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Abstract. In this paper, we study nonnegative and classical solutions u = u(x, t) to porous medium problems of the type{
ut = Δum + g(u, |∇u|) x ∈ Ω, t ∈ I,

u(x, 0) = u0(x) x ∈ Ω,
(♦)

where Ω is a bounded and smooth domain of RN , with N ≥ 1, I = (0, t∗) is the maximal interval of existence of u, m > 1
and u0(x) is a nonnegative and sufficiently regular function. The problem is equipped with different boundary conditions
and depending on such boundary conditions as well as on the expression of the source g, global existence and blow-up
criteria for solutions to (♦) are established. Additionally, in the three-dimensional setting and when blow-up occurs, lower
bounds for the blow-up time t∗ are also derived.
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1. Introduction and motivations

It is well–known that several natural phenomena appearing in various physical, chemical and biological
applications, are modeled through reaction diffusion equations. Their description, generally given in a
cylinder Ω × I, where Ω is a bounded smooth domain of RN (N ≥ 1) with regular boundary ∂Ω, and
I = (0, t∗), is formulated by an initial boundary value problem in the unknown u = u(x, t) reading as⎧⎪⎨

⎪⎩
ut = ∇ · A(u,∇u,x, t) + B(u,∇u,x, t) x ∈ Ω, t ∈ I,

u(x, 0) = u0(x) x ∈ Ω,

Boundary conditions on u x ∈ ∂Ω, t ∈ I.

(1)

As to the question tied to the existence of local (i.e., t∗ finite) or global (i.e., t∗ = ∞) solutions to
classes of nonlinear problems of this type, sufficient conditions on A (as for instance, standard ellipticity
behavior) as well as growth and regularity assumptions on both A and B guaranteeing this existence are
known and have been widely studied in the literature (we refer, for instance, to [6,20,22,23]).

In this paper, we dedicate our attention to problem (1) in the case A(u,∇u,x, t) = ∇um and
B(u,∇u,x, t) = g(u, |∇u|) and endowed with some boundary conditions, i.e.,⎧⎪⎨

⎪⎩
ut = Δum + g(u, |∇u|) x ∈ Ω, t ∈ I,

kuν + hu = 0 x ∈ ∂Ω, t ∈ I,

u(x, 0) = u0(x) x ∈ Ω,

(2)

where Ω and I were already introduced in the description of (1). Further, ν = (ν1, . . . , νN ) stands for
the outward normal unit vector to the boundary ∂Ω, ∂u

∂ν := uν is the normal derivative of u, m > 1,
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k ≥ 0 and h > 0. Additionally, u0 := u0(x) �≡ 0 is a nonnegative sufficiently smooth function (possibly
also verifying compatible conditions on ∂Ω), and g(u, |∇u|) is a regular function of its arguments and is
such that u ≡ 0 represents a subsolution of the first equation in (2); henceforth, through the maximum
principle, the nonnegativity on Ω × I of solutions u to (2) remains essentially justified (see [23,38]).

Beyond problems arising in the mathematical models for gas or fluid flow in porous media (see [5]
and [43]), the formulation in (2) also describes the evolution of some biological population u occupying
a certain domain whose growth is governed by the law of g (see [19]); precisely, the term Δum idealizes
the spread of the population, the parameter m indicating the speed of propagation: m > 1 corresponds
to slow, 0 < m < 1 fast and the limit case m = 1 infinity propagation. Moreover, when the coefficient
k is zero (the well–known Dirichlet boundary conditions), then the distribution of u on the boundary of
the domain maintains constant through the time, while for k, h > 0, the Robin boundary conditions are
recovered: they model a negative flux on the boundary, virtually meaning that the population u gets out
of the domain with rate −h/k.

There are several investigations concerning different variants of the initial boundary value problem
(2), all devoted to existence and properties of solutions: global and/or local existence, lower and upper
bound of blow-up time, blow-up rates and/or asymptotic behavior. In our opinion, the following papers
deserve to be referred also because they inspire this present work.

• Linear diffusion case (m = 1) and g(u, |∇u|) = up, with p > 1. For Ω = R
N , N ≥ 1, in [4], [12] and

[21] it is shown that for 1 < p ≤ 1 + (2/N) the problem has no global positive solution, while for
p > 1 + (2/N) it is possible to fix appropriate initial data u0 emanating global solutions. When Ω is
a bounded and smooth domain of R3 and Dirichlet boundary conditions are assigned, in [31] a lower
bound for the blow-up time of solutions, if blow-up occurs, is derived, and [32] essentially deals with
blow-up and global existence questions for the same problem in the N -dimensional setting, with
N ≥ 2, and endowed with Robin boundary conditions.

• Linear diffusion case (m = 1) and g(u, |∇u|) = k1u
p − k2|∇u|q, k1, k2 > 0 and p, q ≥ 1. In [42]

it is proved that for q = 2p/(p + 1) and small k2 > 0 blow-up can occur for any N ≥ 1, p > 1,
(N −2)p < N +2 and without any restriction on the initial data, while lower bounds of the blow-up
time, if blow-up occurs, are derived in [27] when k1 and k2 are time-dependent functions and under
different boundary conditions.

• Linear diffusion case (m = 1) and g(u, |∇u|) = |∇u|q, with q > 2. (The Hamilton–Jacobi equation.)
In [36,37], for certain bounded domains Ω of RN , N ≥ 1, Dirichlet boundary conditions and regular
data u0, the authors discuss properties of solutions, known in the literature as gradient blow-up phe-
nomena, loss of (classical) boundary conditions and recovery of boundary conditions. In particular,
in the two-dimensional setting and for 2 < q ≤ 3, a sharp description of the final blow-up profile of
∇u near an isolated boundary singularity (in both normal and tangential directions) is given.

