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Abstract. This paper studies the existence, nonexistence and uniqueness of positive solutions for a class of quasilinear equa-
tions. We also analyze the behavior of these solutions with respect to two parameters κ and λ that appear in the equation.

The proof of our main results relies on bifurcation techniques, the sub- and supersolution method and a construction of an
appropriate large solution.
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1. Introduction

The main goal of this paper is to study the existence, nonexistence, uniqueness and asymptotic behavior
of positive solutions for the quasilinear elliptic problem{−Δu − κΔ(u2)u = λu − b(x)up in Ω,

u = 0 on ∂Ω,
(Pκ)

where Ω ⊂ R
N (N ≥ 1) is a smooth bounded domain, p > 1 is a constant, κ and λ are positive

parameters, and the weight function b(x) satisfies certain regularity conditions.
Problem (Pκ) with κ = 0 becomes the classical semilinear elliptic problem{−Δu = λu − b(x)up in Ω,

u = 0 on ∂Ω (P0)

whose positive solutions are equilibria or stationary solutions of the following reaction diffusion problem
of logistic type ⎧⎨

⎩
ut − Δu = λu − b(x)up in Ω, t > 0
u = 0 on ∂Ω, t > 0
u(0) = u0 ≥ 0,

see, for instance, [8,27] and references therein. We mention that problem (P0) has been subject of intense
study by many authors. If λ ≤ λ1 (λ1 is the principal eigenvalue of (−Δ,H1

0 (Ω)), then problem (P0) can
only have the trivial solution, see [2]. In [4], the authors prove that if λ > λ1, then the problem has two
nontrivial solutions of constant sign (one positive and the other negative). Soon thereafter, the results
are improved in [34], where the author proved that if λ > λ2, then problem (P0) has three nontrivial
solutions. Subsequently, in [3], the authors slightly improved the work [34] and they also presented an
approach based on Morse theory.

The study of quasilinear equations involving the operator Lκu := −Δu − κΔ(u2)u arises in various
branches of mathematical physics. It is well known that nonlinear Schrödinger equations of the form

i∂tψ = −Δψ + V (x)ψ − κΔ(|ψ|2)ψ − h(|ψ|2)ψ, (1)
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where ψ : R × Ω → C, V = V (x) is a given potential, κ is a real constant and h is a real function, have
been studied in relation with some mathematical models in physics (see for instance [33]). It was shown
that a system describing the self-trapped electron on a lattice can be reduced in the continuum limit to
(1) and numerical results on this equation are obtained in [11]. In [30], motivated by the nanotubes and
fullerene-related structures, it was proposed and shown that a discrete system describing the interaction
of a 2-dimensional hexagonal lattice with an excitation caused by an excess electron can be reduced to
(1) and numerical results have been done on domains of disk type, cylinder type and sphere type.

Setting ψ(t, x) = exp(−iF t)u(x), F ∈ R, into the equation (1), we obtain the stationary equation

− Δu − κΔ(u2)u = g(u) − V (x)u in Ω, (2)

where we have renamed V (x) − F to be V (x) and g(u) = h(u2)u.
When Ω = R

N , the quasilinear equation (2) has received special attention in the past several years,
see, for instance, [14,16,24,33] and references therein. In these papers, the authors obtain the existence
by performing a change of variable, which transforms the quasilinear equation into a new semilinear
equation, and they used variational approach. Here, we apply bifurcation techniques and the sub- and
supersolution method in order to analyze (Pκ).

In addition to the studies involving the operator Lκu, another important motivation to study problem
(Pκ) is the fact that many papers have been devoted to study quasilinear and semilinear equations
involving logistic terms, which appear naturally in several contexts. For instance, when κ = 0, problem
(Pκ) becomes the classical logistic equation with linear diffusion and refuge, where u(x) describes the
density of the individuals of species at the location x ∈ Ω and the nonlinearity g(x, u) := λu − b(x)up

is the well-known logistic reaction term. There are several papers available in the literature dedicated to
the analysis of (P0). See, for instance, the pioneering paper [19] which deals with the logistic equation in
a more general setting. We also refer to [12,27,31,32] and references therein.

It is worth mentioning that problem (Pκ) can be seen as a quasilinear perturbation of the classical
equation (P0), specially when κ � 0. As we shall see in Theorems 1.1 and 1.3, the presence of this
quasilinear term breaks the blowup (5) that occurs with the positive solutions of (P0). Moreover, when
κ ↓ 0, the positive solutions of (Pκ) tend to the positive solutions of (P0).

In order to study the positive solutions of problem (Pκ), we will assume the following assumptions on
b(x):

(b0) The function b : Ω → [0,∞) belongs to Cα(Ω) for some 0 < α < 1;
(b1) The open set Ω+ := {x ∈ Ω; b(x) > 0} satisfies Ω+ ⊂ Ω and there is a finite number of smooth

components Ωj
+, j = 1, . . . n, such that Ωj

+ ∩ Ωi
+ = ∅ if i �= j. Moreover, the open set

Ωb,0 := Ω\Ω+

is connected. It should be noted that ∂Ω+ ⊂ Ω and ∂Ωb,0 = ∂Ω ∪ ∂Ω+.
Before stating our main results, let us recall some notations. Throughout this paper, for any function

V ∈ L∞(Ω) called potential, we will denote by λ1[−Δ + V ] the principal eigenvalue of the operator
−Δ+V in Ω under homogeneous Dirichlet boundary conditions. By simplicity, we also use the convention
λ1 := λ1[−Δ]. Moreover, we will denote by λb,0 the principal eigenvalue of −Δ in Ωb,0 under homogeneous
Dirichlet boundary conditions, when Ωb,0 �= ∅ and λb,0 = ∞ when Ωb,0 = ∅ (i. e., when b(x) > 0, for all
x ∈ Ω).

We are now in a position to state our first main result that deals with existence, nonexistence, unique-
ness and asymptotic behavior of positive solutions of (Pκ) with respect to λ.

Theorem 1.1. Let p > 1, κ > 0 and assume (b0). Then, problem (Pκ) has a positive solution if and only
if λ > λ1. Moreover, if p ≥ 3 or b(x) ≡ b > 0 is a constant, it is unique if it exists and it will be denoted
by Ψλ,κ. In addition, the map λ ∈ (λ1,+∞) �→ Ψλ,κ ∈ C1

0(Ω) is increasing, in the sense that Ψλ,κ > Ψμ,κ

if λ > μ > λ1. Furthermore,
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lim
λ↓λ1

‖Ψλ,κ‖∞ = 0 (3)

and, for any compact K ⊂ Ωb,0\∂Ω, one has

lim
λ→+∞

Ψλ,κ = ∞ uniformly in K. (4)

Note that we do not assume the hypothesis (b1) in this theorem. Moreover, it should be noted that our
assumptions on the weight function b(x) include the case b ≡ 0, which has been treated in the paper [17],
where the authors proved that (Pκ) has only the trivial solution if λ < λ1 by using variational approach.
Thus, Theorem 1.1 improves their results.

