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Abstract. In this paper, we consider a new Timoshenko beam model with thermal and mass diffusion effects. Heat and
mass exchange with the environment during thermodiffusion in Timoshenko beam. Firstly, by the Cp-semigroup theory,
we prove the well posedness of the considered problem with Dirichlet or Neumann boundary conditions. Then we show,
without assuming the well-known equal wave speeds condition, the lack of exponential stability for the Neumann problem,
meanwhile one linear frictional damping is strong enough to guarantee the exponential stability for the Dirichlet problem.
Then, we introduce a finite element approximation and we prove that the associated discrete energy decays. Finally, we
obtain some a priori error estimates assuming additional regularity on the solution and we present some numerical results
which demonstrate the accuracy of the approximation and the behaviour of the solution.
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1. Introduction

During the past decades, an increasing interest has been developed to study the asymptotic behaviour
of solutions to several Timoshenko problems, in seek of a thorough description on the thermomechanical
interactions in elastic materials. The Timoshenko system is written as,

,01<Ptt<337t) = S:D(xvt)? p2wtt($7t) = Mw(xvt) - S($7t)7

where (z,t) € (0, L) x (0,00), t is the time, x is the distance along the centre line of the beam structure,
L is the length of the beam, ¢ is the transverse displacement and v is the rotation of the neutral axis
due to bending. Here, p1 = pA and ps = pl, where p > 0 is the density, A is the cross-sectional area and
I is the second moment of the cross-sectional area. By .S, we denote the shear force and M is the bending
moment.

Assuming that the constitutive laws are given by (see [1])

S(x,t) = k(pa(z,t) +¢(2,1), M(z,t) = b (x,t) for (z,t) € (0,L) x (0,00),
then the Timoshenko equations are given by

prew — k(e + 1), =0, @
P2t — gy + k(pz +10) = 0. :

Here, b and k stands for b = ET and k = k{yGA where E, G and k; represent the Young’s modulus,
the modulus of rigidity and the transverse shear factor, respectively.
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However, the stability of system (1.1) depends on the difference of velocities of propagation. Then, it
is uniformly stable for weak solutions if

X:E—E:O. (1.2)
pPL P2
Therefore, x plays an important role in the asymptotic behaviour of system (1.1). This has been showed
in different papers (see, for instance, [2-4]).
Many authors studied the Timoshenko system with thermoelastic dissipation, effective in the bending
moment equation, when the evolution equations become

P11 = Sa, P2y = My — S, U = —q, (1-3)

in (0,L) x (0,00), where ¥ is the entropy and ¢ is the heat flux. The constitutive laws with temperature
following the Fourier’s law are given by

S=k(ps +1),  M=bp,+10, V=—y,+p30, q=—rb, (1.4)

in (0,L) x (0,00). Substituting (1.4) into (1.3), we get the governing equations of Timoshenko beam
equations with temperature following the Fourier’s law:

proe — k(e + ) =0
pothyy — bbyy + k(py + 1) — 70, =0 in (0,L) x (0,00). (1.5)
p?)et - fiemx - ’thx =0

The constants ps, k, 7 > 0 respect the physical parameters from thermoelasticity theory.

Rivera and Racke [5] studied the exponential stability of system (1.5), under certain boundary condi-
tions, proving that it is exponentially stable if and only if (1.2) holds. Aouadi and Soufyane [6] showed
that the dissipation produced by the memory effect working on the boundary is sufficiently strong to
prove a general decay result obtained without imposing condition (1.2). Bernardi and Copetti [7] studied
a contact problem for a nonlinear thermoviscoelastic Timoshenko beam, proving the well posedness of
the problem, analysing a finite element approximation and performing some numerical experiments.

Junior et al. [8] considered the Timoshenko system, when the constitutive laws are given by

S = k(@m + 1/}) - 0’0, M =byp,, V= U(SDI + Z/J) + p36.7 q = —kby,

that is
P1Ptt — k(@x + w)m + 091 =0
ptht - bwzz + k((px + ¢) —00 = 0 in (Oa L) X (07 OO) (16)
P38t — K0zz + 0 (z + 1) =

They showed in [8] that system (1.6) with Dirichlet boundary conditions is exponentially stable if and only
if condition (1.2) holds. However, system (1.6) loses its exponential stability with Neumann conditions if
condition (1.2) fails.

We may think that the dissipation phenomenon cannot only be described by thermal conduction in
Timoshenko beams. However, the research conducted in the development of high technologies after the
second world war confirmed that the field of diffusion in solids cannot be ignored. So, the obvious question
is: what happens when the diffusion effect is considered with the thermal effect in Timoshenko beams.
Hence, diffusion can be defined as the random walk of a set of particles from regions of high concentration
to regions of lower concentration. Thermodiffusion in an elastic solid is due to the coupling of the fields of
strain, temperature and mass diffusion. The processes of heat and mass diffusion play an important role in
many engineering applications, such as satellites problems, returning space vehicles and aircraft landing
on water or land. There is now a great deal of interest in the process of diffusion in the manufacturing
of integrated circuits, integrated resistors, semiconductor substrates and MOS transistors. Oil companies
are also interested to this phenomenon in order to improve the conditions of oil extractions.
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If the mass diffusion is taken into account in the Timoshenko equations, the evolution equations
become
P1Ptt = S:m P21/Jtt = Mw - Sa \I]t = —(x, Ct = Nz (17)
in (0,L) x (0,00), where C is the concentration of the diffusive material in the elastic body and 7 is
the mass diffusion flux. In this case, the constitutive laws with temperature and diffusion following the
Fourier’s law and the Fick’s law, respectively, are given by

S = k(g + 1), M=0bp,+~0+BC, U= —yih, + p36 + wC (18)
q = —Kbg, n=—hP,, P=pY,+0C—wb '

in (0, L) x (0,00), where P is the chemical potential, & > 0 is the diffusion coefficient, w is a measure of
the thermodiffusion effect and o is a measure of the diffusive effect. Substituting (1.8) into (1.7), we get

p1pee — k(pe + 1)z =0
iy + k(e + ) —70s — BC =0 | .
Zig’tﬁ wé 3 noz(ff vi’i P in (0,L) x (0,00). (1.9)

We shall now formulate a different alternative form that will be useful in the next sections. In this new
formulation, we will use the chemical potential as a state variable instead of the concentration. The
alternative form can be written by substituting the last equation of (1.8), namely

1
into (1.9)2,3.4, and we obtain the governing equations of the Timoshenko beam problem with temperature
and chemical potential in the classical form:

proee — k(s + 1) =0

e rr+k x+ - 9;1:* Pr:() .
Cp;:”j: dptf ) (_90% wi’): N in (0, L) x (0,00), (1.10)
d9t+rpt_hpmx_72wtx =0

C:

where

3 pw B w? w 1
a:bii’ Nn=7y+— Y2=—, Cc=p3t+—, dzi; r=-
o 0 0 0 o o
are physical positive constants.

