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Abstract. In this note, we study solitary wave solutions of a class of Whitham–Boussinesq systems which include the
bidirectional Whitham system as a special example. The travelling wave version of the evolution system can be reduced to a
single evolution equation, similar to a class of equations studied by Ehrnström et al. (Nonlinearity 25:2903–2936, 2012). In
that paper, the authors prove the existence of solitary wave solutions using a constrained minimization argument adapted
to noncoercive functionals, developed by Buffoni (Arch Ration Mech Anal 173:25–68, 2004), Groves and Wahlén (J Math
Fluid Mech 13:593–627, 2011), together with the concentration–compactness principle.
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1. Introduction

This work is devoted to the study of solitary wave solutions of the Whitham–Boussinesq system

∂tη = −K∂xu − ∂x(ηu)
∂tu = −∂xη − u∂xu.

(1.1)

A solitary wave is a solution of the form

η(x, t) = η(x − ct), u(x, t) = u(x − ct), (1.2)

such that η(x − ct), u(x − ct) −→ 0 as |x − ct| −→ ∞. Here, η denotes the surface elevation, u is the
rightward velocity at the surface, and K is a Fourier multiplier operator defined by

F(Kf)(k) = m(k)f̂(k),

for all f in the Schwartz space S(R). More specifically, we require that
(A1) The symbol m ∈ Sm0∞ (R) for some m0 < 0, that is

|m(α)(k)| ≤ Cα(1 + |k|)m0−α, α ∈ N0.

(A2) The symbol m : R → R is even and satisfies m(0) > 0, m(k) < m(0), for k �= 0 and

m(k) = m(0) +
m(2j∗)(0)

(2j∗)!
k2j∗ + r(k),

for some j∗ ∈ N+, where m(2j∗)(0) < 0 and r(k) = O(k2j∗+2) as k → 0.
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As an example, we have m(k) = tanh(k)k−1, which yields the bidirectional Whitham (BDW) system,
and this choice of symbol is the main motivation for studying (1.1). The BDW system was formally
derived in [1,21] from the incompressible Euler equations to model fully dispersive shallow water waves
whose propagation is allowed to be both left- and rightward, and appeared in [19,22] as a full dispersion
system in the Boussinesq regime with the dispersion of the water waves system. There have been several
investigations on the BDW system: local well posedness [13,18] (in homogeneous Sobolev spaces at a
positive background), a logarithmically cusped wave of greatest height [11]. There are also numerical
results, investigating the validity of the BDW system as a model of waves on shallow water [4], numerical
bifurcation and spectral stability [5] and the observation of dispersive shock waves [24]. However, there
are no results on the existence of solitary wave solutions.

We also mention that one can include the effects of surface tension in the BDW system by choosing
m(k) = tanh(k)k−1(1 + βk2), β > 0. It was recently shown in [17] that (1.1) is locally well posed for this
choice of symbol. However, the above symbol with β > 0 is not included in the class of symbols considered
in the present work. Moreover, in [6,7,16], other types of fully dispersive Whitham–Boussinesq systems
are considered. We also mention the generalized class of Green–Naghdi equations introduced in [8], which
was shown to possess solitary wave solutions in [9].

2. Solitary wave solutions to the Whitham equation

In order to prove existence of solitary wave solutions of (1.1), our strategy will be to reduce this to a
problem that is similar to one studied in [10]. For this reason, we first discuss the results and methods
of that paper. In [10] the authors prove the existence of solitary wave solutions of the pseudodifferential
equation

ut +
(
Ku + ñ(u)

)
x

= 0, (2.1)

where K have properties (A1), (A2) and the nonlinearity ñ satisfies
(A3) The nonlinearity ñ is a twice continuously differentiable function R → R with

ñ(x) = ñp(x) + ñr(x),

in which the leading order part of the nonlinearity takes the form ñp(x) = cp|x|p for some cp �= 0
and p ∈ [2, 4j∗ + 1) or ñp(x) = cpx

p for some cp > 0 and odd integer p in the range p ∈ [2, 4j∗ + 1),
while

ñr(x) = O(|x|p+δ), ñ′
r(x) = O(|x|p+δ−1)

for some δ > 0 as x → 0.
In particular, the unidirectional Whitham equation, introduced in [25], belongs to this class of equations
(2.1), with m(k) =

√
tanh(k)k−1. The Whitham equation possesses periodic travelling waves [12] and

solitary waves [10]; moreover, the solitary waves decay exponentially [2]. It was recently confirmed that
the Whitham equation possesses a highest cusped wave [14], as conjectured by Whitham.

