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Abstract. This article studies the blowup time of weak solutions to the degenerate parabolic equation ut − Δpu = λum +
μ|∇u|q with homogeneous Dirichlet boundary condition in a bounded smooth domain. We first obtain an upper bound and
a lower one for the blowup time of L∞ blowup solutions and then get the upper bound for the blowup time of gradient
blowup solutions.
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1. Introduction

In this paper, we consider the blowup time of weak solutions to the following parabolic p-Laplacian
equation:

⎧
⎪⎨

⎪⎩

ut − Δpu = λum + μ|∇u|q, in Ω × (0, T ),

u = 0, on ∂Ω × (0, T ),

u(x, 0) = u0(x), in Ω,

(1.1)

where Ω is a bounded domain in R
N (N ≥ 1) with smooth boundary ∂Ω and T ∈ (0,∞] is the maximal

existence time, that is

T = sup

{

t
′
> 0 : sup

0≤t≤t′

(‖u(·, t)‖L∞(Ω) + ‖∇u(·, t)‖L∞(Ω)

)
< ∞

}

.

Δp is the p-Laplacian operator

Δpu := div
(|∇u|p−2∇u

)
, p > 2,

∇ is the gradient operator, m ≥ 1, q ≥ 1 and λ, μ ∈ R. The initial value u0(x) ∈ W 1,∞
0 (Ω) is a nonnegative

and nontrivial function which satisfies the compatible condition.
If p = 2, the equation

ut − Δu = λum + μ|∇u|q (1.2)

was introduced by Chipot and Weissler [3] to investigate the effect of a damping gradient term on existence
or nonexistence of global solutions. The blowup properties of classical solutions to (1.2) have been studied
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extensively in [6,9,12–15] and the references therein. In particular, Payne and Song [12] obtained a lower
bound for the blowup time of L∞ blowup solutions to (1.2) with λ > 0, μ < 0 in three-space dimension.

If p > 2, equation (1.1) often appears in the theory of non-Newtonian fluids. A lot of efforts, see
[1,2,4,7,8,10,11,17–22] for examples, have been devoted to the blowup properties of solutions to (1.1).
The local existence of weak solutions was established in [20]. The result also demonstrates that for
m ≥ 1, q ≥ 1, λ, μ ∈ R and u0(x) ∈ W 1,∞

0 (Ω), if the maximal existence time T is finite, then

lim
t→T −

(‖u(·, t)‖L∞(Ω) + ‖∇u(·, t)‖L∞(Ω)

)
= ∞,

i.e., the maximal existence time T is just the blowup time. If limt→T − ‖u(·, t)‖L∞(Ω) = ∞, we formally
say u is a L∞ blowup solution. While if supΩ×[0,T ) |u| < ∞, but limt→T − ‖∇u(·, t)‖L∞(Ω) = ∞, then u

is normally called a gradient blowup solution. If λ > 0 and μ = 0, Li and Xie [10] proved existence of a
L∞ blowup solution under given conditions such as λ is large enough if m = p − 1, or the initial data
are sufficiently large if m > p − 1. Furthermore, the blowup rate [22] was discussed in the radial case. If
λ = 0 and μ > 0, the gradient blowup solution could be obtained under certain conditions, see [1,2,7]
for examples. Besides, Zhang [17] gave the gradient blowup rate in the one-dimensional case. If λμ �= 0,
Zhang and Li [19,20] established the complete classification of parameters λ, μ, p,m and q for global, L∞

blowup and gradient blowup solutions to (1.1).
These known results show that the values of p,m, q, λ and μ play very vital roles in studying the

blowup properties of weak solutions to (1.1). Motivated by these results, it is a natural way that we are
concerned with the bounds for blowup time of L∞ blowup and gradient blowup solutions to (1.1). In
fact, we will estimate the upper bound and the lower one for the blowup time of L∞ blowup solutions
and establish the upper bound for the blowup time of gradient blowup solutions.

Firstly, we give the definition of weak solutions to (1.1).

Definition 1.1. Let s = max{p,m, q}, QT = Ω × (0, T ), ∂QT = {∂Ω × [0, T ]} ∪ {
Ω × {0}}. A function

u(x, t) is called a weak super- (sub-) solution of the problem (1.1) if it satisfies
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ C
(
Ω × [0, T )

) ∩ Ls
(
0, T ;W 1,s

0 (Ω)
)
, ∂tu ∈ L2 (QT ) ,

u(x, 0) ≥ (≤) u0(x) in Ω, u ≥ (≤) 0 on ∂Ω,
∫∫

QT

(
∂tuψ + |∇u|p−2∇u · ∇ψ

)
dxdt ≥ (≤)

∫∫

QT

(λum + μ|∇u|q) ψ dxdt.

(1.3)

Here, 0 ≤ ψ ∈ C
(
QT

) ∩ Lp
(
0, T ;W 1,p

0 (Ω)
)
. A function u(x, t) is a weak solution if it is a weak super-

solution and a weak sub-solution.

Remark 1.1. The local existence of weak solutions to (1.1) can be found in [20, Theorem 2.1].

The following weak comparison principle of weak solutions to (1.1) will play a crucial role in estab-
lishing the blowup time results.

Lemma 1.1. (See [10,19]) Assume that z1, z2 ∈ L∞
loc

(
0, T ;W 1,∞

0 (Ω)
)

are weak sub- and super-solutions
of (1.1), respectively, and z1(x, 0) ≤ z2(x, 0).
(1) Suppose μ �= 0. If q ≥ p/2, then z1 ≤ z2 on Ω × (0, T );
(2) Suppose μ = 0, then z1 ≤ z2 on Ω × (0, T ).

By Lemma 1.1, we know that the solution u(x, t) of (1.1) is nonnegative in the time interval of existence
under corresponding parameters conditions.

