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Abstract. This paper examines the global regularity problem and decay estimates for two classes of two-dimensional (2D)
magneto-micropolar equations with partial dissipation. By fully exploiting the special structure of the system and using
the maximal regularity property of the 1D heat operator, we establish the global existence of classical solution for 2D
magneto-micropolar equations with only velocity dissipation and partial magnetic diffusion. In addition, we obtain the
global classical solution for small initial data and decay estimates of solution to 2D magneto-micropolar equations with only
microrotational dissipation and magnetic diffusion.
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1. Introduction

The magneto-micropolar equations were introduced in [1] to describe the motion of an incompressible,
electrically conducting micropolar fluids in the presence of an arbitrary magnetic field. It belongs to a
class of fluids with nonsymmetric stress tensor and includes, as special cases, the classical fluids modeled
by the Navier–Stokes equations (see, e.g., [7,24,33,34]), magnetohydrodynamic equations (see, e.g., [26])
and micropolar equations (see, e.g., [12,13]). The 3D incompressible magneto-micropolar fluid equations
can be written as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu + u · ∇u = (μ + χ)Δu − ∇π + b · ∇b + 2χ∇ × w,
∂tw + u · ∇w − α∇∇ · w + 4χw = κΔw + 2χ∇ × u,
∂tb + u · ∇b = νΔb + b · ∇u,
∇ · u = 0, ∇ · b = 0,
u(x, y, z, 0) = u0(x, y, z), w(x, y, z, 0) = w0(x, y, z), b(x, y, z, 0) = b0(x, y, z),

(1.1)

where (x, y, z) ∈ R
3 and t ≥ 0, u(x, y, z, t), w(x, y, z, t), b(x, y, z, t) and π(x, y, z, t) denote the velocity of

the fluid, microrotational velocity, the magnetic field and the hydrostatic pressure, respectively. μ, χ and
1
ν are, respectively, kinematic viscosity, vortex viscosity and magnetic Reynolds number. κ and α are
angular viscosities. By setting

u = (u1(x, y, t), u2(x, y, t), 0), w = (0, 0, w3(x, y, t)), b = (b1(x, y, t), b2(x, y, t), 0),

the 3D magneto-micropolar equations reduce to the 2D magneto-micropolar equations
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu + u · ∇u = (μ + χ)Δu − ∇π + b · ∇b + 2χ∇ × w,
∂tw + u · ∇w + 4χw = κΔw + 2χ∇ × u,
∂tb + u · ∇b = νΔb + b · ∇u,
∇ · u = 0, ∇ · b = 0,
u(x, y, 0) = u0(x, y), w(x, y, 0) = w0(x, y), b(x, y, 0) = b0(x, y),

(1.2)
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where ∇ × w = (∂yw,−∂xw) with w for w3 for notational brevity and ∇ × u = ∂xu2 − ∂yu1.
The magneto-micropolar equations play an important role in engineering and physics and has attracted

considerable attention from the community of mathematical fluids (see, e.g., [20,25,28,29]). When (1.2)
has full dissipation (namely, μ, χ, κ, ν > 0), the global existence and uniqueness of solutions could be
obtained easily (see, e.g., [20,28]). However, for the inviscid case (namely, (1.2) with μ > 0, χ > 0, κ =
ν = 0 and Δu replaced by u), the global regularity problem is still a challenging open problem. Therefore,
it is natural to study the intermediate cases, namely (1.2) with partial dissipation.

Due to the complex structure of (1.2), when there is only partial dissipation, the global regular-
ity problem can be quite difficult. However, many important progresses have recently been made on
this direction (see, e.g., [2–6,8–11,14,21,27,31,32,35,36]). In [14,21,27], the global regularity of the 2D
magneto-micropolar equations with various partial dissipation cases was obtained. All these cases con-
tain the full or partial velocity dissipation, microrotational dissipation and magnetic diffusion. Recently,
by fully exploiting the structure of the system and the techniques of Littlewood–Paley decomposition,
Yamazaki [36] successfully established the global regularity of (1.2) with only velocity dissipation and
magnetic diffusion, namely

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu + u · ∇u = (μ + χ)Δu − ∇π + b · ∇b + 2χ∇ × w,
∂tw + u · ∇w + 4χw = 2χ∇ × u,
∂tb + u · ∇b = νΔb + b · ∇u,
∇ · u = 0, ∇ · b = 0,
u(x, y, 0) = u0(x, y), w(x, y, 0) = w0(x, y), b(x, y, 0) = b0(x, y).

(1.3)

Here our first result is to further improve the results in [36]. More precisely, we consider the global
regularity problem of (1.3) with full magnetic Laplacian dissipation replaced by partial magnetic diffusion,
namely

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu + u · ∇u = (μ + χ)Δu − ∇π + b · ∇b + 2χ∇ × w,
∂tw + u · ∇w + 4χw = 2χ∇ × u,
∂tb1 + u · ∇b1 = ν∂yyb1 + b · ∇u1,
∂tb2 + u · ∇b2 = ν∂xxb2 + b · ∇u2,
∇ · u = 0, ∇ · b = 0,
u(x, y, 0) = u0(x, y), w(x, y, 0) = w0(x, y), b(x, y, 0) = b0(x, y).

(1.4)

By fully exploiting the special structure of system (1.4) and using the maximal regularity property of
the 1D heat operator, we can establish the following result.

Theorem 1.1. Assume (u0, w0, b0) ∈ Hs(R2) with s ≥ 3, and ∇ · u0 = ∇ · b0 = 0. Then, the 2D magneto-
micropolar equations (1.4) has a unique global classical solution (u,w, b) satisfying, for any T > 0,

(u,w, b) ∈ C([0, T ];Hs(R2)),

u ∈ L2(0, T ;Hs+1(R2)), ∂yb1, ∂xb2 ∈ L2(0, T ;Hs(R2)).

Next we consider the global existence and decay estimates to the solution of the 2D magneto-
micropolar equations (1.2) with only microrotational dissipation and magnetic diffusion, namely

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu + u · ∇u + (μ + χ)u = −∇π + b · ∇b + 2χ∇ × w,
∂tw + u · ∇w + 4χw = κΔw + 2χ∇ × u,
∂tb + u · ∇b = νΔb + b · ∇u,
∇ · u = 0, ∇ · b = 0,
u(x, y, 0) = u0(x, y), w(x, y, 0) = w0(x, y), b(x, y, 0) = b0(x, y).

(1.5)

We remark that the global regularity problem of (1.5) is still an important open problem. Therefore,
it is natural to first consider whether system (1.5) with small initial data has a global classical solution.
In fact, we can establish the following theorem.



ZAMP 2D magneto-micropolar equations Page 3 of 22 85

Theorem 1.2. Let s > 2, and (u0, w0, b0) ∈ Hs(R2) with ∇ · u0 = ∇ · b0 = 0. Then there exists a positive
constant ε = ε(μ, κ, ν) such that if

‖u0‖Hs(R2) + ‖w0‖Hs(R2) + ‖b0‖Hs(R2) < ε, (1.6)

then the 2D magneto-micropolar equations (1.5) has a unique global solution (u,w, b) satisfying, for any
T > 0,

(u,w, b) ∈ L∞(0, T ;Hs(R2)), (w, b) ∈ L2(0, T ;Hs+1(R2)),

and

‖u(t)‖Hs(R2) + ‖w(t)‖Hs(R2) + ‖b(t)‖Hs(R2)

+

T∫

0

(‖u(t)‖Hs(R3) + ‖∇w(t)‖Hs(R3) + ‖∇b(t)‖Hs(R2))dt

≤ ‖u0‖Hs(R2) + ‖w0‖Hs(R2) + ‖b0‖Hs(R2). (1.7)

Remark 1.3. The proof of Theorem 1.2 here is similar to the proof of Theorem 1.3 in [19], and we omit
the details.

