.44)
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By (3.8) and (3.9), we obtain

‖∇2(h(φ)∇φ)‖L2 ≤ C
(‖φ‖L∞‖∇3φ‖L2 + ‖∇2φ‖L6‖∇φ‖L3 + ‖∇2φ‖3

L2

)

≤ C
(
‖∇φ‖ 1

2
L2‖∇2φ‖ 1

2
L2 + ‖φ‖L2‖∇3φ‖L2

)
‖∇3φ‖L2

≤ Cδ
1
2 M‖∇3φ‖L2 .

(3.45)

In a similar manner,

‖∇2(ψg(φ)∇φ)‖L2 ≤ C
(‖ψ‖L∞‖∇2(g(φ)∇φ)‖L2 + ‖∇2ψ‖L3‖∇φ‖L6

)

≤ Cδ
1
2 M

1
2 ‖∇3φ‖L2

(
1 + δ

1
2 M

)
+ C‖∇2φ‖L2‖∇2ψ‖ 1

2
L2‖∇3ψ‖ 1

2
L2

≤ Cδ
1
2 M

3
2 ‖∇3φ‖L2 + C‖∇φ‖ 1

2
L2‖∇3φ‖ 1

2
L2‖ψ‖ 1

4
L2‖∇2ψ‖ 1

4
L2‖∇4ψ‖ 1

2
L2

≤ Cδ
1
2 M

3
2 ‖∇3φ‖L2 + Cδ

3
4 M

1
4

(‖∇3φ‖L2 + ‖∇4ψ‖L2

)

≤ Cδ
1
2 M

3
2

(‖∇3φ‖L2 + ‖∇4ψ‖L2

)
, (3.46)

‖∇2(g(φ)|∇(u, b)|2)‖L2 ≤ C
(‖∇2φ‖L6 + ‖∇φ‖L∞‖∇φ‖L6

) ‖∇(u, b)|‖2
L6

+C‖∇2(u, b)‖L3‖∇2(u, b)‖L6

+C
(‖∇φ‖L∞‖∇2(u, b)‖L6‖∇(u, b)‖L3 + ‖∇(u, b)‖L3‖∇3(u, b)‖L6

)

≤ C
(
‖∇3φ‖L2 + ‖φ‖ 1

2
L2‖∇3φ‖ 3

2
L2

)
‖(u, b)‖L2‖∇4(u, b)‖L2

+C
(
‖∇2φ‖L2‖∇3φ‖L2‖(u, b)‖H1 + ‖∇(u, b)‖ 1

2
L2‖∇2(u, b)‖ 1

2
L2

)
‖∇4(u, b)‖L2

≤ Cδ
1
2 M

3
2 ‖∇4(u, b)‖L2 . (3.47)

In terms of Lemma 2.3 and the interpolation inequality again, we see that

‖∇2(h(φ)Δu)‖L2 ≤ C
[‖φ‖L∞‖∇4u‖L2 +

(‖∇2φ‖L3 + ‖∇φ‖2
L6

) ‖∇2u‖L6

]

≤ Cδ
1
2 M

1
2 ‖∇4u‖L2 + C

(
‖∇2φ‖ 1

2
L2‖∇3φ‖ 1

2
L2 + ‖∇2φ‖2

L2

)
‖∇3u‖L2

≤ Cδ
1
2 M

1
2 ‖∇4u‖L2 + C

(
‖∇φ‖ 1

4
L2‖∇3φ‖ 3

4
L2 + ‖∇φ‖L2‖∇3φ‖L2

)
‖∇2u‖ 1

2
L2‖∇4u‖ 1

2
L2

≤ Cδ
1
4 M

(‖∇4u‖L2 + ‖∇3φ‖L2

)
,

(3.48)

and analogously,

‖∇2(h(φ)(∇div u,Δψ))‖L2 ≤ Cδ
1
4 M

(‖∇4(u, ψ)‖L2 + ‖∇3φ‖L2

)
. (3.49)

Since

|∇2g(φ)| ≤ C
(|∇2φ| + |∇φ|2) , |∇3g(φ)| ≤ C

(|∇3φ| + |∇φ||∇2φ| + |∇φ|3) .

we deduce from Lemma 2.3 and the interpolation inequality that

‖∇2(g(φ)((∇ × b) × b))‖L2

≤ C
(‖∇2φ‖L3‖b‖L∞‖∇b‖L6 + ‖∇φ‖2

L6‖b‖L∞‖∇b‖L6 + ‖b‖L3‖∇3b‖L6 + ‖∇b‖L3‖∇2b‖L6

)

≤ C
(
‖∇2φ‖ 1

2
L2‖∇3φ‖ 1

2
L2 + ‖∇φ‖L2‖∇3φ‖L2

)
‖b‖ 1

2
H1‖∇2b‖ 3

2
L2 + C‖b‖H1‖∇4b‖L2

≤ C
(
‖∇2φ‖ 1

2
L2‖∇3φ‖ 1

2
L2 + ‖∇φ‖L2‖∇3φ‖L2

)
‖b‖ 5

4
H1‖∇4b‖ 3

4
L2 + C‖b‖H1‖∇4b‖L2

≤ CδM
3
4

(‖∇3φ‖L2 + ‖∇4b‖L2

)

(3.50)
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and
‖∇3(g(φ)((∇ × b) × b))‖L2

≤ C
(‖∇3φ‖L2 + ‖∇φ‖L3‖∇2φ‖L6 + ‖∇φ‖3

L6

) ‖b‖L∞‖∇b‖L∞ + C‖∇b‖ 1
2
L2‖∇2b‖ 1

2
L2‖∇4b‖L2

≤ Cδ
1
2 M

5
2

(‖∇3φ‖L2 + ‖∇4b‖L2

)
.