In this paper, we study some qualitative properties of system (1.10) subject to the following initial

conditions
o(z,0) = @ (x), P(,0) =¢°x), 60(z,0) =6°=x) for x € (0, L), (1.11)
P(x,0) = P%(z), ¢(x,0) = o), ¥(x,0) =(x) for z € (0, L), :
with either Dirichlet boundary conditions:
©(0,t) =(0,t) = 60(0,t) = P(0,t) =0 for ¢>0, (1.12)
¢(L,t) =v(L,t) = 0(L,t) = P(L,t) =0, for t>0, .
or either Neumann boundary conditions:
(p(o,t) = %(Oa t) = e(ovt) = P(Oat) =0, (113)

(L, 1) = ho(L,t) = O(L,t) = P(L,t) = 0, ¢ > 0.

It should be noted that system (1.10) has never been studied before and there is neither mathematical
nor numerical results for this system in the literature.

d
§=cr—d*>>0. (1.14)

We assume that the symmetric matrix A = <C 7“) is positive definite, i.e.
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Note that (1.14) implies that for 6, P # 0,
cf? +2dOP +rP? > 0. (1.15)

We remark that condition (1.14) is needed to stabilize the system when diffusion effects are added to
thermal effects.

We think that the concept of mass diffusion introduced into Timoshenko’s equations could have very
significant physical effects other than body deformations. For example, recent studies have focused on
the effect of mass diffusion on the damping ratio in micro-beam resonators (see, e.g. [9]). Moreover,
mass diffusion introduces a new critical thickness in addition to the conventional critical thickness of
thermoelastic damping.

The explanations above indicate that mass diffusion will play an important role in the clarification of
the thermomechanical behaviour of Timoshenko’s model. To the best of the authors’ knowledge, however,
no theoretical or numerical simulation has been available to study mass diffusion effects on the thermal
vibration of a Timoshenko beam. Therefore, the goal of this work is to examine the effect of mass diffusion
alongside the effect of temperature on the behaviour of a Timoshenko beam.

The sections of this paper are organized as follows. In Sect. 2, we shall prove that problem (1.10)—
(1.11) under boundary conditions (1.12) or (1.13) is well posed. In Sect. 3, under the condition of nonequal
wave speeds, we prove the lack of exponential stability of problem (1.10)—(1.11) with boundary conditions
(1.13). In Sect. 4, under the same condition, we prove the exponential stability of problem (1.10)—(1.11)
but with boundary conditions (1.12) by adding a frictional damping term. Then, in Sect. 5, we introduce
the numerical approximation of the variational form of problem (1.10)—(1.12) by using the finite element
method to approximate the spatial variable and the implicit Euler scheme to discretize the time deriva-
tives. The decay of the discrete energy is proved, from which we conclude a discrete stability property.
Some a priori error estimates are provided in Sect. 6, which lead to the linear convergence of the algo-
rithm under suitable additional regularity conditions. Finally, some numerical simulations are presented
in Sect. 7 to demonstrate the accuracy of the approximation and the behaviour of the solution.

2. Well posedness of the problem

In this section, we shall study the well posedness of system (1.10)—(1.11) under boundary conditions (1.12)
or (1.13). To give an accurate formulation of this problem, we introduce the following Hilbert spaces:
4 = Hy(0,L) x L*(0,L) x H}(0,L) x L*(0,L) x L*(0,L) x L*(0, L),
and
Ho = HE0,L) x L*(0,L) x H}(0,L) x L2(0,L) x L*(0,L) x L*(0, L),
endowed with an inner product, for U; = (¢;,v;,%;, ¢;,0;,P;) € 76 and j = 1,2,

(Uh U2)jf = /OL {Pﬂh@‘*‘ P2)192 + a1 wa 4 + k(‘pl,m + 1/11) (@2@ + 1/12)

01 b
+A(P1> . <P2>]dx,
L

L2(0,1) := {u e 12(0,L) | | wu(x)dz = 0},
H!(0,L) := H}(0,L) N L2(0, 1(;]).

where
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It is easy to check that (4, ] . ||) is a Hilbert space. Then, we define the operator <7 : 2(«7;) C
H — H

v
v 1 k(Paa + Ua)
v ¢
a |V = NG 0, + 72 P
i ) =1 P2 g (Sar + 1;[]) + 710 + Y2l s
0 _6_1 ((d’72 - T’yl)(b:c - Tﬁeww + dhpmv
P

-5t ((d% — Y2) g + dibyy — chpm)

with domain
9(th) ={U € H4 | ¢, ¥ € H)(0,L) N H*(0,L), v, ¢, 0, P H}(0,L)},
and
D () = {U € A | ¢ € Hy(0,L) N H*(0, L),
¢ € HY(0,L)NH*(0,L), v, §, P€H0,L), p€ H(0,L)}.

We note that 2(«) is dense in . When we omit subindex ¢, with ¢ = 1,2, we refer to both boundary
conditions. Hence, system (1.10)—(1.11) under boundary conditions (1.12) or (1.13) can be rewritten as
an evolutionary equation as follows,

due) _
S — U (), t> 0, } 21

where U(t) = <<p(t),v(t),¢(t),¢(t)79(t)ap(t))a and

U(0) = (¢ (@), ¢ (2), 00 (@), ¥ (2), 0°(2), P(a) ) € A
is given. The following property of 7 holds.
Lemma 2.1. Let o/ and 7 be defined as before. Then, o7 is dissipative in .

Proof. (i) Firstly, for any U = (p,v,v, 0,0, P) € 9(&), a direct calculation yields
L L

(dU, U)W —k / (90 + ),Tdz + / (athy + 710 + 72 P)s b

7 0 0

L S —

L L
k /0 (00 +1)3da + a /0 6o mda + k /0 (vs + 8) (@ T D)z
0 )
+/ A(?}) . (ﬁ) dz,
0
where

0= _6_1 ((d,YQ - T’)/l)d)a: - rﬁeww + thIZE)? o = _6_1 (<d71 - CV?)‘Z)Q: + dﬁ;eww - cnPa:a:)y

and

L L
(Vo) , =k [ oo rildet [ olab 0P
H 0 0

L L L
—k/o O(pa +w)dx+a/0 wx@derk/o (pz + ) (vy + ¢)dx
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L _
0 O
+f A(P)-<¢)dx.
Therefore,
L
R(FUU) = (U, U) + (U, LU :—Qk/ 0, |? dz
(70.0) = (#0.0) + (UrV) = 2k | 10|
L
—2h/ | P, |* dz < 0, (2.2)
0
where k > 0 and & > 0. This implies that <7 is dissipative in JZ. O

We prove now a property for operator I — o7
Lemma 2.2. Let o defined in (2.1). Then, it follows that operator I — o is onto.