At last, using the delicate a priori estimates and the properties of heat operator, we can establish the
following decay results for the global solution of system (1.5).

Theorem 1.4. Let (u0, w0) ∈ H1(R2) and b0 ∈ L1(R2) ∩ H1(R2) with ∇ · u0 = ∇ · b0 = 0. Let (u,w, b) be
a global solution to system (1.5), and

κ >
4χ2

μ + χ
. (1.8)

Then, the following decay properties hold

‖u(t)‖L2(R2) + ‖w(t)‖L2(R2) ≤ C(1 + t)− 4
3 , (1.9)

‖b(t)‖L2(R2) ≤ C(1 + t)− 1
2 , ‖∇b(t)‖L2(R2) ≤ C(1 + t)−1, (1.10)

‖∇u(t)‖L2(R2) + ‖∇w(t)‖L2(R2) ≤ C(1 + t)− 1
2 , (1.11)

where the constant C depends on μ, χ, κ, ν and the initial data.

Remark 1.5. Theorem 1.4 holds for any global solution to system (1.5). Theorem 1.2 ensures that Theo-
rem 1.4 is meaningful at least for initial data small.

Remark 1.6. As b = 0, system (1.5) reduces to the 2D micropolar equations with partial dissipation
⎧
⎪⎪⎨

⎪⎪⎩

∂tu + u · ∇u + (μ + χ)u = −∇π + 2χ∇ × w,
∂tw + u · ∇w + 4χw = κΔw + 2χ∇ × u,
∇ · u = 0, ∇ · b = 0,
u(x, y, 0) = u0(x, y), w(x, y, 0) = w0(x, y).

(1.12)

The global existence and decay estimates of this system were studied by Dong, Li and Wu in [10]. As
particular case of (1.5), Theorem 1.4 here improves the decay rates of u and w in [10].

Remark 1.7. The decay rates (1.10) for b and ∇b obtained in Theorem 1.4 are optimal in the sense that
they coincide with the ones of the heat equation. Following the proof given in this paper, one can know that
‖u(t)‖L2(R2)+‖w(t)‖L2(R2) ≤ C(1+t)− 2

3 and ‖∇u(t)‖L2(R2)+‖∇b(t)‖L2(R2)+‖∇w(t)‖L2(R2) ≤ C(1+t)− 1
2

with b0 ∈ L1(R2) ∩ H1(R2) replaced by b0 ∈ H1(R2).
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The rest of this paper is unfolded as follows: In Sect. 2, we give the proof of Theorem 1.1, and the
proof of Theorem 1.4 will be completed in Sect. 3. To simplify the notations, we will write

∫
f for

∫

R2

fdx,

‖f‖Lq for ‖f‖Lq(R2), ‖f‖Hs for ‖f‖Hs(R2), and ‖f‖Lq(0,t;Lp) for (
t∫

0

(
∫

R2

|f |pdx)
q
p dτ)

1
q .

2. The proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Our main efforts are devoted to prove the uniformly
global a priori Hs-bound. Once we get this bound, the global existence of classical solution of (1.4) can
be obtained following the Friedrichs method. Without loss of generality, we set μ = 1

2 , χ = 1
2 and ν = 1.

We first state and prove the global L2-bound.

Proposition 2.1. Assume that (u0, w0, b0) satisfies the conditions stated in Theorem 1.1. Let (u,w, b) be
the corresponding solution of the 2D magneto-micropolar equations (1.4). Then for all t ∈ [0, T ], (u,w, b)
obeys the following global L2-bound,

‖u(t)‖2
L2 + ‖w(t)‖2

L2 + ‖b(t)‖2
L2 +

t∫

0

(‖∇u(τ)‖2
L2 + ‖∂yb1(τ)‖2

L2 + ‖∂xb2(τ)‖2
L2)dτ

≤ ‖u0‖2
L2 + ‖w0‖2

L2 + ‖b0‖2
L2 . (2.1)

Proof. Taking the L2 inner product of (1.4) with u, w, b1 and b2, respectively, and then adding the
resulting equations together, we yield

1
2

d
dt

(‖u(t)‖2
L2 + ‖w(t)‖2

L2 + ‖b(t)‖2
L2) + ‖∇u‖2

L2 + 2‖w‖2
L2 + ‖∂yb1‖2

L2 + ‖∂xb2‖2
L2

= 2
∫

∇ × uw, (2.2)

where we have used the facts
∫

b · ∇b · u +
∫

b · ∇u · b = 0,

∫

∇ × wu =
∫

∇ × uw.

Applying Young’s inequality, we obtain
∫

∇ × uw ≤ 1
4
‖∇u‖2

L2 + ‖w‖2
L2 .

Inserting this bound into (2.2), we get
d
dt

(‖u(t)‖2
L2 + ‖w(t)‖2

L2 + ‖b(t)‖2
L2) + ‖∇u‖2

L2 + 2‖∂yb1‖2
L2 + 2‖∂xb2‖2

L2 ≤ 0. (2.3)

Then integrating in time yields the desired bound. �

Next we start to do the H1 estimates for u and b. Set Ω = ∇ × u = ∂xu2 − ∂yu1 and j = ∇ × b =
∂xb2 − ∂yb1, then it follows from the first equation, third equation and fourth equation in (1.4) that

∂tΩ + u · ∇Ω = ΔΩ + b · ∇j − Δw, (2.4)
∂tj + u · ∇j = ∂xxxb2 − ∂yyyb1 + b · ∇Ω + 2∂xb1(∂xu2 + ∂yu1) − 2∂xu1(∂xb2 + ∂yb1). (2.5)

Since we have no dissipation on microrotation w, we cannot control the term Δw on the right side of
(2.4) directly. To overcome this difficulty, we introduce a combined quantity G = Ω − w, then (2.4) and
the second equation in (1.4) yielding

∂tG + u · ∇G = ΔG + b · ∇j − G + w. (2.6)
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Proposition 2.2. Assume that (u0, w0, b0) satisfies the conditions stated in Theorem 1.1. Let (u,w, b) be
the corresponding solution of the 2D magneto-micropolar equations (1.4). Then (G, j,Ω) satisfies, for any
0 < t < T ,

‖G(t)‖2
L2 + ‖j(t)‖2

L2 + ‖Ω(t)‖2
L2 +

t∫

0

(‖∇G(τ)‖2
L2 + ‖∇j(τ)‖2

L2)dτ ≤ C. (2.7)

Proof. Taking the L2 inner product of (2.5) and (2.6) with j and G, respectively, and adding them
together, we obtain

1
2

d
dt

(‖G(t)‖2
L2 + ‖j(t)‖2

L2) + ‖∇G‖2
L2 + ‖∂xxb1‖2

L2 + ‖∂xxb2‖2
L2

+ ‖∂yyb1‖2
L2 + ‖∂yyb2‖2

L2

=
∫

b · ∇jG − ‖G‖2
L2 +

∫

wG +
∫

b · ∇Ωj + 2
∫

∂xb1(∂xu2 + ∂yu1)j

− 2
∫

∂xu1(∂xb2 + ∂yb1)j

= K1 + K2 + K3 + K4 + K5 + K6,

where we have used the divergence-free conditions ∇ · u = ∇ · b = 0 and the fact
∫

(∂xxxb2 − ∂yyyb1)j =
∫

(∂xxxb2 − ∂yyyb1)(∂xb2 − ∂yb1)

=
∫

∂xxxb2∂xb2 −
∫

∂xxxb2∂yb1 −
∫

∂yyyb1∂xb2 +
∫

∂yyyb1∂yb1

= −
∫

|∂xxb2|2 −
∫

|∂xxb1|2 −
∫

|∂yyb2|2 −
∫

|∂yyb1|2.