(3.51)

Collecting (3.43)–(3.51) together, we find

‖∇2(S2, S3, S4)‖L2 ≤ Cδ
1
4 M

5
2

(‖∇3φ‖L2 + ‖∇4(u, ψ, b)‖L2

)
, (3.52)

which, together (3.42) and (3.41), immediately leads to (3.40), using integration by parts and Cauchy–
Schwarz inequality. �

Finally, to close the estimate, we still need to deal with ‖∇3φ‖L2(0,T ;L2).

Lemma 3.7. Under the assumptions (3.4) and (3.5), one has
d
dt

〈∇div u,∇Δφ〉 + ‖∇3φ‖2
L2 ≤ C‖∇3(u, ψ)‖2

H1 + Cδ
1
4 M

5
2

(‖∇3φ‖2
L2 + ‖∇3(u, ψ, b)‖2

H1

)
. (3.53)

Proof. Operating ∇div to both sides of (2.1)2 and multiplying it by ∇Δφ in L2, we have
d
dt

〈∇div u,∇Δφ〉 + ‖∇Δφ‖2
L2 = 〈∇div u,∇Δφt〉 + 〈∇div S2,∇Δφ〉

+ 〈∇div(μΔu + (μ + λ)∇div u) − ∇Δψ,∇Δφ〉.
(3.54)

In view of (2.1)1, we have from Lemma 2.3 that

〈∇div u,∇Δφt〉 = − 〈Δdiv u,Δφt〉
≤C‖∇3u‖L2

(‖∇3u‖L2 + ‖∇3(φu)‖L2

)

≤C‖∇3u‖L2

(‖∇3u‖L2 + ‖∇3φ‖L2‖u‖L∞ + ‖φ‖L∞‖∇3u‖L2

)

≤C‖∇3u‖2
L2 + Cδ

1
2 M

1
2

(‖∇3u‖2
L2 + ‖∇3φ‖2

L2

)
.

(3.55)

For the other terms, we have
|〈∇div S2,∇Δφ〉| + |〈∇div(μΔu + (μ + λ)∇div u) − ∇Δψ,∇Δφ〉|

≤ 1
2
‖∇3φ‖2

L2 + C‖∇3(u, ψ)‖2
H1 + Cδ

1
4 M

5
2

(‖∇3φ‖2
L2 + ‖∇4(u, ψ, b)‖2

L2

)
.

(3.56)

Thus, substituting (3.55) and (3.56) into (3.54), we obtain (3.53). �

With Lemmas 3.1–3.7 at hand, we are now ready to prove Theorem 3.1.

Proof of Global Existence. On the one hand, in view of (3.10), (3.15) and (3.22), we have
d
dt

‖(φ, u, ψ, b)‖2
H1 + ‖∇(u, ψ, b)‖2

H1 ≤ C1δ
1
2 M

3
2

(‖∇(u, ψ, b)‖2
H1 + ‖∇φ‖2

L2

)

≤ 1
2
‖∇(u, ψ, b)‖2

H1 + C1δ
1
2 M

3
2 ‖∇φ‖2

L2

(3.57)

and
d
dt

〈u,∇φ〉 + ‖∇φ‖2
L2 ≤C2‖∇(u, ψ)‖2

H1 + C2δ
1
2 M

3
2

(‖∇φ‖2
L2 + ‖∇(u, ψ, b)‖2

H1

)

≤ 2C2‖∇(u, ψ, b)‖2
H1 + C2δ

1
2 M

3
2 ‖∇φ‖2

L2 ,

(3.58)

provided δ > 0 is chosen to be small enough such that

0 < δ ≤ δ1 � min
{

δ0,
(
2C1M

3
2

)−2

,M−3

}

.
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It follows from (3.57) that

d
dt

‖(φ, u, ψ, b)‖2
H1 +

1
2
‖∇(u, ψ, b)‖2

H1 ≤ C1δ
1
2 M

3
2 ‖∇φ‖2

L2 ,

which, multiplied by a suitably large number K1 = max{4, 8C2} and added to (3.58), yields

d
dt

(
K1‖(φ, u, ψ, b)‖2

H1 + 〈u,∇φ〉) + 2C2‖∇(u, ψ, b)‖2
H1 + ‖∇φ‖2

L2 ≤ C3(K1)δ
1
2 M

3
2 ‖∇φ‖2

L2 ,

where C3(K1) is a positive constant depending on K1. So, if δ > 0 is chosen to be such that

0 < δ ≤ δ2 � min
{

δ1,
(
2C3(K1)M

3
2

)−2
}

,

then one has
d
dt

(
K1‖(φ, u, ψ, b)‖2

H1 + 〈u,∇φ〉) + 2C2‖∇(u, ψ, b)‖2
H1 +

1
2
‖∇φ‖2

L2 ≤ 0,

which, integrated over (0, T ), immediately gives

sup
0≤t≤T

‖(φ, u, ψ, b)(t)‖2
H1 +

T∫

0

(‖∇(u, ψ, b)‖2
H1 + ‖∇φ‖2

L2

)
dt ≤ C̄‖(φ0, u0, ψ0, b0)‖2

H1 , (3.59)

since the fact K1 = max{4, 8C2} implies

|〈u,∇φ〉| ≤ K1

2
‖(φ, u)‖2

H1 .

