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Abstract. In this paper, we connect quantum mechanics with the recent work of the author Hill (Z Angew Math Phys

69:133–145, 2018; Z Angew Math Phys 70:5–14, 2019), suggesting that dark energy arises from the conventional mechanical
theory neglecting the work done in the direction of time and consequently neglecting the de Broglie wave energy. Using
special relativity and validation through Lorentz invariance, Hill (2018, 2019) develops expressions for the de Broglie wave
energy E by making a distinction between particle energy e = mc2 and the total work done by the particle W , so that
both momentum p = mu and particle energy e contribute to the total work done W = e + E . This formulation provides an
extension of Newton’s second law that is invariant under the Lorentz group and gives work done expressions for E involving
the log function, indicating that large energies might be generated even for slowing mechanical systems. Although inherent
in Hill (2018, 2019), here we propose explicitly that the total work done W by a single particle comprises two contributions,
namely particle energy e and wave energy E ; thus, W = e + E . Since in any experiment either particles or de Broglie waves
are reported, only one of e or E is physically measured, which leads to the expectation that particles appear for e < E and
de Broglie waves occur for E � e, but in either event, both a measurable energy and an unmeasurable energy exist, the
latter registering its presence in the form of dark energy. In particular, in this formulation conventional quantum mechanics
operates under circumstances such that the spatial physical force f vanishes, and the force g in the direction of time becomes
pure imaginary. If both f and g are generated as the gradient of a potential, then the total particle energy is necessarily
conserved in a conventional manner. The present paper makes a formal connection between special relativity and quantum
mechanics, linking two new invariances of the Lorentz group of special relativity with the corresponding Lorentz invariant
differential operators arising in quantum mechanics and the de Broglie particle and wave duality in Hill (2018, 2019) and
giving rise to the Klein–Gordon equation of relativistic quantum mechanics.

Mathematics Subject Classification. 83A05, 83A99, 35L05.

1. Introduction

Louis de Broglie [3] first predicted light to display the dual characteristics as both a collection of particles,
called photons, or in some respects as a wave. He predicted that other elementary particles such as
electrons, and indeed all matter, may, under appropriate circumstances, exhibit either particle-like or
wave-like behaviour. For example, he envisaged that an electron orbiting a hydrogen atom is accompanied
by a mysterious pilot wave (now known as a de Broglie wave) extending the circumferential length of
the orbit, and he speculated that the length of the orbit circumference comprised an integer number of
wavelengths, from which he deduced that p = h/λ, where p is the particle momentum, h is the Planck
constant and λ is the wave length (see, for example, [7]). In two recent papers [12,13], the present author
proposes that the origins of dark energy lie in conventional mechanical thinking not taking into account
the work done in the direction of time and in consequence ignoring the de Broglie wave energy. The
motivation for [12,13] and the present work arises from electromagnetism and the perceived fundamental
importance of the vector and scalar potentials (A, V ) as compared to the fields (E,B) that in standard
notation are related by the formulae

B = ∇ ∧ A, E = −∂A
∂t

− ∇V.
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In [12,13], corresponding potentials in mechanics are sought that play a similar role. Given that momen-
tum and mass conservation are necessarily partnered in a special relativistic four-vector sense and the
requirement of Lorentz invariant energy–momentum relations, the only available option is the adoption
of momentum p = mu, particle energy e = mc2 and necessarily with the Einstein mass variation. This
approach appears to provide a natural framework, and the choice turns out to be a fortuitous one,
since the proposed work done expression automatically makes an accommodation for the de Broglie wave
energy. The purpose of this paper is to complete the picture for these ideas to include quantum mechanics
and two new invariants of special relativity, giving rise to two Lorentz invariant operators in quantum
mechanics, involving the Klein–Gordon equation and including new formulae not reported in the author’s
two previously cited papers.

1.1. Waves and group velocities

Energy transmission by a stream of particles involves mass transport through a flow of matter. How-
ever, wave motion as the passage of a local disturbance in a medium may transmit energy without any
accompanying flow of matter. There are numerous types of wave motion, such as ocean waves in which
the disturbance is an oscillation of the sea water along the path of the wave, or sound waves in which
the disturbance is a deformation of the medium (perhaps elastic or viscoelastic) along the direction of
the medium, or electromagnetic waves in which the disturbance consists of oscillations of the electric and
magnetic fields, and so on. Since it is generally believed that even the most complicated wave structure
can be built up from a linear combination of simple harmonic waves, attention is accordingly focussed on
simple harmonic waves of the form e2πi(x/λ−t/T ), where λ is the wavelength and T is the period of oscil-
lation. On introducing, respectively, the wave number and angular frequency k = 2π/λ and ω = 2π/T , in
standard notation the simple harmonic wave becomes ei(kx−ω(k)t), noting that typically the angular fre-
quency ω depends upon the wave number k, namely the wavelength λ (see, for example, [18], pp 13–16).
In this notation, the wave velocity w as measured by the movement of one wave peak (crest) to the next,
namely “wavelength/ period”, becomes simply w = ω(k)/k. Now in any dispersive medium, that is, one
in which the wave velocity depends upon the wavelength, waves of different wavelengths are propagated
through the medium as a group with a velocity u = dω/dk which is generally different from w = ω/k
and the relationship u = w + kdw/dk holds (see, for example, [22], pp. 208–213).

1.2. de Broglie waves

In brief, the de Broglie [3] idea of an accompanying pilot wave originates as follows. In the Bohr theory
of the hydrogen atom (see, for example, [7], pp 29–61 for a general historical account), the nth orbit of
the electron has radius r given by

r =
(

nh

2π

)2 1
me∗2 , (1.1)

where m and e∗ denote, respectively, the mass and charge of the electron. However, from the mechanical
and electrical force balance, we have mrω2 = e∗2/r2 where ω denotes angular velocity, and by substitution
of e∗2 from this equation into Eq. (1.1) and taking the square root, we may deduce de Broglie’s relation
2πr = nh/p noting that the momentum p = mu and the electron velocity u = rω, for which he made the
critical observation that 2πr is an integer multiple of the wavelength λ if p = h/λ which he speculated
is applied to all elementary particles. For such an elementary particle with wave velocity w = λν where
ν = 1/T is the frequency, the analogous result for energy is e = hν, so that from e = hw/λ, together
with p = h/λ and e2 − (pc)2 = e20, where e0 = m0c

2 and m0 is the rest mass, we may deduce that the
wave velocity w is given by
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w = c

(
1 +

(
e0λ

hc

)2
)1/2

,

and from the relationship u = w−λdw/dλ, after differentiation and simplification we may deduce uw = c2

connecting the group velocity u with the wave velocity w. Further, with the usual relations e = mc2 and
p = mu, and e/p = λν = w it is not difficult to show that the group velocity u of the wave package
coincides with the particle velocity as defined by that velocity occurring in the expression p = mu for
momentum.

Thus, the group velocity of the wave u coincides with the particle velocity, and if the particle velocity
u is subluminal, then the associated wave or phase velocity c2/u through the de Broglie relation is
necessarily superluminal. This is “believed” not to contradict the fact that information cannot be carried
faster than the speed of light c because “supposedly” the wave phase does not carry energy. However, the
superluminal phase velocity may well be physically significant, and as suggested in [12,13], dark energy
may well exist as a consequence that the associated de Broglie wave energy is neglected. If the wave
energy through the superluminal wave speed c2/u is accommodated, then it is not difficult to envisage
interesting outcomes for slowing particle speeds u tending to zero.