To state our main result with respect to the behavior of the (unique) positive solution of (Pκ), when
κ ↓ 0, let us recall some important properties of the positive solutions of (P0) (see, for instance, Theorem
1.1 in [15] and references therein).

Theorem 1.2. Assume (b0), (b1) and p > 1. Then, the following assertions hold:
(a) The problem (P0) has a positive solution if and only if λ ∈ (λ1, λb,0). Moreover, it is unique if it

exists and it will be denoted by Θλ. In addition, Θλ is a nondegenerate solution of (P0) and the
map λ ∈ (λ1, λb,0) �→ Θλ ∈ C1

0(Ω) is increasing, in the sense that Θλ > Θμ if λb,0 > λ > μ > λ1.
Furthermore, for each compact K ⊂ Ωb,0\∂Ω,

lim
λ→λb,0

Θλ = ∞ uniformly in K (5)

and, for each compact K ⊂ Ω+,

lim
λ→λb,0

Θλ = Mλb,0 uniformly in K, (6)

where Mλb,0 stands for the minimal positive classical solution of the singular boundary value problem{−Δu = λu − b(x)up in Ω+,
u = ∞ on ∂Ω+,

(7)

with λ = λb,0.
(b) Problem (7) possesses a minimal positive solution for each λ ∈ R and it will be denoted by Mλ.

Since for p ≥ 3 or b(x) ≡ b > 0, (Pκ) has a unique positive solution (denoted by Ψλ,κ, according to
Theorem 1.1), we have the following result concerning the asymptotic behavior of Ψλ,κ with respect to
the parameter κ:

Theorem 1.3. Suppose (b0), (b1) and p ≥ 3 or b(x) ≡ b > 0. The following assertions hold:
(a) If λ ∈ (λ1, λb,0), then limκ↓0 Ψλ,κ = Θλ in C1

0(Ω);
(b) If λb,0 < +∞ and λ ≥ λb,0, then for any compact K ⊂ Ωb,0\∂Ω

lim
κ↓0

Ψλ,κ = +∞ uniformly in K; (8)

(c) Suppose in addition that p > 3. If λb,0 < +∞, and λ ≥ λb,0 then, for any compact K ⊂ Ω+,

lim
κ↓0

Ψλ,κ = Mλ uniformly in K, (9)

where Mλ stands for the minimal positive classical solution of the singular boundary value problem
(7).

It should be noted that this theorem means that effect of adding the quasilinear term is regularizing
the minimal metasolutions of (7). Indeed, by Theorem 1.3 (b) and (c), the unique positive regular solution
of (Pκ) approximates to the minimal metasolution as κ ↓ 0. It is a similar phenomenon given by [25,
Theorem 1.3]. However, we highlight that our quasilinear perturbation is more sophisticated than the
perturbation of [25].
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Finally, we would like to mention that, in the process of conclusion of this work, we found out about
the paper [20], where the authors study a problem related to (Pκ). Moreover, we can use some results of
[20] to present a proof of the behavior of the positive solutions of (Pκ) when κ → +∞. Specifically, we
have:

Theorem 1.4. Let p > 1, κ > 0 and assume (b0). For each λ > λ1 fixed, if uκ is a positive solution of
(Pκ), then

lim
κ→∞ ‖uκ‖∞ = 0.

Note that, in this case, it was not necessary the uniqueness of positive solution for (Pκ).
The outline of this paper is as follows. In Sect. 2, we introduce the dual approach of (Pκ) and we prove

the first results which will be playing an important role in our analyses. In Sect. 3, we show the existence
and uniqueness of positive solutions for (Pκ). Section 4 is devoted to prove a pivotal a priori bounds, and
in Sect. 5, we will use theses estimates to study the asymptotic behavior of the positive solution of (Pκ)
with respect to the parameter κ. In the Final Remarks, we prove a stability result for (10).

2. An auxiliary problem

In this section, we introduce the dual approach developed in the papers [14,24] to deal with (Pκ).
Specifically, we convert the quasilinear equation (Pκ) into a semilinear one by using a suitable change
of variable. To this end, we argue as follows. For each κ ≥ 0, let fκ : R → R denote the solution of the
Cauchy problem

f ′
κ(t) =

1
(1 + 2κf2

κ(t))1/2
, fκ(0) = 0.

By the standard theory of ODE, we obtain that fκ is uniquely determined, invertible and of class
C∞(R,R). Moreover, it is well known that the inverse function of f is given by

f−1
κ (t) :=

∫ t

0

(1 + 2κs2)1/2ds, ∀ t ≥ 0.

Thus, by performing the change of variable u = fκ(v) and setting g(x, s) = λs − b(x)sp−1 if s ≥ 0, x ∈ Ω
and g(x, s) = 0 for s < 0, x ∈ Ω, we obtain that problem (Pκ) is equivalent to the following semilinear
elliptic equation: {−Δv = λfκ(v)f ′

κ(v) − b(x)(fκ(v))pf ′
κ(v) in Ω,

v = 0 on ∂Ω.
(10)

Furthermore, we can see that v is a classical positive solution of (10) if and only if u = fκ(v) is a classical
positive solution of (Pκ) (see [14,24]). Thus, we will analyze the auxiliary problem (10).

Firstly, we recall some useful properties of fκ(t) .

Lemma 2.1. Let κ > 0 and t ≥ 0. Then,
(i) 0 ≤ fκ(t) ≤ t;
(ii) 0 ≤ f ′

κ(t) ≤ 1;
(iii) fκ(t)f ′

κ(t) ≤ 1/
√

2κ;
(iv) f ′′

κ (t) = −2κfκ(t)(f ′
κ(t))4 = [(f ′

κ(t))4 − (f ′
κ(t))2]/fκ(t);

(v) 1
2fκ(t) ≤ tf ′

κ(t) ≤ fκ(t);
(vi) lim

t→0+
fκ(t)/t = 1;

(vii) The map t ∈ (0,∞) �→ fκ(t)/t1/2 is nondecreasing;
(viii) [fκ(t)f ′

κ(t)]′ = (f ′
κ(t))2 − 2κ(fκ(t))2(f ′

κ(t))4 = (f ′
κ(t))4.

(ix) [fκ(t)pf ′
κ(t)]′ = fp−1

κ (t)[(p − 1)(f ′
κ(t))2 + (f ′

κ(t))4].
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Proof. The properties (i)–(vii) are well known in the literature (see, for instance, [5,7,14]). To prove
(viii), by a direct calculation and using (iv), we get

[fκ(t)f ′
κ(t)]′ = (f ′

κ(t))2 + fκ(t)f ′′
κ (t)

= (f ′
κ(t))2 − 2κ(fκ(t))2(f ′

κ(t))4 = (f ′
κ(t))4

Similarly, we obtain (ix) as follows

[fκ(t)pf ′
κ(t)]′ = [fp−1

κ (t)(fκ(t)f ′
κ(t))]′

= (p − 1)fp−2
κ (t)f ′

κ(t)(fκ(t)f ′
κ(t)) + fp−1

κ (t)(f ′
κ(t))4

= fp−1
κ (t)[(p − 1)(f ′

κ(t))2 + (f ′
κ(t))4].