Proof. For any F = (f1, f2, f3, f1, 5, f6)T € A, we want to find U = (¢,v,v, ¢,0, P) € 9(</) satisfying
the equation (I — &)U = F, ie.

So_v:flv ¢_¢:f3a

p1v — k(pz +9¥)e = p1fa,

P2 — zy + k(pr +10) — 102 — V2 Py = pafa, (2.3)
60 + (d’YQ - T’Yl)¢m - Tkewa: + dhpww = 5f5a

0P+ (d'Yl - 672)(2536 + dkblyy — chPpyp = 6 f6.

Substituting (2.3); into (2.3)2,3, we get

p1 = k(pz +¥)o = p1(f1 + f2),

P2 — by + k(pz + ) — 110z — V2P = p2(fs + fa), (2.4)
00 + (d’YQ - T’71)¢x - Tﬂaxm + dﬁanz = 6f5 + (d’72 - T’Yl)fB,za '
oP + (d’YI - 672)¢m + dﬁewz - ChPa::z: = §f6 + (d% - C’YQ)fB,z-

Now, we will prove the existence of a weak solution by using the Lax-Milgram’s theorem. To do this,
let us define the following bilinear form over 2 x J¢:
L

93((90,1/1, 0,P), (¢, 4,0, P’)) =p / pp'dx + k/OL(sDx + )] + ¢ )da

0

L L L
bor [ Wdsta [ 0o~ [ n, - P
0 0 0
L JR—
—|—/ (60 + (dya — ry1)0s — 1RO + th:Em)G’dx
0

L
+ / ((5P F (dy1 — )ty + dibyy — chpm)ﬁdx.
0

It is easy to see that Z(:,-) is continuous and coercive over  x . We also define the following
continuous linear form .Z(-) over .# by

L
L 0P = [ [+ 27+ oo+ T

+(5f5 + (dv2 — T’Yl)fB,x)y + (5f6 + (dy — C’Y2)f3,z)ﬁ} dz.
From Lax-Milgram’s theorem (see [10]), we conclude that there exists only one solution satisfying

B((,0.0.P), (p.6,0.P)) = L(& 0.0, P') ¥ .0, P') e
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such that
¢, ¥, 0, Pe H)(0,L) or ¢, 0, PeH0,L), e H0,L).
Now, from (2.3);, we have
v, ¢ € H}(0,L) or wve HJ0,L), g€ H0,L).

On the other hand, from (2.4); o, it follows that ¢, 1 € H?(0, L). Thus, we have obtained that U € (/)
such that I — &7 is onto. The proof is complete. O

Since (/) is dense in ' (P(of) = H), o/ is a dissipative operator and I — &/ is onto, then the

following theorem follows using the well-known Lumer—Phillips theorem (see [11]).

Proposition 2.3. Under the above conditions, we find that the operator <f is the infinitesimal generator
of a Cy-semigroup T(t) = & of contractions over the space H .

Now, an application of the theory of semigroups (see [11]) gives the following.

Theorem 2.4. Let &/ and S be defined as before. Hence, problem (2.1) is well posed, i.e. for any
Uy € #, problem (2.1) has a unique weak solution U(t) = e’ Uy € C([0,00); #). Furthermore, if
Uo € (), U(t) € CL([0,00); ) N C°([0,00); Z()) becomes the classic solution to problem (2.1).

3. The lack of exponential stability for Neumann boundary conditions

In this section, we show the lack of exponential stability of system (1.10)—(1.11) subject to boundary
conditions (1.13) under the condition of different wave speeds of propagation:

k !
P1 02’
The proposed method is based on the Gearhart—Herbst—Priiss-Huang theorem (see, e.g. [12,13]).

(3.1)

Theorem 3.1. Let S(t) = ' be a Cy-semigroup of contractions on a Hilbert space S with infinitesimal
generator of with resolvent set p(ef). Then, S(t) is exponentially stable if and only if, for all X € R,

p(/) 2 {ix; A€R}=iR, and limsup|(iA — &) ||z ) < 0.

[A|— o0

The expression || - || # () denotes the norm in the space of continuous linear functions in 7.
Following the arguments employed in [5], we have the next result which states the lack of exponential
stability.

Theorem 3.2. Under condition (3.1), the semigroup associated with system (1.10)—(1.11) with boundary
conditions (1.13) is not exponentially stable.

Proof. We will show that for all n € N, given F' = F,, = (0,0,0, f4,0,0), there exists A,, such that the
sequence A = \,, is in R, and U, = U = (¢,v,%,$,0, P) = (i\ — o%) "' F € 9(af) such that

We use the same approach as in [5] and references therein. We find that F), is bounded in % and the
solution U,, = U = (p,v,9, 9,0, P) = (i\ — o)~ ' F must satisfy

ixp—v =0,
Z-pl/\v - k(@x + ’L/))w =0,
-9 =0, (3.2)

1paAp — Ay + k(0o + V) — 710, — v2 Py = fa,
Al + iAdP — K0py — V10, = 0,
iNIO + IAFP — hPyy — achy — 0.
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Because of boundary conditions (1.13), we can take the following solution:

= Ansm( ) =B, cos(”L7T ),GzCnsin(%x), 33
P=D, sm(L ) f4—cos("zx) (3.3)

Substituting (3.3) into (3.2), we find that A,, B, and C,, satisfy
~\2p1 + (32)" k) Au + (%) kB, =

) My + (=\202 + (32) a+k:) Bnﬂl (22) G, — 75 (22) D,y = 1,
=) idnBa + (iAe+ (%) k) o +iAdDy = 0,

)iXy2 By +iAC, + (idr + (%) h) D, =0.

(3.4)

We choose —A\2py + (”—L”)za = 0, which gives A = \,, 1= +w’", where w = 1/ . Taking A = w7,

system (3.4) becomes

(k— p1w2)% k 0 0 A, 0
k17 k —’YlnLi 27 B, | _ |1
0 (%) iy w icw + ( 7 ) K idwo Ch 0
0 (2%)ivpww  idw  irw+ ("E)h| | Dn 0
The resolution of the last two equations gives
where
nm 1ww(yir —dys) + vih
Q) = =i= () - ’
—w?(er —d?) + (—) kh+iw (%) (kr + ch)
(T iw(cy2 +dy) + () ek
Q) === () -
—w?(er — d?) + (—) kh+iw (%F) (kr + ch
satisfy
lim Qi(\) = 22 lim Qu(N) = —i 22

Combining the first and second equations of (3.4) with (3.5), we obtain

L
p1* A, = (11Q1 +72Q2) By, + o

Substituting this equation into the first one of (3.4) again, we get
-1
S .
k‘f,i;“z + (1 Q1 + 72Q2)

Since % #* p% = w?, then A,, and B, satisfy

B, =

) 2
lim B, = , lim A, = ————. (3.6)
On the other hand, we have
2 2 2 2 r 2 Lp,
1Unll5e, = p2llénll” = p2A™| Byl ; |cos(Az)["dx ~ —————  asn — oo,
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as n — oQ.