Under the travelling wave ansatz: u(t, x) = u(x − ct), the equation (2.1) becomes

Ku − cu + ñ(u) = 0. (2.2)

The existence of solutions of (2.2) is established via a related minimization problem. Let

Ẽ(u) = −1
2

∫

R

uKu dx −
∫

R

Ñ(u) dx, I(u) =
1
2

∫

R

u2 dx

with

Ñ(x) = Ñp+1(x) + Ñr(x),
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Ñp+1(x) =

x∫

0

ñp(s) ds =
cpx

p+1

p + 1
, or

cpx|x|p
p + 1

,

Ñr(x) =

x∫

0

ñr(s) ds = O(|x|p+1+δ).

Let q,R > 0 and

Vq,R := {u ∈ H1(R) : I(u) = q, ||u||H1 < R}.

Minimizers of Ẽ over Vq,R (that are not on the boundary) satisfy the Euler-Lagrange equation

dẼ(u) + νdI(u) = 0, (2.3)

for a Lagrange multiplier ν, and (2.3) is precisely (2.2), with c = ν. In [10] the authors show that there
exist solutions of the minimization problem

arg inf
Vq,R

Ẽ(u),

which by the above argument yields travelling wave solutions of (2.1). The existence of minimizers is
established using methods developed in [3,15], and we give here a brief outline of the proof. The functional
Ẽ is not coercive, and since the domain is unbounded, one cannot use the Rellich–Kondrachov theorem.
In particular, direct methods cannot be used to obtain a minimizer. Because of this, one needs to study a
related penalized functional acting on periodic functions. Let P > 0 and L2

P be the space of P -periodic,
locally square-integrable functions with Fourier series representation

w(x) =
1√
P

∑

k∈Z

ŵ(k) exp(2πikx/P ),

with

ŵ(k) :=
1√
P

P
2∫

−P
2

w(x) exp(−2πikx/P ) dx.

For s ≥ 0, we define

Hs
P := {w ∈ L2

P : ‖w‖Hs
P

< ∞},

where the norm is given by

‖w‖Hs
P

:=

(
∑

k∈Z

(
1 +

4π2k2

P 2

)s

|ŵ(k)|2
) 1

2

.

The authors [10] studied the following penalized functional

ẼP,�(u) := 	(||u||2H1
P
) + Ẽp(u),

over the set

VP,q,R := {u ∈ H1
P : IP (u) = q, ||u||H1

P
< 2R},

where ẼP , ĨP are the same functionals as Ẽ , Ĩ but where the integration is over [−P/2, P/2], and
	 : [0, (2R)2] 
→ [0,∞) is a penalization function such that 	(t) = 0 whenever t ∈ [0, R2] and 	(t) → ∞
as t → (2R)2. The penalization function makes ẼP,� coercive, and the fact that we are now working in
H1

P allows the use of the Rellich–Kondrachov theorem. It is then an easy task to show that there exists
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a minimizer uP ∈ VP,q,2R, of ẼP,�. The next step is to show that uP in fact minimizes ẼP over Vq,R. This
is immediate after showing that

||uP ||2H1
P

≤ Cq, for P sufficiently large

and choosing q sufficiently small. In particular, this yields periodic travelling wave solutions of (1.1)
for sufficiently large periods P . The other key ingredient of the proof is the concentration–compactness
theorem [20]. In the application of this theorem, the main task is to show that ‘dichotomy’ does not
occur. This is done using proof by contradiction, where the contradiction is arrived at using the strict
subadditivity of

Iq := arg inf
Vq,R

Ẽ(u),

as a function of q. The strict subadditivity of Iq is established by using a special minimizing sequence,
for Ẽ . The special minimizing sequence {ũPn

}, where Pn → ∞, n → ∞ is an increasing sequence, is
constructed using the minimizers of the periodic problem, and we have the relation

uP =
∑

j∈Z

ũP (· + jP ),

where uP is a rescaling of a minimizer of the periodic problem. As an intermediate step towards showing
that {ũPn

}n∈Z is in fact a minimizing sequence for Ẽ , one first shows that

Ẽ(ũP ) − ẼP (uP ) → 0, P → ∞. (2.4)

In order to establish (2.4), one must in particular show that
P
2∫

−P
2

|KũP − KuP |2 dx → 0.