�

As a consequence of Lemma 2.1, we also have the following properties:

Lemma 2.2. Assume that κ > 0 and p > 1. Then
(i) The map t ∈ (0,+∞) �→ fκ(t)f ′

κ(t)/t is of class C1, decreasing and it verifies

fκ(t)f ′
κ(t) ≤ t, ∀ t ≥ 0, (11)

lim
t→0+

fκ(t)f ′
κ(t)

t
= 1 (12)

and

lim
t→∞

fκ(t)f ′
κ(t)

t
= 0; (13)

(ii) For p ≥ 3, the map t ∈ (0,∞) �→ fp
κ(t)f ′

κ(t)/t is of class C1, increasing and it verifies

lim
t→0+

fp
κ(t)f ′

κ(t)
t

= 0. (14)

Proof. Let us prove that t ∈ (0,+∞) �→ fκ(t)f ′
κ(t)/t is decreasing. By a direct calculation and using

Lemma 2.1 (iv), we obtain(
fκ(t)f ′

κ(t)
t

)′
=

[(f ′
κ(t))2 + fκ(t)f ′′

κ (t)]t − fκ(t)f ′
κ(t)

t2

=
[(f ′

κ(t))2 − 2(fκ(t))2(f ′
κ(t))5]t − fκ(t)f ′

κ(t)
t2

, ∀t > 0

Thus, (fκ(t)f ′
κ(t)/t)′ < 0 for all t > 0 if and only if

tf ′
κ(t) < 2t(fκ(t))2(f ′

κ(t))4 + fκ(t).

which is true, thanks to Lemma 2.1 (i), (ii) and (v). The inequality (11) is a direct consequence of
Lemma 2.1 (i) and (ii). The limit (12) is obtained by combining Lemma 2.1 (vi) and using that

lim
t→0+

f ′
κ(t) = lim

t→0+

1
(1 + 2κf2

κ(t))1/2
= 1.

The limit (13) follows from Lemma 2.1 (iii).
Now, suppose that p ≥ 3. To prove that the map t ∈ [0,∞) �→ fp

κ(t)f ′
κ(t)/t is increasing, we observe

that, using Lemma 2.1 (iv), for all t > 0, we have(
fp

κ(t)f ′
κ(t)

t

)′
=

[p(fκ(t))p−1(f ′
κ(t))2 + fp

κ(t)f ′′
κ (t)]t − fp

κ(t)f ′
κ(t)

t2

=
[p(fκ(t))p−1(f ′

κ(t))2 + (fκ(t))p−1((f ′
κ(t))4 − (f ′

κ(t))2)]t − fp
κ(t)f ′

κ(t)
t2

.
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Thus, (fp
κ(t)f ′

κ(t)/t)′ > 0 if and only if [p(f ′
κ(t))2 + (f ′

κ(t))4 − (f ′
κ(t))2]t − fκ(t)f ′

κ(t) > 0, that is,

t(f ′
κ(t))4 + (p − 1)t(f ′

κ(t))2 > fκ(t)f ′
κ(t). (15)

On the other hand, since p ≥ 3, it follows from Lemma 2.1 (v) that

tf ′
κ(t) ≥ fκ(t)

2
≥ fκ(t)

p − 1
, ∀ t ≥ 0.

Now, using Lemma 2.1 (ii) and the fact that t(f ′
κ(t))4 > 0 for all t > 0, we conclude that (15) is true.

Finally, (14) is an easy consequence of (12) and limt→0+ fp−1(t) = fp−1(0) = 0. �
With respect to the map κ ∈ (0,∞) �→ fκ(t) (for each t > 0 fixed), we have the following lemma:

Lemma 2.3. For each t > 0 fixed, the function κ ∈ (0,∞) �→ fκ(t) is continuous and decreasing.

Proof. The continuity of the map κ ∈ (0,∞) �→ fκ(t) follows from the standard theory of ordinary
differential equations. To prove that it is decreasing, we argue as follows. Let κ1, κ2 be constants such
that 0 < κ1 < κ2. We need to prove that fκ2(t) < fκ1(t) for all t > 0. Since for each t > 0, the function
κ �→ f−1

κ (t) =
∫ t

0
(1 + 2κs2)1/2ds is increasing, it suffices to prove that

f−1
κ2

(fκ2(t)) < f−1
κ2

(fκ1(t)), (16)

which is equivalent to t <
∫ fκ1 (t)

0
(1 + 2κ2s

2)1/2ds. To this, consider the function defined by

h(t) =
∫ fκ1 (t)

0

(1 + 2κ2s
2)1/2ds − t, t ≥ 0

and notice that h(0) = 0. We claim that h′(t) > 0 for all t > 0 which implies that h(t) > 0 and hence
(16) holds. Indeed, observe that h′(t) = (1 + 2κ2f

2
κ1

(t))1/2f ′
κ1

(t) − 1 > 0 if and only if
1

(1 + 2κ1f2
κ1

(t))1/2
= f ′

κ1
(t) >

1
(1 + 2κ2f2

κ1
(t))1/2

,

which holds if κ1 < κ2 and this completes the proof. �
We finish this section by deriving an a priori estimate for positive solutions of (10) in the particular

case b(x) ≡ b > 0. This estimate will be useful to prove an uniqueness result in the next section.

Lemma 2.4. Let v ∈ C2(Ω) be a positive solution of (10) with b(x) ≡ b > 0 constant. Then

bfp−1
κ (v(x)) ≤ λ, ∀ x ∈ Ω. (17)

Proof. Let v be a classical positive solution of (10). Since the maximum value of v in Ω is attained in Ω,
let x0 ∈ Ω be such that v(x0) = maxx∈Ω v(x). Thus,

0 ≤ −(Δv)(x0) = λfκ(v(x0))f ′
κ(v(x0)) − bfp

κ(v(x0))f ′
κ(v(x0))

and as fκ(v(x0))f ′
κ(v(x0)) > 0, the previous inequality is equivalent to bfp−1

κ (v(x0)) ≤ λ. Using that
fκ(t) is increasing for t > 0, we obtain bfp−1

κ (v(x)) ≤ bfp−1
κ (v(x0)) ≤ λ for all x ∈ Ω, and this completes

the proof. �

3. Existence, nonexistence and uniqueness of positive solution

In this section, we will study the existence, nonexistence and uniqueness of positive solution for (10).
We begin by establishing a necessary condition for existence of positive solution for (10) (and hence for
(Pκ)).