L
”UnHi’fz 2 p1 ||Un||2 = pl/\2|A"‘2/O |sin(,\gg)‘2d£€ ~ p1?

This proves the uniform boundedness of the norm ||U,|,. Now, we will show that if we assume that
|Unl s, remains bounded as n — oo, then it leads to a contradiction.
Multiplying Eq. (3.2)4 by ¢, + % and integrating, we obtain

L L L
A «+)d o (pe +)adz + k » +1)%d
i pz/o Oz + 1) x+a/0 Va(@r +¥)adz + /O (bz +1p)°dx
L
_/O ('Ylew + ’YQP;L')(@J; + ¢)dl‘
L
= /0 cos (?) (801 —|—’L/))dil'. (3'7)
Let
L L
J= i/\pg/ ppdr + a/ Yz (pz + V)pdx (use (3.2)2)
0 0
L L
= z')\pg/ d)gomd:r—i—i)\a&/ Yyude (use (3.2)1 and (3.2)3)

_on
(1 kpz)/ Prude.

As (3.1) holds, from (3.7) we have

L L
~_ 290
3= k/o (s +)2da zApz/O iz
L

+/0L(’Yl9x + 72 Pr)(z +1p)da + /0 Cos (?) (¢ +1p)da. (3.8)

L
If ||U,|| ¢ remains bounded, using (3.1), from (3.8) we conclude that ’/\/ yvdze| remains bounded as
0

A — o0.
On the other hand, using (3.2)1, we have

L
nm
z)\/ pvde = N2 A, B, / sin? (—x ) da (use (3.6))
(7 ) Ante | sin® ()
Nm—wz_)oo as n — 0o, (3.9)
pw (’h + %)

which contradicts the uniform boundedness of the norm |U,| . This completes the proof of the
theorem. O

4. Exponential stability

In this section, we show the exponential stability of system (1.10)—(1.11) subject to the boundary con-
ditions (1.12) under the condition of nonequal wave speeds of propagation (3.1). For this, we add to the
first equation of (1.10) the damping term pp;:
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prow — k(e + 1) + ppr =0
p2¢tt - CW/)M + k(@m + dj) - 719:6 - 'YZPI =0
Cet +dP; — Keza: - ’ylzbtz =0
det"‘rrpt_hp:vw_’}?wtw =0

The energy of system (4.1) subject to the boundary conditions (1.12) is defined by

1

L
E(t) = /O [mw? + p2by + ol + K(pg + 1) + cb?

4 2d0P + rPQ] da.

in (0, L) x (0,00).

Our approach is based on the construction of a Lyapunov functional . satisfying
BLE(t) < Z(t) < B2 E(t)
for t > 0 and positive constants 3y, B2, and

d

SLW < —aZ(t)

ZAMP

(4.1)

(4.2)

for some o > 0. A careful choice of multipliers and the sequence of estimates in the energy method will
give the desired result. Multiplying (4.1)1 by ¢+, (4.1)2 by 14, (4.1)3 by 6 and (4.1)4 by P, one easily

concludes

d L L L
—E(t) = fn/ ngxfh/ Pfdx—,u/ oidx.
de 0 0 0

Lemma 4.1. Let us assume that conditions (1.15) and (3.1) hold and (p, o1, 1, v, 0, P) be the solution to

problem (4.1), (1.11), (1.12). Then, the functional F defined by

L L
f(t)Z/ (P1¢t@+02¢t¢)dx+%/ p*dz,
0 0

satisfies
d g 2 t 2 t 2 a [* 2
GFO <o [ Gtdrpn [ wtao—k [ et vpae-§ [ vt
dt 0 0 0 2 Jo
L L
0 0

Proof. Taking the derivative of F(t), we can obtain that

d L L L
E}-(t) =P / (‘P? + ‘P%t)dm + /)2/ (1/1152 + Qﬁwtt)dx + M/ ppida.
0 0 0

It follows from (4.1); and (4.1)y that

L

d L L L
— | prpepdr = py / prda — k/ (02 + V) pedr — u/ ppide,
dt Jo 0 0 0

and

d L L L
G [ de = pa [ wdot [ (@tan — kpa +0) 4 mbs +12P)ds
0 0 0

L L L
_ 2 _ _ 2
~ /O Yo — k /0 (6o + ¥)idz — a /0 p2de

L
_/ (110 + 72 P)yda.
0

(4.3)

(4.5)

(4.6)
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Adding (4.5) and (4.6), we get

d L L L L
—F(t)=p / pide+py | Yide—k | (po+9)? —a [ ¢ide
de 0 0 0 0
L
—/ (110 + 72 P)yda.
0
Using the Young’s and Poincaré’s inequalities, we arrive at (4.4). O

Now, we define the functional .7 (t)

L
L(t) = pg/ Prwde, (4.7)
0
where —yiw; = ¢ + dP with w(0) = w(L) = 0.

Lemma 4.2. Let the assumptions of Lemma 4.1 hold, then the functional . defined by (4.7) satisfies

. P2 /L 2 o /L 2 k/L 2
< P2 = b
o =3 | brdr + 1¢ ; bpdr + o ; (¢a +9)7dx

; g (4.8)
e / 62dz + C / Pz
0 0
Proof. Taking the derivation of (4.7), we can get
A L L
E(ﬂ = /0 pothwidr + /0 papwde == A (t) + S (). (4.9)

By using (4.9); and Young’s inequality, we shall see that
L
S(t) 3:/ p2prwrd

0
P2 o

= - / ¢ta;1 (K;axw + Vlwzt)dx
7 Jo

L L
K
— / de - 22° / e
0 71 Jo

p L L
< —i/ wfd:c—i-Cl/ 02dz.
2 0 0

It follows from (4.9)s that
L
Fo(t) = / poywdx
0
L
= / (awm — k(pz +9) + 10z + ’sza;)wdfc
0
L L
= —a/ wythpda — k/ (o + V)wdx
0 0

L
—|—/ w(n by + v Py )de.
0
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By using Young’s and Poincaré’s inequalities, we arrive at

L o L L L
— a/ wrhedr < —/ widx + C’l/ Gidaj + C’z/ Pf.da:7
0 16 Jo 0 0

L k L L L
—k/ (¢z + P)wdr < g/ (cpm+z/})2dx+01/ eidx+02/ PZdz,
0 0 0 0

L L L
/ w10z + v Py )dx < Cy / Oidx + Cg/ Plz.dm.
0 0 0

Then, estimate (4.8) follows from the previous estimates. O

Next, we define a Lyapunov functional X and we show that it is equivalent to the energy functional
E.