On the other hand, one easily concludes from (3.21), Lemmas 3.4 and 3.6 that

d
dt

‖∇(φ, u, ψ, b)(t)‖2
H2 + ‖∇2(u, ψ, b)‖2

H2 ≤C4δ
1
4 M

5
2

(‖∇2(u, ψ, b)‖2
H2 + ‖∇2φ‖2

H1

)

≤1
2
‖∇2(u, ψ, b)‖2

H2 + C4δ
1
4 M

5
2 ‖∇2φ‖2

H1 ,

and hence,
d
dt

‖∇(φ, u, ψ, b)(t)‖2
H2 +

1
2
‖∇2(u, ψ, b)‖2

H2 ≤ C4δ
1
4 M

5
2 ‖∇2φ‖2

H1 , (3.60)

provided δ > 0 is chosen to be such that

0 < δ ≤ δ3 � min
{

δ2,
(
2C4M

5
2

)−4
}

.

It follows from (3.37) and (3.53) that

d
dt

(〈div u,Δφ〉 + 〈∇div u,∇Δφ〉) + ‖∇2φ‖2
H1

≤ C5‖∇2(u, ψ)‖2
H2 + C5δ

1
4 M

5
2

(‖∇2φ‖2
H1 + ‖∇2(u, ψ, b)‖2

H2

)

≤ 2C5‖∇2(u, ψ, b)‖2
H2 +

1
2
‖∇2φ‖2

H1 ,

so that
d
dt

(〈div u,Δφ〉 + 〈∇div u,∇Δφ〉) +
1
2
‖∇2φ‖2

H1 ≤ 2C5‖∇2(u, ψ, b)‖2
H2 , (3.61)

provided

0 < δ ≤ δ4 � min
{

δ3,
(
2C5M

5
2

)−4

,
(
M

5
2

)−4
}

.
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Similarly to the proof of (3.59), multiplying (3.60) by a suitably large number K2 = max{8, 8C5},
adding it to (3.61), and integrating the resulting relation over (0, T ), we obtain

sup
0≤t≤T

‖∇(φ, u, ψ, b)(t)‖2
H2 +

T∫

0

(‖∇2(u, ψ, b)‖2
H2 + ‖∇2φ‖2

H1

)
dt ≤ C̃‖∇(φ0, u0, ψ0, b0)‖2

H2 . (3.62)

With the help of (3.59) and (3.62), by bootstrap arguments we easily close the a priori assumptions
(3.4) and (3.5) by taking M2 = 2C̃‖∇(φ0, u0, ψ0, b0)‖2

H2 and choosing η > 0 sufficiently small to be such
that 2C̄‖(φ0, u0, ψ0, b0)‖2

H1 ≤ δ2. This, together with the local existence result (cf. Lemma 2.5), finishes
the proof of Theorem 3.1, and thus, the proof of the first part of Theorem 1.1 is complete. �

3.2. Decay rates

This subsection is devoted to the derivations of the decay rates of the solutions. As a first step, we derive
the decay estimates of ‖∇(φ, u, ψ, b)‖H2 .

Lemma 3.8. Assume that the conditions of Theorem 3.1 are satisfied. If η > 0 is small enough and
‖(φ0, u0, ψ0, b0)‖L1 is bounded, then for any t ≥ 0,

‖∇(φ, u, ψ, b)(t)‖2
H2 ≤ C(1 + t)− 5

2 and ‖(φ, u, ψ, b)(t)‖2
L2 ≤ C(1 + t)− 3

2 . (3.63)

Proof. Similarly to the derivation of (3.59), it is easily deduced from (3.21) and Lemmas 3.4–3.7 that
there exist positive numbers K̄ > 0 and k such that if η > 0 is small enough, then

E′(t) + k
(‖∇2(u, ψ, b)‖2

H2 + ‖∇2φ‖2
H1

) ≤ 0,

where

E(t) � K̄‖∇(φ, u, ψ, b)‖2
H2 + 〈div u, Δφ〉 + 〈∇div u,∇Δφ〉.

Adding ‖∇(φ, u, ψ, b)‖2
L2 to both sides of the last inequality, we have

E′(t) + k‖∇(φ, u, ψ, b)‖2
H2 ≤ C‖∇(φ, u, ψ, b)‖2

L2 . (3.64)

Noting that for suitably large K̄ > 0,

E(t) ∼ ‖∇(φ, u, ψ, b)‖2
H2 ,

and thus, it follows from (3.64) that there exists some positive number c > 0 such that

E′(t) + cE(t) ≤ C‖∇(φ, u, ψ, b)‖2
L2 ,

so that

E(t) ≤ E(0)e−ct + C

t∫

0

e−c(t−τ)‖∇(φ, u, ψ, b)(τ)‖2
L2dτ. (3.65)

In order to deal with ‖∇(φ, u, ψ, b)‖2
L2 , we first make use of Lemma 2.2 to see that

‖∇(φ, u, ψ, b)(t)‖L2 ≤C(1 + t)− 5
4 + C

t∫

0

(1 + t − τ)− 5
4 ‖(S1, S2, S3, S4)‖L1∩H1dτ

≤C(1 + t)− 5
4 + Cη

1
2

t∫

0

(1 + t − τ)− 5
4
√

E(τ)dτ,

(3.66)
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where Theorem 3.1, (3.18), (3.36) and the following simple facts were also used.

