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Incompressible inviscid limit of the viscous two-fluid model with general initial data
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Abstract. In this paper, we study the incompressible inviscid limit of the viscous two-fluid model in the whole space R3
with general initial data in the framework of weak solutions. By applying the refined relative entropy method and carrying
out the detailed analysis on the oscillations of the densities and the velocity, we prove rigorously that the weak solutions of
the compressible two-fluid model converge to the strong solution of the incompressible Euler equations in the time interval
provided that the latter exists. Moreover, thanks to the Strichartz’s estimates of linear wave equations, we also obtain the
convergence rates. The main ingredient of this paper is that our wave equations include the oscillations caused by the two
different densities and the velocity and we also give an detailed analysis on the effect of the oscillations on the evolution of
the solutions.
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1. Introduction

In this paper, we consider a compressible model of two-phase fluids in the following form [3,26,33]:

On + div(nu) = 0, (1.1)
Oro + div(pu) = 0, (1.2)
Bu((n + ou] + div[(n + 0)u @ w] + VP(n, 0

= pAu + (p + v)Vdivu, (1.3)

where the unknowns n and ¢ denote the densities of the fluids, and u € R? denotes the common velocity
of the fluids. Here we assume that the two fluids obey the same velocity for simplicity. The parameters
u and A denote the viscosity coefficients satisfying 2u + v > 0, and the pressure P takes the form
P(n,o0) = éno‘ + %Q'Y with v > 1 and o > 1.

The system (1.1)—(1.3) can be derived from the general two-fluid model [17,28] or from a coupled
system of the compressible Navier—Stokes equation and a Vlasov—Fokker—Planck equation by taking an
asymptotic limit [3,26]. The system (1.1)—(1.3) is also related to the compressible Oldroyd-B type model
with stress diffusion [2].

Compared with the classical isentropic Navier—Stokes equations, the main difference is that the pres-
sure law P(n, o) depends on two variables n and o.
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In a series of papers [7-10] by S. Evje and his collaborators, they obtained the global existence of
weak solutions to the system (1.1)—(1.3) in one-dimensional case. Yao, et al. [35] studied the existence
of asymptotic behaviour of global weak solutions to a 2D viscous liquid-gas two-phase flow model with
small initial data. Recently, Vasseur, et al. [33] obtained the global weak solution to the viscous two-fluid
model (1.1)—(1.3) with finite energy in the framework of DiPerna-Lions’ theory. Later, their results were
extended to more general case by Novotny and Pokorny [28].

Yao et al. [36] studied the incompressible limit of the system (1.1)—(1.3) in the torus T3 with well-
prepared initial data under the framework of local classical solutions. They obtained the convergence of
the local strong solutions to the two-fluid model to that of the incompressible Navier—Stokes equations
with an convergence rate.

In this paper, we study the incompressible limit of the compressible models of two-phase fluids (1.1)—
(1.3) in the whole space R® with general initial data in the framework of weak solutions established in
[33]. We shall derive rigorously the incompressible Euler or Navier-Stokes equations based on the refined
relative entropy method and the detailed analysis on the oscillations of the densities and the velocity. To
begin with, we introduce the scaling

T X, Lt et, U €Ue, [l €lle, V> €l (1.4)
Then the system (1.1)—(1.3) can be rewritten as
One + div(neue) =0, (1.5)
0r0e + div(oeue) =0, (1.6)
Ot[(ne + 0c)ue] + div[(ne + oc)ue @ u ] + E%V (;n‘j + ig?)
= peAu, + (e + v )Vdivu,, (1.7)
where we assume the initial data at the infinity:
ne — 1, oc — 1, ue — 0,

when |z| — oco.

Formally, by taking ¢ — 0 in (1.7), we get n. — n(t) and g — p(t). If we further assume that the
initial densities ng . and g are small perturbations of some positive constant, say 1, we can also expect
that ne — 1, o — 1 as € — 0. Moreover, if we assume that the shear and bulk viscosity coefficients
satisfy

e =0, ve.—0 as e¢—0, (1.8)

then the system (1.5)—(1.7) is reduced to the classical incompressible Euler equations (suppose that the
limits n.u. — u and p.u. — u exist):

divu = 0,
{atu+ (u-V)u+ VII=0. (1.9)
In addition, if we suppose that
e > >0, ve—D as €—0, (1.10)

then the system (1.5)—(1.7) is reduced to the classical incompressible Navier-Stokes equations (suppose
that the limits n.u, — u and g.u, — u exist):

{ divu = 0,

dyu+ (u-V)u— fiAu+ VII = 0. (1.11)

Our goal of this paper is to investigate the above limits rigorously in some suitable sense.
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The outline of this article is as follows: In Sect. 2, we present the result of global weak solutions for
the compressible models of two-phase fluids (1.5)—(1.7) and state our main results. In Sect. 3, we give the
proofs of our results.