Lemma 3.1. (Nonexistence). If (b0) holds, then problem (10) does not have positive solutions for λ ≤ λ1.
In particular, if b(x) ≡ 0, then problem (10) does not have positive solutions for λ ≤ λ1.
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Proof. Suppose that v > 0 is a solution of (10) with λ ≤ λ1. Then, it satisfies{
−Δv + b̃(x)v = 0 in Ω,
v = 0 on ∂Ω,

(18)

where

b̃(x) := b(x)
fp

κ(v(x))f ′
κ(v(x))

v(x)
− λ

fκ(v(x))f ′
κ(v(x))

v(x)
.

Thanks to Lemma 2.2, the maps t ∈ (0,∞) �→ fκ(t)f ′
κ(t)/t and t ∈ (0,∞) �→ fp

κ(t)f ′
κ(t)/t are of class C1.

Thus, since v > 0 is of class C2,γ , we get the b ∈ Cγ(Ω) and the principal eigenvalue λ1[−Δ+ b̃(x)] is well
defined. Moreover, by (18), λ1[−Δ+b̃(x)] = 0. Since b(x)fp

κ(v(x))f ′
κ(v(x))/v(x) ≥ 0, using the monotonic-

ity properties of the principal eigenvalue combined with (11), we conclude that 0 > λ1 [−Δ − λ] = λ1 −λ,
which is a contradiction and this ends the proof. �

The next proposition shows an uniqueness result of positive solution for (10).

Proposition 3.2. Suppose p ≥ 3 or b(x) ≡ b > 0. Then, the problem (10) admits at most a positive
solution.

Proof. First, we will consider the case p ≥ 3. By the classical Brezis–Oswald result (see [10]), it is sufficient
to prove that the function

q(x, t) := λ
fκ(t)f ′

κ(t)
t

− b(x)
fp

κ(t)f ′
κ(t)

t

is decreasing in t > 0, for each x ∈ Ω. Thus, the monotonicity of q(x, t) follows by Lemma 2.2.
Now, assume that b(x) ≡ b > 0 is constant. We will argue by contradiction. Suppose that v1 > 0 and

v2 > 0 are solutions of (10) with v1 �= v2. Denoting, by simplicity, gi = fκ(vi) and g′
i = f ′

κ(vi) (i = 1, 2),
we have

− Δ(v1 − v2) = λ(g1g
′
1 − g2g

′
2) − b(gp

1g′
1 − gp

2g′
2) in Ω. (19)

Define W : Ω → R by

W (x) =

⎧⎨
⎩

−λ[g1(x)g′
1(x) − g2(x)g′

2(x)] + b[gp
1(x)g′

1(x) − gp
2(x)g′

2(x)]
v1(x) − v2(x)

if v1(x) �= v2(x),

0 if v1(x) = v2(x).

and consider h(t) := λfκ(t)f ′
κ(t) − bfp

κ(t)f ′
κ(t) for t ≥ 0. Note that h is differentiable and for x ∈ Ω a

simple calculation shows that∫ 1

0

h′(sv2(x) + (1 − s)v1(x))ds

=

⎧⎨
⎩

−λ[g1(x)g′
1(x) − g2(x)g′

2(x)] + b[gp
1(x)g′

1(x) − gp
2(x)g′

2(x)]
v1(x) − v2(x)

if v1(x) �= v2(x),

h′(v1(x)) if v1(x) = v2(x).

Therefore,

|W (x)| ≤
∣∣∣∣
∫ 1

0

h′(sv2(x) + (1 − s)v1(x))ds

∣∣∣∣ ≤ max
t∈[0,d]

|h′(t)| ∀ x ∈ Ω,

where d = maxx∈Ω v1(x) + maxx∈Ω v2(x) and this implies that W ∈ L∞(Ω). Thus, it follows from (19)
that

−Δ(v1 − v2) + W (x)(v1 − v2) = 0 in Ω.
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Since v1 �= v2, we have W �= 0 and hence λj [−Δ + W (x)] = 0 for some j ≥ 1, where λj [−Δ + W (x)]
stands for an eigenvalue of −Δ + W (x) in Ω under homogeneous Dirichlet boundary conditions. By the
dominance of the principal eigenvalue, we get

0 = λj [−Δ + W (x)] ≥ λ1[−Δ + W (x)]. (20)

On the other hand, since v1 is a positive solution of (10), we have

λ1

[
−Δ − λ

g1g
′
1

v1
+ b

gp
1g′

1

v1

]
= 0. (21)

We claim that

− λ
g1g

′
1

v1
+ b

gp
1g′

1

v1
≤ W in Ω, (22)

with strict inequality in an open subset of Ω. If (22) holds, then the proof is completed because we can
combine (21)-(22) and the monotonicity properties of the principal eigenvalue to obtain

0 = λ1

[
−Δ − λ

g1g
′
1

v1
+ b

gp
1g′

1

v1

]
< λ1[−Δ + W (x)],

which contradicts (20). Now, we will prove (22). If v1(x) = v2(x) then W (x) = 0 and (22) is equivalent
to

−λ
g1(x)g′

1(x)
v1(x)

+ b
gp
1(x)g′

1(x)
v1(x)

≤ 0

that is, bgp−1
1 ≤ λ, which occurs thanks to Lemma 2.4. If v1 > v2, then v1 − v2 > 0 and (22) is equivalent

to

−λg1g
′
1 + bgp

1g′
1 + λ

g1g
′
1

v1
v2 − b

gp
1g′

1

v1
v2 ≤ −λg1g

′
1 + λg2g

′
2 + bgp

1g′
1 − bgp

2g′
2 in {x ∈ Ω; v1(x) > v2(x)},

that is,

[λ − bgp−1
1 ]

g1g
′
1

v1
≤ [λ − bgp−1

2 ]
g2g

′
2

v2
in {x ∈ Ω; v1(x) > v2(x)}. (23)

Since the map t ∈ [0,∞) �→ fκ(t)f ′
κ(t)/t is decreasing, we have

0 ≤ g1g
′
1

v1
<

g2g
′
2

v2
. (24)

On the other hand, since the map t ∈ [0,∞) �→ fκ(t) is increasing and v1 > v2, we get g1 > g2. Thus, we
can infer that

0 ≤ λ − bgp−1
1 ≤ λ − bgp−1

2 in {x ∈ Ω; v1(x) > v2(x)}. (25)
Therefore, (24) and (25) imply that (23) is true, showing that (22) holds for v1 > v2. The case v1 < v2

is analogous and this ends the proof. �

Now, we will show that λ1 is the unique bifurcation point of positive solutions of (10) from the trivial
solution. For this, let e1 be the unique positive solution of{−Δv = 1 in Ω,

v = 0 on ∂Ω,

and let E be the space consisting of all u ∈ C(Ω) for which there exists γ = γu > 0 such that

−γe1(x) ≤ u(x) ≤ γe1(x) ∀ x ∈ Ω,

endowed with the norm ‖u‖E := inf{γ > 0; −γe1(x) ≤ u(x) ≤ γe1(x), ∀x ∈ Ω} and the natural point-
wise order. It is well known that E is an ordered Banach space whose positive cone, say P , is normal and
has nonempty interior (see [1]). Thus, consider the map F : R × E −→ E defined by

F(λ, v) = v − (−Δ)−1[λfκ(v)f ′
κ(v) − b(x)fp

κ(v)f ′
κ(v)],
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where (−Δ)−1 is the inverse of the Laplacian operator under homogeneous Dirichlet boundary conditions.
We can see that the application F is of C1 class and (10) can be written in the form

F(λ, v) = 0.