Since KũP −KuP =
∑

|j|≥1 KũP (x+ jP ) and ũP is supported on [−P/2, P/2], one must investigate how
K acts on functions with compact support. This property of K is established in Proposition 3.4.

In addition, it is necessary to decompose u into high and low frequencies in order to get satisfactory
estimates on ||u||L∞ , see [10, Corollary 4.5]. It is an easy task to show that ‘vanishing’ cannot occur
either. Therefore, from the concentration–compactness theorem, ‘concentration’ is the only possibility
and the existence of minimizers then follows from a standard argument.

Under the additional assumption that
(A4) ñ ∈ C2j∗(R) with

ñ(j)
r (x) = O(|x|p+δ−j), j = 0, . . . , , 2j∗,

it is possible to relate the minimizers of Ẽ to those of Ẽlw, where

Ẽlw(u) = −
∫

R

(
m(2j∗)(0)
2(2j∗)!

(u(j∗))2 + Ñp+1(u)
)

dx.

More specifically,

sup
u∈D̃q

distHj∗ (R)(S
−1
lw u, D̃lw) → 0, as q → 0,

where D̃lw is the set of minimizers of Ẽlw over the set

{u ∈ Hj∗(R) : I(u) = 1},

and D̃q is the set of minimizers of Ẽ over Vq,R and

(Slwu)(x) := qαu(qβx)
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is the ‘long-wave test function’ with

α =
2j∗

4j∗ + 1 − p
, β =

p − 1
4j∗ + 1 − p

. (2.5)

The numbers α and β are chosen in such a way that

2α − β = 1, (p − 1)α = 2j∗β.

This choice of α, β appears naturally when deriving the long-wave approximation of (2.2). The functional
Ẽlw is related to Ẽ via (see [10, Lemma 3.2])

Ẽ(Slwu) = −qm(0) + q1+(p−1)αẼlw(u) + o(q1+(p−1)α),

for any u ∈ W := {u ∈ H2j∗(R) : ||u||H2j∗ < S} with S being a positive constant.
We mention here a recent work [23] where they use an entirely different approach to prove the existence

of small amplitude solitary wave solutions of the Whitham equation.

3. Solitary wave solutions to the Whitham–Boussinesq system

3.1. Formulation as a constrained minimization problem

In the present work, we seek solitary wave solutions of (1.1), and the idea is to reformulate (1.1) in such
a way that the method of [10] can be applied. Under the travelling wave ansatz (1.2), the system (1.1)
then becomes

cη = Ku + ηu, (3.1)

cu = η +
u2

2
. (3.2)

It follows from (3.2) that η = u(c − u
2 ), and if we insert this into (3.1), then we find that

Ku − u(u − c)(
u

2
− c) = 0. (3.3)

We first formally assume that ‖u‖L∞ � c to formulate (3.3) into a variational problem. This is no
restriction since the constructed solutions will automatically satisfy this smallness condition (see Theorem
(3.1)). Let w = u

c (u
c − 2), so that u = c − c

√
1 + w. The map w 
→ u is well defined, since

||w||L∞ ≤
∣
∣
∣
∣
∣
∣
u

c

∣
∣
∣
∣
∣
∣
L∞

∣
∣
∣
∣
∣
∣
u

c
− 2

∣
∣
∣
∣
∣
∣
L∞

�
∣
∣
∣
∣
∣
∣
u

c

∣
∣
∣
∣
∣
∣
L∞

� 1,

We then may rewrite Eq. (3.3) using the new unknown w as
2√

1 + w
K(

√
1 + w − 1) − λw = 0, (3.4)

with λ = c2. We now define

E(w) = −1
2

∫

R

wKw dx

︸ ︷︷ ︸
:=K(w)

−
∫

R

N(w) dx

︸ ︷︷ ︸
:=N (w)

,

where

N(w) = 2Ψ(w)Kw + 2Ψ(w)K(Ψ(w)),

Ψ(w) =
√

1 + w − 1 − w

2
= −w2

8
+ Ψr(w),

Ψr(x) = O(x3).
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To extract the lower-order parts, we also write

N(w) = Nh(w) + Nl(w),

with

Nh(w) = −w2

4
Kw, Nl(w) = 2Ψ(w)Kw + 2Ψ(w)K(Ψ(w)).

We then note that

dE(w) + λdI(w) = 0

is precisely (3.4). Hence, w is a critical point of E under the constraint I(w) = q, if and only if u =
c−c

√
1 + w is a solution of (3.3), with λ = c2. We will find critical points of E(w)+λI(w) by considering

the minimization problem

arg inf
Vq,R

E(w).