This paper is organized as follows. In Sect. 2, we will obtain an upper bound and a lower one for the
blowup time of L∞ blowup solutions. In Sect. 3, the upper bound for the blowup time of gradient blowup
solutions will be derived.
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2. Upper and lower bounds for blowup time of L∞ blowup solutions

In this section, we give an upper bound and a lower one for blowup time of L∞ blowup solutions to (1.1).
At first, according to [19,20], we have the following results about L∞ blowup solutions.

Theorem 2.1. Let λ > 0, μ < 0, m > max{q, p − 1} and q ≥ p/2 and assume that u0 = ηψ for some ψ
satisfying ψ ≥ 0, ψ|∂Ω = 0 and ψ �≡ 0. Then, there exists η0 (p,m, q, λ, μ,Ω) > 0, such that for all η > η0,

(i) if q ≤ p − 1, then L∞ blowup occurs;
(ii) if q > p − 1 and u0 satisfies, for any ε > 0,

div
(
(|∇u0|2 + ε

) p−2
2 ∇u0

)

+ λum
0 + μ|∇u0|q > 0, (2.1)

then L∞ blowup occurs.

Proof. When q ≤ p − 1, the conclusion has been shown in [19, Theorem 1.3]. When q > p − 1, by [19,
Theorem 1.3], we just need to exclude the possibility of gradient blowup to occur. Suppose that the
solution u is uniformly bounded and u0 satisfies (2.1), then by [19, Proposition 2.4], interior gradient
blowup cannot occur. On the other hand, we can verify that ū = R̄dist(x, ∂Ω) is a super-solution for
suitable large R̄ > 0, which guarantees that ∂u/∂ν is bounded on ∂Ω, where ν is the unit outward normal
vector on ∂Ω. Hence, L∞ blowup occurs. �

Remark 2.1. Theorem 2.1 fills one gap in [19] for the case m > q > p − 1, where the L∞ blowup or
gradient blowup was not clarified.

Proposition 2.1. (See [20, Theorem 3.1]) Let λ > 0, μ > 0 and m > p − 1 ≥ q and assume that u0 is
large enough, then the maximal existence time T < ∞ and the solution u satisfies

lim
t→T −

‖u(·, t)‖L∞(Ω) = ∞. (2.2)

Remark 2.2. If λ > 0 and μ = 0, the result is still valid as long as the condition p − 1 ≥ q is replaced by
p − 1 > 1. See Theorem 4.1 in [10] for further details.

With the aid of these results, we will derive upper and lower bounds for blowup time of L∞ blowup
solutions. In order to acquire upper and lower bounds for blowup time, we introduce the auxiliary function

φ(t) =
∫

Ω

uγ dx, (2.3)

where the constant γ > 0 will be decided later. Our main results of this section read as follows.

Theorem 2.2. Let u be a solution of (1.1). Assume that λ > 0, then the following conclusions hold.
(1) Suppose μ < 0. If m > max{q, p − 1}, q ≥ p/2 and the initial data are sufficiently large, then the

solution u blows up in finite time in measure (2.3) with

γ > max

{

1,
p∗

p
(m − p + 1) + (1 − m),

p∗

p
(q − p + 1) + (m − 2q + 1),

p∗

p (p − 2)
(

p∗
p

)2 − 3p∗
p + 1

,
N(m + 1)

p
− N,

N(m − q)
q

}

,

where p∗ = Np
N−p for p < N <

√
5+1
2 p and p∗ = 3p for p ≥ N , and the blowup time T satisfies

1

H [φ(0)]δ−1
≤ T ≤ 1

ρ
− t0, (2.4)
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where H = H (p,m, q, λ, μ,Ω, N) > 0, δ = δ (p,m, q, λ, μ,N) > 1, ρ = ρ (p,m, q, λ) > 0 and t0
= t0 (p,m, q, λ,N) > 0 are constants.

(2) Suppose μ ≥ 0. If m > p − 1 ≥ q ≥ 1 and the initial data are suitably large, then the solution u
must blow up in finite time in measure (2.3) with

γ > max
{

2,
p∗∗(2m − p) − p(m − 1)

p∗∗ − p

}

,

where p∗∗ = Np
N−p for p < N and p∗∗ = 2p for p ≥ N , and the blowup time T satisfies

1
M (φ(0) + 1)

≤ T ≤ 1
ρ

− t0, (2.5)

where M = M(p,m, q, λ, μ,Ω, N), ρ = ρ(p,m, q, λ) and t0 = t0(p,m, q, λ,N) are positive constants.

Proof. (1) In the case of μ < 0. We first show that the corresponding solution of (1.1) blows up in finite
time in measure (2.3). The proof is based upon the construction of a self-similar sub-solution which was
used in [16]. Let

z(x, t) =
1

(1 − ρt)k
Z

( |x|
(1 − ρt)l

)

, t0 ≤ t <
1
ρ
, (2.6)

where

Z(y) = 1 + Aw−1 − yw

wAw−1
, y ≥ 0, w =

p

p − 1

with ρ, k, l, A > 0 and t0 to be determined. It’s easy to verify that Z(y) satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 ≤ Z(y) ≤ 1 + Aw−1, −1 ≤ Z ′(y) ≤ 0, if 0 ≤ y ≤ A,

0 ≤ Z(y) ≤ 1, − (
RA−1

)w−1 ≤ Z ′(y) ≤ −1, if A ≤ y ≤ R,

(|Z ′|p−2Z ′)′
+

N − 1
y

|Z ′|p−2Z ′ = −NA−1, if 0 ≤ y ≤ R,

(2.7)

where R =
(
Aw−1(w + A)

)1/w is the zero of Z(y). Let

D =
{
(x, t)