Moreover, by the Strong Maximum Principle, any nonnegative and nontrivial solution of (10) (resp. (3))
is in fact strictly positive. Indeed, if v is a nonnegative and nontrivial solution of (10), then it satisfies{−Δv + ã(x)v = λfκ(v)f ′

κ(v) > 0 in Ω,
v = 0 on ∂Ω,

(26)

where ã(x) := b(x)fp
κ(v(x))f ′

κ(v(x))/v(x) if v(x) > 0 and a(x) := 0 if v(x) = 0. Thus, ã ∈ L∞(Ω) and
ã(x) ≥ 0. Consequently, λ1[−Δ + ã(x)] > 0 and the operator −Δ + ã(x) satisfies the Strong Maximal
Principle (see, for instance, [28, Theorem 2.1] or [26]). In view of (26) and since v �= 0, we conclude that
v(x) > 0 in Ω.

Let S ⊂ R × E be the set of nontrivial solutions of (10) plus all possible bifurcation points from the
trivial solution (λ, 0). Thus, we have:

Proposition 3.3. The number λ1 is a bifurcation point of (10) from the trivial solution to a continuum of
positive solutions of (10). Moreover, it is the unique bifurcation point of positive solutions from (λ, 0). If
Σ0 ⊂ S denotes the component of positive solutions of (10) emanating from (λ, 0), then Σ0 is unbounded
in R × E.

Proof. Observe that (3) can be written as L(λ)v + N (λ, v) = 0 where L(λ) = IE − λ(−Δ)−1 and

N (λ, v) = −(−Δ)−1[λ(fκ(v)f ′
κ(v) − v) − b(x)fp

κ(v)f ′
κ(v)].

Moreover, thanks to (12) and (14), we have

lim
t→0+

λ(fκ(t)f ′
κ(t) − t) − b(x)fp

κ(t)f ′
κ(t)

t
= 0,

and, hence, N (λ, v) = o(‖v‖E) as ‖v‖E → 0. Therefore, we can apply the unilateral bifurcation theorem
for positive operators, see [29, Theorem 6.5.5], to conclude the result. �

Next, we are ready to complete the proof of Theorem 1.1. Actually, it will be an immediate consequence
of the following result:

Theorem 3.4. Let p > 1, κ > 0 and assume (b0). Then, problem (10) possesses a positive solution if and
only if λ > λ1. Moreover, if p ≥ 3 or b(x) ≡ b > 0 is a constant, it is unique if it exists and it will be
denoted by Θλ,κ. In addition, the map λ ∈ (λ1,+∞) �→ Θλ,κ ∈ C1

0(Ω) is increasing, in the sense that
Θλ,κ > Θμ,κ, if λ > μ > λ1. Furthermore, limλ↓λ1 ‖Θλ,κ‖∞ = 0 and for any compact K ⊂ Ωb,0\∂Ω,

lim
λ→+∞

Θλ,κ = ∞ uniformly in K.

Proof. By Proposition 3.3, λ1 is a bifurcation point of (10) from the trivial solution and it is the only one
for positive solutions. Moreover, there exists an unbounded continuum Σ0 of positive solutions emanating
from (λ1, 0). In order to prove the existence of a positive solution for every λ > λ1, it suffices to show
that, for every λ∗ > λ1, there exists a constant C = C(λ∗) > 0 such that

‖v‖∞ ≤ C, ∀ (λ, v) ∈ Σ0 and λ ≤ λ∗. (27)

Indeed, by the global nature of Σ0, this estimate implies that Proj
R
Σ0 = (λ1,∞), where Proj

R
Σ0 is the

projection of Σ0 into R. To prove (27), we will build a family W (λ) of supersolutions of (10) and we
will apply Theorem 2.2 of [21]. Thus, we consider the continuous map W : [λ1, λ∗] → C2

0(Ω) defined by
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W (λ) = K(λ)e, where K(λ) is a positive constant to be chosen later and e is the unique positive solution
of {

−Δv = 1 in Ω̂,

v = 0 on ∂Ω̂,
(28)

for some regular domain Ω ⊂⊂ Ω̂. Then, W (λ) = K(λ)e is a supersolution of (10) if

1 ≥ λ
fκ(Ke)f ′

κ(Ke)
Ke

e − b(x)
fp

κ(Ke)f ′
κ(Ke)

Ke
e in Ω.

According to Proposition 2.2, limt→∞ fκ(t)f ′
κ(t)/t = 0. Consequently, for K = K(λ) > 0 large enough,

W (λ) = K(λ)e is a supersolution (but not a solution) of (10), for every λ ∈ [λ1, λ∗] and W (λ1) =
K(λ1)e > 0 in Ω. Thus, by Theorem 2.2 of [21], it follows (27).

To prove that Θλ,κ > Θμ,κ if λ > μ > λ1, just note that Θμ,κ is a (strict) subsolution of (10) if
μ ∈ (λ1, λ). By the uniqueness of positive solution of (10), we conclude the result.

The convergence (3) is an immediate consequence of Proposition 3.3.
Now, in order to prove (4), let ϕb,0 > 0 be the eigenfunction associated with λb,0 such that ‖ϕb,0‖∞ = 1

and consider

Ψ =
{

ϕb,0 in Ωb,0,
0 in Ω\Ωb,0.

It is clear that Ψ ∈ H1
0 (Ω). We will show that for λ > λb,0, ε(λ)Ψ is a subsolution of (10) (in the sense

of [9]) for a constant ε(λ) > 0 to be chosen. Indeed, since b ≡ 0 in Ωb,0 and Ψ = 0 in Ω\Ωb,0, it suffices
to verify that

λb,0εϕb,0 = −Δ(εϕb,0) ≤ λfκ(εϕb,0)f ′
κ(εϕb,0) in Ωb,0,

that is,

λb,0

λ
≤ fκ(εϕb,0)f ′

κ(εϕb,0)
εϕb,0

in Ωb,0.