In [12,13], it is shown that within the confines of Lorentz invariance and special relativity, alternative
energy accounting procedures exist for which large energies can be generated that are well in excess of
that predicted by Einstein’s expression. Einstein’s formulae describing the variation with velocity u for
the energy and mass of a particle e = mc2 and m(u) = m0[1 − (u/c)2]−1/2, where m0 denotes the rest
mass and c is the speed of light, have been overwhelmingly verified in our local environment, but these
relations are not so successful on a cosmological scale (see, for example, [21]). Einstein’s formulae are
based on the assumption that the particle energy e accrues from and coincides with the work done and
is derived from an energy rate equation de/dt = u.(dp/dt), sometimes referred to as the rate-of-working
equation, where p = mu is the momentum and u is the velocity vector. In [12,13], a distinction is made
between particle energy e and the work done, and our purpose here is to connect the ideas of [12,13]
with two new invariances of the Lorentz group in special relativity, which are linked with the de Broglie
particle and wave duality which in turn give rise to two corresponding Lorentz invariant operators in
quantum mechanics.

2. General formulation

Assuming all quantities are both position x and time t dependent and assuming the usual formulae of
special relativity, namely e = mc2 and m(u) = m0[1−(u/c)2]−1/2, in [12,13] a distinction is made between
the particle energy e = mc2 and the actual work done by the particle.

2.1. Force formulae

As a formal extension of Newton’s second law, the following force f and energy–mass production g are
proposed:

f =
∂p
∂t

+ ∇e, g =
1
c2

∂e

∂t
+ ∇.p, (2.1)

noting that this formulation assumes that space and time are on an equal footing so that all derivatives
in (2.1) are assumed to be partial. Further, the second equation of (2.1) is the generally accepted mass
continuity equation but including an energy–mass production term g, and might be viewed as Newton’s
second law in the direction of time. We comment that at both local length scales (conservation of mass in
classical mechanics) and at atomic and molecular length scales (conservation of probability in quantum
mechanics) the quantity g is generally assumed to be zero. In [12], an explicit wave-like solution is obtained
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on the basis that g is assumed to be nonzero. The Lorentz invariance of (2.1) hinges on the precise given
signatures, and a critical calculation elaborated in [12] and purposely repeated in the following section is
that both f and g are Lorentz invariants so that (f , gc) is well-defined four vectors.

Assuming the Einstein mass variation implies that energy e and momentum p satisfy the relation
e2 − c2p.p = e20, where e0 = m0c

2 and m0 is the rest mass, so that the following relations are applied:

∂e

∂t
= u.

∂p
∂t

, ∇e = (u.∇)p,
de

dt
= u.

dp
dt

,

which we may exploit to establish the identities:

f =
∂p
∂t

+ (u.∇)p =
dp
dt

, (2.2)

and

g =
1
c2

(
∂e

∂t
+ ∇.(eu)

)
=

1
c2

(
de

dt
+ e(∇.u)

)
, (2.3)

so that in this formulation, the force f coincides precisely with the usual notion as the total time derivative
of momentum.

Of particular interest, on adopting the usual operator relations of quantum mechanics p −→ −i�∇
and e −→ i�∂/∂t, where as usual � = h/2π and h is Planck’s constant, so that

p = −i�∇ψ, e = i�
∂ψ

∂t
,

for some function ψ = ψ(x, t), we see that (2.1) gives f = 0 and

g =
i�

c2

(
∂2ψ

∂t2
− c2∇2ψ

)
, (2.4)

for which we make three observations. Firstly, in conventional quantum mechanics, a distinction is not
made between physical particle energy e and wave energy E . In the formalism developed here, it is
apparent that conventional quantum mechanics operates under circumstances for which the spatial phys-
ical force f vanishes. Secondly, the three spatial dimensional Klein–Gordon equation (C.1) can be seen
to emerge under the linearity assumption g(ψ) ≈ −i(e20/�c2)ψ, where e0 = m0c

2. We note that the
Klein–Gordon equation constitutes a fundamental equation of relativistic quantum mechanics, and the
observation indicates both that g might be imaginary and that the Klein–Gordon equation might be only
a first approximation in a nonlinear setting. The third observation is that Schrodinger’s wave equation
might well be readily deduced as arising from the wave equation operator appearing in Eq. (2.4), and
this is discussed further in the final subsection of this section.

2.2. Work done formulae

Accordingly, following [12,13] to extend the conventional notion of work done, say dW as arising from
the accepted notion of force times distance, we propose that the incremental work done dW arises as the
scalar product of the two four vectors (f , gc) and (dx, cdt), thus

dW = f .dx + gc2dt =
(

∂p
∂t

+ ∇e

)
.dx +

(
∂e

∂t
+ c2∇.p

)
dt, (2.5)

which on using the identities simplifies to yield

dW =
dp
dt

.dx +
(

de

dt
+ e(∇.u)

)
dt =

de

dt
dt +

(
de

dt
+ e(∇.u)

)
dt. (2.6)
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However, as reported in [12,13], immediately from Eq. (2.5), we may deduce

d(W − e) =
∂p
∂t

.dx + c2(∇.p)dt, (2.7)

and we may view either (2.6) or (2.7) as generalising the conventional work done equation de =
(dp/dt).dx, and comprising two energies: the conventional particle energy e arising from de = (dp/dt).dx
and the wave energy E which is the subject of [12,13], and arising from either of the two expressions

dE =
(

de

dt
+ e(∇.u)

)
dt =

∂p
∂t

.dx + c2(∇.p)dt, (2.8)

and from this equation and Eqs. (2.2) and (2.3), we may deduce the companion formulae

f =
dp
dt

, g =
1
c2

dE
dt

.

The equation W = e + E accommodates both the particle and de Broglie wave energies, and it is
the contribution arising from the de Broglie wave energy E that is not accommodated in traditional
mechanical thinking and might be identified as a formal source of dark energy. We comment that while
the Einstein particle energy e = mc2 can be calculated for any subluminal velocity field, the de Broglie
wave energy E is only generated from velocity fields u for which the corresponding momentum p satisfies
a wave equation of the form

∂2p
∂t2

= c2∇(∇.p) = c2∇2p + c2∇∧(∇∧p), (2.9)

arising from the compatibility of either differential relations (2.5) or (2.8), while the wave energy E
satisfies the wave equation,

∂2E

∂t2
= c2∇2E .

In one spatial dimension, Eq. (2.9) becomes simply the conventional wave equation, and a number of wave-
like solutions of the one-dimensional wave equation are examined in [12,13]. In particular, the special
case of light for which E = hν and p = hν/c, where h is Planck’s constant and ν denotes the frequency,
is shown to arise from (2.8) and the one-dimensional wave equation.