‖(S1, S2, S3, S4)‖L1 ≤ C
(‖(φ, u, ψ, b)‖L2‖∇(φ, u, ψ, b)‖H1 + ‖∇(u, b)‖2

L2 + ‖b‖L2‖∇φ‖L3‖∇b‖L6

)

≤ ηC(K)‖∇(φ, u, ψ, b)‖H1 ≤ ηC(K)
√

E(t), (3.67)

‖S1‖H1 + ‖(S2, S3, S4)‖H1 ≤ C‖(φ, u)‖H1‖∇(φ, u)‖H2 + η
1
2 C(K)‖∇(φ, u, ψ, b)‖H2

≤ η
1
2 C(K)

√
E(t). (3.68)

Define

E(t) � sup
0≤τ≤t

(1 + τ)
5
2 E(τ).

Then, it follows from Lemma 2.4 that

‖∇(φ, u, ψ, b)(t)‖L2 ≤ C(1 + t)− 5
4 + Cη

1
2
√

E(t)

t∫

0

(1 + t − τ)− 5
4 (1 + τ)− 5

4 dτ

≤ C(1 + t)− 5
4

(
1 + η

1
2
√

E(t)
)

which, inserted into (3.65), shows that for any t ≥ 0 (noting that E(t) is non-decreasing)

(1 + t)
5
2 E(t) ≤C(1 + t)

5
2 e−ct + C (1 + ηE(t)) (1 + t)

5
2

t∫

0

e−c(t−τ)(1 + τ)− 5
2 dτ

≤C + CηE(t).

As a result, if η > 0 is chosen to be small enough, then one has E(t) ≤ C. This, together with the fact
that E(t) ∼ ‖∇(φ, u, ψ, b)‖2

H2 , proves (3.63)1.
Moreover, using (3.63)1, (3.67) and (3.68), we have from Lemmas 2.2 and 2.4 that

‖(φ, u, ψ, b)(t)‖L2 ≤ C(1 + t)− 3
4 + C

t∫

0

(1 + t − τ)− 3
4 ‖(S1, S2, S3, S4)‖L1∩L2dτ

≤C(1 + t)− 3
4 + C

t∫

0

(1 + t − τ)− 3
4
√

E(τ)dτ

≤C(1 + t)− 3
4 + CE(t)

t∫

0

(1 + t − τ)− 3
4 (1 + τ)− 5

4 dτ

≤C(1 + t)− 3
4 ,

(3.69)

which immediately yields the desired estimate of (3.63)2. The proof of (3.63) is thus finished. �
Compared with Lemma 2.1, it is easily seen that the decay rates of H1-norm of solutions stated in

(3.63) are optimal. In the next lemma, we aim to improve the decay estimates of higher derivatives, which
will be achieved by using Lemma 3.8.

Lemma 3.9. There exists a positive time T1 > 0 such that if η > 0 is small enough, then

‖∇2(φ, u, ψ, b)(t)‖2
H1 ≤ C(1 + t)− 7

2 , ∀ t ≥ T1. (3.70)

Proof. In view of Lemma 2.3, we have

‖∇S1‖L2 ≤ ‖∇2(φu)‖L2 ≤ C
(‖φ‖L3‖∇2u‖L6 + ‖u‖L3‖∇2φ‖L6

)

≤ C‖(φ, u)‖H1‖∇3(φ, u)‖L2 ≤ Cη‖∇3(φ, u)‖L2 .
(3.71)
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From the derivations of (3.30)–(3.35), by Theorem 3.1 and Lemma 3.8 we obtain

‖∇(S2, S3, S4)‖L2 ≤Cη‖∇3(u, ψ, b)‖L2 + C(K)‖∇(φ, u, ψ, b)‖2
H2

≤Cη‖∇3(u, ψ, b)‖L2 + C(K)(1 + t)− 5
2 .

(3.72)

Thus, substituting (3.71) and (3.72) into (3.28) and integrating by parts, by Young inequality we see
that if η > 0 is small enough, then

d
dt

‖∇2(φ, u, ψ, b)‖2
L2 + ‖∇3(u, ψ, b)‖2

L2 ≤ Cη‖∇3φ‖2
L2 + C(1 + t)−5,

which, combined with (3.40) and (3.54), yields that there exist positive numbers K̃ (suitably large) and
k1 (suitably small) such that if η > 0 is small enough, then

E′
1(t) + k1

(‖∇3(u, ψ, b)‖2
H1 + ‖∇3φ‖2

L2

) ≤ C(1 + t)−5, (3.73)

where

E1(t) � K̃‖∇2(φ, u, ψ, b)‖2
H1 + 〈∇div u,∇Δφ〉 ∼ ‖∇2(φ, u, ψ, b)‖2

H1 .

Noting that the Sobolev interpolation inequality, together with the Young inequality, gives

‖∇2φ‖2
L2 ≤ C‖∇φ‖L2‖∇3φ‖L2 ≤ α−1(1 + t)‖∇3φ‖2

L2 + C(α)(1 + t)−1‖∇φ‖2
L2

where α > 0 is a positive constant to be chosen later. This particularly implies that

‖∇3φ‖2
L2 ≥ α(1 + t)−1‖∇2φ‖2

L2 − C(α)(1 + t)−2‖∇φ‖2
L2 . (3.74)

In a similar manner,

‖∇3(u, ψ, b)‖2
H1 ≥ α(1 + t)−1‖∇2(u, ψ, b)‖2

H1 − C(α)(1 + t)−2‖∇(u, ψ, b)‖2
H1 . (3.75)

As a result of (3.74) and (3.75), we deduce from (3.73) that

E′
1(t) +

αk1

2
(1 + t)−1‖∇2(u, ψ, b)‖2

H1 +
k1

2
(
α(1 + t)−1‖∇2φ‖2

L2 + ‖∇3φ‖2
L2

)

≤ C(1 + t)−5 + C(1 + t)−2
(‖∇φ‖2

L2 + ‖∇(u, ψ, b)‖2
H1

) ≤ C(α)(1 + t)− 9
2 .