• Nonlinear diffusion case (m > 1) and g(u, |∇u|) = up, with p > 1. For Ω = R
N , N ≥ 1, in [14], [15]

and [25] it is shown that for 1 < p ≤ m + (2/N) the problem has no global positive solution, while
for p > m + (2/N) there exist initial data u0 emanating global solutions. When Ω is a bounded
and smooth domain of RN , N ≥ 1, and under Dirichlet boundary conditions, in [13] is proved that
for 1 < p < m the problem admits global solutions for all u0 such that um−1

0 ∈ H1
0 (Ω), while for

m < p < m(1 + (2/N)) + (2/N) specific initial data produce unbounded solutions (see also [39]).
• Nonlinear diffusion case (m > 1) and g(u, |∇u|) = −up, with p > 0. The papers [16], [17] and [34]

focus on results dealing with regularity and asymptotic behavior of solutions defined in the whole
space R

N , with N ≥ 1. Additionally, for similar analysis in the case of bounded domains Ω of RN ,
N ≥ 1, we also refer to [26].

• Nonlinear diffusion case (m > 1) and g(u, |∇u|) = up − uμ|∇uα|q, with p, q, α ≥ 1 and μ ≥ 0. With
Ω bounded and smooth in R

N , N ≥ 1, and under Dirichlet boundary conditions, in [3] the authors
treat the existence of the so-called admissible solutions and show that they are globally bounded if
p < μ + mq or m < p = μ + mq, as well as the existence of blowing-up admissible solutions, under
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the complementary condition 1 ≤ μ + mq < p. Similarly, for α = m + μ/q, m ≥ 1,m/2 + μ/q >
0, 1 ≤ q < 2, existence of global weak solutions is addressed in [2].

In the context of this premise, we remark that our investigation is not focused on the question concerning
the existence of solutions to system (2), but rather on their maximal interval of existence I. In particular,
in the framework of nonnegative classical solutions, we follow the same approach used in largely cited
papers (see, for instance, [30,31,33,35,40,41] and references cited therein, for linear or nonlinear diffusion
equations, even including our same case, i.e., systems like (2) with m > 1) where such an existence is a
priori assumed. Additionally, as to the lifespan I of these solutions, only two scenarios can appear and
they provide the following extensibility criterion ( [6,7,20]):

�) I = (0,∞), so that u remains bounded for all x ∈ Ω and time t > 0,

�) I = (0, t∗), t∗ finite (the blow-up time), so that lim
t→t∗‖u(·, t)‖L∞(Ω) = ∞.

(3)

By analyzing the expressions of g presented in the previous items, it is reasonable to expect that the
contribution of the positive power addendum, representing a source which essentially increases the energy
of the system, stimulates the occurrence of the blow-up; conversely, the negative terms have a damping
effect, absorb the energy, and so, contrast the power source term.

Exactly in line with the state of the art above reviewed, with this paper, we aim at expanding the
underpinning theory of the mathematical analysis for problem (2) when different choices of g, h and k are
considered. Indeed, to the best of our knowledge, the interplay between both positive and negative powers
of u, or |∇u|, in the source g and the Robin/Dirichlet boundary conditions has not yet been extensively
studied. To be precise, our contribution includes blow-up and global existence criteria for nonnegative
and classical solutions to (2) and estimates of the blow-up time when it occurs. We proof three theorems,
summarized as follows:

• Criterion for blow-up in R
N , N ≥ 1: Theorem 3.1. If g(u, |∇u|) = k1u

p − k2u
q, k1, k2, h > 0, k = 1

and p ≥ max{m, q} with m, q > 1, then the lifespan I of the nonnegative classical solution u to
problem (2) emanating from any compatible initial data u0(x) complying with a certain largeness
assumption, is finite and u blows up at some finite time t∗.

• Criterion for global existence in R
N , N ≥ 1: Theorem 3.2. If g(u, |∇u|) = k1u

p − k2u
q, k1, k2, h > 0,

k = 1, p < m with m, q > 1, then the lifespan I of the nonnegative classical solution u to problem
(2) emanating from any initial data u0(x) is infinite and u is bounded for all time t > 0.

• Lower bound of the blow-up time in R
3: Theorem 3.3. If g(u, |∇u|) = k1u

p − k2|∇u|q, k1, k2, h > 0,
k = 0, for 2 − 1/p < m < p with p > q ≥ 2, and u is a nonnegative classical solution to problem (2)
emanating from any compatible initial data u0(x) and becoming unbounded in a certain measure
at some finite time t∗, then, if k2 is sufficiently large, there exists T such that t∗ ≥ T .

Remark 1. Even if the main motivation of this paper lies in enhancing the mathematical theory tied
to nonlinear partial differential equations, we want to underline that the expressions of the function g
given above are justified also by applicative reasons. Indeed, according to [42], a single (biological) species
density u occupying a bounded portion of the space evolves in time by displacement, birth/reproduction
and death. In particular, the births are described by a superlinear power of such a distribution, the
natural deaths by a linear one and the accidental deaths by a function of its gradient; it leads to ut =
Δu + C1u

p − C2u − C3|∇u|q, with p, q > 1 and C1, C2, C3 > 0. Adding to this equation homogeneous
Dirichlet conditions corresponds to a non-viable environment on the boundary; homogeneous Neumann
conditions stand for a totally insulated domain and Robin ones to a domain which allows the species to
cross the boundary. Furthermore, other models originally introduced for only a single species describe the
population growth through the preceding equation in which the source C1u

p −C2u−C3|∇u|q is replaced
by the so-called logistic function u(a − bu), with a, b > 0, or more generally by functions independent
of the accidental deaths and whose qualitative behavior is ul(1 − u), with l ≥ 1. All the mentioned
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sources have been also employed in chemotaxis models, precisely to describe the self-organizing of living
organisms ([1,8,44–48]).