∣
∣ t0 ≤ t < 1/ρ, |x| < R(1 − ρt)l

}
,

then z(x, t) > 0 if and only if (x, t) ∈ D, and z(x, t) is smooth in D. Define

L1
pz = zt − Δpz − λzm − μ|∇z|q, (2.8)

and let y = |x|/(1 − ρt)l, then we have

L1
pz =

ρ (kZ + lyZ ′)
(1 − ρt)k+1

−
(
|Z ′|p−2

Z ′
)′

+ N−1
y |Z ′|p−2Z ′

(1 − ρt)(k+l)(p−1)+l
− λZm

(1 − ρt)km
− μ|Z ′|q

(1 − ρt)q(k+l)
. (2.9)

We first choose

ρ <
λ

k (1 + Aw−1)
, k =

1
m − 1

, 0 < l < min
{

m − p + 1
p(m − 1)

,
m − q

q(m − 1)

}

, A >
k

l
,

and next we choose t0 (p,m, q, ρ,N,A) sufficiently close to 1/ρ, then

L1
pz ≤ 1

(1 − ρt)k+1

(
ρk

(
1 + Aw−1

) − λ + NA−1(1 − ρt0)1+k−l−(p−1)(k+l)

− μ(1 − ρt0)k+1−q(k+l)
)

≤ 0
(2.10)
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when 0 ≤ y ≤ A, and

L1
pz ≤ 1

(1 − ρt)k+1

(
ρ(k − lA) + NA−1(1 − ρt0)1+k−l−(p−1)(k+l)

− μ
(
RA−1

)q(w−1)
(1 − ρt0)k+1−q(k+l)

)
≤ 0

(2.11)

when A ≤ y ≤ R. Combining (2.10) with (2.11), we know L1
pz ≤ 0 in D. By translation, we may

assume without loss of generality that 0 ∈ Ω. Choosing t0 still closer to 1/ρ if necessary, we have
B

(
0, R(1 − ρt)l

) ⊂ Ω. Thus, by the definition of z(x, t), we have u0(x) ≥ z(x, t0) in Ω for sufficiently
large initial data, and then, z is a sub-solution of (1.1). By Lemma 1.1(1), it follows that

u(x, t − t0) ≥ z(x, t), x ∈ Ω, t0 ≤ t < 1/ρ.

Therefore,

φ(t − t0) =
∫

Ω

uγ(x, t − t0) dx

≥
∫

B(0,R(1−ρt)l)

uγ(x, t − t0) dx

≥
∫

B(0,R(1−ρt)l)

zγ(x, t) dx

≥
∫

B(0,A(1−ρt)l)

zγ(x, t) dx

≥ Υ(N)
(
A(1 − ρt)l

)N

(1 − ρt)kγ
,

(2.12)

where Υ(N) = πN/2

Γ(N/2+1) is the volume of unit ball in R
N . Since kγ − lN > 0, we note that φ(t− t0) → ∞

as t → 1/ρ. Hence, u blows up in finite time in measure (2.3) and the blowup time T ≤ 1/ρ − t0.
Next, we estimate the lower bound for the blowup time T . Directly calculating to (2.3) shows that

dφ

dt
= γ

∫

Ω

uγ−1 (Δpu + λum + μ|∇u|q) dx

= −γ(γ − 1)
∫

Ω

uγ−2|∇u|p dx + λγ

∫

Ω

um+γ−1 dx + μγ

∫

Ω

uγ−1|∇u|q dx.

(2.13)

Letting a = m − 1 and γ = ra, we rewrite (2.13) as

dφ

dt
= −ra(ra − 1)

∫

Ω

ura−2|∇u|p dx + λra

∫

Ω

ura+a dx + μra

∫

Ω

ura−1|∇u|q dx. (2.14)

We notice that
∫

Ω

ura−1|∇u|q dx =
( q

ra + q − 1

)q
∫

Ω

∣
∣
∣∇u

ra+q−1
q

∣
∣
∣
q

dx

≥ Cq

( q

ra + q − 1

)q
∫

Ω

ura+q−1 dx

(2.15)
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with Cq = (Υ(N))
q
N |Ω|− q

N , where we have used the inequality (7.44) in [5]. For convenience, we set

v = ua, b =
p − 2

a
, d =

q − 1
a

;

then, we have d, b < 1. Combining (2.14) with (2.15), we obtain

dφ

dt
≤ −ra(ra − 1)

( p

ra + p − 2

)p
∫

Ω

∣
∣
∣∇u

ra+p−2
p

∣
∣
∣
p

dx + λra

∫

Ω

ura+a dx

+ Cqμra
( q

ra + q − 1

)q
∫

Ω

ura+q−1 dx

= −ra(ra − 1)
( p

ra + p − 2

)p
∫

Ω

∣
∣
∣∇v

r+b
p

∣
∣
∣
p

dx + λra

∫

Ω

vr+1 dx

+ Cqμra
( q

ra + q − 1

)q
∫

Ω

vr+d dx.

(2.16)

We now seek a bound for
∫

Ω

vr+1 dx in terms of φ(t), the first and third terms on the right-hand side of

(2.16). Using Hölder’s inequality and Sobolev’s inequality, we get

∫

Ω

vr+1 dx ≤
⎛

⎝

∫

Ω

vr+d dx

⎞

⎠

r+1+ p∗
p

(b−1)

r+ p∗
p

b−( p∗
p

−1)d

⎛

⎝

∫

Ω

vr dx

⎞

⎠

(1−d) p∗
p

(
p∗
p

−2
)

(r+b)

[( p∗
p

−1)r+ p∗
p

b][r+ p∗
p

b−( p∗
p

−1)d]

·
⎛

⎝

∫

Ω

v( r+b
p )p∗

dx

⎞

⎠

(1−d)
(

r+ p∗
p

b

)

[( p∗
p

−1)r+ p∗
p

b][r+ p∗
p

b−( p∗
p

−1)d]