(3.76)

It is clear that if t ≥ α > 0, then ‖∇3φ‖L2 ≥ α(1 + t)−1‖∇3φ‖L2 . So, we have from (3.76) that

E′
1(t) +

αk1

2
(1 + t)−1‖∇2(φ, u, ψ, b)‖2

H1 ≤ C(α)(1 + t)− 9
2 . (3.77)

Moreover, since E1(t) ∼ ‖∇2(φ, u, ψ, b)‖2
H1 for suitably large K̃ > 0, there exists a positive constant c1,

depending only on K̃ and k1, such that

E′
1(t) + αc1(1 + t)−1E1(t) ≤ C(α)(1 + t)− 9

2 . (3.78)

Thus, if α > 0 is chosen to be α = 4c−1
1 , then one easily concludes from (3.78) that

E′
1(t) + 4(1 + t)−1E1(t) ≤ C(1 + t)− 9

2 ,

and hence,
d
dt

[
(1 + t)4E1(t)

]
= (1 + t)4

(
E′

1(t) + 4(1 + t)−1E1(t)
) ≤ C(1 + t)− 1

2 ,

which, integrated over (0, t), results in

(1 + t)4E1(t) ≤ E1(0) + C1(1 + t)
1
2 ≤ 2C1(1 + t)

1
2 , (3.79)

provided t > 0 is large enough such that

t ≥ T1 � max

{

α,

(
E1(0)
C1

)2

− 1

}

.



ZAMP On the Cauchy problem of compressible full Hall-MHD... Page 17 of 22 139

Now, (3.70) readily follows from (3.79) and the fact that E1(t) ∼ ‖∇2(φ, u, ψ, b)‖2
H1 . The proof of

Lemma 3.9 is therefore finished. �

Finally, we improve the decay rates of ‖∇3b‖L2 , based on a full use of Lemmas 3.8 and 3.9.

Lemma 3.10. There exists a positive time T2 > 0 such that if η > 0 is small enough, then

‖∇3b(t)‖2
H1 ≤ C(1 + t)− 9

2 , ∀ t ≥ T2. (3.80)

Proof. Indeed, similarly to the derivation of (3.41), we obtain after integrating by parts and using Cauchy–
Schwarz inequality that

d
dt

‖∇3b‖2
L2 + ‖∇4b‖2

L2 ≤ C‖∇2S4‖2
L2 . (3.81)

We are now ready to deal with ‖∇2S4‖L2 . First, using Lemmas 3.8 and 3.9, we have

‖∇2(u · ∇b)‖L2 + ‖∇2(b · ∇u)‖L2 + ‖∇2(b div u)‖L2

≤ C
(‖(u, b)‖L∞‖∇3(u, b)‖L2 + ‖∇(u, b)‖L3‖∇2(u, b)‖L6

)

≤ C‖∇(u, b)‖ 1
2
L2‖∇2(u, b)‖ 1

2
L2‖∇3(u, b)‖L2 ≤ C(1 + t)− 26

8

(3.82)

and moreover, by Lemma 2.3 we obtain in a manner similarly to the derivation of (3.51) that

‖∇3(g(φ)(∇ × b) × b)‖L2 ≤C(K)(1 + t)− 26
8 + C‖b‖L∞‖∇4b‖L2

≤C(K)(1 + t)− 26
8 + η

1
2 C(K)‖∇4b‖L2 .

(3.83)

Taking (3.82) and (3.83) into account using Cauchy–Schwarz inequality and choosing η > 0 small
enough, we infer from (3.81) that

d
dt

‖∇3b‖2
L2 + ‖∇4b‖2

L2 ≤ C(1 + t)− 26
4 . (3.84)

Similarly to (3.74), by Lemma 3.9 we have

‖∇4b‖2
L2 ≥5(1 + t)−1‖∇3b‖2

L2 − C(1 + t)−2‖∇2b‖2
L2

≥5(1 + t)−1‖∇3b‖2
L2 − C(1 + t)− 11

2 ,

which, inserted into (3.84), gives

d
dt

‖∇3b‖2
L2 + 5(1 + t)−1‖∇3b‖2

L2 ≤ C(1 + t)− 11
2 . (3.85)

Thus, we conclude from (3.85) that

d
dt

(
(1 + t)5‖∇3b‖2

L2

)
= (1 + t)5

(
d
dt

‖∇3b‖2
L2 + 5(1 + t)−1‖∇3b‖2

L2

)

≤ C(1 + t)− 1
2 , (3.86)

which immediately shows

(1 + t)5‖∇3b(t)‖2
L2 ≤ ‖∇3b0‖2

L2 + C2(1 + t)
1
2 ≤ 2C2(1 + t)

1
2 ,

provided

t ≥ T2 � max

{

T1,

(‖∇3b0‖2
L2

C2

)2

− 1

}

.