Before ending Introduction, we point out that the incompressible limits of the compressible Navier—
Stokes equations and related models are very interesting topics and there are a lot of works on it.
Among others, we mention [5,15,23,25,27] on the isentropic Navier—Stokes equations, [1,12-14] on the
full Navier—Stokes—Fourier system, [24,34] on quantum isentropic Navier—Stokes equations, [16,18,19] on
isentropic compressible magnetohydrodynamic equations, and [20,21] on the full compressible magneto-
hydrodynamic equations.

2. Main results

In this section, we introduce our main results of incompressible limit for the compressible model of
two-phase fluids (1.5)—(1.7) in the whole space R3.

For any vector field v, we use P and Q to denote the divergence-free part of v and the gradient part
of v, respectively, i.e. P(v) = v — Q(v) and Q(v) = VA~!divv. Below the letter C' denotes a generic
positive constant, independent of €, and may change from line to line. And the letter Cr denotes a generic
positive constant, dependent on 7.

We first recall the global weak solutions of the system (1.5)—(1.7). We assume that the initial data

(Mey Ocs ) |t=0 = (n0,e, 00,¢, Up,e) satisfy

e+ 00.)up |
/ {(no, Q;, )10, + Ga(noe) + Hw(go}e)}dx < o0, (2.1)
RS
inf ng. >0, inf gg. > a(noe), Hy(00e) € L' (R3 2.2
Jnf no.e = 0, nf 0o, = 0, Ga(no,e), Hy(0o,) € L (R?), (2.2)

where ng . — 1, go,c — 1, ug, — 0 when |z| — oo and ng—1 € L*(R3), go,.—1 € L7(R3). Furthermore,
we assume

]\406 2 3\ - MOE 3
—r c L*(R’) if ——————=0o0n {z € R’|ng.(x) + 00.(x) =0}, 2.3
Vn0»€+go,e ( ) \/nO,e+Q0,e { | 0,( ) o ( ) } ( )
where
1 «

Ga(ne) = m(ne —1—a(n.—1)),

H.,(0e :793_1_796_1 s

00 = =yl (0~ 1)

and MO,e = No,e + 00,e-

Proposition 2.1. [33] Let € > 0 be a fized number. Suppose that the initial data (ng.e, 0o.e, Wo.e) Satisfy
(2.1)—(2.3). If

>1 >9
@ , -
2 gl 5

and the initial data no. and oo verify

1
C, 20 <o, < Cogoe on R? (2.4)

for some positive constant Cy, then there exists a weak solution of the system (1.5)—(1.7) in the sense of
distribution verifying the following energy inequality:

T
E. 1)+ / / (,uE|VuE|2 + (pe + 1/6)|divu5|2)dxdt < Ep.e, (2.5)
o Jrs
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where

By = [ (Gne+ el + Gand) + H,(00))da.

1
EO,e = /3 (5(”0,6 + QO,E)‘UO,EF + Ga(no,e) + H’y(@O,e))dx'
R

Remark 2.1. Although the proof of global existence of the system (1.5)—(1.7) is given in [33] on bounded
domains, we can prove a similar global weak solution of it in the whole space R? based on the same spirit
with the standard expanding domain techniques [29]. For the value of density at the infinity, we get: for
fixed number M > 1, we define gy : [0,00) — [0,00) by

om €C, oy(x) =aif |z| <M, ppy(z) =11f 2| > 2M.

Let 9y(2) = @ar(0o(z)). Then we construct a weak solution with the initial data gy(z) on By (0) =
{z||z] < M}. Then, when M — oo, obviously, we get po(z) — 1 when |z| — oo. Similarly, we can also
prove that no(xz) — 1 when |z| — oc.

Remark 2.2. In fact, [33] is a particular case of [28]. In particular, in [28], they have constructed solutions
for a > 0 and v > 9/5. However, we here use the result of [33] for the convenient presentation such that
it is more convenient to deal with the pressure terms of the relative entropy. Actually, the arguments in
the proof of Theorem 2.1 still hold for all @ > 1 and v > 1 provided that the system (1.5)—(1.7) has a
global weak solution as stated in Proposition 2.1.