Here we are minimizing a functional E of almost the same type as in [10], with p = 2, but with a slightly
different nonlinearity. In our case, the nonlocal operator K appears in the nonlinear term N . However,
since K is a bounded smoothing operator, it is not hard to show that the methods used in [10] can be
applied to the functional E . However, the results [10, Lemma 2.3, Lemma 3.2, Lemma 3.3] require a bit
more care, in particular it is important to know how N acts under the long-wave scaling, and we therefore
include the proofs of these results in the next subsection. We finally have the following existence result:

Theorem 3.1. There exists q∗ > 0 such that the following statements hold for each q ∈ (0, q∗).

(i) The set Dq of minimizers of E over the set Vq,R is nonempty, and the estimate ‖w‖2H1(R) = O(q)
holds uniformly over w ∈ Dq. Each element of Dq is a solution of the travelling wave equation (3.4);
the squared wave speed c2 is the Lagrange multiplier in this constrained variational principle.

(ii) Let s < 1 and suppose that {wn}n∈N0 is a minimizing sequence for E over Vq,R. There exists a
sequence {xn}n∈N0 of real numbers such that a subsequence of {wn(·+xn)}n∈N0 converges in Hs(R)
to a function in Dq.

3.2. Technical results

In our case, the long-wave functional Elw is given by

Elw(w) := −
∫

R

(
m2j∗(0)
2(2j∗)!

(w(j∗))2 − m(0)
4

w3

)
dx,

and we also recall the long-wave scaling:

Slww(x) = μαw(μβx),

with

α =
2j∗

4j∗ − 1
and β =

1
4j∗ − 1

. (3.5)

Note that (3.5) is a special case of (2.5), with p = 2.
We first present a result corresponding to [10, Lemma 3.2], which relates E with Elw.

Lemma 3.2. Let w ∈ W with ||w||L∞ � 1 and I(w) = 1. Then

E(Slww) = −qm(0) + q1+αElw(w) + o(q1+α). (3.6)
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Proof. Recall the definition

E(Slww) = K(Slww) + N (Slww).

We first calculate that

K(Slww)

= −1
2

∫

R

q2αw(qβx)Kw(qβ ·)(x) dx

= −1
2

∫

R

q2αm(k)|F(w(qβ ·))(k)|2 dk

= −1
2

∫

R

q2α−β

(
m(0) + q2j∗β m(2j∗)(0)

(2j∗)!
k2j∗ + r(qβk)

)
|ŵ(k)|2 dk

= −qm(0) − q2α+(2j∗−1)β

∫

R

m(2j∗)(0)
2(2j∗)!

(wj∗)2 dx − q2α−β

2

∫

R

r(qβk)|ŵ(k)|2 dk,

and one may continuously estimate the last term as
∣
∣
∣
∣
∣
∣

q2α−β

2

∫

R

r(qβk)|ŵ(k)|2 dk

∣
∣
∣
∣
∣
∣
� q2α+(2j∗+1)β

∫

R

k2j∗+2|ŵ(k)|2 dk,

and
∫

R

k2j∗+2|ŵ(k)|2 dk is uniformly bounded, since w ∈ W . We next consider

N (Slww) = −
∫

R

Nh(Slww) + Nl(Slww) dx.

A direct calculation shows that

−
∫

R

Nh(Slww) dx =
∫

R

q3α

4
w2(qβx)Kw(qβ ·)(x) dx

=
∫

R

q3α−β

4
F(w2)(k)ŵ(k)

(
m(0) + q2j∗β m(2j∗)(0)

(2j∗)!
k2j∗ + r(qβk)

)
dk

= q3α−β

∫

R

m(0)
4

w3 dx + o(q3α−β),

where we again used that w ∈ W in order to estimate the remaining terms. The term
∫

R

Nl(Slww) dx is

of lower order and can be estimated in the same way.
Combining all the above estimates yields the identity (3.6). �

We next move to the corresponding result of [10, Lemma 3.2].

Lemma 3.3. Let

KP (w) = −1
2

P
2∫

−P
2

wKw dx, NP (w) = −
P
2∫

−P
2

N(w) dx,

EP (w) = KP (w) + NP (w),
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and let {w̃P } be a bounded family of functions in H1(R) with ||w̃P ||L∞(R) � 1 such that

supp(w̃P ) ⊂
(

−P

2
,
P

2

)
and dist

(
±P

2
, supp(w̃P )

)
≥ 1

2
P

1
4 ,

and define wP ∈ H1
P by the formula

wP =
∑

j∈Z

w̃P (· + jP ).