By the definition of G and ∇ · b = 0, we have

|K1 + K4| =
∣
∣
∣
∣

∫

b · ∇jΩ −
∫

b · ∇jw +
∫

b · ∇Ωj

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

b · ∇jw

∣
∣
∣
∣

≤ ‖b‖L∞‖∇j‖L2‖w‖L2

≤ C‖b‖ 1
2
L2‖∇j‖ 3

2
L2‖w‖L2

≤ 1
8
‖∇j‖2

L2 + C‖b‖2
L2‖w‖4

L2 ,

where we have also used the Hölder inequality, the Young inequality and the following Gagliardo–
Nirenberg inequality

‖b‖L∞ ≤ C‖b‖ 1
2
L2‖∇j‖ 1

2
L2 .

Applying the Young inequality to K3, we yield

|K3| ≤ 1
2
‖G‖2

L2 +
1
2
‖w‖2

L2 .

Using again the Hölder inequality, the Young inequality and the following Gagliardo–Nirenberg inequality

‖j‖L4 ≤ C‖j‖ 1
2
L2‖∇j‖ 1

2
L2 ,
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we obtain

|K5 + K6| ≤ 8‖∇b‖L4‖j‖L4‖∇u‖L2

≤ C‖j‖2
L4‖Ω‖L2

≤ C‖j‖L2‖∇j‖L2‖Ω‖L2

≤ 1
8
‖∇j‖2

L2 + C‖j‖2
L2(‖G‖2

L2 + ‖w‖2
L2)

Collecting the estimates above, and note that

‖∇j‖2
L2 ≤ 2(‖∂xxb1‖2

L2 + ‖∂xxb2‖2
L2 + ‖∂yyb1‖2

L2 + ‖∂yyb2‖2
L2),

then we have
d
dt

(‖G(t)‖2
L2 + ‖j(t)‖2

L2) + ‖∇G(t)‖2
L2 + ‖∇j(t)‖2

L2

≤ C(1 + ‖j(t)‖2
L2)‖G(t)‖2

L2 + C(1 + ‖j(t)‖2
L2)‖w(t)‖2

L2 + C‖b(t)‖2
L2‖w(t)‖4

L2 .

Then Gronwall’s inequality and (2.1), together with ‖j‖2
L2 ≤ 2(‖∂yb1‖2

L2 + ‖∂xb2‖2
L2) and G = Ω − w,

yield the desired bound. �

Now we turn to give the Lp bounds for Ω, w and Δb. In order to obtain the desired global bounds,
we need to use a regularization property involving the heat operator. Let Kt(x) = (4πt)− d

2 e− |x|2
4t with

x ∈ R
d and d ≥ 1 be the heat kernel and set

etΔf = Kt(x) ∗ f.

Then the following lemma holds (see, e.g., [18]).

Lemma 2.3. (Maximal Lq
tL

p
x regularity for the heat kernel) Define the operator A by

Af =

t∫

0

e(t−s)ΔΔf(s)ds.

Let p, q ∈ (1,∞). Then A is bounded from Lq(0, T ;Lp(Rd)) to Lq(0, T ;Lp(Rd)) for every T ∈ (0,∞].

Proposition 2.4. Assume that (u0, w0, b0) satisfies the conditions stated in Theorem 1.1. Let (u,w, b) be
the corresponding solution of the 2D magneto-micropolar equations (1.4). Then for any 0 < t < T ,

‖G‖L∞(0,t;Lp) + ‖Ω‖L∞(0,t;Lp) + ‖w‖L∞(0,t;Lp) + ‖Δb‖L4(0,t;Lp) ≤ C, (2.8)

where 2 ≤ p < ∞.

Proof. Let Kt(y) = 1
4πte

− y2
4t with y ∈ R be the heat kernel and set

et∂yyf = Kt(y) ∗ f.

Resorting to the heat kernel, we write the third and fourth equations of (1.4) in the integral form

b1(x, y, t) = et∂yyb01 +

t∫

0

e(t−s)∂yy (b · ∇u1 − u · ∇b1)(s)ds, (2.9)

b2(x, y, t) = et∂xxb02 +

t∫

0

e(t−s)∂xx(b · ∇u2 − u · ∇b2)(s)ds. (2.10)

We first bound ‖Δb‖L4(0,t;Lp). It is easy to verify that

‖Δb‖4
L4(0,t;Lp) ≤ C0(‖∂xxb1‖4

L4(0,t;Lp) + ‖∂yyb1‖4
L4(0,t;Lp) + ‖∂xxb2‖4

L4(0,t;Lp) + ‖∂yyb2‖4
L4(0,t;Lp)).
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Applying ∂xx to (2.10), taking the Lp norm with respect to y, then the Lp norm in x and the L4 norm
in t, then Lemma 2.3 yields

‖∂xxb2‖4
L4(0,t;Lp)

≤
t∫

0

‖es∂xx∂xxb02‖4
Lpds + C

t∫

0

‖(b · ∇u2 − u · ∇b2)(s)‖4
Lpds

≤ t‖∂xxb02‖4
Lp + C

t∫

0

(‖b(s)‖4
L∞‖∇u2(s)‖4

Lp + ‖u(s)‖4
L2p‖∇b2(s)‖4

L2p)ds

≤ t‖b0‖4
H3 + C

t∫

0

(‖b(s)‖4
L∞‖Ω(s)‖4

Lp + ‖u(s)‖4
H1‖b(s)‖

4(p−1)
3p−2

L2 ‖Δb(s)‖
4(2p−1)
3p−2

Lp )ds

≤ C + C1

t∫

0

(‖b(s)‖4
L∞(‖G(s)‖4

Lp + ‖w(s)‖4
Lp) +

1
8C0C1

‖Δb(s)‖4
Lp + 1)ds,

where we used the fact ‖Kt(x)‖L1(R) = 1 and the Gagliardo–Nirenberg inequality

‖∇b‖L2p ≤ C‖b‖
p−1
3p−2

L2 ‖Δb‖
2p−1
3p−2
Lp .

Similarly,

‖∂yyb1‖q
L4(0,t;Lp) ≤ C + C2

t∫

0

(‖b(s)‖4
L∞(‖G(s)‖4

Lp + ‖w(s)‖4
Lp) +

1
8C0C2

‖Δb(s)‖4
Lp + 1)ds.

To close the above estimate, we only need to bound ‖∂xxb1‖Lq(0,t;Lp) and ‖∂yyb2‖Lq(0,t;Lp), namely
‖∂xyb2‖Lq(0,t;Lp) and ‖∂xyb1‖Lq(0,t;Lp). Applying ∂xy to (2.10), and note that

∂xy(b · ∇u2 − u · ∇b2) = ∂xy(∂x(b1u2 − u1b2)) = ∂xx(∂y(b1u2) − ∂y(u1b2)),

then we have

∂xyb2(x, y, t) = et∂xx∂xyb02 +

t∫

0

e(t−s)∂xx∂xy(b · ∇u2 − u · ∇b2)(s)ds

= et∂xx∂xyb02 +

t∫

0

e(t−s)∂xx∂xx(∂y(b1u2) − ∂y(u1b2))(s)ds.

Taking the L4(0, t;Lp)-norm to the above equality and again applying Lemma 2.3, we obtain

‖∂xyb2‖q
L4(0,t;Lp) ≤

t∫

0

‖es∂xx∂xyb02‖4
Lpds + C

t∫

0

‖(∂y(b1u2) − ∂y(u1b2))(s)‖4
Lpds

≤ t‖∂xyb02‖4
Lp + C

t∫

0

(‖b(s)‖4
L∞‖∇u(s)‖4

Lp + ‖u(s)‖4
L2p‖∇b(s)‖4

L2p)ds

≤ C + C3

t∫

0

(‖b(s)‖4
L∞(‖G(s)‖4

Lp + ‖w(s)‖4
Lp) +

1
8C0C3

‖Δb(s)‖4
Lp + 1)ds.
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Similarly,

‖∂xyb1‖4
L4(0,t;Lp) ≤ C + C4

t∫

0

(‖b(s)‖4
L∞(‖G(s)‖4

Lp + ‖w(s)‖4
Lp) +

1
8C0C4

‖Δb(s)‖4
Lp + 1)ds.