Assuming the existence of either W or E imposes certain constraints, it is apparent from (2.5) that f
and g must satisfy the compatibility condition

∂f
∂t

= c2∇g, (2.10)

in order that either (2.5) or (2.8) represents well-defined differential relations for W and E , respectively. In
the present formulation, the compatibility condition (2.10) represents a new equation and an important
constraint that is not present in conventional theory. For example, if our particle is exposed to some
external fields such as gravity, then (2.10) implies that we might assume that (f , gc) are generated as
external forces from a potential V (x, t) such that

f = −∇V, gc2 = −∂V

∂t
,

so that (2.1) becomes

∂p
∂t

+ ∇(e + V ) = 0,
1
c2

∂(e + V )
∂t

+ ∇.p = 0,

which implies that e + V satisfies the wave equation and from (2.8) we find

dE =
∂p
∂t

.dx + c2(∇.p)dt = −∇(e + V ).dx − ∂(e + V )
∂t

dt,
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and therefore d(e + E + V ) = 0, and a conventional conservation of energy is applied, namely W + V =
e + E + V = constant. We comment that the potential energy term V ψ is an essential ingredient in the
conventional Schrodinger equation. In an equivalent fluid formulation due to Madelung, there is a force
term −∇V , while in field theory, an external field is coupled to the Klein–Gordon field or to the Dirac
field within a standard invariant Lagrangian formulation.

2.3. Some comments

For this general formulation, we make the following observations. The term c2(∇.p)dt does not appear in
conventional special relativistic mechanics, and it is this term which automatically takes into account the
de Broglie wave energy. Secondly, we might anticipate that e is applied for subluminal particle motion,
while E is applied for superluminal de Broglie waves. Thirdly, that since in any experiment either particles
or de Broglie waves are reported, only one of e or E is physically measured, which leads to the expectation
that particles appear for e < E and de Broglie waves occur for E � e. However, in either event, both a
measurable energy and an unmeasurable energy exist, the latter registering its presence in the form of dark
energy. Fourthly, it is clear that e < E or E � e hinges on the sign of the divergence of the velocity field
∇.u, and the particle-wave transition occurs for precisely volume preserving or incompressible velocity
fields u for which ∇.u = 0.

2.4. Schrodinger wave equation

We further comment that in conventional quantum mechanics, the Schrodinger equation is usually moti-
vated as arising from the classical wave equation. The usual requirements are that the equation is linear
so that different solutions may be superimposed and that it involves only fundamental constants, rather
than parameters associated with a particular motion of the particle such as momentum, energy, frequency
or propagation number.

It is therefore important to emphasise that within the theory proposed here, the classical wave equation
is not a matter of speculation, but rather a consequence, and it is not difficult to envisage the Schrodinger
wave equation arising in the present context as a formal consequence, following the numerous ad hoc
derivations of the Schrodinger wave equation presented in several texts (such as [18], pp 18–19 or [22], pp
218–220). So, for example, for a single non-relativistic particle, Semat [22] starts with the wave equation

∂2Ψ
∂t2

= w2

(
∂2Ψ
∂x2

+
∂2Ψ
∂y2

+
∂2Ψ
∂z2

)
, (2.11)

where w denotes the wave speed, assumed constant, and Ψ(x, y, z, t) denotes a wave function. On using
the three relations p = h/λ, w = λν and E = hν, [22] makes use of conservation of energy E =
mv2/2 + V where V denotes potential energy, to deduce p = mv = (2m(E − V ))1/2 and therefore w =
hν/(2m(E − V ))1/2. On looking for solutions of (2.11) of the form Ψ(x, y, z, t) = ψ(x, y, z) exp(2πiνt),
we might readily deduce Schrodinger’s wave equation for a single particle, namely

∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2
= −8π2m

h2
(E − V )ψ, (2.12)

and the question arises as to whether or not there is a more immediate derivation of Schrodinger’s
equation arising from an alternative formulation.

For completeness, in the following section we detail the major formulae of special relativity that are
required to establish the Lorentz invariance of the fundamental force relations (2.1) and the two further
invariances ξ(x, t) and η(x, t) of special relativity given by (4.1), which are the subject of the subsequent
section.



ZAMP Dark energy and quantum mechanics Page 7 of 22 131

T

X x

t
v

uU

Fig. 1. Inertial frames moving along x-axis with relative velocity v

3. Special relativity

We consider a rectangular Cartesian frame X = (X,Y,Z) and another frame x = (x, y, z) moving with
constant velocity v relative to the first frame, and the motion is assumed to be in the aligned X and x
directions as indicated in Fig. 1. Time is measured from the (X,Y,Z) frame with the variable T and from
the (x, y, z) frame with the variable t. Following normal practice, we assume that y = Y and z = Z, so
that (X,T ) and (x, t) are the variables of principal interest.

3.1. Lorentz transformations

For 0 � v < c, the standard Lorentz transformations are

x =
X − vT

[1 − (v/c)2]1/2
, t =

T − vX/c2

[1 − (v/c)2]1/2
, (3.1)

and various derivations of these equations can be found in many standard textbooks, such as Feynmann
et al. [6] and Landau and Lifshitz [15], and other novel derivations are given by Lee and Kalotas [16]
and Levy-Leblond [17]. We also observe that viewing the relative frame velocity v as a parameter, the
envelope parameter values v = ±c (see, for example, [8]) emerge from solving the two equations

∂x

∂v
=

(
Xv − Tc2

)
c2 (1 − (v/c)2)3/2

= 0,
∂t

∂v
=

(Tv − X)

c2 (1 − (v/c)2)3/2
= 0,

as might be expected.

3.2. Velocity addition formulae

With velocities U = dX/dT and u = dx/dt, (3.1) yields the addition of velocity law

u =
U − v

(1 − Uv/c2)
, (3.2)

which is well known and due to Einstein, and an immediate consequence is the identity

[1 − (u/c)2](1 − Uv/c2)2 = [1 − (v/c)2][1 − (U/c)2]. (3.3)

Another formula arising from (3.2) is(
1 + U/c

1 − U/c

)
=

(
1 + u/c

1 − u/c

) (
1 + v/c

1 − v/c

)
, (3.4)

so that on introducing velocity variables (Θ, θ, ε) defined by

Θ = tanh−1(U/c), θ = tanh−1(u/c), ε = tanh−1(v/c), (3.5)
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Eq. (3.4) becomes simply the translation Θ = θ + ε noting again that within the context of special
relativity, v and therefore ε are both assumed to be constants. Subsequently, we find that the angle θ
assumes an important role, so for completeness we note the elementary relations

θ =
1
2

log
(

1 + u/c

1 − u/c

)
= tanh−1(u/c),

(
1 + u/c

1 − u/c

)1/2

= eθ, (3.6)

and emphasise that θ is the angle in which Lorentz invariance appears through a translational invariance.
We comment that the formulation of Lorentz transformations as a one-parameter group of geometric
transformations is due to Minkowski [19].

We observe for (3.2) that an outcome predicted in [11] is that Einstein’s velocity addition formula (3.2)
remains valid for the proposed extension of special relativity beyond the speed of light, and in particular,
in the limit v → ∞ the de Broglie relation uU = c2 emerges. It also formally emerges from the envelope
[8], namely by simultaneously solving (3.2) and

∂u

∂v
=

−1
(1 − Uv/c2)

+
U(U − v)

c2 (1 − Uv/c2)2
=

− (
1 − (U/c)2

)
(1 − Uv/c2)2

= 0,

which can only vanish in the limit v → ∞. The relation uU = c2 formally arises from the underlying
transformation x = cT, t = X/c. With a primed notation, the space–time transformation x′ = ct and
t′ = x/c, for which u′ = dx′/dt′ = c2dt/dx = c2/u and has been widely used to connect the Galilean
and Carroll transformations as significant limits of Lorentz invariant theories, for example, in electromag-
netism. The Carrollian transformations x′ = ct and t′ = x/c were originally introduced by Jean-Marc
Levy-Leblond, and their origin and development are fully detailed by Rousseaux [20] and Houlrik and
Rousseaux [14].