Remark 2.3. In [33], the authors pointed that the results in Proposition 2.1 still hold without the condition
(2.4) on the initial densities if we have further restrictions on the powers of the pressure:

9 3 3(y+1 3 5
@,y > ¢ and max{Z,y—l,WSH} <a<max{47,w+1,37—1}.

Since our main concerns here are on the incompressible limit to the system (1.5)—(1.7), it is easy to check
that our assumptions in Theorem 2.1 satisfy the condition (2.4).

Next, we recall the classical results on the incompressible Euler equations (1.9).

Proposition 2.2. [22,32] Assume that the initial datum u(z,t)|t=0 = uo(x) satisfies
up(z) € H¥(R?), divuy =0, s>5/2. (2.6)

Then there exist a T* € (0,00) and a unique solution u to the incompressible Euler equations

divua =0,
{Gtqu (u-V)u+VII=0 (2.7)
satisfying the following estimates
OSltlET (||uHH5(R3) + HatuHHs—l(]R:i) + ||VHHH“'(]R3) + ||8tVH||H?—1(]R3)) S C(T) (28)
<t<

with C(T) > 0, a constant for any 0 < T < T*.

Finally, we denote n. = 1 4 €p, 0. = 1 + €p and

o, = V 2Go¢(ne)7 ‘I)O,e =/ 2Ga(n0,e)7 U, = \/ QH’)/(QE)) \I/O,e =/ 2H’y(@0,e)-

Now we are in a position to state our results of this paper.
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Theorem 2.1. Let o > 1 and v > 9/5 and
e =Ve =€ a>0. (2.9)

Assume that the initial data (no., 0o, Uo.) satisfy the conditions in Proposition 2.1 and nge = 1 +
€00,c, 00,e = 1+ €ty e,

@0, = 0.l F2re) + [ Wo.e = o,ell72gey

+ |ly/70,eu0,e — o172 (gs) + llv/@0.c00,e — ol 72(psy < Ce’, (2.10)
190, = o,ell72(rsy < Ce? (2.11)
for some constants b > 0 and ¢ > 0, where
||<P0,e||LoonL2(JR3) + ||1/J0,e||LoonL2(R3) < ¢, P(flo) € Hk(Rg;Rg)a (2-12)
for some k > 7/2. Let
min{%,g,a,c}, l<a<4,9/5<vy<4,
min{i%’%,a,c}, a>4,9/5 <y <4,
o= T (2.13)
mm{z,g,ﬁﬂ,c}, l<a<4, v>4,

min{, 54, 20 cl, a >4, >4,
and (u,II) be the local strong solution, on the time interval 0, T*), to the incompressible Euler equations
(2.7) with the initial datum u(z,0) = ug = P(0g). Then, for any T < T, the weak solution (n., oc,u)
of the system (1.5)—(1.7) established in Proposition 2.1 satisfies:

Ve = 1L (o,;02R3)) + V05 — L[ 0,7 02(r%)) < O, (2.14)

[P(v/neue) = ullLe0,7;22(r2)) + [P(v/0eue) — ullpe<(0,1;r2(r2)) < Cre”, (2.15)

Ivneue = ullrorizz, @) + 1veeue = ullLrorinz, sy < Cre? (2.16)
for all2 < r < oco. Hered:min{%,% .

Remark 2.4. If we replace the assumption (2.9) by (1.10), we can obtain a similar result to Theorem
2.1. Here the target equations are the incompressible Navier—Stokes equations (1.11). Since the proof is
similar to that of Theorem 2.1, we omit the details here for brevity.

Remark 2.5. When the initial data are well prepared, it is much easier to show that the weak solutions
of the compressible two-fluid model converge to the local strong solution of the incompressible Euler or
Navier—Stokes equations in the time interval provided that the latter exists. Moreover, we can obtain
the convergence rates. In fact, in this case, because there are no oscillations, we do not need to use
the Strichartz’s estimates of linear wave equations. Thus, the relative entropy to the system (1.5)—(1.7)
becomes

1
E(r) = 3 /]R3 ((nE + 0c)jue — u|2 + |<I>E\2 + |\I!€|2>dac, (2.17)

where u is the local strong solution of the incompressible Euler or Navier-Stokes equations. Since the
proof is much simpler than that in Theorem 2.1, we will omit the details here. The readers can refer [15]
on the discussion of isentropic Navier—Stokes equations.