As a result of (3.86), we arrive at the desired decay rate stated in (3.81). �

Proof of Decay Rates. Collecting Lemmas 3.8–3.10 together, one immediately obtains the desired decay
rates stated in the second part of Theorem 1.1. �
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4. Proof of Theorem 1.2

To prove Theorem 1.2, we first observe that all the global estimates and the decay rates established in
Sect. 3 also hold for the standard MHD equations without Hall effects (i.e., ε ≡ 0):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ̄t + div(ρ̄ū) = 0,

(ρ̄ū)t + div(ρ̄ū ⊗ ū) + ∇p̄ = μΔū + (μ + λ)∇div ū + (∇ × b̄) × b̄,

cV

[
(ρ̄θ̄)t + div(ρ̄ūθ̄)

]
+ p̄ div ū = κΔθ̄ +

μ

2

∣
∣∇ū + (∇ū)�∣

∣2 + λ(div ū)2 + ν|∇ × b̄|2,
b̄t − ∇ × (ū × b̄) = νΔb̄,

div b̄ = 0,

(4.1)

which are equipped with the far-field boundary conditions and the initial conditions:
{

(ρ̄, ū, θ̄, b̄)(x, t) → (1, 0, 1, 0) as |x| → ∞,

(ρ̄, ū, θ̄, b̄)|t=0 = (ρ0, u0, θ0, b0)(x), x ∈ R
3.

(4.2)

Here, the pressure p̄ = Rρ̄θ̄.
With the help of the global a priori estimates, we can show the following global existence theorem for

the Cauchy problem (4.1)–(4.2).

Theorem 4.1. For any given positive number M̄0 > 0 (not necessarily small), assume that the initial data
(ρ0 − 1, u0, θ0 − 1, b0) ∈ H3 satisfy

‖∇2(ρ0 − 1, u0, θ0 − 1, b0)‖H1 ≤ M̄0, (4.3)

then there exists a positive constant η̄0 > 0, depending on M̄0, such that the problem (4.1)–(4.2) has a
unique global classical solution (ρ̄, ū, θ̄, b̄) on R

3 × (0,∞) satisfying

‖(ρ̄ − 1, ū, θ̄ − 1, b̄)(t)‖2
H3 +

t∫

0

(‖∇ρ̄(τ)‖2
H2 + ‖∇(ū, θ̄, b̄)(τ)|2H3)dτ

≤ C‖(ρ0 − 1, u0, θ0 − 1, b0)‖2
H3

(4.4)

for all t ≥ 0, provided
‖(ρ0 − 1, u0, θ0 − 1, b0)‖H1 ≤ η̄0, (4.5)

where C > 0 is a generic positive constant independent of t.

Let (ρ, u, θ, b) be the global solutions of the problem (1.1)–(1.3) obtained in Theorem 1.1. Indeed,
based on the global uniform-in-ε estimates derived in Sect. 3, it is easily checked that as ε → 0, there
exists a subsequence of (ρ, u, θ, b) (still denoted by (ρ, u, θ, b)) such that

(ρ, u, θ, b) → (ρ̄, ū, θ̄, b̄) strongly in C([0, T ];H2), ∀ T ∈ (0,∞).

To prove the convergence rates, set

Φ = ρ − ρ̄, U = u − ū, Ψ = θ − θ̄, B = b − b̄.

Then, it can be easily derived from (1.1) and (4.1) that

Φt + U · ∇ρ + ū · ∇Φ + ρdiv U + Φdiv ū = 0, (4.6)
ρUt + ρu · ∇U − μΔU − (μ + λ)∇div U = −Φūt − ρU · ∇ū − Φū · ∇ū − ∇(p − p̄)

−1
2
∇ (|b|2 − |b̄|2) + b · ∇B + B · ∇b̄, (4.7)

ρΨt + ρu · ∇Ψ − ΔΨ = −Φθ̄t − ρU · ∇θ̄ − Φū · ∇θ̄ − p div U − (p − p̄) div ū
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+
μ

2
(|∇u + (∇u)�|2 − |∇ū + (∇ū)�|2)

+λ
(
(div u)2 − (div ū)2

)
+

(|∇ × b|2 − |∇ × b̄|2) (4.8)

and
Bt − ΔB = − u · ∇B − U · ∇b̄ + b · ∇U + B · ∇ū − b div U − B div ū

− ε∇ × (
ρ−1(∇ × b) × b

)
.

(4.9)

Moreover, the pair of functions (Φ, U,Ψ, B) satisfies the vanishing far-field and initial conditions.
We first prove the L2-convergence rate of the vanishing limit of Hall coefficient.

Lemma 4.1. For any T ∈ (0,∞), there exists a positive constant C = C(T ), independent of ε, such that

sup
0≤t≤T

‖(Φ, U,Ψ, B)(t)‖2
L2 +

T∫

0

‖∇(U,Ψ, B)‖2
L2dt ≤ Cε2. (4.10)

Proof. The proofs will be carried out by the standard L2-method, based on the global estimates stated
in Theorems 1.1 and 4.1. For completeness, we sketch the proofs.