Lemma 4.3. Under the assumptions of Theorem 4.1, there exists a constant By > 0 such that
(N — Bo)E(t) < X(t) < (N + Bo)E(t), vt >0, (4.10)
where X(t) is a Lyapunov functional defined by
N(t) = NE(t) + F(t) + 47(t), (4.11)
and N > By is a sufficiently large constant.

Proof. Tt follows from Young’s, Poincaré, Cauchy—Schwarz inequalities that

L L 2 L L
L
|f<t>|sﬂ/ so?dw@/ Y2de + 22 /widmﬁ/ p2dz,
2 0 2 0 2 0 2 0

L L L
|.7(t)] < @/ ¢§dx+c1/ 92dx+02/ P3dzx.
2 Jo 0 0
Thus, there exists a constant Gy > 0 such that
R(t) = NE@)| = | F(t) + 47 (1) < BoE(?),
and therefore estimate (4.10) holds. O

Theorem 4.4. Let the assumptions of Lemma 4.1 hold. Then, there exist positive constants cy, ¢1 such
that the energy functional satisfies

B(t) < aB(0)e™ ", Vt>0. (4.12)
Proof. Tt follows from (4.3), (4.8) and (4.11) that for any ¢ > 0,

L L L
%N(t) < —(lﬂ:N—Cl)/ agdx—(sz—CQ)/ dex—(,uv—pl)/ rda
0 0

0
L , L L , o (L ,
—P2/ Ypda — */ (pz +¥) da — */ prda. (4.13)
0 2 Jo 4 Jo
We choose N large enough such that
N > sup{c’l,CQ,pl}.
k' h
Thus, there exists a positive constant ¢ such that

SN0 < <B()
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which yields, by using (4.10),

d

—N(t) < ON(¢

(1) < On)

for some positive constant C. Then, estimate (4.12) follows by using (4.10) again, which completes the
proof. O

5. Numerical approximation

In this section, we propose a finite element approximation to system (1.10) with initial conditions (1.11)
and boundary conditions (1.12). We note that it is straightforward to extend the results shown in this
section, and in the following one, to the combined Neumann conditions (1.13). Moreover, we prove that
the discrete energy decays, from which we derive a discrete stability property.

Multiplying (1.10) by test functions x,n,<,z € H(0, L), we obtain the following weak form:

Pl(UtaX) + k((px + '(/)7Xw) = 0)
c(0r,6) + d(Pr, ) + K0z, 62) — 1 (we, ) =0, '
d(0s,z) + (P, 2) + WPy, 22) — Y2(ws, 2) = 0,

where we used the notations v = ¢, and w = ;.
Let us partition the interval (0, L) into subintervals I; = (z;_1, ;) of length h = 1/s with 0 = 2o <
T < ...<xs =L and define

S¢={ue Hy(0,L) | ue C([0,L]), uls, is a linear polynomial}.

For a given final time T and a positive integer N, let At = T/N be the time step and ¢, = nAt,
n =20,...,N. The finite element method for (5.1) with Dirichlet homogeneous boundary conditions is to
find vy, wi, 05, Py € Sk n=1,...,N, such that, for all xu,nn,Sn,2n € SE,

PL/ n n— n n
T(Uh — Uy 17Xh) + k((ph:v =+ whaxhw) = Oa
2 n n— n n n

Kt(wh — wy, 1377]1) + a({lphzvnhr) + k(@hib + 1/)h,77h)
+71(9}?a th) + 72(§P;?777hx) = 07

c n —1 n n—1 n

A Oh =001 o) + o (P = P 0u) + (07 6ne) (52)

q M1 (ngagh) = 0)
n n— r n n— n

E(eh — 6l an) + E(Ph — P zn) 4 WPy, 2ha)
—Y2(why, 2n) = 0,

with 7 = @'+ Atv? and ) = o+ Atw]. Here, ¢, vl), 19, w), 69, PY are adequate approximations
to ¥, !, Y0, ! 6% and P°, respectively.
Let us introduce the discrete energy given by

1
By = 5 (pilloi 1 + pallewp |2 + Kl i + 5112 + ol |
el 6312 + P P2 + 2d(P, 67)),

where || - || represents the norm in the space L2(0, ).
Thus, the following decay result, similarly to the continuous case, holds.
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Theorem 5.1. Let the assumptions of Theorem 2.4 hold. Then, the discrete energy decays to zero, that
18,

Ep —Ep!
o h 0 =1,...,N.
At =Y, n ’ )
Proof. Choosing x5 = vy, n, = wi, s, = 0 and z, = P}’ in (5.2), we obtain

pl n n— n n— n n n
AL (llopy —vpy Y12+ Rl = vy 1||2) + k(0hy + U5, vh) =0,

L2 (g — wp P+ 2 = eop ) + aWhss whe) + k(s + U5 wh)
+’71(9I7zlawlrzlz) + ’72(P1?7w2m) = 0’

=GP IR = 16~ 1%) + < (P = P 6n)

+I€||9n93||2 - 71(w21702) = 0
SR 0 PR+ o (1P — PR PRI — P )
+h||Pi:Lw||2 - VZ(wha:’ Ph) = 0’
and adding the latter equations we find that

P1 n n— n n—
DL (g = o1+ R = I 1P) + 2 (o = w2+ g 2 = g~ )
R + U v+ 08) + (W 0) + o (107 — 072+ 10512 — 7 )
n— Tn n— d T n— n
2At (IlPy — Py Y+ 1P - 1Py 1||2)+E(Ph_Ph o)

Now, we note that
n n n n k n n n n
k(soha: + wha Uhg + wh) = At ((phx + 1/’11 y Pha + wh ((phz + w ))

_ggwm+wwww Fup ),
a(¢hmawhz):Kt(¢Zma¢hz Yt 2 T(”lphm”2 lon 12 )
(Pp =PI, 6) + (6 — 071, PY)
= (P, 00) — (P 0,7 + (0 — 0~ P — P ).
These results, together with (1.15), yield

2RI = o) + o2 (2 = g P)
b (e + U712 — i+ 07 0) + o (Il — o~ 1P)
37 (16712 = 16:712) + 5 (1PRIE = 1P 19)
a7 (B 07) = (B0, 0570)) + sl03. 17 + Bl P 1* <0, (5.3)
and the theorem is proved using the definition of the discrete energy. 0

As a consequence, the following stability estimates are derived.
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Corollary 5.2. Under the assumptions of Theorem 2.4, the discrete solution {v}!, wi, oy, ¥y, 07, P}y, gen-
erated by discrete problem (5.2) , satisfies

g1 + lwpI? + llohe + i1 + 19717 + At 165, 1% + A [|P ) < C.
i=1 =1

Proof. Summing (5.3) over n and recalling (1.15), the result follows. O

6. Error analysis: a priori error estimates

In this section, we will obtain some a priori error estimates on the numerical approximation, from which
we derive the linear convergence of the algorithm under suitable additional regularity conditions.