Remark 2.6. For well-prepared initial data, we can also study the incompressible limit to the system
(1.5)—(1.7) in the torus T? or bounded domain and obtain a similar convergence result stated in the
above remark. In fact, no Poincaré inequality is needed in our arguments. Thus, our results can be
regarded as an extension and improvement in that in [36], where the incompressible limit is studied only
for local strong solutions with well-prepared initial data in the T3. However, if we consider the general
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initial data case in the torus, the oscillations will survive forever and satisfy a parabolic equations; the
readers can refer [27,30] on the discussion of isentropic Navier—Stokes equations in the torus T2. See also
[5] on the isentropic Navier-Stokes equations in the bounded domain case.

We give some comments on the proof of Theorem 2.1. We will make full use of the energy inequality,
compact arguments, the refined relative entropy method (see [11,13,27]), and the Strichartz’s estimates
of linear wave equations (see [6]). Thanks to the dispersive effects of the linear wave equations in the
whole space R3, we can further obtain the convergence rate of the incompressible limit. Compared with
the previous results on the isentropic Navier—Stokes equations (see [4,15,25,27]), the main ingredient of
this paper is that our wave equation includes the oscillations caused by the two different densities and
the velocity and we also give an detailed analysis on the effect of the oscillations on the evolutions of the
solutions. In fact, we have used the oscillation of % for the density to figure out the pressure
term in the relative entropy.

3. Proof of Theorem 2.1

In this section, we are going to give a rigorous proof of Theorem 2.1. We will make full use of the energy
inequality, the refined relative entropy inequality, and the Strichartz’s estimates of linear wave equations
to obtain the convergence rate of the solutions. From now on, we work on any time T < T}, where T is
the maximal existing time of solutions to the incompressible Euler equations (2.7).

3.1. Uniform bounds

In this subsection, we are going to derive some estimates on the sequence {(ne, gc, uc)}eso.
From the energy inequality (2.5), we obtain that

ess sup |yt < Cr, (3.)
te(0,T)

ess sup [[y/Bu(t)|1oes) < O, (32)
te(0,T)

ess sup [|nd —1—a(ne —1)||p1@s) < Cre?, (3.3)
te(0,T)

ess sup |[lo? =1 —7(0c — 1|11 rs) < Cre®. (3.4)
te(0,T)

We consider the properties of convex function

sT—1—y(s—1)>Cls—1)* if y>2,
sT—1—y(s—1)>Cls—1]* if 1<y<2 and 0<s<R, (3.5)
sT—1—7(s—-1)>Cls—1|" if 1<y<2 and s>R

for some constant R > 0.
Let us introduce the set of the essential and residual values

g = [gless + [9]ves
where [gless = X(0¢)9, [g)res = (1 — x(0¢))g, and x is defined as

{17 re[l/2,2],

X(r) = 0, otherwise.
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Following the estimates (3.3), (3.4), and the convexity (3.5), we get

ne — 1
ess sup H [ } < Cr,
te(0,7) € ess|l L2 (R3)
-1
ess sup H {QE } <Cr,
te(0,T) € ess|lL2(R3)

ess sup / [1+ n&pesdr < Cpé?
te(0,T) JR3

ess sup / [1+ 07]resdz < Cpe®.
te(0,T) JRR3

Noting that the following two elementary inequalities

Wz — 1> < M|z —1]?, = >0,

for some positive constant M and 0 < d < 1, it is easy to obtain that
/]RS Ve —1]? Z/R3 Ve =11 —1j<1/2y + /RS Ve =11 115172y
SM/RB Ve = 11 {jn, —1j<1/2y + M/RB Ve = 1" 1jn,—11>1/2)
< CMEé.
It then follows that
[v/ne = 1| Lo (0,1;2R2)) < Cre.
Similarly, we have

V0 = 1| o (0,7;22(r3)) < Cre.

Hence, (2.14) holds.
In accordance with (3.6) and (3.8), we obtain that

ne — 1 in L*(0,T;(L* + LP)(R?)), p= min{a,?2}.
Similarly,

0c — 1 in L®(0,T;(L* + LP)(R?)), p=min{y,2}.

(3.12)

(3.13)

(3.14)

(3.13) and (3.14), together with (3.1) and (3.2), imply that, up to extraction an subsequence, still denoted

by ncu. and ocue,

neue — u weakly —x in L0, T; (L2 + L2/ (@+1)(R3; R3)),
ocu, — u weakly —x in L>®(0,T; (L + L»/O0+1)(R3; R?)).

(3.15)
(3.16)

Combining this with continuity Eqgs. (1.5) or (1.6), we deduce that, up to extraction an subsequence,

divu, converges weakly toOinH ~*((0,7) x R?).