≤ Ap

⎛

⎝

∫

Ω

vr+d dx

⎞

⎠

r+1+ p∗
p

(b−1)

r+ p∗
p

b−( p∗
p

−1)d

⎛

⎝

∫

Ω

vr dx

⎞

⎠

(1−d) p∗
p

(
p∗
p

−2
)

(r+b)

[( p∗
p

−1)r+ p∗
p

b][r+ p∗
p

b−( p∗
p

−1)d]

·
⎛

⎝

∫

Ω

∣
∣
∣∇v

r+b
p

∣
∣
∣
p

dx

⎞

⎠

p∗
p

(1−d)
(

r+ p∗
p

b

)

[( p∗
p

−1)r+ p∗
p

b][r+ p∗
p

b−( p∗
p

−1)d]

= Ap

⎛

⎝

∫

Ω

vr+d dx

⎞

⎠

r+1+ p∗
p

(b−1)

r+ p∗
p

b−( p∗
p

−1)d
[⎛

⎝

∫

Ω

vr dx

⎞

⎠

p∗
p

(
p∗
p

−2
)

(r+b)

( p∗
p

−1)[( p∗
p

−1)r+ p∗
p

b]

·
⎛

⎝

∫

Ω

∣
∣
∣∇v

r+b
p

∣
∣
∣
p

dx

⎞

⎠

p∗
p

(

r+ p∗
p

b

)

( p∗
p

−1)[( p∗
p

−1)r+ p∗
p

b] ]
(

p∗
p

−1
)

(1−d)

r+ p∗
p

b−( p∗
p

−1)d

,

(2.17)

where constants p∗ and Ap are given by
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(i) For p < N <
√

5+1
2 p, it follows from the remark in [5, p.158] that

p∗ =
Np

N − p
, Ap = Λ

p∗(1−d)
(

r+ p∗
p

b

)

[( p∗
p

−1)r+ p∗
p

b][r+ p∗
p

b−( p∗
p

−1)d]

with

Λ =
1

N
√

π

(
N !Γ(N/2)

2Γ(N/p)Γ(N + 1 − N/p)

)1/N (
N(p − 1)
N − p

)1−1/p

;

(ii) For p = N , by Lemma 7.13 and inequality (7.37) in [5], we have

p∗ = 3p, Ap =

(
33N−2|Ω|

(Υ(N))3 N2

) (1−d)(r+3b)
(2r+3b)(r+3b−2d)

;

(iii) For p > N ,

p∗ = 3p, Ap =
(
τ

3pτ

(τ−1)2 N− 3p
2 |Ω| 3p

N −2
) (1−d)(r+3b)

(2r+3b)(r+3b−2d)

with τ = N(p−1)
p(N−1) , which are derived from the proof of [5, Theorem 7.10].

Using the elementary inequality

ap1
1 ap2

2 ≤ p1a1 + p2a2 for p1 + p2 = 1, a1, a2, p1, p2 > 0, (2.18)

we obtain

∫

Ω

vr+1 dx ≤ Ap

{
r + 1 + p∗

p (b − 1)

r + p∗
p b − (

p∗
p − 1

)
d
θ

−
(

p∗
p

−1
)

(1−d)

r+1+ p∗
p

(b−1)

∫

Ω

vr+d dx

+

(
p∗

p − 1
)
(1 − d)

r + p∗
p b − (

p∗
p − 1

)
d
θ

⎛

⎝

∫

Ω

vr dx

⎞

⎠

p∗
p

(
p∗
p

−2
)

(r+b)

( p∗
p

−1)[( p∗
p

−1)r+ p∗
p

b]

·
⎛

⎝

∫

Ω

∣
∣
∣∇v

r+b
p

∣
∣
∣
p

dx

⎞

⎠

p∗
p

(

r+ p∗
p

b

)

( p∗
p

−1)[( p∗
p

−1)r+ p∗
p

b] }

(2.19)
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with the positive constant θ to be determined. Applying the elementary inequality (2.18) again, we have

⎛

⎝

∫

Ω

vr dx

⎞

⎠

p∗
p

(
p∗
p

−2
)

(r+b)

( p∗
p

−1)[( p∗
p

−1)r+ p∗
p

b]
⎛

⎝

∫

Ω

∣
∣
∣∇v

r+b
p

∣
∣
∣
p

dx

⎞

⎠

p∗
p

(

r+ p∗
p

b

)

( p∗
p

−1)[( p∗
p

−1)r+ p∗
p

b]

=

⎛

⎝

∫

Ω

vr dx

⎞

⎠

p∗
p

(
p∗
p

−2
)

(r+b)
[

( p∗
p )2−3 p∗

p
+1

]

r− p∗
p

b

[(
p∗
p

)2
−3 p∗

p
+1

]

r− p∗
p

b

( p∗
p

−1)[( p∗
p

−1)r+ p∗
p

b]
⎛

⎝

∫

Ω

∣
∣
∣∇v

r+b
p

∣
∣
∣
p

dx

⎞

⎠

p∗
p

(

r+ p∗
p

b

)

( p∗
p

−1)[( p∗
p

−1)r+ p∗
p

b]

≤
[(

p∗

p

)2 − 3p∗

p + 1
]
r − p∗

p b

(
p∗
p − 1

) [(
p∗
p − 1

)
r + p∗

p b
]ζ

−
p∗
p

(

r+ p∗
p

b

)

[

( p∗
p )2−3 p∗

p
+1

]

r− p∗
p

b

⎛

⎝

∫

Ω

vr dx

⎞

⎠

p∗
p

(
p∗
p

−2
)

(r+b)
[

( p∗
p )2−3 p∗

p
+1

]

r− p∗
p

b

+
p∗

p

(
r + p∗

p b
)