Theorem 6.1. Let the assumptions of Theorem 2. 4 hold. If we denote by (v,w,p,¥,0,P), the solution
to problem (5.1), and by {v, Wy, r, e, 00, PRIN_ . the solution to problem (5.2), then we have the
following a priori error estimates for all {xP}N_o, {nm}N_o, {0, {20}, C Sh,

n_ ,n|2 n_ ,.ni2 n n n ny|12
Jmasc {0 = oft? 4 o™ = wR | + 1k + 6"~ (ohe +¥7)I

i = wpl? + 1P = B2 + 6" — 6712}

< CAY™ (llvg = 80|12 + Ik — w2 + [k, — 611 + 10; — 66"
i=1
1P} =GP + ok, + 1 — (0 + U2 + [l =
ok = Xl + o’ = mh 12 + ws, = w12 + 165 = chl®

N-1
, , C , ‘ ‘ .
HIPE = 2hall?) + 55 D I = Xk — 0 =P
i=1

N-1 N-1

C . . . i C . . . s
g 2wt = = @ =P ST g - (67 - P
i=1 i=1
C — 7 i+1 Z-‘rl 2 2
5 2 P = = P+ € max, (0" = i
i=1

Hlw™ = 2+ 116™ = 612 + 1P = 241

+C(lle" = o2 + 19" = whl? + 1S + ° = (b + URIP

98 = pal® 4+ 116° — 6R11* + IIPO—P;?||2)7 (6.1)
where C' is a positive constant assumed to be independent of the discretization parameters h and At.

Proof. Let us recall that v = ¢; and w = 4. For a continuous function f(t), let f™ = f(t,) and, for a
sequence {f"}N_| let 0" = (f* — f*~1)/At.
Subtracting equation (5.1); at time ¢ = t,, for x = x5 € S and (5.2)1, we have
p1(vy = 0vy, xn) + k(py + 9" = (Ohy + Uh); Xna) = 0.
Thus, for all x € Sé”, we obtain
pl(Uf—(SU}?,’l}n—’l}Z)-ﬁ-k(@’g—l—’d}n (‘phm—'_d]h)? Vg vh:v)
= p1(vf = 6vg, 0" = xn) + k(@7 + 9" = (Phe + ¥R), V7 — Xna)- (6.2)



117 Page 16 of 26 M. Aouadi et al. ZAMP

Similarly, from equations (5.1)2 - (5.1)4 and (5.2) - (5.2)4 we deduce, for all n,sn, 21, € SE,

p2(wy — dwy, w" — w,’j) + oy — Py, wy — wpy)
+71(0" — O, wy — wyy) + Y2 (P —th v~ Why)
+h(pp + 9" — (‘Phw + ), w" —wy)
= p2(wy’ — dwi, w"™ — ) + ¥y — Vi, Zf — Nha)
+71 (0" = O, wy — Npa) + 2P — P wy — nna),

+h(py + 9" = (@he +U1), 0" —nn),
c(0F —80,0™ —0p) +d(P — 6P, 0™ —07) + k(0 — 05,., 00 — 67 )
_’yl( whx?an 02)
=c(0f — 005,00 — <) + (P — 6P, 0" — ) + k(07 — 01,07 — Sha)
_71( wh:we —§h),
ey — 60y, P"* — P+ (P — 6P}, P" — P+ WP} — P}, P — P
_72( whm? P — Pf?)
=d(0} — 005, P" — zp,) + r(P* — 0P, P" — z,) + A(P} — P}, Pyl — Zpa)
—’}/2( whw,P"—zh).
Using that (a — b)a = O.5<(a —b)?+a* - b2), we obtain

(vp = vy, v™ — o) = (v) — V", V" —up) + (6™ — vy, V™ — vy)
n n n n 1 n n n— n—
> (v = 0", 0" =) + oo (0" = w1 = o™ = o). (6.3)
In the same way, we find

(U);L - 5,w]7117,wn _wh) > (w? - 5wn’wn - w;zl)

o (o™ = wi? = o™t — w’HHQ) ;
(d)g d)hfc’ ;L - U)Zm) = (Wl Tz[}hxa 6¢hm)

> (Y5 — U Uy — OV + (W Vhell* = 105~ =i %)

2At
(07 — 605,,0™ — Oy) = (6 —60™,0" — 0})
1 n n— n— n n n— n—
+oag (107 =05 = (0 A [ e e e /A S
(P 6Ph,P”fPh) = (P =46P",P"— P
1 n n— n— n n n— n—
57 (1P = P = (P! = B2 4 [P = P2 = | P = PP,
From the previous estimates it follows that
P n n n— n—
LU (o — o2 ~ o n)2mum—wm2nwl—wlm
+k(¢g+¢ (‘phz—i_wh) Uha:+w _wﬁ))+ﬁ|‘9: _QZw”Q
A G G+ - 01— 07— )

+d(P" - 5P;;, 0" —6) + d(0; — 665y, P — Py) + hl|Py — Pr||®

2At (IP" = Py = (P*= = P )IP + [P = PP = [P = P2

+E<H¢H2xu2 R
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= —p1(vy' = 60", 0" —vy) — pa(wy’ — ow™, w" —wy) — ay — Yy, by — 0Y7)
—c(0f = 80",0" — 0p) —r(Py" = 6P™, P" — P') + p1(vf' — vy, 0" — xa)
+h(pg + 9" = (e +¥R), 05 = Xna) + p2(wi’ — dwy, w™ —1p)
+h(pp + 9" = (Phe +¥5), 0" —nk) + 110" — O, wy — M)

+e(0F —003,0™ — <) +d(P* — 6Ph 0" —<n) + k(02 — 67,07 — Gha)

-y (wl —wp,, 0" — ) + d(6F WP —zp) + (P — 0P, P — zp,)
+h(P, — P}LJ,?PL Zha) — 72( whmPn — zn) + ¥y — Ypy, Wy — Nha)
+72(P" — P, wy — Nha)-