3.3. Lorentz invariant energy–momentum relations

For v, u, U < c, assuming the Einstein mass variation in both frames

m(u) =
m0

[1 − (u/c)2]1/2
, M(U) =

m0

[1 − (U/c)2]1/2
,

and with momenta P = MU and p = mu, we have on multiplication of (3.2) by m0

[
1 − (u/c)2

]−1/2 and
using the square root identity from (3.3), we may readily deduce the Lorentz invariant energy–momentum
relations in consideration of the formulae e = mc2 and E = Mc2, thus

p =
P − Ev/c2

[1 − (v/c)2]1/2
, e =

E − Pv

[1 − (v/c)2]1/2
, (3.7)

and noting that (3.1) and (3.7) give rise to the two Lorentz invariants

x2 − (ct)2 = X2 − (cT )2, e2 − (pc)2 = E2 − (Pc)2 = e20, (3.8)

where e0 = m0c
2 denotes the rest mass energy. Subsequently, we see that the derived form of the latter

relation, namely
e

p

de

dp
= c2, (3.9)

emerges as an alternative formulation of the de Broglie relation uw = c2 connecting the group velocity u
with the wave velocity w. Further, as a consequence of (3.1) we have the following important relations
applying for the characteristic variables x + ct and x − ct, as given by [11] thus

x + ct =
(

1 − v/c

1 + v/c

)1/2

(X + cT ), x − ct =
(

1 + v/c

1 − v/c

)1/2

(X − cT ),
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from which the first relation of (3.8) is apparent. In the following sections, we shall make use of the
notation

α = x + ct, β = x − ct, ζ = (x2 − (ct)2)1/2, ρ =
1
2

log
(

x + ct

x − ct

)
, (3.10)

noting that only ζ is a full invariant of the Lorentz group (3.1) while the other three might be viewed as
partial invariants.

3.4. Lorentz invariance of force relations

Fundamental to this investigation is the invariance of the given expressions for (f , gc) under Lorentz
transformation established in [12]. For completeness and given the crucial nature of this result, the major
details are repeated here. In one spatial dimension x, the proposed Eqs. (2.1) become simply

f =
∂p

∂t
+

∂e

∂x
, g =

1
c2

∂e

∂t
+

∂p

∂x
,

and it is not difficult to show that these equations remain invariant under the Lorentz group (3.1) and
(3.7); in other words, the following relations hold

f =
∂p

∂t
+

∂e

∂x
=

∂P

∂T
+

∂E

∂X
, g =

1
c2

∂e

∂t
+

∂p

∂x
=

1
c2

∂E

∂T
+

∂P

∂X
,

which we establish as follows. From Eq. (3.1), we have the differential relations

∂

∂x
=

1
(1 − (v/c)2)1/2

{
∂

∂X
+

v

c2
∂

∂T

}
,

∂

∂t
=

1
(1 − (v/c)2)1/2

{
∂

∂T
+ v

∂

∂X

}
, (3.11)

so that on using (3.7) and the subscript notation for partial derivatives we have

pt + ex

=
1

(1 − (v/c)2)

{(
PT − v

c2
ET

)
+ v

(
PX − v

c2
EX

)
+ (EX − vPX) +

v

c2
(ET − vPT )

}

= PT + EX ,

and similarly

1
c2

et + px

=
1

(1 − (v/c)2)

{
1
c2

(ET − vPT ) +
v

c2
(EX − vPX) +

(
PX − v

c2
EX

)
+

v

c2

(
PT − v

c2
ET

)}

=
1
c2

ET + PX .

This key outcome indicates that Eqs. (2.1) are well formulated. In the following section, we examine two
related invariances of special relativity.

4. Two Lorentz invariants of special relativity

By direct substitution, we may establish, using Eqs. (3.1) and (3.7), that ξ(x, t) and η(x, t) as defined by
the equations

ξ = ex − c2pt, η = px − et, (4.1)
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constitute two Lorentz invariances of special relativity, which are readily verified as follows. On evaluating
ξ = ex − c2pt and η = px − et using (3.1) and (3.7), we have(

(E − Pv)(X − vT ) − c2(P − Ev/c2)(T − vX/c2)
)

(1 − (v/c)2)
= EX − c2PT,

and (
(P − Ev/c2)(X − vT ) − (E − Pv)(T − vX/c2)

)
(1 − (v/c)2)

= PX − ET,

as required. The invariant η = px − et has the usual dimensions of action and arises directly for simple
harmonic waves of the form e2πi(x/λ−t/T ) = ei(kx−ω(k)t), where λ is the wavelength, T is the period of
oscillation, k = 2π/λ is the wave number and ω = 2π/T is the angular frequency, assuming the de Broglie
relations. On the other hand, the invariant ξ = ex − c2pt is more surprising and as noted in Sect. 5.1
associates with the wave or superluminal world, in contrast to η which associates with the particle or
subluminal world. As demonstrated explicitly above, both constitute bona fide Lorentz invariants of
conventional special relativity.

4.1. Algebraic relations

For the space–time transformation x′ = ct and t′ = x/c, for which u′ = dx′/dt′ = c2dt/dx = c2/u, and
assuming the Einstein expressions e′ = m′c2 and m′ = m0/((u′/c)2 − 1)1/2 for u′ > c as proposed in
[11], by direct calculation we may readily establish the skew-symmetric relations ξ(x, t) = −ξ(x′, t′) and
η(x, t) = −η(x′, t′). Quantities that change sign under this reflection are referred to as “pseudo-scalars”
in the particle physics literature.

We comment that Guemez et al. [10] have provided the special relativistic four-vector extension
of the de Broglie relation valid for three spatial dimensions as simply the scalar product u.u′ = c2,
using an obvious abbreviated formalism. One possible coordinate decomposition of this formula might
be r′ = ctr/r and t′ = r/c, where r and r′ denote the position vectors and r = (x2 + y2 + z2)1/2.
Note especially the identical inverse transformations r = ct′r′/r′ and t = r′/c where r′ = (x′2 + y′2 +
z′2)1/2 and that this coordinate decomposition although apparently a natural extension of the one-
dimensional coordinate transformation x′ = ct and t′ = x/c for uu′ = c2 may not be unique. Indeed,
the one-dimensional transformation itself may not provide a unique decomposition of the equation uu′ =
c2. The coordinate transformation r′ = ctr/r is essentially one-dimensional and might well apply in a
predominantly Friedmann–LeMaitre universe in which there is a preferred reference frame in which the
cosmic microwave background is isotropic, since the transformation is spatially spherically symmetric and
polar angles remain unchanged and r′ = ct and t′ = r/c.