According to Lemma 2.2, the map t ∈ [0,∞) �→ hκ(t) := fκ(t)f ′
κ(t)/t is decreasing and, hence, is

invertible. Then, the above inequality is equivalent to h−1
κ (λb,0/λ) ≥ εϕb,0. Once that ‖ϕb,0‖∞ = 1,

choosing ε(λ) := h−1
κ (λb,0/λ) we obtain that ε(λ)ϕb,0 is a subsolution of (10). Moreover, it follows from

(12) that limt→0 h−1
κ (t) = +∞ and therefore

lim
λ→∞

ε(λ) = lim
λ→∞

h−1
κ

(
λb,0

λ

)
= +∞. (29)

Lastly, the previous arguments establish that K(λ)e is a supersolution of (10) for all K large enough.
Thus, since minx∈Ω e(x) > 0, we can choose K such that ε(λ)ϕb,0 ≤ K(λ)e. Therefore, by the method of
sub and supersolution and the uniqueness of positive solution for (10), we can infer that ε(λ)ϕb,0 ≤ Θλ,κ.
Consequently, by (29), we obtain (4) and this complete the proof. �

Note that, as a direct consequence of this result, the proof of Theorem 1.1 follows by setting Ψλ,κ :=
fκ(Θλ,κ).

4. A priori bounds in Ω+

This section is devoted to obtain an a priori estimate for positive solutions of (10), uniform in κ > 0,
κ � 0 in any compact subset of Ω+. It is a crucial step to prove Theorem 1.3 (c). As we will see below,
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to obtain these estimates, we will assume p > 3. To this aim, we need to study the following auxiliary
problem {−Δv = λv − b0g(v) in Br,

v = ∞ on ∂Br,
(30)

where b0 > 0 is a constant, Br := Br(x0) = {x ∈ R
N ; |x − x0| < r} is an open ball in R

N centered in
x0 ∈ R

N and

g(t) :=
fp+1
1 (t)

t
, ∀ t > 0. (31)

First, we will prove some important properties of g.

Lemma 4.1. The map g : (0,∞) → (0,∞) defined in (31) is increasing and it satisfies g(0) := limt→0+ g(t)
= 0. Moreover, there exists a constant C > 0 such that

g(t) ≥ Ct(p−1)/2, ∀ t ≥ 1. (32)

Furthermore,
fp

κ(t)f ′
κ(t) ≤ g(t), ∀ t > 0 and 0 < κ < 1. (33)

Proof. In order to prove that g is increasing, note that, by Lemma 2.1 (iii), we have

tf1(t) ≥ f1(t)
2

>
f1(t)
p + 1

, ∀ t > 0,

since p > 1. Thus,

g′(t) =

(
fp+1
1 (t)

t

)′
=

(p + 1)fp
1 (t)t − fp+1

1 (t)
t2

> 0, ∀ t > 0.

To conclude the proof of inequality (32), observe that for each t > 0, one has

g(t)
t(p−1)/2

=
(

f1(t)
t1/2

)p+1

.

By Lemma 2.1 (vii), t �→ g(t)/t(p−1)/2 is nondecreasing and thus g(t)
t(p−1)/2 ≥ g(1) for all t ≥ 1. Choos-

ing C = g(1), we obtain (32). Moreover, limt→0+ fp
κ(t)(fκ(t)/t) = g(0) = 0. Finally, combining the

monotonicity of κ �→ fκ(·) with Lemma 2.1 (v), we get

fp
κ(t)f ′

κ(t) ≤ fp+1
κ (t)

t
<

fp+1
1 (t)

t
= g(t), ∀ t > 0.

Therefore, the inequality (33) holds. �

Now, we will establish an existence result for (7). We recall that there are many results about the
existence, uniqueness and blow-up rate of large solution of problems related to (30), see, for instance,
[13,18,22,23] and references therein. The following lemma is a consequence of these works.

Lemma 4.2. (i) Let λ, b0,M be positive constants and consider the following nonlinear boundary value
problem {−Δv = λv − b0g(v) in Br,

v = M on ∂Br.
(34)

Then, (34) has an unique positive solution denoted by Θ[λ,b0,M,Br].
(ii) Suppose p > 3. For each x ∈ Br, the point-wise limit

Θ[λ,b0,∞,Br](x) := lim
M↑∞

Θ[λ,b0,M,Br ](x)

is well defined and it is a classical minimal positive solution of (30).
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Proof. The existence of positive solution for (34) can be easily obtained by the method of sub and
supersolution and the uniqueness follows from similar arguments used in Sect. 3.

To prove (ii), we will apply Theorem 1.1 of [13]. Thus, it is sufficient to show that g ∈ C1([0,∞)),
g ≥ 0, the map t ∈ (0,+∞) �→ g(t)/t is increasing and it verifies the Keller–Osserman condition, i.e.,∫ ∞

1

dt√
G(t)

< ∞, where G(t) :=
∫ t

0

g(s)ds. (35)

Indeed, the regularity and positivity of g is given by Lemma 4.1. To prove that t ∈ (0,+∞) �→ g(t)/t is
increasing, note that

(
g(t)
t

)′
=

(
fp+1
1 (t)

t2

)′
=

(p + 1)fp
1 (t)f ′

1(t)t
2 − 2tfp+1

1

t2
> 0,

if and only if, (p + 1)tf ′
1(t) > 2f1(t). Since p > 3, it follows from Lemma 2.1 (v) that

(p + 1)tf ′
1(t) ≥ (p + 1)

2
f1(t) > 2f1(t),

showing that g(t)/t is increasing. Finally, observe that (32) is a sufficient condition for (35) to occur. This
completes the proof. �

It should be pointed out that the Lemma 4.2 (ii) also can be obtained by adapting the arguments of
[22].

Now, we are able to prove the main result of this section.

Proposition 4.3. Suppose p > 3. For each compact K ⊂ Ω+ = {x ∈ Ω; b(x) > 0}, there exists a constant
C = C(λ,K) > 0 such that ‖Θλ,κ‖C(K) ≤ C for all κ ∈ (0, 1), where Θλ,κ stands for the unique positive
solution of (10).

Proof. Let Br := Br(x0) ⊂⊂ Ω+. In particular, bK := minx∈Br
b(x) > 0. By (11) and (33), for all

0 < κ < 1, λ > λ1, Θλ,κ satisfies

−ΔΘλ,κ = λfκ(Θλ,κ)f ′
κ(Θλ,κ) − b(x)fp

κ(Θλ,κ)f ′
κ(Θλ,κ) ≤ λΘλ,κ − bKg(Θλ,κ) in Br.

Thus, Θλ,κ is a subsolution of (34) for all M ≥ maxBr
Θλ,κ. Since large constants are positive superso-

lutions of (34), by the sub- and supersolution method combined with the uniqueness of positive solution
of (34), we can infer that

Θλ,κ ≤ Θ[λ,M,bK ,Br] in Br, ∀ M ≥ max
Br

Θλ,κ, 0 < κ < 1.

Letting M → ∞ in the above inequality, we get Θλ,κ ≤ Θ[λ,∞,bK ,Br] in Br and for all 0 < κ < 1. In
particular,

Θλ,κ ≤ Θ[λ,∞,bK ,Br] in Br/2; 0 < κ < 1.