(3.17)
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3.2. Stricharz’s estimates

In this subsection, we introduce the Strichartz’s estimate of linear wave equations to handle the oscillations
of the densities and the velocity. To do this, we consider the following acoustic system:
682556 + AQG = O, SE(O) ) = S0,e = %(q)&e + \I’O,e)a
€0 Vqe + Vse =0, Vge(0,+) = Vo, = 3(Q(,/00,cu0,¢) + Q(/M0,cu0,¢))-

Here we have used Q(,/00.cuo,) and Q(,/no,cuo,c) as an approximation of Q(gg uo.) and Q(ng,cuo.e),
respectively, since

(3.18)

1Q(00,cu0,e) — Q(\/00,c10,¢)|| L1 (r3) < Ce, (3.19)
[Q(no,eu0,e) — Q(\/no,euO,e)HLl(R3) < Ce. (3.20)

We shall regularize the initial data (3(¥o. + Wo.), 3(Q(y/00,cu0,c) + Q(,/M0cup,c))) to remove the
interruption of computation of convergence. Let us choose the following initial data:

{ S50,e = S0,e,6 = X5 * [%(@0,6 + \I/O,e)]a (3 21)
VqO,e = Vq076,5 = X¢§ * [%(Q(\/ Q076u076) + Q(\/nO,euo,e))} . '

Here x°(z) = (1/6%)x(xz/§) and x € C§°(R?) is the Friedrich’s mollifier, i.e. [p; xdz = 1. From now on,

we remove 0 to proceed the convenient presentation. Then we have the Strichartz’s estimates:

Proposition 3.1. [6] Let (s.,Vq.) be the solution of system (3.18) with initial data (SZ,O,ngO) given in
(3.21). Then, one has
e )1 e sy + 11V Co ) e o ey
< llso,elFe ey + Va0l e g zs): (3.22)
sell Lt mywrr (®3r3)) + 1V Gell Lt mywrr (3 R3))
< OV ([1s0.ell 2 @ome) + 1 Vao,cll rnverome)) (3.23)

with

11 1
2<pl<oo, —+-==, k=0,1,2,....
p L 2

3.3. Relative entropy inequality

Recall that we have assumed that
e = Ve =€, a>0.
In order to prove the convergence of Theorem 2.1, we will introduce the relative entropy to the two-fluid

system (1.5)—(1.7):

£(r) =5 /R (e + 0 = UP 1, — s> + [ — s,

where U = u + V..
Let first recall the energy inequality to the system (1.5)—(1.7):

T
E 1)+ / / (,uE|VuE|2 + (pe + 1/6)|divu5|2)dxdt < Ep.e, (3.24)
o Jrs
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where
1
Ed(r) = /R (301 + 00l + Galne) + H (o)),
1
Bocim [ (500 oco)lunl? + Galno) + Hy (0. ).
R
The conservation of energy for the incompressible Euler equations (2.7) reads
2 1 2
- lu(t)|°de = = |uo|“de. (3.25)
R3 2 R3
From the system (3.18), we get
[ (5P + 1VaP e = [ (lso.l? + Va0 ). (3.26)
We adapt U as test functions to the moment equation (1.7):
- [ (et euc 0)ds == [ (G0 + e0.)Vn) - o
R3 R3
—/ / [((n6 +o)uc ®u, : VU — p.Vu, : VU] dxdt
R3
+/ / (tte + ve)divu, divUdadt — / / (ne + 0c)ue - 0, Udzdt
o Jr3 o Jrs
1 T . a—1 i 2 4.
- - (pe + eo)divUdadt — —— |®,|*divUdzdt,
€ Jo Jr3s 2 o JR3
1 /7
. / / W, |2divUdzdt. (3.27)
2 Jo Ja
We also use 2|U|? as a test function to continuity Egs. (1.5) and (1.6), respectively, to deduce that

1 1
5/ (e + 0 UPds = 5 [ (no.+ 00.)[Uo s
R3
/ / ne + 0¢)0,U - Udxdt +/ / ne + 0o)ue - VU - Udadt. (3.28)
R3
Using s, as a test function to continuity Eqs. (1.5) and (1.6), respectively, we get

—/ Yesedr = —/ ©o, 6<p0dgc—/ / PO Se dxdt—f/ / neu, - Vsedadt. (3.29)
R3 R3

wEs dz = / Yo, epodx —/ YeOpsedadt — f/ / ocu, - Vscdxdt. (3.30)
o Jr3

Thus, we deduce, after adding up (3.24)—(3.30), the following inequality:

+// (u5|Vu€|2+(u€+l/6)\divu5\2)dxdtgE;ZlA} (3.31)
0 JR3
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where
A=~ [ [ Vo]
R3 0
A== [ @) = prscdo+ [ (@0) = pu(0)s0,
R3 R3
A== [ ) = wsidat [ (000 = v0))sn. i
R3 R3
.= / / (ne + 0c) (@U +u, - VU) (U — u,)dadt,
0 R3
Af = / / neVu, : VUdzdt —|—/ / (tte + ve)divu, divUdzdt,
0 R3 0 R3
1 T _ T
=—= / / neu, - Vscdrdt — a1 / |®. [2divUdzdt,
€Jo Jre 2 Jo Jrs

1 [" -1 [
T / / o, - Vsodrdt — L~ / U, [2divUdzdt.
€Jo Jr3 2 0 JR3

>
om

Note that thanks to divu = 0 and the wave equation (3.18), the terms — fOT fRS peOrscdadt in (3.29),
— [y Jgs YeOrsedzdt in (3.30), and the term —21 [ [0, (¢c + 1 )divUdadt in (3.27) are cancelled.

3.4. Computation of relative entropy

In this subsection, we are going to compute the estimates of relative entropy. Let us now carry out on the
estimates of {A5}7_,. Thanks to (2.10), (3.19), (3.20), the regularity of ug and 1y, and Hausdorff-Young’s
inequality, we first deal with the initial data part of A§. We have

lv/Ro.e(U0.e — 1o — Vo) |72 gs)
= |l\/Roeu0.e — o + g — /0,00 + /70.e(Tg — o — Vo.e) |72 gs)
< Cly/mo,cu0,e — boll72(gsy + CII(1 = \/R0.) o]l 2 sy
+ C||/10.e(Tg —ug — qu,E)H%ﬂ(Rfi)
< Ce’ + 0 + O o (i — up — Vao,c) |72 ms)
< O+ C& + C|y/moc (o — wo — Qo) * X°)|[72 (e
+Clly/0e(Qlio) * X° — Q(y/cuo.e) * X°)IZ2 s

+ CH\/ nO,e(Q(ﬁO) * X6 - Q(\/ QO,euo,e) * X(S)H%Q(R:s)
< O+ Ce? 4 x(9). (3.32)

Here and below we use x(4) to denote a generic function of § satisfying

(%I_Iz% x(6) =0. (3.33)

Similarly,

l\/00,c(ug,e —ug — qu7€)||2L2(Rs) <Ce® + Ce* + x(9). (3.34)
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For the term || ®g, — 80,6||%2(]R3)7 it can be treated as

190, — S0.ell72(ms) = [Po.c — Po.c + Po.c = 0. * X° + Po.c % X° = 50,cll72ms)
< O||®o,c = po.ellF2(msy + Cllwo,c = po.e * X[ 72rs
+Cllpo.e * X° — Po.c % X’ 72 (ms)
+ Cllvbo,e * X° = Wo,e % X172
+Cllpo.e * X° — o * X172 (msy
< C|®o,c = @o,ell72(msy + Cllpo,c = Poell7zrey

+ Ol[0,c = Wo,ecll72(rs) + Cllwo,c = Yo,ell2(gay + x(5)
< Ceb + Ce® + x(9).

(3.35)
Similarly, we have
1o, = 50,cl|72(ms) SCe® + Ce® + x(8). (3.36)
Thus, we have
AS < — [ / |vq52dx} + Ceb + Ce® + x(8) + Ce* + x(9). (3.37)
R3 0
We remark that the first term on the right-hand side of (3.37) will be cancelled later
For the terms A§ and A§, by the arguments of ( [31], pp. 13-14), we have
Cremin{lis} l<a<4,9/5<y<A4,
CTemin{l,gvuT:l}, a>4,9/5<vy<A4,
A5+ A5 < : 4 - 3.38
o+ Az < C¢T€m1n{1,g,2—v4 ’ l<a<d, y> 47 ( )
C’Temin{%’%’%}, a>4, v>4.
We next control Aj and denote it by A§ = B{ + BS where

Bj = /OT/]R3 n.(0,U +u. - VU)(U — u.)dzdt,
BS = /OT/W 0:(0:U 4+ u. - VU)(U — u,)dadt.
For the term Bf, we have
B — /O/R n(9,U + u, - VU)(U — u)dadt
:/OT/RSnE(U—uE)(X)(U—ue):Vdedt
+ /OT/RS (nE(U ~u)- U+ 0(U—u,): VU)dxdt

- 5
< cT/ E(Hdt+ U,
0 k=1
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where