Further, from (4.1) it is not difficult to establish the algebraic relations

ξ + cη = (e + cp)(x − ct), ξ − cη = (e − cp)(x + ct),

and therefore, we have

ξ2 − (cη)2 = (e2 − (cp)2)(x2 − (ct)2) = e20(x
2 − (ct)2), (4.2)

on using e2 − (cp)2 = e20 where e0 = m0c
2. Now on using the relations

e + cp = e0

(
1 + u/c

1 − u/c

)1/2

= e0e
θ, e − cp = e0

(
1 − u/c

1 + u/c

)1/2

= e0e
−θ,

where θ is the angle defined by (3.5) and satisfying relations (3.6), we may deduce

ξ + cη = e0(x − ct)eθ, ξ − cη = e0(x + ct)e−θ,
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from which we may readily obtain

ξ = e0x cosh θ − e0ct sinh θ, η = e0x sinh θ − e0ct cosh θ. (4.3)

Further, relations (4.1) may be inverted to yield

e =
(

xξ + c2tη

x2 − (ct)2

)
, p =

(
tξ + xη

x2 − (ct)2

)
, (4.4)

and from these expressions and (2.1), we might deduce the following for the force f and mass energy
production g

f =
(

x(ηt + ξx) + t(c2ηx + ξt)
x2 − (ct)2

)
, g =

(
t(ηt + ξx) + x(c2ηx + ξt)/c2

x2 − (ct)2

)
,

where subscripts denote partial derivatives.

4.2. Differential relations

On taking the total time derivative d/dt of the two invariants ξ and η given by (4.1) and making use of
de/dt = udp/dt, we obtain

e0
dξ

ds
= fcη, e0c

dη

ds
= fξ − e20, (4.5)

where f = dp/dt is the force and ds denotes the line element ds = c
(
1 − (u/c)2

)1/2 dt arising from
(ds)2 = (cdt)2 − (dx)2. We may confirm these relations since on differentiating Eq. (4.2) totally with
respect to time, we may deduce

ξ
dξ

dt
− c2η

dη

dt
= e20(xu − c2t),

which simplifies to give

ξ
dξ

ds
− c2η

dη

ds
= e0cη,

and Eqs. (4.5) can be readily seen to be consistent with this result.
On introducing the function σ(x, t) defined by the differential relation dσ = fds =

fc
(
1 − (u/c)2

)1/2 dt, from f = dp/dt we may readily deduce dσ = m0cdu/
(
1 − (u/c)2

)
so that the

function σ is given by

σ =
m0c

2

2
log

(
1 + u/c

1 − u/c

)
= e0 tanh−1

(u

c

)
. (4.6)

Accordingly, in terms of the angle θ defined by (3.5), we have simply σ = e0θ, and Eqs. (4.5) become

dξ

dθ
= cη, c

dη

dθ
= ξ − e20

f
, (4.7)

from which we may readily deduce

d2ξ

dθ2
− ξ = −e20

f
,

d2η

dθ2
− η = −1

c

d(e20/f)
dθ

. (4.8)

Equations (4.7) and (4.8) can appear in a variety of forms. For example, on noting the relations for the
force and the line element, namely f = dp/dt and ds = c

(
1 − (u/c)2

)1/2 dt, we may deduce the equation
e0/f = ds/dθ, and in place of Eqs. (4.7) and (4.8) we have

dξ

dθ
= cη, c

dη

dθ
= ξ − e0

ds

dθ
, (4.9)
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from which we may readily deduce

d2ξ

dθ2
− ξ = −e0

ds

dθ
, c

d2η

dθ2
− cη = −e0

d2s

dθ2
, (4.10)

and an independent derivation of Eqs. (4.9) and (4.10) is provided in “Appendix A”. Further, we comment
that by direct differentiation of (4.3) totally with respect to time and using u = dx/dt = c tanh θ we have

dξ

dt
= e0 (x sinh θ − ct cosh θ)

dθ

dt
, c

dη

dt
= e0 (x cosh θ − ct sinh θ)

dθ

dt
− e0 sech θ, (4.11)

which coincide with (4.7) and (4.9) since on using u = c tanh θ, we have ds/dt = c sech θ and (4.9) follows
immediately from (4.11). Some further differential relations are presented in “Appendix B”.

5. Quantum mechanics and the Lorentz invariants ξ and η

The determination of a formal connection between special relativity and quantum mechanics has long
attracted the interest of many eminent researchers, including Einstein himself, and culminating in the
highly successful Dirac and Klein–Gordon equations and the literature leading to these developments
and their numerous consequences is now extensive, see, for example, Bjorken and Drell [1], Dirac [4],
Dirac [5] and Gross [9] to name only four of many substantial texts on this topic. This formal connection
has always alluded researchers since in conventional quantum mechanics, there is no distinction made
between energy arising from particle energy e or from wave energy E . Once this distinction is made clear
and the two invariants ξ and η of special relativity are identified, the connection between the two topics
becomes apparent.

The purpose of this section is to formulate the role of the invariants ξ(x, t) and η(x, t) defined by
Eq. (4.1) relating to de Broglie waves and quantum mechanics. In the following subsection, we show that
the simple harmonic waves e2πiη/h and e2πiξ/hc are connected to particles moving with velocities u and
c2/u, respectively, and moreover with corresponding de Broglie wave velocities c2/u and u, respectively.
Subsequently, following the usual replacement with operators in quantum mechanics p −→ −i�∂/∂x and
e −→ i�∂/∂t, where as usual � = h/2π, we show that ξ and η give rise to two commuting Lorentz
invariant operators.

5.1. Wave and particle velocities

With the relations p = h/λ and e = hν in mind, on comparison of the expressions e2πi(ex−c2pt)/hc and
e2πi(px−et)/h with the previously noted standard simple harmonic wave ei(kx−ω(k)t) = e2πi(x/λ−νt), we
see an immediate correspondence in the latter case, while in the former case for the invariant ξ we have
e2πi(ex−c2pt)/hc = e2πi(wx/λ−νut)/hc involving both the wave and group velocities w and u, respectively.
It is apparent that the invariant η is intimately connected to a particle moving with velocity u with an
accompanying de Broglie wave speed c2/u, since waves of the form e2πiη/h = e2πi(px−et)/h have a particle
velocity de/dp = u and a wave velocity e/p = c2/u. On the other hand, it is apparent that the invariant
ξ is intimately connected to a particle moving with velocity c2/u with an accompanying de Broglie wave
speed u, since waves of the form e2πiξ/hc = e2πi(ex−c2pt)/hc have a particle velocity c2dp/de = c2/u and a
wave velocity c2p/e = u. We comment that in each case the de Broglie relation uw = c2 arises from (3.9)
and that we might anticipate that the invariant η associates with the subluminal or particle world, while
the invariant ξ associates with the superluminal or wave world.
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5.2. Preliminary quantum mechanical observations

In quantum mechanics, it is well established that the variables become operators and wave functions
involve a probability density. In the present formulation, for a single spatial dimension, the following
equations are applied for the momentum p and the wave energy E ,

∂E

∂t
= c2

∂p

∂x
,

∂E

∂x
=

∂p

∂t
,

so that there certainly exists a function ψ(x, t) such that

p =
∂ψ

∂x
, E =

∂ψ

∂t
. (5.1)

and satisfying the wave equation

∂2ψ

∂t2
− c2

∂2ψ

∂x2
= 0, (5.2)

from which, as previously described (see Eq. (2.12)), we may readily deduce a Schrodinger equation,
which perhaps indicates that there are alternative interpretations for ψ(x, t) other than the probabilis-
tic approach. The probabilistic interpretation in quantum mechanics arises primarily in consequence of
identifying variables as complex (pure imaginary) operators in order to adopt analogous energy integrals
from classical mechanics. Strictly speaking, we may derive Schrodinger’s equation from the present for-
mulation, and in particular for a single spatial dimension from the wave Eq. (5.2), without the need to
introduce complex variables.