(
p∗
p − 1

) [(
p∗
p − 1

)
r + p∗

p b
]ζ

∫

Ω

∣
∣
∣∇v

r+b
p

∣
∣
∣
p

dx

(2.20)

with the positive constant ζ to be determined. Substituting it into (2.19), we obtain

∫

Ω

vr+1 dx ≤ H1

∫

Ω

vr+d dx + H2

⎛

⎝

∫

Ω

vr dx

⎞

⎠

p∗
p

(
p∗
p

−2
)

(r+b)
[

( p∗
p )2−3 p∗

p
+1

]

r− p∗
p

b

+ H3

∫

Ω

∣
∣
∣∇v

r+b
p

∣
∣
∣
p

dx,
(2.21)

where

H1 = Ap

r + 1 + p∗

p (b − 1)

r + p∗
p b − (

p∗
p − 1

)
d
θ

−
(

p∗
p

−1
)

(1−d)

r+1+ p∗
p

(b−1) ,

H2 = Apθ(1 − d)

[(
p∗

p

)2 − 3p∗

p + 1
]
r − p∗

p b
[
r + p∗

p b − (
p∗
p − 1

)
d
] [(

p∗
p − 1

)
r + p∗

p b
]ζ

−
p∗
p

(

r+ p∗
p

b

)

[

( p∗
p )2−3 p∗

p
+1

]

r− p∗
p

b
,

H3 = Apθζ

p∗

p

(
r + p∗

p b
)
(1 − d)

[
r + p∗

p b − (
p∗
p − 1

)
d
] [(

p∗
p − 1

)
r + p∗

p b
] .

(2.22)

Combining (2.16) with (2.21), we get

dφ

dt
≤ ra

[

H1λ + Cqμ
( q

ra + q − 1

)q
] ∫

Ω

vr+d dx + λraH2

⎛

⎝

∫

Ω

vr dx

⎞

⎠

p∗
p

(
p∗
p

−2
)

(r+b)
[

( p∗
p )2−3 p∗

p
+1

]

r− p∗
p

b

+ ra

[

H3λ − (ra − 1)
( p

ra + p − 2

)p
] ∫

Ω

∣
∣
∣∇v

r+b
p

∣
∣
∣
p

dx.

(2.23)
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Now, we choose θ to make the coefficient of
∫

Ω

vr+d dx vanish and then choose suitable ζ to make the

coefficient of
∫

Ω

|∇v
r+b

p |p dx vanish. It follows that

dφ

dt
≤ λraH2 [φ(t)]

p∗
p

(
p∗
p

−2
)

(r+b)
[

( p∗
p )2−3 p∗

p
+1

]

r− p∗
p

b
.

(2.24)

Noticing r >
p∗
p b

( p∗
p )2−3 p∗

p +1
, we find

δ :=
p∗

p

(
p∗

p − 2
)
(r + b)

[(
p∗
p

)2 − 3p∗
p + 1

]
r − p∗

p b
> 1.

Thus, for any t < T , integrating (2.24) from 0 to t, we obtain

1
1 − δ

[
1

[φ(t)]δ−1
− 1

[φ(0)]δ−1

]

≤ λraH2t. (2.25)

Letting t → T−, we get a lower bound for blowup time

T ≥ 1
H[φ(0)]δ−1

,

where H = γλH2(δ − 1). Hence, we have established the estimate (2.4).
(2) In the case of μ ≥ 0. Our basic strategy in establishing the bounds for blowup time parallels that

in the case of μ < 0. We prove that the solution blows up in finite time in measure (2.3) at first. We take
z(x, t) as (2.6), and let

ρ <
λ

k (1 + Aw−1)
, k =

1
m − 1

, 0 < l <
m − p + 1
p(m − 1)

, A >
k

l
.

Define

L2
pz = zt − Δpz − λzm, (2.26)

then we can easily verify that L2
pz ≤ 0. Repeating the procedures in the case of μ < 0, we can conclude

that z is a sub-solution of (1.1) with μ = 0. On the other hand, we know the solution u of (1.1) with
μ ≥ 0, represented by u{μ≥0}(x, t), is a super-solution of (1.1) with μ = 0. Therefore, by Lemma 1.1(2),
we can further show that

u{μ≥0}(x, t − t0) ≥ u{μ=0}(x, t − t0) ≥ z(x, t), x ∈ Ω, t0 ≤ t < 1/ρ.
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By a similar argument, we have

φ(t − t0) =
∫

Ω

uγ
{μ≥0}(x, t − t0) dx

≥
∫

B(0,R(1−ρt)l)

uγ
{μ≥0}(x, t − t0) dx

≥
∫

B(0,R(1−ρt)l)

zγ(x, t) dx

≥
∫

B(0,A(1−ρt)l)

zγ(x, t) dx

≥ Υ(N)
(
A(1 − ρt)l

)N

(1 − ρt)kγ
.

(2.27)

Recall that kγ − lN > 0, this entails φ(t − t0) → ∞ as t → 1/ρ. Hence, u{μ≥0}(x, t) must blow up in
finite time in measure (2.3) and the blowup time T satisfies

T ≤ 1/ρ − t0. (2.28)

To keep the presentation as simple as possible, throughout the remainder of this section, we still use
u to denote the solution of (1.1) with μ ≥ 0, rather than u{μ≥0}(x, t). Now, we estimate the lower bound
for the blowup time T . We seek bounds for