First, multiplying (4.6) by Φ in L2, integrating parts, using Theorems 1.1, 4.1 and Cauchy–Schwarz
inequality, we easily get that

d
dt

‖Φ‖2
L2 ≤ C‖(∇ρ,∇ū)‖H2

(‖(Φ, U)‖2
L2 + ‖∇U‖2

L2

) ≤ C
(‖(Φ, U)‖2

L2 + ‖∇U‖2
L2

)
. (4.11)

Note that
|p − p̄| + |b|2 − |b̄|2 = |Φθ + ρ̄Ψ| + (b + b̄) · B ≤ C (|Φ| + |Ψ| + |B|) . (4.12)

Thus, multiplying (4.7) by U in L2 and integrating by parts, by Theorems 1.1 and 4.1 we deduce
d
dt

‖√
ρU‖2

L2 + ‖∇U‖2
L2 ≤ C‖(Φ, U,Ψ, B)‖2

L2 (4.13)

where we have used the following estimates:

‖(ut, ūt, θt, θ̄t, bt, b̄t)‖2
H1 +

T∫

0

‖(ut, ūt, θt, θ̄t, bt, b̄t)‖2
H2dt ≤ C, (4.14)

due to (1.1), (4.1), Theorems 1.1 and 4.1. Similarly, since
(|∇u + (∇u)�|2 − |∇ū + (∇ū)�|2) +

(
(div u)2 − (div ū)2

)
+

(|∇ × b|2 − |∇ × b̄|2)

≤ C‖∇(u, ū, b, b̄)‖L∞ (|∇U | + |∇B|) ≤ C (|∇U | + |∇B|) ,
(4.15)

we obtain after multiplying (4.8) by Ψ in L2 that
d
dt

‖√
ρΨ‖2

L2 + ‖∇Ψ‖2
L2 ≤ C‖(Φ, U,Ψ)‖2

L2 + C‖∇(U,B)‖2
L2 . (4.16)

In a similar manner,
d
dt

‖B‖2
L2 + ‖∇B‖2

L2 ≤ C‖(U,B)‖2
L2 + Cε2, (4.17)

since Theorem 1.1 implies that
ε‖ρ−1(∇ × b) × b‖H2 ≤ Cε. (4.18)

Multiplying (4.13) and (4.17) by a suitable large constant, then adding them with (4.11) and (4.16)
together, we find

d
dt

‖(Φ,
√

ρU,
√

ρΨ, B)(t)‖2
L2 + ‖∇(U,Ψ, B)‖2

L2 ≤ C‖(Φ, U,Ψ, B)‖2
L2 + Cε2,

which, combined with Gronwall inequality and the fact that ρ is strictly positive, leads to the desired
result of (4.10). �
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The next lemma is concerned with the H1-convergence rate of the vanishing limit of Hall coefficient.

Lemma 4.2. There exists a positive constant C = C(T ), independent of ε, such that for any T > 0,

sup
0≤t≤T

‖∇(Φ, U,Ψ, B)(t)‖2
L2 +

T∫

0

‖∇2(U,Ψ, B)‖2
L2dt ≤ Cε2. (4.19)

Proof. Operating ∇ to both sides of (4.6) and multiplying it by ∇Φ in L2, by Lemma 4.1 and Young
inequality we obtain after integrating by parts that

d
dt

‖∇Φ‖2
L2 ≤ C(δ)‖(Φ, U)‖2

H1 + δ‖∇2U‖2
L2 ≤ Cε2 + C(δ)‖∇(Φ, U)‖2

L2 + δ‖∇2U‖2
L2 . (4.20)

Multiplying (4.7) by Ut in L2, integrating by parts, using (4.10), (4.14), Theorems 1.1, 4.1, Sobolev
inequalities and Cauchy–Schwarz inequality, we find (noting that ρ is strictly lower-bounded)

d
dt

‖∇U‖2
L2 + ‖√

ρUt‖2
L2 ≤ C‖(Φ, U,Ψ, B)‖2

L2 + C‖∇(Φ, U,Ψ, B)‖2
L2

≤ Cε2 + C‖∇(Φ, U,Ψ, B)‖2
L2 .

(4.21)

Similarly, using (4.10), (4.14), (4.15), (4.18), Theorems 1.1 and 4.1, we have

d
dt

‖∇Ψ‖2
L2 + ‖√

ρΨt‖2
L2 ≤ Cε2 + C‖∇(Φ, U,Ψ, B)‖2

L2 , (4.22)

and
d
dt

‖∇B‖2
L2 + ‖Bt‖2

L2 ≤ Cε2 + C‖∇(U,B)‖2
L2 . (4.23)

Noting that ρ is strictly lower-bounded due to (3.8), it follows from (4.20)–(4.23) that

d
dt

‖∇(Φ, U,Ψ, B)‖2
L2 +

1
2

(‖Ut‖2
L2 + ‖Ψt‖2

L2 + ‖Bt‖2
L2

)

≤ Cε2 + C(δ)‖∇(Φ, U,Ψ, B)‖2
L2 + δ‖∇2U‖2

L2 .
(4.24)

In view of (4.10), (4.14), (4.15), (4.18), Theorems 1.1 and 4.1, we easily have from (4.7)–(4.9) that

‖∇2(U,Ψ, B)‖L2 ≤ C‖(Ut,Ψt, Bt)‖L2 + C‖(Φ, U,Ψ, B)‖H1 + Cε

≤ C‖(Ut,Ψt, Bt)‖L2 + C‖∇(Φ, U,Ψ, B)‖L2 + Cε,
(4.25)

Choosing δ to be suitable small in (4.24), then (4.24) together with (4.25) implies

d
dt

‖∇(Φ, U,Ψ, B)‖2
L2 + C̃‖∇2(U,Ψ, B)‖L2 ≤ Cε2 + C‖∇(Φ, U,Ψ, B)‖2

L2

for some constant C̃ > 0. Consequently, Lemma 4.1 and Gronwall inequality give the desired result of
Lemma 4.2. �

Finally, we derive the H2-convergence rate of the vanishing limit of Hall coefficient.