Consequently, setting C := maxBr/2 Θ[λ,∞,bK ,Br], we obtain ‖Θλ,κ‖C(Br/2) ≤ C. Observe that C depends
on bK := minx∈Br

b(x), Br and λ. Finally, since K can be covered by a finite union of such balls, the
proof is complete. �

5. Behavior of the positive solutions with respect to κ

In this section, we will prove Theorems 1.3 and 1.4. First, we will establish the behavior of the solutions
of (Pκ) when κ → 0. Some arguments used here are inspired in [15]. We point out that we will prove
the results for the unique positive solution Θλ,κ of (10) and therefore we obtain a similar result for the
unique positive solution Ψλ,κ = fκ(Θλ,κ) of (Pκ).
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Proof of Theorem 1.3. To prove (a), we will apply the Implicit Function Theorem. Suppose λ ∈ (λ1, λb,0).
Note that, for δ > 0 small enough, κ ∈ [0, δ) �→ fκ(·) is a continuous map and f ′

κ = 1/(1 + 2κf2
κ)1/2,

κ ∈ [0, δ) �→ f ′
κ(·) is also continuous. Therefore, we can consider a continuous extension of fκ and f ′

κ for
(−δ, δ). Define F : (−δ, δ) × C1

0(Ω) → C1
0(Ω) by

F(κ, v) = v − (−Δ)−1[λfκ(v)f ′
κ(v) − bfp

κ(v)f ′
κ(v)].

Thus, F(κ, v) is continuous in κ and of class C1 in v. Moreover, the zeros of F provide us the positive
solution of (10) if κ > 0 and the positive solution of classical logistic equation (P0) if κ = 0, since
f0(t) = t, t ≥ 0. Differentiating with respect to v at (0,Θλ), we obtain

DvF(0,Θλ)v = v − (−Δ)−1[λv − pbΘp−1
λ v], ∀ v ∈ C1

0(Ω).

Since Θλ is a nondegenerate positive solution of (P0), the operator F(0,Θλ) is an isomorphism. Thus,
it follows from the Implicit Function Theorem that, for δ > 0 small, there exists a continuous map
κ ∈ (−δ, δ) �→ v(κ) ∈ C1

0(Ω) such that v(0) = Θλ and F(κ, v(κ)) = 0 for each κ ∈ (−δ, δ). Observe that
v(κ) is a positive solution of (10) for κ > 0 and κ � 0, since Θλ lies in the interior of the positive cone
of C1

0(Ω). Consequently, by the uniqueness of positive solution of (10), we obtain that v(κ) = Θλ,κ. In
particular, limκ↓0 Θλ,κ = limκ↓0 v(κ) = v(0) = Θλ, completing the proof of item (a).

Now, we will prove (b). Suppose λ ≥ λb,0. By the monotonicity of λ �→ Θλ,κ, for each ε > 0 small
enough, we have Θλb,0−ε,κ < Θλ,κ. Using part (a), we can infer that

Θλb,0−ε = lim
κ↓0

Θλb,0−ε,κ < lim inf
κ↓0

Θλ,κ.

Taking into account (5), we conclude that

+∞ = lim
ε→0+

Θλb,0−ε ≤ lim inf
κ↓0

Θλ,κ uniformly in compact subsets of Ωb,0\∂Ω.

and therefore, limκ↓0 Θλ,κ = +∞ uniformly in compact subsets of Ωb,0\∂Ω, which proves (8). Conversely,
Mλb,0 ≤ lim infκ↓0 Θλ,κ in Ω+, where Mλb,0 stands for the minimal positive solution of (7) with λ = λb,0,
since limε→0+ Θλb,0−ε = Mλb,0 in Ω+. In particular, limκ↓0 Θλ,κ = ∞ on ∂Ω+. By a rather standard
compactness argument combined with Proposition 4.3 (see for instance [27, Proposition 3.3]), we obtain
that the point-wise limit

Mλ(x) := lim
κ↓0

Θλ,κ(x)

provide us a classical positive solution of (7) and this finishes the proof. �

Finally, we conclude this section by establishing the behavior of the solution of (Pκ) when κ → ∞.

Proof of Theorem 1.4. For each λ > λ1, let uκ be a positive solution of (Pκ) and vκ = f−1
κ (uκ) the

respective solution of (10). By Theorem 1.1 of [20], the problem{−Δw = λfκ(w)f ′
κ(w) in Ω,

w = 0 on ∂Ω,
(36)

has a unique positive solution, say wκ, and it satisfies

lim
κ→∞ ‖wκ‖∞ = 0. (37)

Moreover, for all constant K = K(λ) > 0 large enough, Ke is a supersolution of (36), where e is the
unique positive solution of {

−Δv = 1 in Ω̂,

v = 0 on ∂Ω̂,

for some regular domain Ω ⊂⊂ Ω̂. On the other hand, using that b(x) ≥ 0 we get

−Δvκ = λfκ(vκ)f ′
κ(vκ) − b(x)fp

κ(vκ)f ′
κ(vκ) ≤ λfκ(vκ)f ′

κ(vκ) in Ω,
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that is, vκ is a subsolution of (36). In addition, we can take K sufficiently large such that Ke is a
supersolution of (36) and vκ ≤ Ke in Ω. By the sub and supersolution method, there exists a positive
solution of (36) between vκ and Ke. Since (36) has a unique positive solution, necessarily the solution
obtained is wκ and consequently vκ ≤ wκ ≤ ‖wκ‖∞. This inequality, together with (37), implies that
limκ→∞ ‖vκ‖∞ = 0. Thus, in view of Lemma 2.1, the positive solution uκ = fκ(vκ) of (Pκ) satisfies
‖uκ‖∞ = ‖fκ(vκ)‖∞ ≤ ‖vκ‖∞ → 0, as κ → ∞, and the proof is complete. �

6. Final remarks

In this section, we show a stability result for (10) with the additional assumption that p ≥ 3. We recall
that the stability of a positive solution (λ0, v0) of (10) as a steady state of the associated parabolic
equation is given by the spectrum of the linearized operator of (10), which is

L(λ0, v0) := −Δ − λ0[fκ(v0)f ′
κ(v0)]′ + b(x)[fp

κ(v0)f ′
κ(v0)]′,

subject to homogeneous Dirichlet boundary conditions on ∂Ω. Thus, (λ0, v0) is said to be linearly asymp-
totically stable if λ1[L(λ0, v0)] > 0.

First, we present a result that relates the linearized operators of (10) and (Pκ). To this end, since
Δ(u2)u = 2u|∇u|2 + 2u2Δu, problem (Pκ) can be rewritten as{−(1 + 2κu2)Δu − 2κu|∇u|2 = λu − b(x)up in Ω,

u = 0 on ∂Ω.
(Pκ)

Hence, the linearized operator of (Pκ) at (λ0, u0) is given by

L(λ0, u0) := −(1 + 2κu2
0)Δ − 4κu0∇u0∇ − (4κu0Δu0 + 2κ|∇u0|2) + (b(x)pup−1

0 − λ0).