Combining the estimates above, we have

‖Δb‖4
Lq(0,t;Lp) ≤ C + C

t∫

0

‖b(s)‖4
L∞(‖G(s)‖4

Lp + ‖w(s)‖4
Lp)ds. (2.11)

Secondly, we bound ‖G‖Lp . Multiplying (2.6) by |G|p−2G, integrating the resulting equations in R
2, we

obtain

1
p

d
dt

‖G(t)‖p
Lp +

4(p − 1)
p2

∫

|∇|G| p
2 |2 ≤

∫

b · ∇j|G|p−2G − ‖G‖p
Lp +

∫

w|G|p−2G

≤ ‖b‖L∞‖∇j‖Lp‖G‖p−1
Lp + ‖w‖Lp‖G‖p−1

Lp ,

where we have used the fact that
∫

ΔG|G|p−2G = −4(p − 1)
p2

∫

|∇|G| p
2 |2.

Therefore, Young’s inequality yield

1
4

d
dt

‖G(t)‖4
Lp ≤ ‖b‖L∞‖∇j‖Lp‖G‖3

Lp + ‖w‖Lp‖G‖3
Lp

≤ C(‖b‖4
L∞‖Δb‖4

Lp + ‖G‖4
Lp + ‖w‖4

Lp).

Integrating it in (0, t), we obtain

‖G(t)‖4
Lp ≤ ‖G0‖4

Lp + C

t∫

0

(‖b(s)‖4
L∞‖Δb(s)‖4

Lp + ‖G(s)‖4
Lp + ‖w(s)‖4

Lp)ds

≤ C + C

t∫

0

(‖b(s)‖4
L∞‖Δb(s)‖4

Lp + ‖G(s)‖4
Lp + ‖w(s)‖4

Lp)ds. (2.12)

Lastly, we bound ‖w‖Lp . Multiplying the second equation of (1.4) by |w|p−2w, integrating the resulting
equations in space domain, we get

1
p

d
dt

‖w(t)‖p
Lp ≤

∫

∇ × u|w|p−2w

≤ ‖Ω‖Lp‖w‖p−1
Lp

≤ 2(‖G‖Lp + ‖w‖Lp)‖w‖p−1
Lp .

Therefore,

d
dt

‖w(t)‖Lp ≤ 2‖G‖Lp + 2‖w‖Lp . (2.13)
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Integrating it in (0, t) and using Hölder’s inequality, we have

‖w(t)‖4
Lp ≤ ‖w0‖4

Lp + C

t∫

0

(‖G(s)‖4
Lp + ‖w(s)‖4

Lp)ds

≤ C + C

t∫

0

(‖G(s)‖4
Lp + ‖w(s)‖4

Lp)ds. (2.14)

Note that Propositions 2.1 and 2.2 and the Gagliardo–Nirenberg inequality imply

‖b‖L4(0,t;L∞) ≤ C

⎛

⎝

t∫

0

‖b(τ)‖2
L2‖∇j(τ)‖2

L2dτ

⎞

⎠

1
4

≤ C. (2.15)

Therefore, combining (2.12), (2.14) and (2.11) together, we obtain

‖G(t)‖4
Lp + ‖w(t)‖4

Lp ≤ C + C

t∫

0

((‖b(s)‖4
L∞ + 1)(‖G(s)‖4

Lp + ‖w(s)‖4
Lp))ds.

Then Gronwall’s inequality and (2.15) yield

‖G(t)‖Lp + ‖w(t)‖Lp ≤ C.

It follows from this estimate, (2.11) and the definition of G = Ω − w that the desired results hold.
�

In the following, we prove the L∞ bounds for Ω, w and ∇b.

Proposition 2.5. Assume that (u0, w0, b0) satisfies the conditions stated in Theorem 1.1. Let (u,w, b) be
the corresponding solution of the 2D magneto-micropolar equations (1.4). Then for any 0 < t < T ,

‖Ω‖L1(0,t;L∞) + ‖w‖L∞(0,t;L∞) + ‖∇b‖L1(0,t;L∞) ≤ C. (2.16)

Proof. By (2.1), (2.8) and Sobolev’s embedding inequality, we obtain ‖∇b‖L1(0,t;L∞) ≤ C. Now we turn
to bound ‖Ω‖L1(0,t;L∞) and ‖w‖L∞(0,t;L∞). Multiplying (2.6) with ΔG, integrating it in space domain,
we obtain

1
2

d
dt

‖∇G(t)‖2
L2 + ‖ΔG(t)‖2

L2 = L1 + L2 + L3 + L4, (2.17)

where

L1 = −
∫

∇G · ∇u · ∇G, L2 = −
∫

b · ∇jΔG, L3 = −‖∇G‖2
L2 , L4 = −

∫

wΔG.

By the Hölder inequality, Gagliardo–Nirenberg inequality and Young inequality, we obtain

|L1| ≤ ‖∇u‖L2‖∇G‖2
L4

≤ C‖Ω‖L2‖∇G‖L2‖ΔG‖L2

≤ 1
4
‖ΔG‖2

L2 + C‖Ω‖2
L2‖∇G‖2

L2 .

Again applying the Hölder inequality and Young inequality, we yield

|L2| ≤ ‖b‖L∞‖∇j‖L2‖ΔG‖L2

≤ 1
4
‖ΔG‖2

L2 + C‖b‖2
L∞‖∇j‖2

L2 ,
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and

|L4| ≤ 1
4
‖ΔG‖2

L2 + ‖w‖2
L2 .

Inserting these estimates into (2.17), we have

d
dt

‖∇G(t)‖2
L2 + ‖ΔG‖2

L2 ≤ C‖Ω‖2
L2‖∇G‖2

L2 + C‖b‖2
L∞‖∇j‖2

L2 + C‖w‖2
L2 .

Then Gronwall’s inequality, (2.1), (2.7) and (2.15) lead to

‖∇G(t)‖2
L2 +

t∫

0

‖ΔG(s)‖2
L2ds ≤ C.

Therefore,
t∫

0

‖G(s)‖L∞ds ≤ C

t∫

0

(‖G(s)‖L2 + ‖ΔG(s)‖L2)ds

≤ C

t∫

0

(1 + ‖G(s)‖2
L2 + ‖ΔG(s)‖2

L2)ds

≤ C. (2.18)

Letting p → ∞ in (2.13), together with (2.18), then Gronwall’s inequality implies

‖w(t)‖L∞ ≤ C.

By the definition of G, we obtain
t∫

0

‖Ω(s)‖L∞ds ≤
t∫

0

(‖G(s)‖L∞ + ‖w(s)‖L∞)ds ≤ C.

Thus, the proof of Proposition 2.5 is completed.
�

With Propositions 2.1–2.2 and 2.4 –2.5 at our disposal, now we start to get the Hs-estimate to (u,w, b).
As preparation we first recall the following calculus inequalities (see, e.g., [15,16]) involving fractional
differential operators Λs with s > 0 and

Λ̂sf(ξ) = |ξ|sf̂(ξ), f̂(ξ) =
∫

R2

e−ix·ξf(x)dx.

Lemma 2.6. Let s > 0. Let 1 < r < ∞ and 1
r = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
with q1, p2 ∈ (1,∞) and p1, q2 ∈ [1,∞].

Then,

‖Λs(fg)‖Lr ≤ C (‖f‖Lp1 ‖Λsg‖Lq1 + ‖Λsf‖Lp2 ‖g‖Lq2 ) ,

‖[Λs, f ]g‖Lr ≤ C
(‖∇f‖Lp1 ‖Λs−1g‖Lq1 + ‖Λsf‖Lp2 ‖g‖Lq2

)
,

where [Λs, f ]g = Λs(fg) − fΛsg and C is constant depending on the indices s, r, p1, q1, p2 and q2.