Lemma 4.3. There exists a positive constant C = C(T ), independent of ε, such that for any T > 0,

sup
0≤t≤T

‖∇2(Φ, U,Ψ, B)(t)‖2
L2 +

T∫

0

‖∇3(U,Ψ, B)‖2
L2dt ≤ Cε2. (4.26)
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Proof. Using Lemma 2.3, Theorems 1.1, 4.1, (4.10), (4.19), Young inequality and Sobolev inequalities,
by direct calculations we have from (4.6) that

d
dt

‖∇2Φ‖2
L2 ≤ C(δ)‖(Φ, U)‖2

H2 + δ‖∇3U‖2
L2 ≤ Cε2 + C(δ)‖∇2(Φ, U)‖2

L2 + δ‖∇3U‖2
L2 . (4.27)

Rewriting (4.7) in the form:

Ut + u · ∇U − ρ−1 (μΔU + (μ + λ)∇div U) = − ρ−1
[
Φūt + ρU · ∇ū + Φū · ∇ū + ∇(p − p̄)

+
1
2
∇ (|b|2 − |b̄|2) − b · ∇B − B · ∇b̄

]
.

Operating ∇2 to the above equation and multiplying it by ∇2U in L2, by tedious but straightforward
computations we obtain after integrating by parts and using Lemma 2.3 that

d
dt

‖∇2U‖2
L2 + ‖∇3U‖2

L2 ≤C‖(Φ, U,Ψ, B)‖2
H2 ≤ Cε2 + C‖∇2(Φ, U,Ψ, B)‖2

L2 , (4.28)

where we have used (4.10), (4.14), (4.19), Theorems 1.1 and 4.1. Similarly,
d
dt

‖∇2Ψ‖2
L2 + ‖∇3Ψ‖2

L2 ≤ Cε2 + C‖∇2(Φ, U,Ψ, B)‖2
L2 . (4.29)

Operating ∇2 to both sides of (4.9) and multiplying the resulting equation by ∇2B in L2, by virtue
of (4.10), (4.18) and (4.19) we deduce

d
dt

‖∇2B‖2
L2 + ‖∇3B‖2

L2 ≤ Cε2 + C‖∇2(Φ, U,Ψ, B)‖2
L2 , (4.30)

choosing δ to be suitable small in (4.27), then (4.27)–(4.30) gives
d
dt

‖∇2(Φ, U,Ψ, B)(t)‖2
L2 + ‖∇3(U,Ψ, B)‖2

L2 ≤ Cε2 + C‖∇2(Φ, U,Ψ, B)‖2
L2 , (4.31)

and thus, an application of Gronwall inequality yields (4.26). �

Proof of Theorem 1.2. Now, the convergence rates of vanishing limit of Hall coefficient stated in Theorem
1.2 readily follow from Lemmas 4.1–4.3. �
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[23] Mininni, P.D., Gòmez, D.O., Mahajan, S.M.: Dynamo action in magnetohydrodynamics and Hall magnetohydrody-

namics. Astrophys. J. 587, 472–481 (2003)
[24] Kobayashi, T.: Some estimates of solutions for the equations of motion of compressible viscous fluid in the three-

dimensional exterior domain. J. Differ. Equ. 184, 587–619 (2002)
[25] Kobayashi, T., Shibata, Y.: Decay estimates of solutions for the equations of motion of compressible viscous and

heat-conductive gases in an exterior domain in R
3. Commun. Math. Phys. 251, 365–376 (2004)

[26] Li, H.L., Xu, X.Y., Zhang, J.W.: Global classical solutions to 3D compressible magnetohydrodynamic equations with
large oscillations and vaccum. SIAM J. Math. Anal. 45, 1356–1387 (2013)

[27] Lv, B.Q., Shi, X.D., Xu, X.Y.: Global existence and large-time asymptotic behavior of strong solutions to the com-
pressible magnetohydrodynamic equations with vacuum. Indiana Univ. Math. J. 65, 925–975 (2016)

[28] Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases.
J. Math. Kyoto Univ. 20, 67–104 (1980)

[29] Pu, X.K., Guo, B.L.: Global existence and convergence rates of smooth solutions for the full compressible MHD
equations. Z. Angew. Math. Phys. 64, 519–538 (2013)

[30] Shalybkov, D.A., Urpin, V.A.: The Hall effect and the decay of magnetic fields. Astron. Astrophys. 321, 685–690 (1997)
[31] Tan, Z., Wang, H.Q.: Optimal decay rates of the compressible magnetohydrodynamic equations. Nonlinear Anal. Real

World Appl. 14, 188–201 (2013)
[32] Treves, F.: Basic Linear Partial Differential Equations. Academic Press, New York (1975)
[33] Wardle, M.: Star formation and the Hall effect. Astrophys. Space Sci. 292, 317–323 (2004)
[34] Xiang, Z.Y.: On the Cauchy problem for the compressible Hall-magneto-hydrodynamic equatioins. J. Evol. Equ. 17,

685–715 (2017)
[35] Zhang, J.W., Zhao, J.N.: Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics.

Commun. Math. Sci. 8, 835–850 (2010)

Suhua Lai, Xinying Xu and Jianwen Zhang
School of Mathematical Sciences
Xiamen University
Xiamen 361005
People’s Republic of China
e-mail: xinyingxu@xmu.edu.cn

(Received: December 13, 2018; revised: June 2, 2019)


	On the Cauchy problem of compressible full Hall-MHD equations
	Abstract
	1. Introduction
	2. Reformulation
	3. Proof of Theorem 1.1
	3.1. Global existence of classical solutions
	3.2. Decay rates

	4. Proof of Theorem 1.2
	References