2. Main assumptions and preparatory lemmas

In this section, we give some crucial hypotheses, statements and lemmas which will be considered through
the paper in the proofs of Theorems 3.2 and 3.3.

First we give these

Assumptions. For any integer N ≥ 1 and real numbers h > 0,m > 1, we establish that:
(H1) Ω is a bounded domain of RN , star-shaped and convex in two orthogonal directions, whose geometry

for some origin x0 inside Ω is defined throughout

m1 :=
1

min∂Ω((x − x0) · ν)
> 0, m2 :=

maxΩ |x − x0|
min∂Ω((x − x0) · ν)

> 0. (4)

(H2) Ω is a bounded smooth domain of RN such that

ξ1(hm)
hm

> m1N + m2, (5)

being m1 and m2 as in (4) and ξ1(h) the first positive eigenvalue associated with the supported
membrane problem {

Δw + ξ(h)w = 0 x ∈ Ω,

wν + hw = 0 x ∈ ∂Ω.
(6)

Example 1. In order to provide triples (h,m,Ω) for which assumptions (H1) and (H2) are satisfied,
let us fix N positive numbers Li > 0, i = 1, 2, . . . , N and the N -dimensional rectangle-like domain
RN

{L1,L2,...,LN }(0), with center the origin and sizes 2Li. We have that

m1 =
1

min
{i=1,2,...,N}

Li
, m2 = m1

√√√√ N∑
i=1

L2
i

and, moreover, problem (6) can be explicitly solved by the separation of variables technique. Indeed, if
we set w(x) = w(x1, x2, . . . , xN ) = X1(x1)X2(x2) . . . XN (xN ), it is reduced to⎧⎪⎨

⎪⎩
−

N∑
i=1

X
′′
i (xi)

Xi(xi)
= ξ(h),

±X
′
i(±Li) + hXi(±Li) = 0, for all i = 1, 2, . . . , N.

(7)

Evidently, this system is composed of N independent second-order ordinary differential problems, reading
for each i = 1, 2, . . . , N as {

−X
′′
i (xi)

Xi(xi)
= Λi,

±X
′
i(±Li) + hXi(±Li) = 0,

(8)

where Λi = Λi(h) > 0 is precisely the corresponding eigenvalue. (Λi ≤ 0 is not compatible with h > 0
and Xi �≡ 0.) Subsequently, for some constants C1 and C2, we have that the general integral

Xi(xi) = C1 cos(
√

Λixi) + C2 sin(
√

Λixi),

must be such that

(hC1 ± C2

√
Λi) cos(

√
ΛiLi) + (hC2 ∓ C1

√
Λi) sin(

√
ΛiLi) = 0.
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In order to ensure that the above system in the unknown (C1, C2) admits a non–trivial solution, we
impose its determinant equal to zero. It yields, for zi = Li

√
Λi(

h cos(zi) − zi

Li
sin(zi)

)(
zi

Li
cos(zi) + h sin(zi)

)
= 0,

or equivalently, dividing by cos(zi),

tan(zi) = − zi

Lih
or tan(zi) =

hLi

zi
. (9)

Since we are dealing with the smallest positive eigenvalue Λi to (8), and it is seen that the first positive
zero ẑi of the first equation in (9) belongs to ∈ (π/2, 3π/2), we focus on the second one, for which
ẑi ∈ (0, π/2). Finally, the same reasons apply for each independent problem given in (8), so that by
superposition we conclude that ξ(h) =

∑N
i=1

√
Λi =

∑N
i=1(ẑi/Li)2 is the first eigenvalue of (7). From

this, we are now in the position to give an example complying with our assumptions (H1) and (H2) ;
in fact, one can numerically check that the triple (2, 3/2, R2

{ 2
5 , 17}(0)) infers ξ(hm) ∼= 23.581, and in turn

ξ(hm) − mh(2/L1 +
√

L2
1 + L2

2/L1) ∼= 5.395, so that it suitably fulfills (5).

The forthcoming two lemmas will be employed in the proof of Theorem 3.2 exactly in order to estimate
a certain nonzero boundary integral when Robin boundary conditions are considered in system (2). In
particular, Lemma 2.2 relies on assumptions (H1) and (H2), uses the result in Lemma 2.1 and even
though it was already derived in [44, Lemma 3.3], for the sake of completeness we include its proof.

Lemma 2.1. Let Ω be a domain of RN verifying assumption (H1). For any nonnegative C1(Ω̄)-function
V , we have ∫

∂Ω

V 2ds ≤ m1N

∫
Ω

V 2dx + 2m2

∫
Ω

V |∇V |dx. (10)

Proof. This is relation [28, (A.1) of Lemma A.1.] with n = 1 and written in terms of the coefficients in
(4) of (H1). �

Lemma 2.2. Let Ω be a domain of RN satisfying assumptions (H1) and (H2) . Then, for any nonnegative
C1(Ω̄)-function V verifying Vν + hV = 0 on ∂Ω, we have∫

Ω

|∇V m|2dx ≥ σ

∫
Ω

V 2mdx, (11)

with σ := η(hm), being η(h) = (ξ1(h) − h(m1N + m2))/(hm2 + 1) > 0.

Proof. For any nonnegative C1(Ω̄)-function V such that Vν + hV = 0 on ∂Ω, the general Poincaré
inequality returns this relation for the first eigenvalue ξ1(h) of (6):

ξ1(h)
∫
Ω

V 2dx ≤
∫
Ω

|∇V |2dx + h

∫
∂Ω

V 2ds.