(i) The function wP satisfies

lim
P→∞

||Kw̃P − KwP ||H1(−P
2 ,P2 ) = 0, lim

P→∞
||Kw̃P ||H1(|x|>P

2 ) = 0.

(ii) The functionals E, I and EP , IP have the properties that

lim
P→∞

(E(w̃P ) − EP (wP )
)

= 0, I(w̃P ) = IP (wP ),

and

lim
P→∞

||E ′(w̃P ) − E ′
P (wP )||H1(−P

2 ,P2 ) = 0, lim
P→∞

||E ′(w̃P )||H1(−P
2 ,P2 ) = 0

||I ′(w̃P ) − I ′
P (wP )||H1(−P

2 ,P2 ) = 0, ||I ′(w̃P )||H1(|x|>P
2 ) = 0.

To prove Lemma 3.3, we need the following technical result of [10, Proposition 2.1].

Proposition 3.4. The linear operator K satisfies
(a) K belongs to C∞(Hs(R),Hs+|m0|(R)) ∩ C∞(S(R),S(R)) for each s ≥ 0.
(b) For each l ∈ N there exists a constant Cl = C(‖m(l)‖L2(R)) > 0 such that

|Kf(x)| ≤ Cl‖f‖L2

dist
(
x, supp(f)

)l
, x ∈ R \ supp(f),

for all f ∈ L2
c(R).

Proof of Lemma 3.3. The limits in (i) are proved in [10, Proposition 2.1], so we turn to (ii). Using (i) we
get that K(w̃P ) − K(wP ) → 0, as P → ∞. Note that

N (w̃P ) = −2
∫

R

Ψ(w̃P )Kw̃P + Ψ(w̃P )K(p(w̃P )) dx

= −2

P
2∫

− P
2

Ψ(wP )Kw̃P + Ψ(wP )K(Ψ(w̃P )) dx

= −2

P
2∫

− P
2

Ψ(wP )K(w̃P − wP ) + Ψ(wP )K
(
Ψ(w̃P ) − Ψ(wP )

)
dx

+ NP (wP ).

(3.7)

In light of (i), we have

∣
∣
∣
∣

P
2∫

−P
2

Ψ(wP )K(w̃P − wP ) dx

∣
∣
∣
∣

≤ ||Ψ(wP )||L2(−P
2 ,P2 ) ||K(w̃P − wP )||L2(−P

2 ,P2 ) → 0, as P −→ ∞.

(3.8)
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Since ||w̃P ||L∞ � 1, we have ||wP ||L∞ � 1. To estimate the second term on the right hand side of
(3.7), one first calculates

Ψ(w̃P ) − Ψ(wP ) =
√

1 + w̃P −
√

1 +
∑

j∈Z

w̃P (· + jP ) +
1
2

∑

|j|≥1

w̃P (·jP )

= −
∑

|j|≥1 w̃P (· + jP )√
1 + w̃P +

√
1 + wP

+
1
2

∑

|j|≥1

w̃P (· + jP )

=
(

1
2

− 1√
1 + w̃P +

√
1 + wP

) ∑

|j|≥1

w̃P (· + jP ),

and then applies Proposition 3.4 to get
P
2∫

−P
2

∣
∣K

(
Ψ(w̃P ) − Ψ(wP )

)∣∣2 dx

≤
P
2∫

− P
2

∣
∣
∣
∣

∑

|j|≥1

K

[
w̃P (· + jP )

(1
2

− 1√
1 + w̃P +

√
1 + wP

)
] ∣

∣
∣
∣

2

dx

�

P
2∫

− P
2

⎛

⎜
⎝

∑

|j|≥1

∣
∣
∣
∣
∣
∣w̃P (· + jP )

(
1
2 − 1√

1+w̃P+
√
1+wP

)∣
∣
∣
∣
∣
∣
L2(−P

2 ,P2 )

dist
(
x + jP, supp(w̃P )

)3

⎞

⎟
⎠

2

dx

� ‖w̃P ‖L2

P
2∫

−P
2

( ∑

|j|≥1

1
(jP + 1

2P
1
4 )3

)2 dx

→ 0, as P −→ ∞.