Proposition 2.7. Assume that (u0, w0, b0) satisfies the conditions stated in Theorem 1.1. Let (u,w, b) be
the corresponding solution of the 2D magneto-micropolar equations (1.4). Then for any 0 < t < T ,

‖u(t)‖Hs + ‖w(t)‖Hs + ‖b(t)‖Hs ≤ C. (2.19)
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Proof. Applying Λs to the first four equations of (1.4), taking the L2-inner product with Λsu, Λsw, Λsb1

and Λsb2, respectively, and adding them together, then we obtain

1
2

d
dt

(‖Λsu(t)‖2
L2 + ‖Λsw(t)‖2

L2 + ‖Λsb(t)‖2
L2) + ‖Λs∇u‖2

L2 + ‖Λs∂yb1‖2
L2 + ‖Λs∂xb2‖2

L2

≤ −
∫

Λs(u · ∇u) · Λsu +
∫

Λs(b · ∇b) · Λsu +
∫

Λs∇ × w · Λsu −
∫

Λs(u · ∇w)Λsw

+
∫

Λs∇ × uΛsw −
∫

Λs(u · ∇b) · Λsb +
∫

Λs(b · ∇u) · Λsb

= I1 + I2 + I3 + I4 + I5 + I6 + I7.

By divergence-free condition ∇ · u = 0 and Lemma 2.6, we obtain

I1 =
∫ 2∑

i,j=1

(Λs(uiuj) · Λs∂iuj)

≤ C‖u‖L∞‖Λsu‖L2‖Λs∇u‖L2

≤ 1
8
‖Λs∇u‖2

L2 + C‖u‖2
L∞‖Λsu‖2

L2 .

Similarly,

I2 ≤ 1
8
‖Λs∇u‖2

L2 + C‖b‖2
L∞‖Λsb‖2

L2 .

By Young’s inequality, we have

I3 + I5 = 2
∫

Λs∇ × uΛsw

≤ 1
8
‖Λs∇u‖2

L2 + C‖Λsw‖2
L2 .

Again applying ∇ · u = 0 and Lemma 2.6, we yield

I4 = −
∫

[Λs, u · ∇]wΛsw

≤ C(‖Λs∇u‖L2‖w‖L∞ + ‖∇u‖L∞‖Λsw‖L2)‖Λsw‖L2

≤ 1
8
‖Λs∇u‖2

L2 + C(‖w‖2
L∞ + ‖∇u‖L∞)‖Λsw‖2

L2 .

Similarly,

I6 ≤ 1
8
‖Λs∇u‖2

L2 + C(‖b‖2
L∞ + ‖∇u‖L∞)‖Λsb‖2

L2 .

Finally,

I7 ≤ C(‖b‖L∞‖Λs∇u‖L2 + ‖∇u‖L∞‖Λsb‖L2)‖Λsb‖L2

≤ 1
8
‖Λs∇u‖2

L2 + C(‖b‖2
L∞ + ‖∇u‖L∞)‖Λsb‖2

L2 .
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Combining the above estimates, and note that ‖f‖L∞ ≤ C‖f‖ 1
2
L2‖∇f‖ 1

2
L∞ , then (2.1), (2.7) and (2.16)

lead to

d
dt

(‖Λsu(t)‖2
L2 + ‖Λsw(t)‖2

L2 + ‖Λsb(t)‖2
L2) + ‖Λs∇u‖2

L2 + ‖Λs∂yb1‖2
L2 + ‖Λs∂xb2‖2

L2

≤ C(1 + ‖∇u‖L∞ + ‖u‖2
L∞ + ‖w‖2

L∞ + ‖b‖2
L∞)(‖Λsu‖2

L2 + ‖Λsw‖2
L2 + ‖Λsb‖2

L2)

≤ C(1 + ‖∇u‖L∞ + ‖∇b‖L∞)(‖Λsu‖2
L2 + ‖Λsw‖2

L2 + ‖Λsb‖2
L2)

≤ C(1 + ‖Ω‖L∞ + ‖∇b‖L∞) log(e + ‖u‖Hs)(‖Λsu‖2
L2 + ‖Λsw‖2

L2 + ‖Λsb‖2
L2), (2.20)

where we have used the logarithmic inequality

‖∇u‖L∞ ≤ C(1 + ‖Ω‖L∞ log(e + ‖u‖Hs)), s > 2

of [17] in the last inequality.
Adding (2.20) and (2.3) together, then Gronwall’s inequality, (2.1) and (2.16) yield

‖u(t)‖2
Hs + ‖w(t)‖2

Hs + ‖b(t)‖2
Hs +

t∫

0

(‖u(τ)‖2
Hs+1 + ‖∂yb1(τ)‖2

Hs + ‖∂xb2(τ)‖2
Hs)dτ ≤ C.

�

Finally, with the global bounds in the previous propositions at our disposal, we are ready to prove
Theorem 1.1.

Proof of Theorem 1.1 We will use Friedrichs method. Let N > 0 be an integer and

ĴNf(ξ) = χB(0,N)(ξ)f̂(ξ),

where χB(0,N)(ξ) =
{

1, if ξ ∈ B(0, N),
0, if ξ /∈ B(0, N), B(0, N) = {ξ ∈ R

2, |ξ| ≤ N} and f̂ is the Fourier transform of

f . Set

L2
N = {f ∈ L2(R2)| suppf̂ ⊂ B(0, N)}.

Let P denote the Leray projection onto divergence-free vector fields. We consider the following approxi-
mate system in the space L2

N :
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu
N + PJN (PJNuN · ∇PJNuN ) = ΔPJ2

NuN + PJN (JNbN · ∇JNbN ) + PJN (∇ × JNwN ),
∂tw

N + JN (PJNuN · ∇JNwN ) + 2J2
NwN = JN (∇ × PJNuN ),

∂tb
N
1 + JN (PJNuN · ∇JNbN

1 ) = ΔJ2
N∂yybN

1 + JN (JNbN · ∇PJNuN
1 ),

∂tb
N
2 + JN (PJNuN · ∇JNbN

2 ) = ΔJ2
N∂xxbN

2 + JN (JNbN · ∇PJNuN
2 ),

uN (x, 0) = JNu0, ωN = JNω0, bN (x, 0) = JNb0.

(2.21)

The local existence and uniqueness results to system (2.21) can be obtained by the method similar to
Chapter 3 in [22]. Then following the proofs of Propositions 2.1, 2.2, 2.4, 2.5 and 2.7 , we can establish
the uniform global bounds, for any t > 0,

‖uN (t)‖2
Hs + ‖wN (t)‖2

Hs + ‖bN (t)‖2
Hs ≤ C. (2.22)

Then standard compactness argument allows us to obtain the global existence and uniqueness of the
global smooth solution (u,w, b) to system (1.4). Thus, the proof of Theorem 1.1 is completed.

�
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3. The proof of Theorem 1.4

This section is devoted to the proof of Theorem 1.4. Since the proof is slightly long, we divide it into five
propositions for clarity. The strategy is as follows: as preparations we first establish the H1 estimates for
(u,w, b) in Propositions 3.1 and 3.2; secondly, we prove the decay estimates ‖∇u(t)‖L2 + ‖∇w(t)‖L2 +
‖∇b(t)‖L2 ≤ C(1 + t)− 1

2 , ‖u(t)‖L2 + ‖w(t)‖L2 ≤ C(1 + t)− 2
3 , ‖b(t)‖L2 ≤ C(1 + t)− 1

2 and ‖∇b(t)‖L2 ≤
C(1+t)−1 in Propositions 3.3 and 3.5; finally, we give the improved decay estimates ‖u(t)‖L2 +‖w(t)‖L2 ≤
C(1 + t)− 4

3 in Proposition 3.6, and thus, the proof of Theorem 1.4 is completed.
We first state and prove the global L2-bound.