It can be written, through relation (10) and subsequently the Young inequality with exponents 1/2, as

ξ1(h)
∫
Ω

V 2dx ≤ h(m1N + m2)
∫
Ω

V 2dx + (hm2 + 1)
∫
Ω

|∇V |2dx.

Hence, since m2 > 1, we also have ∫
Ω

|∇V |2dx ≥ η(h)
∫
Ω

V 2dx, (12)
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with η(h) = (ξ1(h) − h(m1N + m2))/(hm2 + 1). The function ϕ = V m verifies ϕν + hmϕ = 0, so that
(12) provides the ∫

Ω

|∇V m|2dx =
∫
Ω

|∇ϕ|2dx ≥ η(hm)
∫
Ω

ϕ2dx = σ

∫
Ω

V 2mdx,

with σ := η(hm) = (ξ1(hm) − hm(m1N + m2))/(hmm2 + 1), that is positive by (5). �
Similarly, the remaining two lemmas of this section are necessary to arrange terms emerging in the

proof of Theorem 3.3, some of them also depending on |∇u|. The validity of these lemmas is strictly
connected to some interplay between the parameters m,h, p, q defining our main problem, exactly as
specified as follows:

Fixing parameters. Let p > q ≥ 2. For 2 − 1/p < m < p, we set⎧⎪⎨
⎪⎩

s = p − 1, μ = q−1
s < 1, d = m−1

s < 1,

1 < δ < 2
3 (m + d) 2m+3d−3

2m+3d−1 , α = 2(m+d)−δ
2(m+d)−3δ > 1,

β = 2m+3d−1
2m+3d−3α > 1, σ = 2(m+d)−3δ

2(m+d) > 0, γ = d + δ > 1.

(13)

Lemma 2.3. Let Ω be a bounded domain of R
3 with Lipschitz boundary, and let m,α, β, d, σ and γ the

constants defined in (13). Then for any nonnegative C1(Ω̄)-function V∫
Ω

V m+1dx ≤ γ − 1
γ − μ

ε1

∫
Ω

V m+μdx +
1 − μ

γ − μ
ε

− γ−1
1−μ

1

∫
Ω

V m+γdx, (14)

where ε1 is an arbitrarily positive constant.
If, additionally, V vanishes on ∂Ω, there exists a positive constant CS such that for every ε2 > 0∫

Ω

V m+γdx ≤ C
3δ

m+d + 6α
2m+3d

S 3αd
σ

2m + 3d
ε2

∫
Ω

|∇V
m+d

2 |2dx

+ Γ
3δ

m+d + 6α
2m+3d dσ

2m + 3d − 3α

2m + 3d
ε2

(∫
Ω

V mdx
)αβ

+ (1 − d)ε2C
3δ

m+d

S σ
(∫

Ω

V mdx
)α

quad + C
3δ

m+d

S

3δ

2(m + d)
ε
1− 2(m+d)

3δ
2

∫
Ω

|∇V
m+d

2 |2dx.

(15)

Proof. Since μ < 1, for some positive constant γ > 1, the Young inequality and the consideration of
ε1 > 0 yield ∫

Ω

V m+1dx ≤
( ∫

Ω

V m+μdx
) γ−1

γ−μ
( ∫

Ω

V m+γdx
) 1−μ

γ−μ

γ − 1
γ − μ

ε1

∫
Ω

V m+μdx +
1 − μ

γ − μ
ε

− γ−1
1−μ

1

∫
Ω

V m+γdx,

so that the first thesis is shown.
On the other hand, let V be such that V = 0 on ∂Ω: the Sobolev embedding in R

3, W 1,2
0 (Ω) ↪→ L6(Ω),

provides a positive constant CS such that∫
Ω

(
V

m+d
2

)6

dx ≤ C6
S

( ∫
Ω

|∇V
m+d

2 |2dx
)3

. (16)
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Now, for γ = d + δ > 1, the Hölder inequality leads to∫
Ω

V m+γdx =
∫
Ω

V (m+d)+δdx

≤
( ∫

Ω

V m+ddx
) 2(m+d)−δ

2(m+d)
( ∫

Ω

(V
m+d

2 )6dx
) δ

2(m+d)
,

(17)

so that by replacing (16) into (17), we obtain∫
Ω

V (m+d)+δdx ≤ C
3δ

m+d

S

( ∫
Ω

V m+ddx
) 2(m+d)−δ

2(m+d)
( ∫

Ω

|∇V
m+d

2 |2dx
) 3δ

2(m+d)
.

The introduction of an arbitrary and positive constant ε2, and an application of the Young inequality,
allow us to write [recall (13)]∫

Ω

V (m+d)+δdx ≤ C
3δ

m+d

S

(
ε2

(∫
Ω

V m+ddx
) 2(m+d)−δ

2(m+d)−3δ
) 2(m+d)−3δ

2(m+d)

×
(
ε
1− 2(m+d)

3δ
2

∫
Ω

|∇V
m+d

2 |2dx
) 3δ

2(m+d)

≤ C
3δ

m+d

S ε2
2(m + d) − 3δ

2(m + d)

(∫
Ω

V m+ddx
) 2(m+d)−δ

2(m+d)−3δ

+ C
3δ

m+d

S ε
1− 2(m+d)

3δ
2

3δ

2(m + d)

∫
Ω

|∇V
m+d

2 |2dx.