N

=
I

n.(U —u) - (Opu+ u- Vu)dzdt,

3
w

53
|

ne(U —u.) - 0;Vgedadt,

(%)

ne(U —u.) ® Vg, : Vvdadt,

3
(%)

ne(U—u)@v: Vidzdt,

o3
I
M‘Hc\c\\‘c\N
%\%\%\%\

ka
3
w

“2

For J¢, recalling that U = u+ V¢, and using the incompressible Euler equations (1.9) and diva = 0, we
have

/ ne(U —u.) - V|V |*dzdt.
R3

|Jil < ’/0 /Ra n.(U —u,) - (8tu+ll'vu)dl'dt’

S’/ / (nefl)U-Vdedt’Jr‘// Vg, - VIIdzdt
0 JR3 0 JR3

+| / ! / nen, - Vildedi| (3.39)
0 R3

For the first term on right-hand side of (3.39), we use the estimates (3.6) and (3.8) to obtain that

(// .~ 1U- Vdedt‘
-

< Cll(ne = Dggn.—11<1/23 20,7522 ®3) 10| oo 0,752 (23)) [ VIT|| £2 0,75 22 (R3))
+ [(ne = D1gn, —11>1/2} | e (0,750 (R3))
X | U|| poe (0,130 (R3[| VIT]]

< Cr(e+€%) < Cre,

LT (0,750 7T (R3))

where k := min{2, a} and we have used the condition k > 7/2 and « > 1.

For the second term on the right-hand side of (3.39), together with using the equation (3.18) and the
dispersive regularity (3.1), it can be estimated as follows:

‘/ qu.Vdedt‘ge[/ \35||H\dxr—|—e// 5. |94 ddt
0 JRr3 R3 0 0 JR3

< €(llsell e 0,722 e Ml Lo 0,7 22(R2))
+ [180,ell o< (0,7:22®3)) [ To || Lo (0,7 2 (r3))

+ Il 20,7522 @) 10| 20,12 (R5)) )
< Cre.
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For the third term on the right-hand side of (3.39), together with using continuity Egs. (1.5), (3.6),
and (3.8), it can be bounded as follows:

’// neu - VIdzdt
0 JR3

<| [ A= vm - (o - vm©)as+| [ (- 1) outtasa

< [(ne = Dgn.—1j<1/2y I 0,522 ®3)) + [[(Re = D1gjn.—1y>1/2} | (0,152 (%))

+ [[(ne = Dlgjn, —1j<1/23lz20,7522®2) 1011 220,712 (R3))

(e = Dlgn-1121/21 e 0,700 @) Ul o 075200 @) IO | sor 1 525 sy,
+ Cre
< Cr(e+€) < Cre,
where we have here used (2.12). Thus, we get
|.]1€| S CTE.
Next, we have
—/ / neue - O Vaedadt +/ / neu - 0y Vgedadt
o Jr3 o Jr3
1 T
+= / / 10| Vae|*dxdt. (3.40)
2 0 R3

In virtue of divu = 0, (3.1), (3.6), and (3.8), we get

’/T/ neu - 8thdedt’

R3

= ‘/ / —Du- 8th€dxdt‘
R3

= ‘ —1|<1/2}H ||uHL4/3(O,T;L4(R3))||VSEHL4(O,T;L4(R3))

Lo (0,T;L2(R3))
C o
+ ?”(ne + D1 —11>1/23 | 2o (0,701 ®3))
< CT(€1/4 + 6),
where we have used the facts that
[ullzee (0,7)xr3) < Oy [[VSel[Loo ((0,7)xR2) < O
Similarly, we have

1 (7 1 -
= / / ne0| Ve |2dzdt < = [/ |Vq€|2dx} + CT(€1/4 +e).
2 Jo Jrs 2L Jgs 0

Thus, the term J5 is bounded by:

Js = / / ne(U —u,) - 0, Vgedaxdt
R3

=5 / ‘V(]€|2d$ - / / Nele * 8th5da:dt + OT(€1/4 + 6).
20 Jre 0 0 Jr3



94 Page 14 of 17 Y.-S. Kwon and F. Li ZAMP

Using the regularity (2.8), the dispersive property (3.23), (3.1), and (3.12), the term JS can be esti-
mated as:

J§ = / / (ne — 1)U ® Vg, : Vudzdt —|—/ U ® Vg, : Vudzdt
R3 0o Jrs

/ / —1)y/neue ® Vg, : Vudzdt +/ / Vneue ® Vg : Vudadt
R3
< OT 1/4 + 6)

Similarly, we get

Js+JE< C(e* + o).
So, the term B can be estimated as follows:

T 1 T T
B <C Ee(t)dt + - [/ |qu\2dx} —/ / neue - 0y Vgedadt
2 R3 0 o JR3
+ C( 1/4 )

and with the same arguments, BS can be handled as follows:

T 1 T T
B;gc/ 5€(t)dt+f[/ \Vq6|2dx} —// o, - 0, Vgedadt
0 2 R3 0 0 JR3

+ CT(61/4 + 6).
The above inequalities imply that
A§ < C/ E(t)dt + [/ |Vq€|2dx} —/ / (0e + ne)ue - 0:Vgedadt
0 R3 0 0 JRS
+ Cr(ef* + o).