Proposition 3.1. Let the assumptions stated in Theorem 1.4 hold. Then for all t > 0, (u,w, b) obey the
following global L2-bound,

‖u(t)‖2
L2 + ‖w(t)‖2

L2 + ‖b(t)‖2
L2 + 2ε

t∫

0

‖u(τ)‖2
L2dτ + 8χ

t∫

0

‖w(τ)‖2
L2dτ

+ 2
(

κ − 4χ2

μ + χ − ε

) t∫

0

‖∇w(τ)‖2
L2dτ + 2ν

t∫

0

‖∇b(τ)‖2
L2dτ

≤ ‖u0‖2
L2 + ‖w0‖2

L2 + ‖b0‖2
L2 , (3.1)

where ε > 0 is chosen sufficiently small such that κ > 4χ2

μ+χ−ε .

Proof. Taking the L2 inner product of (1.5) with u, w and b, respectively, and then adding the resulting
equations together, we yield

1
2

d
dt

(‖u(t)‖2
L2 + ‖w(t)‖2

L2 + ‖b(t)‖2
L2) + (μ + χ)‖u‖2

L2 + 4χ‖w‖2
L2 + κ‖∇w‖2

L2 + ν‖∇b‖2
L2

= 4χ

∫

∇ × w · u, (3.2)

Applying Young’s inequality, we obtain
∫

∇ × w · u ≤ μ + χ − ε

4χ
‖u‖2

L2 +
χ

μ + χ − ε
‖∇w‖2

L2 .

Inserting this bound into (3.2) and then integrating in time, we yield the desired bound. �
Now we turn to do the H1 estimate of (u,w, b). Set Ω = ∇ × u and j = ∇ × b, then it follows from

(1.5) that

∂tΩ + u · ∇Ω + (μ + χ)Ω = b · ∇j − 2χΔw, (3.3)
∂t∇w + ∇(u · ∇w) + 4χ∇w = κΔ∇w + 2χ∇Ω, (3.4)

∂tj + u · ∇j = νΔj + b · ∇Ω + 2∂xb1(∂xu2 + ∂yu1) − 2∂xu1(∂xb2 + ∂yb1). (3.5)

Proposition 3.2. Let the assumptions stated in Theorem 1.4 hold. Then for any t > 0,

‖Ω(t)‖2
L2 + ‖∇w(t)‖2

L2 + ‖j(t)‖2
L2 + 2ε

t∫

0

‖Ω(τ)‖2
L2dτ

+ 2
(

κ − 4χ2

μ + χ − ε
− ε

) t∫

0

‖Δw(τ)‖2
L2dτ + ν

t∫

0

‖∇j(τ)‖2
L2dτ

≤ (‖Ω0‖2
L2 + ‖∇w0‖2

L2 + ‖j0‖2
L2)e

C
t∫

0
(‖∇w(τ)‖2

L2+‖j(τ)‖2
L2 )dτ

, (3.6)
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where ε > 0 is chosen sufficiently small such that κ > 4χ2

μ+χ−ε + ε.

Proof. Taking the L2 inner product of (3.3), (3.4) and (3.5) with Ω, ∇w and j, respectively, and adding
them together, we obtain

1
2

d
dt

(‖Ω(t)‖2
L2 + ‖∇w(t)‖2

L2 + ‖j(t)‖2
L2) + (μ + χ)‖Ω‖2

L2 + 4χ‖∇w‖2
L2

+ κ‖Δw‖2
L2 + ν‖∇j‖2

L2

= −4χ

∫

ΩΔw −
∫

∇w · ∇u · ∇w + 2
∫

∂xb1(∂xu2 + ∂yu1)j − 2
∫

∂xu1(∂xb2 + ∂yb1)j

= L1 + L2 + L3 + L4. (3.7)

By Young’s inequality, we have

|L1| ≤ (μ + χ − ε)‖Ω‖2
L2 +

4χ2

μ + χ − ε
‖Δw‖2

L2 .

Using the Hölder inequality, the Young inequality and the Gagliardo–Nirenberg inequality, we obtain

|L2| ≤ ‖∇u‖L2‖∇w‖2
L4

≤ C‖Ω‖L2‖∇w‖L2‖Δw‖L2

≤ ε‖Δw‖2
L2 + C‖∇w‖2

L2‖Ω‖2
L2 .

Similarly,

|L3 + L4| ≤ ν

2
‖∇j‖2

L2 + C‖j‖2
L2‖Ω‖2

L2 .

Inserting the estimates above to (3.7), we have

1
2

d
dt

(‖Ω(t)‖2
L2 + ‖∇w(t)‖2

L2 + ‖j(t)‖2
L2) + ε‖Ω‖2

L2 +
(

κ − 4χ2

μ + χ − ε
− ε

)

‖Δw‖2
L2

+
ν

2
‖∇j‖2

L2

≤ C(‖∇w‖2
L2 + ‖j‖2

L2)‖Ω‖2
L2 .

Then Gronwall’s inequality yields the desired bound. �
With Propositions 3.1 and 3.2 at our disposal, we now start to prove our decay estimates.

Proposition 3.3. Let the assumptions stated in Theorem 1.4 hold. Then

‖∇u(t)‖L2 + ‖∇w(t)‖L2 + ‖∇b(t)‖L2 ≤ C(1 + t)− 1
2 . (3.8)

Proof. By (3.1) and (3.6), note that ‖j‖L2 = ‖∇b‖L2 and ‖Ω‖L2 = ‖∇u‖L2 , we have
∞∫

0

‖∇w(τ)‖2
L2dτ +

∞∫

0

‖j(τ)‖2
L2dτ ≤ C(‖u0‖2

L2 + ‖w0‖2
L2 + ‖b0‖2

L2), (3.9)

∞∫

0

‖∇u(τ)‖2
L2dτ =

∞∫

0

‖Ω(τ)‖2
L2dτ ≤ (‖Ω0‖2

L2 + ‖∇w0‖2
L2 + ‖j0‖2

L2)eC(‖u0‖2
L2+‖w0‖2

L2+‖b0‖2
L2 ). (3.10)

Using (3.6) and (3.9), for 0 < s < t, we have

‖Ω(t)‖2
L2 + ‖∇w(t)‖2

L2 + ‖j(t)‖2
L2

≤ (‖Ω(s)‖2
L2 + ‖∇w(s)‖2

L2 + ‖j(s)‖2
L2)e

C
t∫

s

(‖∇w(τ)‖2
L2+‖j(τ)‖2

L2 )dτ

≤ (‖Ω(s)‖2
L2 + ‖∇w(s)‖2

L2 + ‖j(s)‖2
L2)eC(‖u0‖2

L2+‖w0‖2
L2+‖b0‖2

L2 ). (3.11)
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Integrating (3.11) in ( t
2 , t) with respect to s, together with (3.9)–(3.10), we obtain

t(‖Ω(t)‖2
L2 + ‖∇w(t)‖2

L2 + ‖j(t)‖2
L2)

≤ 2eC(‖u0‖2
L2+‖w0‖2

L2+‖b0‖2
L2 )

t∫

t
2

(‖Ω(s)‖2
L2 + ‖∇w(s)‖2

L2 + ‖j(s)‖2
L2)ds

≤ C.