We also observe that the one-dimensional version of (2.8), namely

dE = udp + euxdt,

on using a subscript notation for partial derivatives, can be shown to become

ψtxdx + ψttdt = u(ψxxdx + ψxtdt) + euxdt.

On using u = dx/dt, together with the wave Eq. (5.2) to eliminate ψtt, the resulting equation for ψxx

can be seen to be merely the partial derivative with respect to x of the relation p = mu = ∂ψ/∂x.
Also as previously noted, relations arising from the quantum mechanical operators p −→ −i�∂/∂x

and e −→ i�∂/∂t, namely

p = −i�
∂Ψ
∂x

, e = i�
∂Ψ
∂t

, (5.3)

for some function Ψ(x, t), are such that the physical force f vanishes. If for relations (5.1) and (5.2) we
make the additional assumption that f = pt + ex = 0, then in addition to p = ∂ψ/∂x we have the further
relation e = −∂ψ/∂t, so that in this particular case we have g = 0 and therefore W = e + E = 0 as
might be anticipated. Further, within the present theory it is a simple matter to show that there are no
non-trivial solutions for ψ(x, t) for which f = 0. In terms of the characteristic coordinates α = x+ ct and
β = x − ct and e2 − (pc)2 = e20, it is not difficult to show that the only solutions for e and p arising from
ψαβ = 0 and ψαψβ = −(e0/2c)2 are constant state solutions emanating from ψ(x, t) = C1α − C2β where
C1 and C2 denote constants such C1C2 = (e0/2c)2, and for which we have

e = −c(C1 + C2), p = (C1 − C2), E = c(C1 + C2),

corresponding to the constant velocity u/c = (C1−C2)/(C1+C2). However, since e is a constant, we have
(C1 + C2) = −e0/c and together with C1C2 = (e0/2c)2 we might readily conclude C1 = C2 = −e0/2c
and therefore only the trivial solution p = u = 0 is applied.
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Although relations (5.1) are clearly different from the quantum mechanical relations (5.3), nevertheless
they enjoy some common structure. In both cases, we might generate some insight as to what is happening
by evaluating the respective ratios p/E for (5.1) and p/e for (5.3), thus:

p

E
≈ p

e
=

u

c2
=

Δψ

Δx

Δt

Δψ
=

Δt

Δx
,

noting that here we are assuming the approximate relation E ≈ e. Since we are dealing with complex
variables, the corresponding approximate calculation in quantum mechanics for p/e produces(pp∗

ee∗
)1/2

=
u

c2
=

ΔΨ
Δx

Δt

ΔΨ
=

Δt

Δx
.

Both cases indicate that the underlying formality is a de Broglie relationship uw = c2 produced in the
form u/c2 ≈ 1/w where w denotes a certain velocity identified as Δx/Δt.

We also make the observation that from a special relativistic perspective, the conventional signatures
of these operators are meaningful in the sense of being precisely what is required to produce the correct
Lorentz invariances. Firstly, if we adopt P −→ −i�∂/∂X and E −→ i�∂/∂T , and we apply these operator
relations to the Lorentz invariant energy–momentum relations (3.7), then from p −→ −i�∂/∂x and
e −→ i�∂/∂t, we obtain precisely the correct differential transformation formulae (3.11). Furthermore,
the usual signatures of the quantum mechanical operators are precisely that required to ensure the Lorentz
invariances of the operators arising from the Lorentz invariants ξ and η defined by (4.1) and established
below.

5.3. Lorentz invariant quantum mechanical operators

Here, it proves convenient to adopt the convention that the operator corresponding to a given variable is
subscripted, so that for example in this notation, the two standard operators arising from momentum p
and energy e become

Lp = −i�
∂

∂x
, Le = i�

∂

∂t
,

so that directly from Eq. (4.1), namely ξ = ex − c2pt and η = px − et, we might introduce operators Lξ

and Lη that are defined by

Lξ = i�

(
x

∂

∂t
+ c2t

∂

∂x

)
, Lη = −i�

(
x

∂

∂x
+ t

∂

∂t

)
, (5.4)

both of which are fully Lorentz invariant operators, as can be verified from Eqs. (3.1) and (3.11), thus

Lξ =
i�(X − vT )
(1 − (v/c)2)

{
∂

∂T
+ v

∂

∂X

}
+

i�c2(T − vX/c2)
(1 − (v/c)2)

{
∂

∂X
+

v

c2
∂

∂T

}
,

and

Lη = − i�(X − vT )
(1 − (v/c)2)

{
∂

∂X
+

v

c2
∂

∂T

}
− i�(T − vX/c2)

(1 − (v/c)2)

{
∂

∂T
+ v

∂

∂X

}
,

from which we may deduce

Lξ = i�

(
X

∂

∂T
+ c2T

∂

∂X

)
, Lη = −i�

(
X

∂

∂X
+ T

∂

∂T

)
,

and therefore the operators Lξ and Lη are Lorentz invariant. Furthermore, by direct computation, it is
not difficult to show that the two operators commute, namely LξLη = LηLξ. In conventional quantum
mechanical thinking, this means that the corresponding observables ξ and η are simultaneously measurable
(compatible) and the two operators share the same eigenfunctions (see, for example, [2], p 101). We further



ZAMP Dark energy and quantum mechanics Page 15 of 22 131

observe that the operator Lξ is essentially the Lorentz operator Lv arising from the one-parameter group
of Lorentz transformations (3.1) which is given by

Lv = −
(

T
∂

∂X
+

X

c2
∂

∂T

)
,

which therefore also commutes with Lη. The full implications of this intriguing correspondence are not
immediately apparent, but further underscore the formal connection established here between special
relativity and quantum mechanics. Starting with the full invariant ξ = ex − c2pt of the Lorentz group,
we formulate the quantum mechanical operator Lξ given by (5.4), which turns out to be the Lorentz
operator formed from the one-parameter group of Lorentz transformations (3.1).

The various properties of the two operators Lξ and Lη are most apparent in terms of the characteristic
coordinates α = x + ct and β = x − ct and the variables ζ and ρ defined by (3.10). Using the differential
formulae

∂

∂x
=

∂

∂α
+

∂

∂β
,

∂

∂t
= c

∂

∂α
− c

∂

∂β
,

we may deduce

Lξ = i�c

{
α

∂

∂α
− β

∂

∂β

}
, Lη = −i�

{
α

∂

∂α
+ β

∂

∂β

}
, (5.5)

from which there arises the intriguingly simple formulae

Lξ−cη = 2i�cα
∂

∂α
, Lξ+cη = −2i�cβ

∂

∂β
.