With these considerations, we have:

Lemma 6.1. Let (λ0, u0) be a classical positive solution of (Pκ) and v0 = f−1(u0) the respective solution
of the dual problem (10). For each φ ∈ W 2,p(Ω), p > 1, if we define ψ =

√
1 + 2κu2

0φ, then

L(λ0, v0)ψ =
1√

1 + 2κu0
L(λ0, u0)φ. (38)

Proof. The proof is similar to [6, Lemma 2.3], so we will be brief. By a direct calculation,

Δψ =
√

1 + 2ku2
0Δφ +

4κu0√
1 + 2ku2

0

∇u0∇φ +
2κ|∇u0|2√
1 + 2ku2

0

φ +
2κu0√

1 + 2ku2
0Δu0

φ. (39)

On the other hand, it follows from Lemma 2.1 (viii) and (ix) that

[fκ(v0)f ′
κ(v0)]

′
ψ = (f ′

κ(v0))4ψ =
1

(
√

1 + 2ku2
0)3

φ (40)

[fp
κ(v0)f ′

κ(v0)]
′
ψ = up−1

0

[
(p − 1)√
1 + 2ku2

0

+
1

(
√

1 + 2ku2
0)3

]
φ. (41)

Thus, combining (39), (40) and (41), we get

L(λ0, u0)ψ = −
√

1 + 2ku2
0Δφ − 4κu0√

1 + 2ku2
0

∇u0∇φ − 2κ|∇u0|2√
1 + 2ku2

0

φ − 2κu0√
1 + 2ku2

0Δu0

φ

− λ0

(
√

1 + 2ku2
0)3

φ + b(x)up−1
0

[
(p − 1)√
1 + 2ku2

0

+
1

(
√

1 + 2ku2
0)3

]
φ

=
1√

1 + 2ku2
0

[
L(λ0, u0)φ +

2κu0

1 + 2ku2
0

((1 + 2ku2
0)Δu0 + 2κu0|∇u0|2 + λ0u0 − b(x)up

0)
]

.
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Since (λ0, u0) is a solution of (Pκ), it follows that (38) holds. �

As a consequence, we have the following result:

Corollary 6.2. Let (λ0, u0) be a classical positive solution of (Pκ) and let v0 = f−1(u0) denote the re-
spective classical solution of the dual problem (10). Then

(i) A function φ ∈ W 2,p(Ω), p > 1, is a strict supersolution of L(λ0, u0) if, and only if, ψ :=√
1 + 2κu2

0φ is a strict supersolution of L(λ0, u0);
(ii) λ1[L(λ0, u0)] > 0 if, and only if, λ1[L(λ0, v0)] > 0;
(iii) (λ0, u0) is a nondegenerate solution of (Pκ) if, and only if, (λ0, v0) is a nondegenerate positive

solution of (10).

Proof. (i) If φ ∈ W 2,p(Ω) is a strict supersolution of L(λ0, u0) then ψ :=
√

1 + 2κu2
0φ > 0 and, by (38),

it satisfies

L(λ0, v0)ψ =
1√

1 + 2κu0
L(λ0, u0)φ > 0.

Hence, ψ is a strict supersolution of L(λ0, v0). The converse is analogous.
(ii) By the characterization of the Maximum Principle, see, for instance, [28, Theorem 2.1] or [26],

λ1[L(λ0, u0)] > 0 (respectively, λ1[L(λ0, v0)] > 0) if and only if, there exists a positive strict super-
solution of L(λ0, u0) (respectively, L(λ0, v0)). Thus, (i) implies (ii).

(iii) Just note that, by (38), Ker [L(λ0, u0)] = 0 if and only if, Ker [L(λ0, u0)] = 0.
�

According to the previous corollary, in order to show that a solution of (Pκ) is nondegenerate, it
is sufficient to analyze the linearized operator of the dual problem (10). With respect to the sign of
λ1[L(λ,Θλ,κ)], we have the following result:

Proposition 6.3. Suppose p ≥ 3. Then, for each λ > λ1 and κ > 0, the unique positive solution (λ,Θλ,κ)
of (10) is linearly asymptotically stable, that is,

λ1[L(λ,Θλ,κ)] > 0.

Proof. To simplify the notation, we shall denote f = fκ(Θλ,κ) and f ′ = f ′
κ(Θλ,κ). By the characterization

of the Maximum Principle, in order to prove that λ1[L(λ,Θλ,κ)] > 0, it is sufficient to show that there
exists a positive strict supersolution of L(λ,Θλ,κ). Let us prove that Θλ,κ is a strict supersolution of
L(λ,Θλ,κ). Indeed, since Θλ,κ is a positive solution of (10), we have −ΔΘλ,κ = λff ′ − b(x)fpf ′. Thus,
using Lemma 2.1 (viii) and (ix), we find that

L(λ,Θλ,κ)Θλ,κ = −ΔΘλ,κ − λ[ff ′]′Θλ,κ + b(x)[fpf ′]′Θλ,κ

= λff ′ − b(x)fpf ′ − λ[(f ′)2 − 2κf2(f ′)4]Θλ,κ

+ b(x)fp−1[(p − 1)(f ′)2 + (f ′)4]Θλ,κ

= λ(f − f ′Θλ,κ)f ′ + b(x)fp−1f ′((p − 1)f ′Θλ,κ − f)

+ 2λκf2(f ′)4Θλ,κ + b(x)fp−1(f ′)4Θλ,κ.

(42)

Since p ≥ 3, it follows from Lemma 2.1 (v) that

f − f ′Θλ,κ = f(Θλ,κ) − f ′(Θλ,κ)Θ[λ,κ] > 0 and
(p − 1)f ′Θλ,κ − f = (p − 1)f ′(Θλ,κ)Θλ,κ − f(Θλ,κ) > 0.

(43)

Moreover, since b(x)fp−1f ′Θλ,κ ≥ 0, f ′ ≥ 0 and 2λκf2(f ′)4Θλ,κ ≥ 0, we can infer from (42) and (43)
that L(λ,Θλ,κ)Θλ,κ > 0, which establishes that Θλ,κ > 0 is a strict positive supersolution of L(λ,Θλ,κ).
This completes the proof. �
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As a direct consequence of this proposition, we obtain:

Corollary 6.4. Suppose p ≥ 3. Then
(i) For each λ > λ1, (λ,Θλ,κ) is a nondegenerate positive solution of (10);
(ii) The map λ ∈ (λ1,+∞) �→ Θλ,κ ∈ C1

0(Ω) is of class C∞.

Proof. The proof of (i) is standard and once that t ∈ [0,+∞) �→ fκ(t) is of class C∞, (ii) follows from
Implicit Function Theorem applied to the operator

F(λ, u) := u − (−Δ)−1[λfκ(u)f ′
κ(u) − b(x)fp

κ(u)f ′
κ(u)].

�
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[16] do Ó, J.M., Severo, U.B.: Quasilinear Schrödinger equations involving concave and convex nonlinearities. Commun.
Pure Appl. Anal. 8, 621–644 (2009)



ZAMP On positive solutions for a class of quasilinear. . . Page 17 of 17 79
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