Therefore, for t ≥ 1, we have

‖Ω(t)‖2
L2 + ‖∇w(t)‖2

L2 + ‖j(t)‖2
L2 ≤ Ct−1 ≤ C(1 + t)−1. (3.12)

For 0 < t < 1, it follows from (3.6) and (3.9) that

‖Ω(t)‖2
L2 + ‖∇w(t)‖2

L2 + ‖j(t)‖2
L2 ≤ C ≤ C(1 + t)−1. (3.13)

Then, (3.12) and (3.13) yield (3.8).
�

To give the decay estimates for (u,w, b) and the improved decay estimate for ∇b, as preparation we
recall the following estimate for heat operator (see, e.g., [23,30]).

Lemma 3.4. Let m ≥ 0, a > 0 and 1 ≤ p ≤ q ≤ ∞. Then for any t > 0,

‖∇meaΔtf‖Lq(R2) ≤ Ct−
m
2 −( 1

p − 1
q )‖f‖Lp(R2), (3.14)

where

eaΔtf(x) = (4πat)−1

∫

R2

e− |x−y|2
4at f(y)dy.

Now we can start to establish the desired decay estimates.

Proposition 3.5. Let the assumptions stated in Theorem 1.4 hold. Then

‖u(t)‖L2 + ‖w(t)‖L2 ≤ C(1 + t)− 2
3 , (3.15)

‖b(t)‖L2 ≤ C(1 + t)− 1
2 , ‖∇b(t)‖L2 ≤ C(1 + t)−1. (3.16)

Proof. Taking the L2 inner product to the first and second equations of (1.5) with u and w and then
adding the resulting equations together, we obtain

1
2

d
dt

(‖u(t)‖2
L2 + ‖w(t)‖2

L2) + (μ + χ)‖u‖2
L2 + 4χ‖w‖2

L2 + κ‖∇w‖2
L2

=
∫

b · ∇b · u + 4χ

∫

∇ × w · u

≤ ‖b‖L4‖∇b‖L2‖u‖L4 + (μ + χ − ε)‖u‖2
L2 +

4χ2

μ + χ − ε
‖∇w‖2

L2

≤ C‖b‖ 1
2
L2‖∇b‖ 3

2
L2‖u‖ 1

2
L2‖∇u‖ 1

2
L2 + (μ + χ − ε)‖u‖2

L2 +
4χ2

μ + χ − ε
‖∇w‖2

L2 , (3.17)

where ε > 0 is chosen sufficiently small such that κ > 4χ2

μ+χ−ε . Set

c = min{2ε, 8χ}.
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Then integrating (3.17) in time, we yield

‖u(t)‖2
L2 + ‖w(t)‖2

L2

≤ e−ct(‖u0‖2
L2 + ‖w0‖2

L2) + C

t∫

0

e−c(t−s)‖b(s)‖ 1
2
L2‖∇b(s)‖ 3

2
L2‖u(s)‖ 1

2
L2‖∇u(s)‖ 1

2
L2ds

= e−ct(‖u0‖2
L2 + ‖w0‖2

L2) + C(A1 + A2), (3.18)

where

A1 =

t
2∫

0

e−c(t−s)‖b(s)‖ 1
2
L2‖∇b(s)‖ 3

2
L2‖u(s)‖ 1

2
L2‖∇u(s)‖ 1

2
L2ds,

A2 =

t∫

t
2

e−c(t−s)‖b(s)‖ 1
2
L2‖∇b(s)‖ 3

2
L2‖u(s)‖ 1

2
L2‖∇u(s)‖ 1

2
L2ds.

By Hölder’s inequality and (3.9)–(3.10), we get

A1 ≤ Ce− ct
2

t
2∫

0

‖∇b(s)‖ 3
2
L2‖∇u(s)‖ 1

2
L2ds

≤ Ce− ct
2

⎛

⎜
⎝

t
2∫

0

‖∇b(s)‖2
L2ds

⎞

⎟
⎠

3
4

⎛

⎜
⎝

t
2∫

0

‖∇u(s)‖2
L2ds

⎞

⎟
⎠

1
4

≤ Ce− ct
2 . (3.19)

Set

M(t) = sup
0≤s≤t

{(1 + s)
1
2 (‖∇u(s)‖L2 + ‖∇w(s)‖L2)}.

Then

A2 ≤ CM2(t)

t∫

t
2

e−c(t−s)(1 + s)− 4
3 ((1 + s)

2
3 ‖u(s)‖L2)

1
2 ds. (3.20)

Set

N (t) = sup
0≤s≤t

{(1 + s)
2
3 (‖u(s)‖L2 + ‖w(s)‖L2)}.

Inserting (3.19)–(3.20) into (3.18), we obtain

N 2(t) ≤ C(1 + t)
4
3 e− ct

2 + CM2(t)N 1
2 (t).

Then Young’s inequality and M(t) ≤ C lead to the desired result.
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To get the decay estimate of b, we write the third equation of (1.5) into integral form,

b(t) = eνΔtb0 +

t∫

0

eνΔ(t−s)(b · ∇u − u · ∇b)(s)ds

= eνΔtb0 +

t
2∫

0

∇eνΔ(t−s)(b ⊗ u − u ⊗ b)(s)ds

+

t∫

t
2

∇eνΔ(t−s)(b ⊗ u − u ⊗ b)(s)ds. (3.21)

where f ⊗ g = (figj) defines the tensor product. By Lemma 3.4, for 0 < t < 1, we have

‖eνΔtb0‖L2 ≤ C‖b0‖L2 .

and for t ≥ 1,

‖eνΔtb0‖L2 ≤ Ct−
1
2 ‖b0‖L1 .

Therefore, for any t > 0,

‖eνΔtb0‖L2 ≤ C(1 + t)− 1
2 . (3.22)

Again applying Lemma 3.4, together with (3.15), we obtain for t ≥ 1,

∥
∥
∥
∥
∥
∥
∥

t
2∫

0

∇eνΔ(t−s)(b ⊗ u − u ⊗ b)(s)ds

∥
∥
∥
∥
∥
∥
∥

L2

≤ C

t
2∫

0

(t − s)−1‖(b ⊗ u − u ⊗ b)(s)‖L1ds

≤ C

t
2∫

0

(t − s)−1‖u(s)‖L2‖b(s)‖L2ds

≤ C

t
2∫

0

(t − s)−1(1 + s)− 2
3 ds

≤ C(1 + t)− 2
3 . (3.23)
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Using Lemma 3.4 and the Gagliardo–Nirenberg inequality, together with (3.8) and (3.15), for any t > 0,
we yield

∥
∥
∥
∥
∥
∥
∥

t∫

t
2

∇eνΔ(t−s)(b ⊗ u − u ⊗ b)(s)ds

∥
∥
∥
∥
∥
∥
∥

L2

≤ C

t∫

t
2

(t − s)− 1
p ‖(b ⊗ u − u ⊗ b)(s)‖Lpds

≤ C

t∫

t
2

(t − s)− 1
p ‖u(s)‖L2p‖b(s)‖L2pds

≤ C

t∫

t
2

(t − s)− 1
p ‖u(s)‖

1
p

L2‖∇u(s)‖1− 1
p

L2 ‖b(s)‖
1
p

L2‖∇b(s)‖1− 1
p

L2 ds

≤ CM2− 2
p (t)

t∫

t
2

(t − s)− 1
p (1 + s)− 2

3p −1+ 1
p ds

≤ C(1 + t)− 2
3p (3.24)

with 1 < p ≤ 4
3 . Taking the L2-norm for space to (3.21), together with (3.22)–(3.24), we obtain for any

t ≥ 1,

‖b(t)‖L2 ≤ C(1 + t)− 1
2 + C(1 + t)− 2

3 + C(1 + t)− 2
3p ≤ C(1 + t)− 1

2 . (3.25)

Note that for 0 < t < 1, (3.1) implies

‖b(t)‖L2 ≤ C,

then we immediately obtain the first decay estimate in (3.16).
Now we turn to the decay estimate of ∇b. Applying ∇ to (3.21), we yield

∇b(t) = ∇eνΔtb0 +

t
2∫

0

∇2eνΔ(t−s)(b ⊗ u − u ⊗ b)(s)ds

+

t∫

t
2

∇2eνΔ(t−s)(b ⊗ u − u ⊗ b)(s)ds. (3.26)

By Lemma 3.4, for 0 < t < 1, we have

‖∇eνΔtb0‖L2 ≤ C‖∇b0‖L2 .

and for t ≥ 1,

‖∇eνΔtb0‖L2 ≤ Ct−1‖b0‖L1 .