(18)

To bound the term
( ∫

Ω

V m+ddx
)(2(m+d)−δ)/(2(m+d)−3δ)

, let us observe that the Hölder and the Schwarz

inequalities give, respectively,∫
Ω

V m+1dx ≤
(∫

Ω

V 2(m+d)dx
) 1

m+2d
(∫

Ω

V mdx
)m+2d−1

m+2d

, (19)

and ∫
Ω

V 2(m+d)dx ≤
[ ∫

Ω

(
V

m+d
2

)6

dx
∫
Ω

V m+ddx
] 1

2
. (20)

Now, using in (20) relation (16), we get∫
Ω

V 2(m+d)dx ≤ C3
S

(∫
Ω

|∇V
m+d

2 |2dx
) 3

2
( ∫

Ω

V m+ddx
) 1

2
,

and hence (19) reads∫
Ω

V m+1dx ≤ C
3

m+2d

S

(∫
Ω

|∇V
m+d

2 |2dx
) 3

2(m+2d)
(∫

Ω

V m+ddx
) 1

2(m+2d)

×
( ∫

Ω

V mdx
)m+2d−1

m+2d

.

(21)
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In addition, we first use again the Hölder inequality to lead to∫
Ω

V m+ddx ≤
( ∫

Ω

V m+1dx
)d(∫

Ω

V mdx
)1−d

, (22)

and then we insert this estimate in (21); combining terms, applying

arb1−r ≤ ra + (1 − r)b, (23)

valid for a, b ≥ 0 and 0 < r < 1, we arrive at (α as in (13))( ∫
Ω

V m+1dx
)α

≤ C
6α

2m+3d

S

(∫
Ω

|∇V
m+d

2 |2dx
) 3α

2m+3d
( ∫

Ω

V mdx
)α 2m+3d−1

2m+3d

≤ C
6α

2m+3d

S

3α

2m + 3d

∫
Ω

|∇V
m+d

2 |2dx

+ C
6α

2m+3d

S

2m + 3d − 3α

2m + 3d

(∫
Ω

V mdx
)α 2m+3d−1

2m+3d−3α

.

(24)

Hence, by rearranging again (22) with (23) we attain( ∫
Ω

V m+ddx
)α

≤
[( ∫

Ω

V m+1dx
)d(∫

Ω

V mdx
)1−d]α

≤ d
(∫

Ω

V m+1dx
)α

+ (1 − d)
( ∫

Ω

V mdx
)α

,

so that in view of (24) expression (18) (recall γ = d + δ) infers our thesis. �

Lemma 2.4. Let m, d and δ as in (13). If c1, c2, . . . , c6 are positive real numbers satisfying

c3 ≥ c5

(c5

c6

) −3δ
2(m+d)

( 3δ

2m + 2d − 3δ

)− 3δ
2(m+d) 2(m + d)

2(m + d) − 3δ
, (25)

then there exits ξm ∈ (0,∞) such that

c5ξm + c6ξ
1− 2(m+d)

3δ
m − c3 ≤ 0. (26)

Proof. For any ξ ∈ (0,∞), the function Φ(ξ) := c5ξ + c6ξ
1−2(m+d)/3δ attains its minimum at the point

ξm =
( 3δc5

c6(2m + 2d − 3δ)

) −3δ
2(m+d)

. (27)

Therefore, since (25) holds we have

c3 ≥ c5

(c5

c6

) −3δ
2(m+d)

( 3δ

2m + 2d − 3δ

)− 3δ
2(m+d) 2(m + d)

2(m + d) − 3δ
= Φ(ξm),

and relation (26) is proven. �

3. Analysis and proofs of the main results

In this section, we discuss and give the demonstrations of our main theorems, whose general overview
was summarized in Sect. 1.
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3.1. A criterion for blow-up

The first theorem is dedicated to understand properties of solutions to system (2) when g(u, |∇u|) =
k1u

p − k2u
q and under Robin boundary conditions. Essentially, we observe that if the power q of the

absorption term in g, as well as the coefficient m of the diffusion, does not surpass the power p from the
growth contribution, then the occurrence of blow-up phenomena at some finite time may appear for some
initial data u0(x), despite the outflow boundary conditions; in particular, no global solution is expected.

Theorem 3.1. Let Ω be a bounded smooth domain of RN , N ≥ 1, k1, k2, h > 0, k = 1, p ≥ max{m, q},
with m, q > 1, g(u, |∇u|) = k1u

p −k2u
q and u0(x) �≡ 0 a nonnegative function from C1(Ω̄), satisfying the

compatibility condition ∂u0(x)
∂ν + hu0(x) = 0 on ∂Ω. Moreover, let u ∈ C2,1(Ω × (0, t∗)) ∩ C1,0(Ω̄ × [0, t∗))

be the nonnegative solution of problem (2). If

ψ(t) : = −p + m

2m

∫
Ω

|∇um|2dx + k1

∫
Ω

up+mdx

− k2

∫
Ω

uq+mdx − h(p + m)
2

∫
∂Ω

u2mds, for all t ∈ (0, t∗),

is such that ψ(0) > 0, then t∗ < ∞, or equivalently I = (0, t∗). In particular, ‖u(·, t)‖L∞(Ω) ↗ ∞ as
t ↘ t∗ at some time t∗ satisfying, for ϕ(t) :=

∫
Ω

um+1dx,

t∗ < T =
1

p − 1
ϕ(0)
ψ(0)

.