Thanks to divu = 0, the estimate (3.22) and the viscosity term Ag(7) can be bounded by the following:

- / / (\/,UTVue “VIVU + Ve + vedivua, \//mdiVU> dxdt
o Jrs

[divue]|Z (0. 7)xrsy + Crlpe + ve)- (3.41)

He Me + Ve
< ?HVUeH%Z((o,T)st) R

Noticing that after adding the second term on the right-hand side of J§ in (3.40) to A§, we get that
the first term of A§ vanishes. The second term of A§ can be estimated as follows:

‘// \(I>€|2Aq€dacdt‘

0 JR3

gC/ Sg(t)dt—l-C‘// |sc|?Agedadt
0 0 JR3

< C/ Ec)dt + ClisellLz(o,7;r2®e)) ISellLa(0,1:04®3)) | Vel Lao, ;w4 m2))
0

<C / E(t)dt + Cret/*, (3.42)
0

Here we have used the regularity of s. and ¢, in (3.22), the dispersive regularity (3.23), and the compu-
tation in [12] together with the Strichartz’s estimate (3.23).
Similarly, the second term of AS can be estimated as follows:

M g |\I/5\2Aqedxdt’ <C ; Ec(t)dt + Cret/t. (3.43)
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Consequently, putting all the above estimates related to {Aj ]7=1 into the inequality (3.31), we obtain

that
+&// |Vu€|2dxdt+'u€7w// |divu,|*dzdt
2 Jo Jrs 2 Jo Jre

<Cr / E.()dt + Cre” +x(9), (3.44)
0
where the number w is defined as follows:
min{%,g,a,c}, l<a<4,9/5<y<4,
min{1, %, 2% q,c}, a>4,9/5 <y<A4,
o= y (3.45)
min{i,mgv,a c}, l<a<4, v>4,

min{g7 2;044’ Vz—f,a,c}, a >4, y>4,
and we have used the condition (2.9) and the facts that:
A>3 > .

for sufficiently small 0 < e < 1.

Applying the Gronwall’s inequality to (3.44) gives

E(1) < Cre” + x(9) (3.46)

for any 7 € (0,7].

We are now able to prove the convergence of /ncu. and ,/pcu.. Note that the projection P is a
bounded linear mapping from L?(R?) to L?(R3). Hence, we have

sup [[P(y/cu,) - (v —u =)

0<t<T 0<t<T L2(R3)
<C sup [[vicu —u - Ve . (3.47)
0<t<T

Thus, combining (2.10) and (3.46) and letting § — 0, we further derive that
IP(vAcue) — ullpo(oz2me)) < Or(e? + %) < Opes.
Similarly, we have
IP(v/2eue) — ul|poe (0,712(r2)) < Cre?.

It is not difficult to show the local strong convergence of \/ncu® and \/ocu® to u in L7(0,T; L*(12))
for all 2 < r < +00 on any bounded domain K C R3. In fact, for any ¢ € (0,7] and any compact subset
K C R3, we have

/|\/n>€ue—u|2dm
K
s/ Az (e — u— Vo) — (1 — v/ae)(v + Vae) + Vae2de

<& < / V| 2dx> C 4 Ore” 4 x(0) (3.48)

for any r > 2, where we have here used (3.12) and (3.23). Similarly, we have

27‘

/ |\/ocu, — ul*dr < E(7) + C(K (/ Ve |T 2d$> + Ce + x(0). (3.49)
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Consequently, using (3.46), (3.48), and (3.49) together with (3.23) and passing to the limit for § — 0, we
get

[Vneae = vllpro.rr2 ®s)) + IVocue —ullLro.102 (®3) < C(e? +ev) < Cpe?

loc loc

with d = min {Z, 1}. Thus, we prove (2.15) and (2.16) where the terms of constant depend on

VG0, |l mre+2 m3;r3) + ||50,ell 2 (w3 r3),

and it is uniformly bounded by a constant number when § — 0. This completes the proof of Theorem
2.1.
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