From these two expressions, the formal operator equation corresponding to the identity (4.2), namely
ξ2 − (cη)2 = e20(x

2 − (ct)2), gives rise immediately to the Klein–Gordon equation (see, for example, [2],
p 312)

Lξ−cηLξ+cηΨ = 4(�c)2αβ
∂2Ψ
∂α∂β

= e20αβΨ,

for some function Ψ(x, t) from which we have

4
∂2Ψ
∂α∂β

=
( e0

�c

)2

Ψ,

or alternatively, in terms of the conventional (x, t) wave equation operator, we have the more usual form
of the Klein–Gordon equation ([2], p 313)

∂2Ψ
∂t2

− c2
∂2Ψ
∂x2

= −
(e0

�

)2

Ψ.

The Klein–Gordon equation is second order in both space and time coordinates, and it is a fundamental
equation of relativistic quantum mechanics. Dirac’s Lorentz invariant relativistic equation, which is the
first order in both space and time coordinates, is purposely constructed so that the probability density
remains non-negative, which is not a feature of the Klein–Gordon equation (see, for example, [2], p 317).
For completeness, some details for the time-dependent Dirac equation for a free particle are summarised
in “Appendix C”, and the equation itself for three spatial dimensions (x, y, z) becomes

i�
∂Ψ
∂t

+ ic�(A.∇)Ψ = e0BΨ,
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where Ψ is given by

Ψ =

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ ,

where the four matrices Ax, Ay, Az and B are as defined in “Appendix C”. For three spatial dimensions,
each component of Ψ, namely ψj = ψj(x, y, z, t) for j = 1, 2, 3, 4, may be shown to satisfy the three spatial
dimensional Klein–Gordon equation (C.1).

In terms of the characteristic coordinates α = x + ct and β = x − ct, the variables ζ and ρ defined by
(3.10) become

ζ = (x2 − (ct)2)1/2 = (αβ)1/2, ρ =
1
2

log
(

x + ct

x − ct

)
=

1
2

log
(

α

β

)
,

so that from (5.5) we may readily deduce the formulae

Lξ(ζ) = 0, Lη(ζ) = −i�ζ, Lξ(ρ) = i�c, Lη(ρ) = 0,

along with

LξLηΨ = �
2c

{
α2 ∂2Ψ

∂α2
+ α

∂Ψ
∂α

− β2 ∂2Ψ
∂β2

− β
∂Ψ
∂β

}
,

so that on making the Euler transformations γ = log α and δ = log β we obtain

LξLηΨ = �
2c

(
∂2Ψ
∂γ2

− ∂2Ψ
∂δ2

)
.

We also observe that for the variables ζ and ρ, the Jacobian and wave equation for the momentum become

∂(ζ, ρ)
∂(x, t)

=
c

ζ
,

∂2p

∂t2
− c2

∂2p

∂x2
= 4c2

∂2p

∂α∂β
= 0, (5.6)

and the latter equation becomes

ζ2
∂2p

∂ζ2
+ ζ

∂p

∂ζ
− ∂2p

∂ρ2
= 0,

∂2p

∂τ2
− ∂2p

∂ρ2
= 0, (5.7)

where we have made another Euler transformation τ = log ζ. On noting the relations γ = log α = τ + ρ
and δ = log β = τ −ρ, the well-known general solution of the wave equation p = F (α)+G(β) is apparent
from the latter equations of either (5.6) or (5.7).

6. Numerical results and conclusions

In order to provide a numerical illustration that total particle work done W is given by W = e + E
where e is the particle energy and E is the wave energy, we exploit the explicit wave-like solution and
formulae for E that are derived in [12] and characterised by an arbitrary parameter λ. For this solution,
the particle velocity u(x, t) is given explicitly by

u(x, t) = c

{
λx + ct

((e0/f0)2 + (λx + ct)2)1/2

}
,

and explicit formulae are presented in [12] for the wave energy E for the two cases λ2 < 1 and λ2 > 1.
Using these expressions, we may illustrate the relative importance of the wave energy by evaluating the
ratio defined by R = Einstein energy/(Einstein energy + Wave energy), namely R = e/(e + E ), and
adopting the same datum energy levels as those used in [12]. With Q precisely as defined in [12], we have
simply R = (2+Q)−1. In Figs. 2, 3 and Table 1, the angle φ denotes sin−1(u/c). In [12], numerical values
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Fig. 2. Typical variation of R = e/(e + E ) with φ = sin−1(u/c) for λ = 1/2

Fig. 3. Typical variation of R = e/(e + E ) with φ = sin−1(u/c) for λ = 2

are given for the ratio e/E as an indicator of the ratio of Einstein energy to dark energy, but with the
present interpretation that total particle work done W is given by W = e + E , the ratio e/(e + E ) more
accurately reflects the ratio of the Einstein energy to the total energy, and indeed, the numbers presented
here are closer to the commonly accepted estimates, which are often as low as 5 or 6%.
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Table 1. Numerical values for R = e/(e + E ) for two values of φ and various values of λ

φ = π/6 φ = π/3

λ = 1/4 0.4747 0.4723
λ = 1/2 0.4542 0.4517
λ = 3/4 0.4371 0.4357
λ = 2 0.3811 0.3876
λ = 5 0.3204 0.3398
λ = 10 0.2780 0.3072

In special relativity, the formulae for the energy and mass of a particle e = mc2 and m(u) = m0[1 −
(u/c)2]−1/2 are based on the assumption that the particle energy e accrues from and coincides with
the work done e, and formally arises as a consequence of the rate-of-working equation which in three
spatial dimensions becomes de/dt = u.(dp/dt) where p = mu is the momentum and u is the velocity
vector. In [12,13], the usual formulae of special relativity are adopted, except that a distinction is made
between particle energy e = mc2 and work done W , and Eq. (2.1) is proposed as a fully Lorentz invariant
alternative of Newton’s second law. Although inherent in [12,13], here we propose explicitly that the total
work done W by a single particle comprises two contributions, namely particle energy e and wave energy
E , thus W = e + E .

In summary for a single spatial dimension, we propose that every particle moving with velocity u
acquires a conventional momentum p = mu and energy e = mc2 where m(u) = m0[1 − (u/c)2]−1/2 such
that p satisfies the wave equation. We propose that associated with this particle motion is a de Broglie
wave moving with a wave velocity c2/u for which there is an associated wave energy E such that the total
energy of the particle W is given by W = e + E . For a given momentum p(x, t), we have

u(x, t) =
pc2

(e20 + (pc)2)1/2
, e(x, t) = (e20 + (pc)2)1/2,

and arising from dE = (∂p/∂t)dx + c2(∂p/∂x)dt, we have

∂E

∂t
= c2

∂p

∂x
,

∂E

∂x
=

∂p

∂t
,

so that if p(x, t) = F (x + ct) + G(x − ct) for arbitrary functions F and G, then the wave energy E (x, t) is
given by E (x, t) = c (F (x + ct) − G(x − ct)), and by total differentiation of this expression with respect
to time, it is not difficult to show that the three expressions

E (x, t) = c (F (x + ct) − G(x − ct)) ,

u(x, t) =
c2 (F (x + ct) + G(x − ct))

(e20 + c2 (F (x + ct) + G(x − ct))2)1/2
,

e(x, t) = (e20 + c2 (F (x + ct) + G(x − ct))2)1/2,

automatically satisfy the equation
dE
dt

=
de

dt
+ e

∂u

∂x
,

for all functions F (x + ct) and G(x − ct), which constitute the formal general solution in a single spatial
dimension.