Proof. Let u be the nonnegative classical solution of (2) satisfying uν = −hu on ∂Ω. By a differentiation,
we can write

ψ′(t) = −p + m

m

∫
Ω

∇um · (∇um)tdx + k1(p + m)
∫
Ω

up+m−1utdx

− k2(q + m)
∫
Ω

uq+m−1utdx − h(p + m)m
∫

∂Ω

u2m−1utds

= − p + m

m

∫
∂Ω

(um)t∇um · νds +
p + m

m

∫
Ω

(um)tΔumdx

+ k1(p + m)
∫
Ω

up+m−1utdx − k2(q + m)
∫
Ω

uq+m−1utdx

− h(p + m)m
∫

∂Ω

u2m−1utds

≥ (p + m)
∫
Ω

um−1ut(Δum + k1u
p − k2u

q)dx

= (p + m)
∫
Ω

um−1(ut)2dx ≥ 0 for all t ∈ (0, t∗),

(28)

where we have used the integration by parts formula and the assumption p ≥ q.
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Similarly, as to the evolution of ϕ(t) :=
∫
Ω

um+1dx, we derive

1
m + 1

ϕ′(t) =
∫
Ω

um(Δum + k1u
p − k2u

q)dx

= −
∫
Ω

∇um · ∇umdx + k1

∫
Ω

up+mdx − k2

∫
Ω

uq+mdx

+
∫

∂Ω

um∇um · νds

= −
∫
Ω

|∇um|2dx + k1

∫
Ω

up+mdx − k2

∫
Ω

uq+mdx

− mh

∫
∂Ω

u2mds

≥ −p + m

2m

∫
Ω

|∇um|2dx + k1

∫
Ω

up+mdx − k2

∫
Ω

uq+mdx

− h(p + m)
2

∫
∂Ω

u2mds = ψ(t) for all t ∈ (0, t∗),

(29)

where in this case, we relied on the fact that p ≥ m. Now, the hypotheses ψ(0) > 0, ϕ(0) > 0, (28) and
(29) yield

ψ′(t) > 0, ψ(t) > 0, ϕ′(t) > 0 and ϕ(t) > 0 on (0, t∗).

Since by the Young inequality, we have that for all t ∈ (0, t∗)

1
m + 1

ϕ′(t) =
∫
Ω

u
m+1

2 u
m−1

2 utdx ≤
(∫

Ω

um+1dx
) 1

2
(∫

Ω

um−1(ut)2dx
) 1

2

,

this implies by virtue of the definition of ϕ, in conjunction with (28) and (29),

ϕ(t)ψ′(t) ≥ m + p

(m + 1)2
ϕ′(t)2 ≥ m + p

m + 1
ψ(t)ϕ′(t) on (0, t∗),

or equivalently
d
dt

(
ψϕ− m+p

m+1
) ≥ 0 on (0, t∗).

Subsequently, an integration on (0, t) with t < t∗ infers

ψ(t) ≥ ψ(0)ϕ(0)− m+p
m+1 ϕ(t)

m+p
m+1 on (0, t).

Finally, recalling (29), we have

ϕ′(t)ϕ(t)− m+p
m+1 ≥ (m + 1)ψ(0)ϕ(0)− m+p

m+1 on (0, t),

and with (m + p)/(m + 1) > 1 a further integration leads to

1

ϕ(t)
p−1
m+1

≤ 1

ϕ(0)
p−1
m+1

− (p − 1)
ψ(0)

ϕ(0)
m+p
m+1

t,

that, by virtue of the positivity of ϕ, cannot hold for t ≥ T = ϕ(0)/((p − 1)ψ(0)). In conclusion, the
extensibility criterion (3) implies that I = (0, t∗), for some t∗ < T . �
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Remark 2. As to the above technical requirement ψ(0) > 0, we desire to emphasize its consistency with
the thesis of Theorem 3.1. Indeed, for a given initial data u0, with the suitable regularity and properties,
such strictly positivity of ψ(0) is essentially achieved when the value of the positive term k1

∫
Ω

up+m
0 dx

dominates that from the other remaining contributions. Since this is certainly possible for k1 sufficiently
large, and k1 is precisely the coefficient associated with the growth source in the model, the conclusion on
the unboundedness of the solution u can be rather expected. Similar qualitative arguments apply imposing
weak dampening and/or rate outflow effects, i.e., small values of k2 and/or h. Finally, in support of the
overall assumptions of Theorem 3.1, we mention [10,11], where certain numerical methods capable to
detect unbounded solutions to porous medium equations defined in bounded intervals of R and equipped
with different boundary conditions are employed.

3.2. A criterion for global existence

In the next result, we are interested to examine the opposite situation described in Theorem 3.1. Precisely,
by considering in system (2) again g(u, |∇u|) = k1u

p −k2u
q and Robin boundary conditions, we establish

that when the effect of the source (exponent p) is weaker than that of the diffusion (exponent m), the
negative flux on the boundary prevents blow-up, even for arbitrary large initial data u0(x) and any small
absorption effect (exponent q).

Theorem 3.2. Let Ω be a bounded smooth domain of RN , N ≥ 1, satisfying assumptions (H1) and (H2)
. Moreover, let k1, k2, h > 0, k = 1, q ≥ 1, p < m, with m > 1, g(u, |∇u|) = k1u

p − k2u
q and u0(x) �≡ 0 a

nonnegative function from C0(Ω̄). Then the nonnegative solution u ∈ C2,1(Ω × (0, t∗)) ∩ C1,0(Ω̄ × [0, t∗))
of problem (2) is global, or equivalently I = (0,∞).

Proof. Let u be the nonnegative classical solution of (2) satisfying uν = −hu on ∂Ω. By differentiating
ϕ(t) :=

∫
Ω

um+1dx, we derive

1
m + 1

ϕ′(t) =
∫
Ω

um(Δum + k1u
p − k2u

q)dx

= −
∫
Ω

∇um · ∇umdx + k1

∫
Ω

up+mdx − k2

∫
Ω

uq+mdx

+
∫

∂Ω

um∇um · νds

≤ −
∫
Ω

|∇um|2dx + k1

∫
Ω

up+mdx on (0, t∗),

where we have neglected the last two nonpositive integrals.
On the other hand, since p < m, we have thanks to the Young inequality and for some ε > 0

k1

∫
Ω

up+mdx ≤ ε

∫
Ω

u2mdx + C(ε)|Ω| on (0, t∗),
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with C(ε) = (2mε/(p + m)k1)(m+p)/(p−m)(m − p)/2m > 0 (recall m > p). Subsequently,