∫

Ω

um+γ−1 dx and
∫

Ω

uγ−1|∇u|q dx in terms of φ(t) and the first

term on the right-hand side of (2.13), which are different from the case μ < 0. Using Hölder’s inequality
and the elementary inequality

ap1
1 ap2

2 ap3
3 ≤ p1a1 + p2a2 + p3a3 for p1 + p2 + p3 = 1, ai, pi > 0(i = 1, 2, 3), (2.29)

we have

∫

Ω

uγ−1|∇u|q dx =
∫

Ω

(
uγ−2|∇u|p)

q
p u(γ−1)(1− q

p )+ q
p dx

≤
⎛

⎝

∫

Ω

uγ−2|∇u|p dx

⎞

⎠

q
p
⎛

⎝

∫

Ω

um+γ−1 dx

⎞

⎠

(γ−1)(1− q
p )+ q

p
m+γ−1

|Ω|
m(1− q

p )− q
p

m+γ−1

≤ κ
q

p

∫

Ω

uγ−2|∇u|p dx +
(γ − 1)

(
1 − q

p

)
+ q

p

m + γ − 1

∫

Ω

um+γ−1 dx

+ κ
− m+γ−1

m( p
q

−1)−1
m
(
1 − q

p

) − q
p

m + γ − 1
|Ω|,

(2.30)
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where the positive constant κ will be chosen later. By Hölder’s inequality, Sobolev’s inequality and the
elementary inequality (2.29), we deduce

∫

Ω

um+γ−1 dx ≤
⎛

⎝

∫

Ω

uγ dx

⎞

⎠

1− m−1
p∗∗

p
(γ+p−2)−γ

⎛

⎝

∫

Ω

u
p∗∗

p (γ+p−2) dx

⎞

⎠

m−1
p∗∗

p
(γ+p−2)−γ

=

⎛

⎝

∫

Ω

uγ dx

⎞

⎠

1− m−1
p∗∗

p
(γ+p−2)−γ ∥

∥
∥u

γ+p−2
p

∥
∥
∥

p∗∗(m−1)
p∗∗

p
(γ+p−2)−γ

Lp∗∗

≤ Cp

⎛

⎝

∫

Ω

uγ dx

⎞

⎠

1− m−1
p∗∗

p
(γ+p−2)−γ

⎛

⎝

∫

Ω

∣
∣
∣∇u

γ+p−2
p

∣
∣
∣
p

dx

⎞

⎠

p∗∗
p

m−1
p∗∗

p
(γ+p−2)−γ

≤ χ
− 2 p∗∗

p
(m−1)

p∗∗
p

(γ+p−2m)+(m−γ−1)

[
1
2

+
(m − 1)

(
1
2 − p∗∗

p

)

p∗∗
p (γ + p − 2) − γ

]

C

⎛

⎝ 1
2+

(m−1)
(
1
2 − p∗∗

p

)

p∗∗
p

(γ+p−2)−γ

⎞

⎠

−1

p

+
(

1
2

− 1
2

m − 1
p∗∗
p (γ + p − 2) − γ

)
⎛

⎝

∫

Ω

uγ dx

⎞

⎠

2

+ χ
p∗∗

p

m − 1
p∗∗
p (γ + p − 2) − γ

∫

Ω

∣
∣
∣∇u

γ+p−2
p

∣
∣
∣
p

dx,

(2.31)

where the positive constant χ will be determined later. Here, constants p∗∗ and Cp are given by

(i) For p < N , p∗∗ = Np
N−p and Cp = Λ

Np(m−1)
Np+γp−2N ;

(ii) For p = N , p∗∗ = 2p and Cp =
(

22N−1|Ω|
(Υ(N))2N

) m−1
γ+2p−4

;

(iii) For p > N , p∗∗ = 2p and Cp =
(
τ

2pτ

(τ−1)2 N−p|Ω| 2p
N −1

) m−1
γ+2p−4

,
where Λ and τ are the same as those in the case of μ < 0. It follows from (2.13), (2.30) and (2.31) that

dφ

dt
≤

[

−γ(γ − 1) + κμγ
q

p

] ∫

Ω

uγ−2|∇u|p dx + κ
− m+γ−1

m( p
q

−1)−1
m
(
1 − q

p

) − q
p

m + γ − 1
μγ|Ω|

+ γ

(

μ
(γ − 1)

(
1 − q

p

)
+ q

p

m + γ − 1
+ λ

)∫

Ω

um+γ−1 dx

≤
[

−γ(γ − 1) + κμγ
q

p
+ M1

] ∫

Ω

uγ−2|∇u|p dx + M2

⎛

⎝

∫

Ω

uγ dx

⎞

⎠

2

+ M3,

(2.32)
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where

M1 =
p∗∗

p

(m − 1)χγ
p∗∗
p (γ + p − 2) − γ

(

μ
(γ − 1)

(
1 − q

p

)
+ q

p

m + γ − 1
+ λ

)(γ + p − 2
p

)p

,

M2 = γ

(

μ
(γ − 1)

(
1 − q

p

)
+ q

p

m + γ − 1
+ λ

)(
1
2

− 1
2

m − 1
p∗∗
p (γ + p − 2) − γ

)

,

M3 = C1/M4
p M4γχ

− 2 p∗∗
p

(m−1)

p∗∗
p

(γ+p−2m)+(m−γ−1)

(

μ
(γ − 1)

(
1 − q

p

)
+ q

p

m + γ − 1
+ λ

)

+ κ
− m+γ−1

m( p
q

−1)−1
m
(
1 − q

p

) − q
p

m + γ − 1
μγ|Ω|

(2.33)

with

M4 =
1
2

+
(m − 1)

(
1
2 − p∗∗

p

)

p∗∗
p (γ + p − 2) − γ

.

Now, we choose suitable constants κ and χ to make the coefficient of
∫

Ω

uγ−2|∇u|p dx vanish. It follows

that
d (φ(t) + 1)

dt
≤ M2 (φ(t))2 + M3

≤ M (φ(t) + 1)2 ,

(2.34)

where M = max {M2,M3}. Integrating (2.34) from 0 to t for any t < T , we have
1

φ(0) + 1
− 1

φ(t) + 1
≤ Mt.