For three spatial dimensions, the momentum p(x, t) satisfies the wave-like Eq. (2.9) for which the
wave energy E (x, t) is obtained from

dE
dt

=
de

dt
+ e(∇.u) = u.

∂p
∂t

+ c2(∇.p), (6.1)
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where d/dt denotes the total time derivative, and the Newtonian force f and the “force” in the direction
of time g are linked to momentum p and de Broglie energy E through the simple formulae

f =
dp
dt

, g =
1
c2

dE
dt

.

In the presence of an applied external field with potential V (x, t), the two energies E and e+V individually
satisfy the wave equation, and the total particle energy W + V = e + E + V is necessarily conserved in a
conventional manner.

The conventional operator relations of quantum mechanics p −→ −i�∇ and e −→ i�∂/∂t, where
� = h/2π and h is Planck’s constant, indicate that quantum mechanics operates under circumstances for
which the spatial physical force f as formulated here vanishes, and the force g in the direction of time
becomes pure imaginary. Further, two Lorentz invariants ξ and η of special relativity that are defined by
(4.1) provide the ‘long searched for’ formal connection between special relativity and quantum mechanics,
such that η = px − et associates with the particle or subluminal world, while ξ = ex − c2pt associates
with the wave or superluminal world.

Since in any experiment either particles or de Broglie waves are reported, only one of e or E is
physically measured, which leads to the expectation that particles appear for e < E and de Broglie waves
occur for E � e, but in either event, both a measurable energy and an unmeasurable energy exist, the
latter registering its presence in the form of dark energy. Further, it is clear from Eq. (6.1) that the critical
transition occurs for precisely volume preserving or incompressible motions for which ∇.u = 0.

The theory presented here is applied at a single particle level, and a future aim is to undertake
an experiment which might measure any missing energy after work is done. If the only measurable
consequence is the amount of cosmological dark energy, then another future aim might be to undertake a
calculation to explain why the Einstein constant Λ is so large and why it appears to be constant, that is,
why the density of dark energy remains constant as obtained from the Friedmann equation, as the universe
expands. These are future aspirations, but it is presently clear that any realistic incorporation of the de
Broglie wave energy will inevitably lead to a singularity for slowing systems and display characteristics of
unstoppable mechanical systems, which might well provide the key idea to understanding the accelerating
expansion of the universe.
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Appendices

Appendix A: Alternative derivation of Eqs. (4.9) and (4.10)

On taking the total time derivative d/dt of the two invariants ξ and η given by (4.1) and making use of
de/dt = udp/dt, we obtain
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dξ

dt
=

η

(1 − (u/c)2)
du

dt
, c

dη

dt
=

ξ

c (1 − (u/c)2)
du

dt
− e0c

(
1 − (u/c)2

)1/2
,

on using dp/dt = m0

(
1 − (u/c)2

)−3/2 du/dt. These two equations simplify to give

dξ

du
=

η

(1 − (u/c)2)
, c

dη

du
=

ξ

c (1 − (u/c)2)
− e0

ds

du
,

so that on introducing the substitution u = c sin φ we have

cos φ
dξ

dφ
= cη, c cos φ

dη

dφ
= ξ − e0 cos φ

ds

dφ
.

Now on introducing χ defined by

dχ =
dφ

cos φ
=

dφ(
cos2(φ/2) − sin2(φ/2)

) =
sec2(φ/2)dφ(

1 − tan2(φ/2)
) ,

we may readily deduce that

χ = log
(

1 + tan(φ/2)
1 − tan(φ/2)

)
=

1
2

log
(

1 + sin φ

1 − sin φ

)
=

1
2

log
(

1 + u/c

1 − u/c

)
= θ,

where θ is as defined in Eq. (3.5), and Eqs. (4.9) and (4.10) follow immediately.

Appendix B: Further differential relations in terms of angles

From the two relations ξ2 − (cη)2 = e20(x
2 − (ct)2) and x2 − (ct)2 = ζ2, we may formally introduce angles

Φ and Ψ such that

ξ = e0ζ cosh Φ, cη = e0ζ sinh Φ, x = ζ cosh Ψ, ct = ζ sinh Ψ, (B.1)

so that from relations (4.4) and using Eq. (4.6) we may deduce

e = e0 cosh(Φ + Ψ) = e0 cosh θ, pc = e0 sinh(Φ + Ψ) = e0 sinh θ,

and therefore, we may conclude that simply θ = Φ + Ψ. On totally differentiating ζ2 = x2 − (ct)2 with
respect to time, we find that ζdζ/dt = xu− c2t = (xp− c2et)/m from which we may deduce the equation

ζ
dζ

dθ
=

cη

f
, (B.2)

and the three relations Eqs. (4.7) and (B.2) constitute the three basic equations connecting the three
variables ξ, η and ζ as functions of θ = Φ+Ψ, where the angle θ relates to the velocity u = c tanh θ, and Φ
and Ψ connect, respectively, with (ξ, cη) and (x, ct) through (B.1), noting that only one of the two relations
(4.7) is independent. Indeed, we may show from Eqs. (4.7) and the basic definition u = dx/dt = c tanh θ
that all three relations give rise to the single condition

dΦ
dθ

+
e0
fζ

cosh Φ = 1, (B.3)

while (B.2) yields
dζ

dθ
=

e0 sinh Φ
f

, (B.4)

further noting that the physical force f needs to be specified (say gravitational or electrical) before these
two key Eqs. ((B.3) and (B.4)) can be fully solved as two equations in the two unknowns ζ and Φ. Again
on using e0/f = ds/dθ, Eqs. (B.3) and (B.4)

ζ
dΦ
ds

+ cosh Φ = ζ
dθ

ds
,

dζ

ds
= sinh Φ,



ZAMP Dark energy and quantum mechanics Page 21 of 22 131

so that on using θ = Φ + Ψ we have simply

ζ
dΨ
ds

= cosh Φ,
dζ

ds
= sinh Φ,

and therefore by division, we obtain the deceptively simple result
dζ

dΨ
= ζ tanh Φ,

connecting the three variables ζ = (x2 − (ct)2)1/2, Φ = tanh−1(cη/ξ) and Ψ = tanh−1(ct/x).

Appendix C: Time-dependent Dirac equation for a free particle

In this appendix, for ease of reference, we state the details for the time-dependent Dirac equation for a
free particle. The matrices Ax, Ay, Az and B appearing in the time-dependent Dirac equation for a free
particle are given, respectively, by

Ax =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ , Ay =

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎟⎠ , Az =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ ,

and

B =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ,

and the Dirac equation becomes⎛
⎜⎜⎜⎝

∂
∂t 0 ∂

∂z
∂
∂x − i ∂

∂y

0 ∂
∂t

∂
∂x + i ∂

∂y − ∂
∂z

∂
∂z

∂
∂x − i ∂

∂y
∂
∂t 0

∂
∂x + i ∂

∂y − ∂
∂z 0 ∂

∂t

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−if0ψ1

−if0ψ2

if0ψ3

if0ψ4

⎞
⎟⎟⎠ ,

where f0 = e0/�. Further, it can be shown that each component ψj = ψj(x, y, z, t) for j = 1, 2, 3, 4
satisfies the three spatial dimensions Klein–Gordon equation, thus

∂2ψj

∂t2
− c2∇2ψj = −

(e0
�

)2

ψj . (C.1)
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