1
m + 1

ϕ′(t) ≤ −
∫
Ω

|∇um|2dx + ε

∫
Ω

u2mdx + C(ε)|Ω|

≤ −σ

∫
Ω

u2mdx + ε

∫
Ω

u2mdx + C(ε)|Ω|

= − (σ − ε)
∫
Ω

u2mdx + C(ε)|Ω| on (0, t∗),

where we have estimated the integral depending on |∇um|2 by means of (11) of Lemma 2.2 with, of
course, V = u. By choosing ε = σ/2 > 0, and by taking in consideration that an application of the Young
inequality infers

−
∫
Ω

u2mdx ≤ −|Ω| 1−m
1+m ϕ

2m
m+1 on (0, t∗),

the previous estimate reads

ϕ′(t) ≤ −C0ϕ
2m

m+1 (t) + C1 on (0, t∗),

where C0 = (m + 1)σ|Ω| 1−m
1+m /2 and C1 = (m + 1)C(ε)|Ω|; consequently, ODE comparison arguments

justify that

ϕ(t) ≤ C := max
{

ϕ(0),
(

C1

C0

)m+1
2m

}
on (0, t∗).

Finally, well–known extension results for ODE’s with locally Lipschitz continuous right side (see, for
instance, [18]), show that t∗ = ∞; indeed, if t∗ were finite, ϕ(t) ↗ +∞ as t ↘ t∗ and it would contradict
ϕ(t) ≤ C on (0, t∗). In conclusion, again the extensibility criterion (3) implies I = (0,∞). �

Remark 3. Conversely to the demonstration of Theorem 3.1, evidently, the proof of this last theorem
remains valid also for k2 = 0, that is in the complete absence of absorption terms in g. In any case, we
preferred to consider the expression of the function g in Theorem 3.2 as that in Theorem 3.1 exactly to
better highlight the different behaviors of the corresponding solutions to problem (2) despite the same
source.

In the behalf of scientific completeness, we mention [9,24] where some questions concerning existence
of local-in-time classical solutions to a class of systems tied to (2) are discussed under slightly more
general boundary conditions but more specific sources than those considered in Theorems 3.1 and 3.2 ;
hence, such theorems do not fall within these contributions.

3.3. Lower bounds of the blow-up time

This last theorem is concerned with lower bounds of the blow-up time t∗ for unbounded solutions
to (2), when gradient nonlinearities with absorption effects appear in g. More precisely, we define
g(u, |∇u|) = k1u

p − k2|∇u|q and endow the problem with Dirichlet boundary conditions. We are not
aware of general results which straightforwardly infer the existence of unbounded solutions to system (2)
under these hypotheses; nevertheless, in the spirit of the result derived in Theorem 3.1, for which blow-up
occurs for large initial data and despite negative flux on the boundary, we understand that also in these
circumstances seems reasonable to assume the existence of such blowing-up solutions.
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Theorem 3.3. Let Ω be a bounded domain of R3 with Lipschitz boundary. Moreover, let k1, h > 0, k = 0,
p, q, α, β, μ and γ as in (13), g(u, |∇u|) = k1u

p − k2|∇u|q and u0(x) �≡ 0 a nonnegative function from
C0(Ω̄), satisfying the compatibility condition u0(x) = 0 on ∂Ω. Hence, it is possible to find a positive
number Σ with the following property: If k2 is a positive real satisfying

k2 ≥ k1(k1Σ)
1−μ
γ−1 , (30)

and u ∈ C2,1(Ω × (0, t∗)) ∩ C0(Ω̄ × [0, t∗)) is a nonnegative solution of (2) such that W (t) ↗ +∞ as
t ↘ t∗, with some finite t∗ and

W (t) =
∫
Ω

um(p−1)dx, (31)

then

t∗ ≥ W (0)−αβ+1

(MW (0)(1−β)α + N )(−αβ + 1)
,

M and N being two positive computable constants.

Proof. Let u be the nonnegative classical solution of (2) satisfying u = 0 on ∂Ω and t∗ be the instant of
time where the W -measure (31) associated with u becomes unbounded. For s = p− 1, let us differentiate
with respect to the time t such W -measure. Due to the divergence theorem and the boundary conditions,
we obtain

W ′(t) = ms

∫
Ω

ums−1[Δ(um) + k1u
p − k2|∇u|q]dx

= −ms

∫
Ω

∇ums−1 · ∇(um)dx

+ msk1

∫
Ω

us(m+1)dx − msk2

∫
Ω

ums−1|∇u|qdx

= −m2s(ms − 1)
∫
Ω

ums−3+m|∇u|2dx

+ msk1

∫
Ω

us(m+1)dx − msk2

∫
Ω

ums−1|∇u|qdx on (0, t∗).

(32)

Now, the statements given in (13) imply ms+q−1 > 2, so we can invoke inequality [29, (2.10)] achieving

msk2

∫
Ω

ums−1|∇u|qdx = msk2

( q

ms + q − 1

)q
∫
Ω

|∇u
ms+q−1

q |qdx

≥ msk2

( 2
√

λ1

ms + q − 1

)q
∫
Ω

ums+q−1dx on (0, t∗),
(33)

where λ1 is the optimal Poincaré constant.
From now on, for simplicity, we indicate us = V so to have

|∇V |2 = s2u2(s−1)|∇u|2. (34)
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As a consequence, again due to the positions made in (13), it holds that (m − 2) + d > 0, so that using
(33) and (34), relation (32) becomes

W ′(t) ≤ −c1

∫
Ω

V (m−2)+d|∇V |2dx + c2

∫
Ω

V m+1dx

− msk2

( 2
√

λ1

ms + q − 1

)q
∫
Ω

V m+μdx

= − c3

∫
Ω

|∇V
m+d

2 |2dx + c2

∫
Ω

V m+1dx

− msk2

( 2
√

λ1

ms + q − 1

)q
∫
Ω

V m+μdx on (0, t∗),

(35)

where

c1 =
m2(ms − 1)

s
, c2 = msk1, c3 =

4
(m + d)2

c1.