Now, keeping in mind that
k((p; + 1/’” (‘phx =+ wh) Uh:c + w" — wg))
= k(@:p + WL - ((Phw + wh)7(pzt - 630ha: + 1/1? - 6'(/}2))
> k(@Z + " = (Pha +UR), o + U1 — (590;‘ + 5w”))
n n ny(|2 _ n—1 _ 2
d(P — 0P, 0™ —0y) +d(0) — 60y, P — P )
=d(P* —dP" +0P" — 0P, 0" — 0;) + d(0) — 60" + 60™ — 605, P — P})
d
=d(P—=6P", 0" —0y) +d(0} — 00", P" — P*) + Kt(@" -0y, P"—P)

d
F (0" =0 (o — 0y, P - Pl (P - P
d
,Kt(
recalling (1.15), we deduce from the previous estimate that

anfl o os—l’Pnfl o P}:L—l)’

D (o™ = P = o™ = o) + At (o™ = wp ]2 = "~ = w™)?)
sl 9" = (e R = s e+ — (o )
w(uw Ul = s = v I)

o (167 = 632 = 6" = 6571 )

T S I S O R N
HRIPE = PRI+ 5 (1P = P = [Pt = Pt )
< —p1(of — 60", 0" = 0f) = pa(wf — S w" — wR) — Al — iy, U, — 0)

—c(0y —00™,0" — 0)) — (P — 6P", P" — PJ') + p1(vy — dvp, 0" — xp)
Th(r + U™ = (Phe + ¥R), Uy = Xha) + p2(wi — dwy, w™ —np)

+h(r + 9" = (@he +U5), W™ =) +71(0" = 05, wi — Mha)

+e(07 — 6005,0™ — ) + d(P — P, 0™ — ) + k(00 — 01,07 — Gha)
-y (Wl —wp ., 0" — <) +d(6) — 00y, P — zp) + (P — 6P}, P" — zp,)
APy — Py, Py — zna) — v2(wg — wpy, P — zp)

—k(oz + 9" = (Phe + ¥h), e + i — (09 + 6¥™))

Page 17 of 26 117
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—d(P* —6P™, 0™ —07) — d(0} — 66", P — P]Y)
Ty — Phy wi = Mhe) +72(P" = P wy = nha).
From conditions (1.14), we conclude that d/c < r/d. Thus, let € be such that d/c < € < r/d. As a
consequence of the Cauchy—Schwarz inequality and the Young’s inequality, we obtain
d
2d(0" — 05, P" — Pyt) < —[16" = OR|* + de[| P" — P
Hence, summing (6.4) over n yields, for all x&,ni, ¢!, 25 € Sk,

pillo™ = vp|? + pallw™ — wi|? + kllek + 9" = (0he + 0D + allv) — i
+(r —de)|P" = P|* + (c — d/e)||6" — O3

n
< CAty (Ilvi = VRl + [l = wp |* + g — e * + 1167 — 641
i=1

HIP' = Pyll? + s + 0" = (0he + Up)II” + [l — 80°[1 + [Jw; — dw'||®
s — SVLlP + 1167 — 60°1* + 1B — 6PI1” + [0k + vf — (5% + 097)|1?
o' = xh 12+ vk = X P+ lw' = ni 17 + llwh, — nh [

+(80" — 66;,,0" — ) + (P — 6P, 0" — o) + |10 — 6 |12

+(80" — 86}, P — 2}) + (6P — 6P}, P' — 2}) + | PL — 2, ||

(60" = dvj,, 0" = x,) + (Sw' — Swp, w' — 772))

+C (0 = I + l® = w2 + g + 80 — (e + U + 4 — 9
+16° = 62112 + 11P° = BRII%).

Finally, taking into account that (see [15])

ALY (v' = dvp, v = xh,) = (0" — o 0" = XR) + () — @' 0! = xG)
i=1

n—1
. . . . . 1
D D R R (CASRCARA
i=1

n
ALY (Sw' — dwj, w' — ) = (" —wh, w" — ;) + (w) — Yt w! =)
=1
n—1 ) ) )
+ Z(w] - ’U)iL,U)j - 77% - (wj+1 - niLJrl))’
i=1

ALY (86" — 86}, 6" —<f) = (6" — 65,6™ — ) + (6 — 6°,6" — <)
=1
n—1 . ] ) . ) )
+Y (07 07,07 =) — (07T — i),
=1
At> (8P' = 6P}, P' — z}) = (P" = P, P" — 2}) + (P} — P°, P — 2})
i=1

n—1
+> (P — P} PT— 2 — (PP — 2],
i=1
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Aty (80" — 86}, P — z;) = (0" — 0}, P" — zp) + (0 — 6°, P' — 2})
i=1

n—1
+> (07 =05, PT — 2] — (PIF — 2],
=1

ALY (0P = 6P}, 0" — ) = (P" = Pp,0" — ') + (P — P°,0" — })

i=1
n—1
+ 3 (P = PO =g — (07T =),
=1

from the above estimates, using a discrete version of Gronwall’s inequality (see, for instance, [16]), we
conclude the proof. O

We note that error estimates (6.1) are the basis to get the convergence order of the approximations
given by problem (5.2). Therefore, as an example, if we assume the following additional regularity:
@, € H*(0,T; L*(0,L)) n H*(0,T; H*(0,L)) n C*([0,T]; H*(0, L)),
0,P € H*(0,T;L*(0,L)) N H*(0,T; H'(0,L)) N C([0, T); H*(0, L)), (6.4)
and we define the discrete initial conditions as
v =Pup', wh = Py, @) = Pug®, g = Put?,
05 = P0°, P)=P,P°, (6.5)
where P, is the classical interpolation operator defined over the finite element space S%; using the classical

results on the approximation by finite elements (see, for instance, [14]), we obtain the following.

Corollary 6.2. Let the assumptions of Theorem 2.4 hold. Under the additional regularity (6.4), if the
discrete initial conditions are given by (6.5), then it follows that the approzimations obtained by problem
(5.2) are linearly convergent, that is, there exists a positive constant C, independent of the discretization
parameters h and At, such that

e (o — o 4 ™ — w4+ 9"~ (e + 9D+ 3 — o
<n<N

HIP = B 1167 - 071} < Clh+ A),

7. Numerical results

In order to verify the behaviour of the numerical method analysed in the previous section, some numerical
experiments have been performed.

7.1. Numerical scheme

Given the solution @Z‘l,fuﬁ_l, Z_l, wz_l,ﬁ,?_l and P}:‘_l at time ¢,,_1, the transverse velocity field is

obtained from the discrete linear variational equation:

(VR xn) + ALKz, (Xn)2) = pr(vy " xn) — Atk((0h ™ )es (X))
HALR((V)ar X").