Therefore, for any t > 0,

‖∇eνΔtb0‖L2 ≤ C(1 + t)−1. (3.27)
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Using Lemma 3.4, together with (3.15) and (3.25), we have for t ≥ 1,
∥
∥
∥
∥
∥
∥
∥

t
2∫

0

∇2eνΔ(t−s)(b ⊗ u − u ⊗ b)(s)ds

∥
∥
∥
∥
∥
∥
∥

L2

≤ C

t
2∫

0

(t − s)− 3
2 ‖(b ⊗ u − u ⊗ b)(s)‖L1ds

≤ C

t
2∫

0

(t − s)− 3
2 ‖u(s)‖L2‖b(s)‖L2ds

≤ C

t
2∫

0

(t − s)− 3
2 (1 + s)− 7

6 ds

≤ C(1 + t)− 3
2 . (3.28)

Applying Lemma 3.4 and Lemma 2.6, together with (3.8), (3.15) and (3.25), for any t > 0, we yield
∥
∥
∥
∥
∥
∥
∥

t∫

t
2

∇2eνΔ(t−s)(b ⊗ u − u ⊗ b)(s)ds

∥
∥
∥
∥
∥
∥
∥

L2

=

∥
∥
∥
∥
∥
∥
∥

t∫

t
2

Λ−α∇2eνΔ(t−s)Λα(b ⊗ u − u ⊗ b)(s)ds

∥
∥
∥
∥
∥
∥
∥

L2

≤ C

t∫

t
2

(t − s)− 2−α
2 ‖Λα(b ⊗ u − u ⊗ b)(s)‖L2ds

≤ C

t∫

t
2

(t − s)− 2−α
2 (‖Λαb(s)‖L4‖u(s)‖L4 + ‖Λαu(s)‖L4‖b(s)‖L4)ds

≤ C

t∫

t
2

(t − s)− 2−α
2 (‖b(s)‖ 1

2−α

L2 ‖∇b(s)‖ 1
2+α

L2 ‖u(s)‖ 1
2
L2‖∇u(s)‖ 1

2
L2

+ ‖u(s)‖ 1
2−α

L2 ‖∇u(s)‖ 1
2+α

L2 ‖b(s)‖ 1
2
L2‖∇b(s)‖ 1

2
L2)ds

≤ CM1+α(t)

t∫

t
2

(t − s)− 2−α
2

(
(1 + s)− 13

12 + (1 + s)− 13
12− α

6

)
ds

≤ C(1 + t)− 13
12+ α

2 , (3.29)

where 0 < α ≤ 1
6 . Taking the L2-norm for space to (3.26), together with (3.27)–(3.29), for t ≥ 1, we

obtain

‖∇b‖L2 ≤ C(1 + t)−1 + C(1 + t)− 3
2 + C(1 + t)− 13

12+ α
2 ≤ C(1 + t)−1. (3.30)
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Note that for 0 < t < 1, (3.6) implies

‖∇b(t)‖L2 ≤ C,

we thus obtain the second decay estimate in (3.16).
�

Finally, with Propositions 3.3 and 3.5 at our disposal, we can obtain the improved L2 decay for (u,w).

Proposition 3.6. Let the assumptions stated in Theorem 1.4 hold. Then

‖u(t)‖L2 + ‖w(t)‖L2 ≤ C(1 + t)− 4
3 . (3.31)

Proof. By Young’s inequality, we have

C‖b‖ 1
2
L2‖∇b‖ 3

2
L2‖u‖ 1

2
L2‖∇u‖ 1

2
L2 ≤ ε

2
‖u‖2

L2 + C‖b‖ 2
3
L2‖∇b‖2

L2‖∇u‖ 2
3
L2 .

Inserting it into (3.17) leads to

1
2

d
dt

(‖u(t)‖2
L2 + ‖w(t)‖2

L2) +
ε

2
‖u‖2

L2 + 4χ‖w‖2
L2

≤ C‖b‖ 2
3
L2‖∇b‖2

L2‖∇u‖ 2
3
L2

≤ C(1 + t)− 8
3 . (3.32)

Set c1 = min{ε, 8χ}. Integrating (3.32) in time, we obtain

‖u(t)‖2
L2 + ‖w(t)‖2

L2

≤ e−c1t(‖u0‖2
L2 + ‖w0‖2

L2) + C

t∫

0

e−c1(t−s)(1 + s)− 8
3 ds

= e−c1t(‖u0‖2
L2 + ‖w0‖2

L2) + C

t
2∫

0

e−c1(t−s)(1 + s)− 8
3 ds + C

t∫

t
2

e−c1(t−s)(1 + s)− 8
3 ds

≤ Ce−c1t + Ce− c1t
2 + C(1 + t)− 8

3

≤ C(1 + t)− 8
3 , (3.33)

which immediately implies the desired bound. Thus, the proof of Proposition 3.6 is completed.
�
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[24] Navier, C. L.: Mémoire sur les lois du mouvement des fluides, Mém. Ac. R. Sc. de l’Institut de France 6 (1822), 389–440
[25] Ortega-Torres, E., Rojas-Medar, M.: Magneto-micropolar fluid motion: global existence of strong solutions. Abstr. Appl.

Anal. 4, 109–125 (1999)
[26] Priest, E., Fores, T.: Magnetic Reconnection, MHD Theory and Application. Cambridge University Press, Cambridge

(2000)
[27] Regmi, D., Wu, J.: Global regularity for the 2D magneto-micropolar equations with partial dissipation. J. Math. Study

49, 169–194 (2016)
[28] Rojas-Medar, M.: Magneto-micropolar fluid motion: existence and uniqueness of strong solution. Math. Nachr. 188,

301–319 (1997)
[29] Rojas-Medar, M., Boldrini, J.: Magneto-micropolar fluid motion: existence of weak solutions. Rev. Mat. Complut. 11,

443–460 (1998)
[30] Schonbek, M., Schonbek, T.: Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discrete

Contin. Dyn. Syst. 13, 1277–1304 (2005)

[31] Shang, H., Wu, J.: Global regularity for 2D fractional magneto-micropolar equations, submitted for publication



85 Page 22 of 22 H. Shang and C. Gu ZAMP

[32] Shang, H., Zhao, J.: Global regularity for 2D magneto-micropolar equations with only micro-rotational velocity dissi-
pation and magnetic diffusion. Nonlinear Anal. 150, 194–209 (2017)

[33] Stokes, G.: On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic
solids. Trans. Camb. Philos. Soc. 8, 287–319 (1845)

[34] Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis. North-Holland, Amsterdam (1977)
[35] Xue, L.: Wellposedness and zero microrotation viscosity limit of the 2D micropolar fluid equations. Math. Methods

Appl. Sci. 34, 1760–1777 (2011)
[36] Yamazaki, K.: Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity.

Discrete Contin. Dyn. Syst. 35, 2193–2207 (2015)

Haifeng Shang and Chuanwei Gu
School of Mathematics and Information Science
Henan Polytechnic University
Jiaozuo 454000 Henan
People’s Republic of China
e-mail: hfshang@163.com

Chuanwei Gu
e-mail: 947519901@qq.com

(Received: February 24, 2019)


	Global regularity and decay estimates for 2D magneto-micropolar equations with partial dissipation
	Abstract
	1. Introduction
	2. The proof of Theorem 1.1
	3. The proof of Theorem 1.4
	Acknowledgements
	References