Now we are in the position to apply Lemma 2.3: by using relation (14) with ε1 = k2

(
2
√

λ1/(ms + q −
1)

)q(γ − μ)/(k1(γ − 1)), (35) is simplified to

W ′(t) ≤ −c3

∫
Ω

|∇V
m+d

2 |2dx + c4

∫
Ω

V m+γdx on (0, t∗),

where

c4 = c2
1 − μ

γ − μ
ε

− γ−1
1−μ

1 ,

while rearranging the term
∫
Ω

V m+γdx through (15) we obtain

W ′(t) ≤
(
c5ε2 + c6ε

1− 2(m+d)
3δ

2 − c3

)∫
Ω

|∇V
m+d

2 |2dx

+ M
( ∫

Ω

V mdx
)α

+ N
( ∫

Ω

V mdx
)αβ

on (0, t∗),
(36)

with ⎧⎨
⎩c5 = C

3δ
m+d + 6α

2m+3d

S
3αdc4σ
2m+3d , c6 = 3δc4C

3δ
m+d

S

2(m+d) ,

M = C
3δ

m+d

S (1 − d)ε2σc4, N = C
3δ

m+d + 6α
2m+3d

S
2m+3d−3α

2m+3d ε2c4dσ.

Hereafter, setting

Σ =
C

3δ
m+d

S s2(m+d)2

4m(ms−1)[
γ−μ
γ−1

(
2
√

λ1
ms+q−1

)q] γ−1
1−μ

1 − μ

γ − μ

( 6(m + d)C
6α

2m+3d

S dασ

(2m + 3d)(2m + 2d − 3δ)

)1− 3δ
2(m+d)

,

we observe that using the values of the constants c1, c2, . . . , c6 defined so far, relation (25) is precisely
equivalent to (30). Subsequently, Lemma 2.4 warrants that for ε2 = ξm, whose value was computed in
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(27), c5ε2 + c6ε
1−2(m+d)/3δ
2 − c3 ≤ 0; for such a ε2, and taking in mind (31), inequality (36) is simplified

to

W ′(t) ≤ M
(∫

Ω

V mdx
)α

+ N
( ∫

Ω

V mdx
)αβ

= MWα + NWαβ on (0, t∗). (37)

Since we are assuming that W (t) ↗ ∞ as t ↘ t∗, W (t) can be nondecreasing, so that W (t) ≥ W (0) > 0
with t ∈ [0, t∗), or nonincreasing (possibly presenting oscillations), so that there exists a time t1 where
W (t1) = W (0). In any case, we can write W (t) ≥ W (0) for all t ∈ [t1, t∗), where 0 ≤ t1 < t∗. By virtue
of (13), α, β > 1, so that this implies that

W (t) ≤ W (0)1−βW (t)β , t ∈ [t1, t∗),

which, in conjunction with (37), produces

W ′(t) ≤ (MW (0)(1−β)α + N )Wαβ , t ∈ [t1, t∗). (38)

Finally, integrating (38) between t1 and t∗, we arrive at (recall W (t1) = W (0)) the inequality

W (0)−αβ+1

−αβ + 1
=

W (τ)−αβ+1

−αβ + 1

∣∣∣∣
t∗

t1

≤
t∗∫

t1

(MW (0)(1−β)α + N )dτ

≤
t∗∫

0

(MW (0)(1−β)α + N )dτ = (MW (0)(1−β)α + N )t∗,

which concludes the proof. �

The previous theorem is a general extension of the result given in [40, Schaefer, 2008], where the gradi-
ent nonlinearity for g does not take part (k2 = 0). Nevertheless, even though in the proof of Theorem 3.3
we used some ideas of [40], the presence of |∇u|q makes the demonstration more complex and requires
other necessary derivations, which are somehow tricky and tedious. In particular, these further compu-
tations lead inter alia to consider the largeness assumption of k2 (that is relation (30), not appearing in
[40]).

4. Future works

In this concluding section, we leave open some questions, naturally arising from a proper examination of
the paper.

• Validity of Theorem 3.3 when the Dirichlet boundary conditions are replaced by the Robin ones.
Indeed, the proof of Theorem 3.3 counts on (15), which has been derived by virtue of the fact that
V = 0 on ∂Ω. If, conversely, Vν + hV = 0 on ∂Ω relation (16) is no longer valid and has to be
modified adding to its right side a term involving

∫
Ω

V m+ddx.
• As specified, in this research, the question of the existence of classical solutions to problem (2)

has been circumvented, being these a priori given. Resorting to some weaker solutions concept (as
expected for porous media equations), such existence could be possibly accomplished by appropri-
ate regularizing actions on the original problem, the use of mollification techniques and general
compactness arguments.

• The gradient nonlinearities −|∇u|q considered in our general nonlinear diffusion problem (m > 1)
have an absorbing effect on the model. Conversely, in Sect. 1, we presented some papers dealing with
the linear diffusion (m = 1) Hamilton–Jacobi equation with first-order superquadratic Hamiltonian
growth (i.e., +|∇u|q, with q > 2). Since the treatment of the porous medium equation is rather
different and the extension to the range m > 1 of general results obtained for m = 1 is not an
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automatic process, the mentioned contributions could be of inspiration and support to see how far
those analyses established in the framework of linear Hamilton–Jacobi equations with superquadratic
growth can be generalized to nonlinear diffusion equations with the same growth.
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