Letting t → T− and using the fact limt→T − φ(t) = ∞, we get

T ≥ 1
M(φ(0) + 1)

.

Combining this with (2.28), we obtain (2.5). �

3. Upper bounds for blowup time of gradient blowup solutions

In this section, we derive the upper bound for blowup time of gradient blowup solutions to (1.1). To get
the result, we start with some known propositions which ensure the gradient blowup of all solutions in
finite time if certain assumptions are satisfied.

Proposition 3.1. (See [20, Theorem 3.2]) Assume that λ > 0, μ > 0 and q > max{p,m}. Then, there
exists a positive real number K1 depending on p,m, q, λ, μ and Ω such that, if ‖u0‖L∞(Ω) > K1, then
gradient blowup will occur.

Proposition 3.2. (See [19, Theorem 1.4]) Assume that λ < 0, μ > 0 and p,m, q, λ and μ satisfy one of
the following conditions:

(i) q > max{p,m};
(ii) q = m > p and μ � |λ|.

Set β = q/(q − p). Then, there exists a positive real number K2 depending on p,m, q, λ, μ and Ω such
that, if

∫

Ω

uβ+1
0 dx > K2, then gradient blowup occurs.
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Remark 3.1. If λ = 0 and μ > 0, the conclusion still holds as long as the condition q > max{p,m} is
replaced by q > p > 2. See [7, Proposition 5.3] for further details.

With the help of these known conclusions, we get upper bounds for blowup time of gradient blowup
solutions. Different kinds of upper bounds are established in the following theorem.

Theorem 3.1. Let u be a solution of (1.1). Assume that μ > 0, then the following conclusions hold.
(1) Suppose λ > 0, q > max{m, p} and the initial data satisfy

∫

Ω

uα
0 dx ≥ 1, L1

⎛

⎝

∫

Ω

uα
0 dx

⎞

⎠

q+α−1
α

+ L2

⎛

⎝

∫

Ω

uα
0 dx

⎞

⎠

m+α−1
α

≥ 2L3 (3.1)

with α = 2q−p
q−p . If the gradient blowup of the positive solution u occurs in finite time, then the blowup

time T satisfies

T ≤ 2α

(q − 1)L2
ln

(

1 +
L2

L1
‖u0‖1−q

Lα(Ω)

)

. (3.2)

Furthermore, if m > 1, then

T ≤ 2α

(q − 1)L2
ln

L1 + L2‖u0‖1−q
Lα(Ω)

L1 + 2
1−q
m−1 L2|Ω| 1−q

α ‖u0‖1−q
L∞(Ω)

. (3.3)

Here,

L1 = μ (Υ(N))
q
N

( q

q + α − 1

)q

|Ω| 1−q
α − q

N , L2 = λα|Ω| 1−m
α , L3 = α|Ω|

( qμ

pα

) p
p−q

. (3.4)

(2) Suppose λ ≤ 0, q = m > p, μ � |λ| or q > max{m, p} and the initial data satisfy
∫

Ω

uα
0 dx ≥ (2L5/L4)

α
q+α−1 (3.5)

with α = 2q−p
q−p . If the gradient blowup of the solution u occurs in finite time, then the blowup time T

satisfies

T ≤ 2α

(q − 1)L4

(
‖u0‖1−q

Lα(Ω) − ‖u0‖1−q
L∞(Ω)|Ω| 1−q

α

)
, (3.6)

where Li = Li(p,m, q, λ, μ,N,Ω)(i = 4, 5) are given by (3.20),(3.21).

Proof. In order to obtain the upper bound for blowup time of gradient blowup solutions, we introduce
the auxiliary function

Φ(t) =
∫

Ω

uα dx. (3.7)

A direct calculation shows that
dΦ
dt

= α

∫

Ω

uα−1
(
Δpu + λum + μ|∇u|q) dx

= −α(α − 1)
∫

Ω

uα−2|∇u|p dx + λα

∫

Ω

um+α−1 dx + μα

∫

Ω

uα−1|∇u|q dx.

(3.8)
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(1) In the case of λ > 0. Applying Hölder’s inequality and the elementary inequality (2.18) to the
first term on the right-hand side of (3.8), we obtain

∫

Ω

uα−2|∇u|p dx =
∫

Ω

(
uα−1|∇u|q)

p
q dx

≤
⎛

⎝

∫

Ω

uα−1|∇u|q dx

⎞

⎠

p
q

|Ω| q−p
q

≤ ε
p

q

∫

Ω

uα−1|∇u|q dx +
q − p

q
ε

p
p−q |Ω|

(3.9)

with ε = qμ
pα . Hence,

dΦ
dt

≥ μ

∫

Ω

uα−1|∇u|q dx + λα

∫

Ω

um+α−1 dx − α|Ω|ε p
p−q . (3.10)

We notice that
∫

Ω

uα−1|∇u|q dx =
( q

q + α − 1

)q
∫

Ω

∣
∣
∣∇u

q+α−1
q

∣
∣
∣
q

dx

≥ Cq

( q

q + α − 1

)q
∫

Ω

uq+α−1 dx

(3.11)

with Cq = (Υ(N))
q
N |Ω|− q

N , where we have used the inequality (7.44) in [5]. On the other hand, Hölder’s
inequality implies that

∫

Ω

uq+α−1 dx ≥
⎛

⎝

∫

Ω

uα dx

⎞

⎠

q+α−1
α

|Ω| 1−q
α , (3.12)

and

∫

Ω

um+α−1 dx ≥
⎛

⎝

∫

Ω

uα dx

⎞

⎠

m+α−1
α

|Ω| 1−m
α . (3.13)

Combining the inequalities (3.10)−(3.13), we obtain

dΦ
dt

≥ L1 (Φ(t))
q+α−1

α + L2 (Φ(t))
m+α−1

α − L3, (3.14)

where Li(i = 1, 2, 3) are given by (3.4). Recalling (3.1), we have

L3 ≤ 1
2

(
L1 (Φ(0))

q+α−1
α + L2 (Φ(0))

m+α−1
α

)
.