Later, we get the rotation velocity from the variational equation:

p2(wit, 1) + AP a((Wh)e, (1)a) + APk(w),mn) = p2(wy ™, 1n)
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—Ate((p e, (Mn)2) — Atk(r " mn) — Atk((93) 2, 1n)
+Aty1 (0, ) + Aty2 ((Py) s 1)

Finally, the calculations for the temperature # and the chemical potential P can be expressed in terms
of a product variable y™ = (6}, P}) to solve the equations:
(b + dPy cn) + Atk((07)s, (sh)2) = (0" + P~ n)
+Aty1 ((wh) ),
(dOf + 1Py, 2p) + Ath(Py) s, (21)2) = (d0) " + 7 PPt 2,)
+ At (Wi )2y 21)-

Finally, the transverse displacement and the rotation are obtained from the equations:

n n
Ph =AY v+ eh, U= ALY wj + 4.
i=1 i=1
We note that with this strategy, the numerical problem consists of four coupled symmetric linear
equations, and so a fixed-point algorithm was applied for their solution with Cholesky’s method for
matrix factorization.
The numerical scheme was implemented using MATLAB on a Intel Core 5 — 3337U @ 1.80 GHz and
a typical run (10* step times and 10* nodes) took about 200 s of CPU time.

7.2. A first example: numerical convergence

Our aim with this first example is to verify the numerical convergence of the numerical scheme. In this
sense, the following problem is considered.
Problem P*. Find the velocity field v :[0,1] x [0,1] — R and w: [0,1] x [0,1] — R, the temperature

field 0 :]0,1] x [0,1] — R and the chemical potential P : [0,1] x [0,1] — R such that

o — (pz +¥)=f1 in (0,1) x(0,1),

Vit — Yoz + (02 + ) =0 — P =f2 in (0,1) x (0, 1),

20t + P, — 0y — Ve = f3 in (0,1) x (0,1),

0t + Py — Pry — Ve = fa in (0,1) x (0, 1),

0(0,t) = (1,t) =0 for a.e. t € (0,1),

¥(0,t) =¢(1,t) =0 for a.e. t € (0,1),

0(0,t) =6(1,t) = P(0,t) = P(1,t) =0, fora.e. te(0,1),

o(x,0) = @i(2,0) = 4z(l —z) for ae. z € (0,1),

P(2,0) = 4(z,0) = 4z(1 — ) for a.e. z € (0,1),
0(z,0) =4z(1 —x), P(x,0)=4x(1—=z) forae ze€(0,1),
being the artificial forces f;, i = 1,2, 3,4, involved:
fi(z,t) = def(—2® + 3z + 1),
fo(z,t) = de? (=222 + 4z + 1),
f3(x,t) = de’(=32% + 5z + 1),

fa(z,t) = def (=222 + 4z + 1),
which corresponds to problem (1.10)—(1.12) with the following data:
P1:/~72:1a kzla =1 a=1, ’71:72:17
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<1073 Asymptotic behaviour
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Fic. 1. Example 1: Asymptotic behaviour of the numerical scheme

c=2, d=1, k=1, r=1, h=1,
O(z) = pt(x) =4x(1 —z), ¢°%z)=9'(z) =4z(1 —z) forall z € (0,1),
0°(x) = 4x(1 —z), P°x)=4xz(1—2z) forall z € (0,1).
The exact solution to Problem P®* is the following:
o(z,t) = 4e'x(1 — ), P(x,t) =4e'x(1 —2) for all (z,t) € [0,1] x [0,1],
0(x) = de'x(1 —x), P(x)=4de'x(1—z) forall (z,t) € [0,1] x [0,1],
which is consistent with boundary conditions (1.12).
The errors obtained for different discretization parameters nel and At are depicted in Table 1 (being
ne; the number of finite elements of the discretization and h = — the spatial discretization parameter).

Moreover, the evolution of the error depending on h + At is plotted in Fig. 1. We observe that the linear
convergence stated in Corollary 6.2 is achieved.

7.3. Example 2: numerical stability

In order to study the energy evolution, the modified problem (4.1) is solved for different values of the
damping parameter p, and also using both Dirichlet (1.12) or Neumann (1.13) boundary conditions. We
note that their numerical analyses can be performed in a similar form. A different set of thermomechanical
parameters has been considered:

p1 = p2 = 1074, k=02, a=1, 71 = 0.01931, ~9 =17 = 0.0004635,
c=1.0136, d=0.00251, k=365, h=0.03058.

If we assume that there are no forces and we observe the system until final time 7" = 1, using the same
initial conditions than in the previous case and discretization parameters At = h = 1073, the evolution in
time of the discrete energy is plotted in Fig. 2 corresponding to boundary conditions (1.12). We observe
that an exponential energy decay has been achieved, confirming the theoretical results, even for the
undamped case g = 0, which has been included for comparison.
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Fi1G. 2. Example 2: Energy evolution in normal and semi-log scales (Dirichlet conditions)
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Fi1G. 3. Example 2: Energy evolution in normal and semi-log scales (Neumann conditions)

Using now the initial condition 1o = 42%(1 — z)? and the discretization parameters h = 1072 and
At = 0.5 x 1073, the evolution in time of the discrete energy, considering Neumann boundary conditions
(1.13), is shown in Fig. 3. As it was predicted by the theory (lack of exponential stability), the decay
presents some oscillations and this is non-exponential, again even in the undamped case.

7.4. Example 3: influence of the chemical potential

The aim of this third example is try to observe the influence of diffusion of the chemical potential in
the model. Therefore, null initial conditions have been considered in all the variables but the one for the
chemical potential, where P(z,0) = 4a(1 — x) has been taken. The same material constants than in the
previous example have been used and, again, no external forces nor temperature sources act on the body.
Moreover, the discretization parameters At = h = 10™3 have been employed.
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F1G. 4. Example 3: Evolution in time of temperature (left) and chemical potential (right) at central point
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Fic. 5. Example 3: Temperature (left) and chemical potential (right) at different time instants

In Fig. 4, the evolution in time of both the temperature and the chemical potential at central point is
presented. Moreover, in Fig. 5 both the temperature field (left-hand side) and the chemical potential field
(right-hand side) are shown at several time instants. As expected, the temperature is generated initially
but it converges to zero, with some oscillations due to the influence of the chemical potential. Similarly,
the chemical potential has a quadratic behaviour and, again, it converges to zero.

Finally, we analyse the effect of using different initial conditions for the chemical potential, remaining
the rest of the data the same than in Example 2. Therefore, taking again discretization parameters
At = h = 1073 in Fig. 6 we plot the evolution in time of the vertical displacement (left) and rotation
(right). As expected, both are generated due to the diffusion and they increase as the diffusion increases,
although typical oscillations are found.
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F1G. 6. Example 3: Evolution in time of the vertical displacement (left) and rotation (right) at central point
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