It follows that
dΦ
dt

∣
∣
∣
∣
t=0

≥ 1
2

(
L1 (Φ(0))

q+α−1
α + L2 (Φ(0))

m+α−1
α

)
> 0.

By the continuity of Φ(t), we get

Φ(t) > Φ(0),
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and

L3 ≤ 1
2

(
L1 (Φ(t))

q+α−1
α + L2 (Φ(t))

m+α−1
α

)
,

dΦ
dt

≥ 1
2

(
L1 (Φ(t))

q+α−1
α + L2 (Φ(t))

m+α−1
α

)
> 0

when t ∈ (0, τ̃) for small τ̃ . Repeating the procedure, for all t ∈ (0, T ), we obtain

dΦ
dt

≥ 1
2

(
L1 (Φ(t))

q+α−1
α + L2 (Φ(t))

m+α−1
α

)

≥ 1
2

(
L1 (Φ(t))

q+α−1
α + L2Φ(t)

)
.

(3.15)

Integrating (3.15) from 0 to t for any t < T , we have

exp
(

L2(q − 1)t
2α

)

≤ L1 + L2 (Φ(0))
1−q

α

L1 + L2 (Φ(t))
1−q

α

≤ 1 +
L2

L1
(Φ(0))

1−q
α .

(3.16)

Furthermore, if m > 1, we can verify that u ≤ 2
1

m−1 ‖u0‖L∞(Ω) by virtue of the proof of [20, Theorem
3.2]. It then follows that

exp
(

L2(q − 1)t
2α

)

≤
L1 + L2‖u0‖1−q

Lα(Ω)

L1 + 2
1−q
m−1 L2|Ω| 1−q

α ‖u0‖1−q
L∞(Ω)

.

Letting t → T−, we get (3.2) and (3.3).
(2) In the case of λ ≤ 0. The proof of this follows a strategy similar to that in the case of λ > 0.

Estimating the first term on the right-hand side of (3.8) in the same way as the case λ > 0, we can also
get the inequalities (3.9)−(3.12).

Applying Hölder’s inequality and the elementary inequality (2.18) to the second term on the right-hand
side of (3.10), we obtain

∫

Ω

um+α−1 dx ≤
⎛

⎝

∫

Ω

uq+α−1 dx

⎞

⎠

m+α−1
q+α−1

|Ω| q−m
q+α−1

≤ m + α − 1
q + α − 1

ς

∫

Ω

uq+α−1 dx +
q − m

q + α − 1
ς

m+α−1
m−q |Ω|

(3.17)

with ς = − 1
2λαCqμ

q+α−1
m+α−1

(
q

q+α−1

)q when λ < 0 and q > m. Combining (3.10)−(3.12) with (3.17), we
deduce

dΦ
dt

≥ μCq

( q

q + α − 1

)q
∫

Ω

uq+α−1 dx + λα

∫

Ω

um+α−1 dx − α|Ω|ε p
p−q

≥ 1
2
μCq

( q

q + α − 1

)q
∫

Ω

uq+α−1 dx +
λα(q − m)
q + α − 1

ς
m+α−1

m−q |Ω| − α|Ω|ε p
p−q

≥ 1
2
μCq

( q

q + α − 1

)q

|Ω| 1−q
α

⎛

⎝

∫

Ω

uα dx

⎞

⎠

q+α−1
α

+
λα(q − m)
q + α − 1

ς
m+α−1

m−q |Ω| − α|Ω|ε p
p−q .

(3.18)
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It follows that

dΦ
dt

≥ L4 (Φ(t))
q+α−1

α − L5, (3.19)

where

L4 =
1
2
μCq

( q

q + α − 1

)q

|Ω| 1−q
α ,

L5 = −λα(q − m)
q + α − 1

ς
m+α−1

m−q |Ω| + α|Ω|ε p
p−q

(3.20)

when λ < 0 and q > m. We notice that the estimate (3.19) is still valid, provided that

L4 =
(

μCq

( q

q + α − 1

)q

+ λα

)

|Ω| 1−q
α , L5 = α|Ω|ε p

p−q (3.21)

when q = m, μ � |λ| or λ = 0. From (3.5), we have

L5 ≤ L4

2
(Φ(0))

q+α−1
α .

It follows that

dΦ
dt

∣
∣
∣
∣
t=0

≥ L4

2
(Φ(0))

q+α−1
α > 0.

Using the continuity of Φ(t), we obtain

Φ(t) > Φ(0),

and

L5 ≤ L4

2
(Φ(t))

q+α−1
α ,

dΦ
dt

≥ L4

2
(Φ(t))

q+α−1
α > 0

when t ∈ (0, τ) for small τ > 0. Repeating the process, for all t ∈ (0, T ), we get

dΦ
dt

≥ L4

2
(Φ(t))

q+α−1
α . (3.22)

For any t < T , integrating (3.22) from 0 to t, we have

L4

2
t ≤ α

q − 1

(
(Φ(0))

1−q
α − (Φ(t))

1−q
α

)
. (3.23)

Hence, the upper bound (3.6) is easily obtained by the fact that ũ = ‖u0‖L∞(Ω) is a super-solution of
(1.1) when λ ≤ 0 and μ > 0. �

Remark 3.2. As far as we know, this paper is the first one to study blowup time of gradient blowup
solutions. It seems natural to ask whether one can derive the lower bound for blowup time when gradient
blowup occurs. Unfortunately, we have not found any effective method to obtain related results. We leave
it to the interested readers as an open problem.
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