(3.9)

Hence, we obtain

∣
∣
∣
∣

P
2∫

−P
2

Ψ(wP )K
(
Ψ(w̃P ) − Ψ(wP )

)
dx

∣
∣
∣
∣

≤ ||Ψ(wP )||L2(−P
2 ,P2 )

∣
∣
∣
∣K

(
Ψ(w̃P ) − Ψ(wP )

)∣∣
∣
∣
L2(−P

2 ,P2 )
→ 0, as P −→ ∞.

(3.10)

From (3.7), (3.8) and (3.10), it follows that N (w̃P ) − NP (wP ) → 0, which in turn implies that

E(w̃P ) − EP (wP ) → 0, as P −→ ∞.

The equality I(w̃P ) = IP (wP ) is immediate.
A direct calculation yields

N ′(w) = −
(

1√
1 + w

− 1
)

Kw − 2√
1 + w

K(Ψ(w)),

so we may estimate

||N ′(w̃P ) − N ′
P (wP )||L2(−P

2 ,P2 )

≤
∣
∣
∣
∣

∣
∣
∣
∣

(
1√

1 + wP
− 1

)
(Kw̃P − KwP )

∣
∣
∣
∣

∣
∣
∣
∣
L2(−P

2 ,P2 )
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+
∣
∣
∣
∣

∣
∣
∣
∣

2√
1 + wP

K
(
Ψ(w̃P ) − Ψ(wP )

)
∣
∣
∣
∣

∣
∣
∣
∣
L2(−P

2 ,P2 )

→ 0, as P −→ ∞,

where we have used (i) and (3.9). One can similarly show that
∣
∣
∣
∣

∣
∣
∣
∣

d
dx

N ′(w̃P ) − d
dx

N ′
P (wP )

∣
∣
∣
∣

∣
∣
∣
∣
L2(−P

2 ,P2 )

→ 0, as P → ∞.

Hence,

||E ′(w̃P ) − E ′
P (wP )||H1(−P

2 ,P2 ) → 0, as P → ∞.

Note that 1√
1+w̃P

− 1 = 0 for |x| > P
2 , we calculate

||N ′(w̃P )||L2(|x|>P
2 )

=
∣
∣
∣
∣

∣
∣
∣
∣

(
1√

1 + w̃P

− 1
)

Kw̃P +
2√

1 + w̃P

K(Ψ(w̃P ))
∣
∣
∣
∣

∣
∣
∣
∣
L2(|x|>P

2 )

=
∣
∣
∣
∣

∣
∣
∣
∣

2√
1 + w̃P

K(Ψ(w̃P ))
∣
∣
∣
∣

∣
∣
∣
∣
L2(|x|>P

2 )

.

Since supp(Ψ(w̃P )) = supp(w̃P ), we have ||K(Ψ(w̃P ))||L2(|x|>P
2 ) → 0. It follows that

||N ′(w̃P )||L2(|x|>P
2 ) → 0, as P → ∞.

A similar calculation shows that
∣
∣
∣
∣

∣
∣
∣
∣

d
dx

N ′(w̃P )
∣
∣
∣
∣

∣
∣
∣
∣
L2(|x|>P

2 )

→ 0.

Consequently, we have

||N ′(w̃P )||H1(|x|>P
2 ) → 0, as P → ∞.

�

Just as in [10, Theorem 6.3], we can relate the minimizers of E with those of Elw:

sup
w∈Dq

distHj∗ (R)(S
−1
lw w,Dlw) → 0, as q → 0,

where Dlw is the set of minimizers of Elw over the set

{w ∈ Hj∗(R) : I(w) = 1},

and Dq is the set of minimizers of E over Vq,R.
We finally include a regularity result for the travelling wave solutions of (3.4) which corresponds to

[10, Lemma 2.3].

Lemma 3.5. Let w be a solution of (3.4) in with ||w||L∞ � 1. Then for any k ∈ N+, w ∈ Hk and
satisfies

‖w‖Hk ≤ C(k, ‖w‖H1).

Proof. Let

f =
√

1 + w − 1,
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then one has ‖f‖L∞ � 1 due to ||w||L∞ � 1. In view of (3.4), f solves

f =
2

λ(1 + f)(2 + f)
Kf. (3.11)

Differentiating in (3.11) yields

∂xf =
2

λ[(1 + f)(2 + f) + f(2 + f) + f(1 + f)]
K∂xf. (3.12)

The denominator is positive due to ‖f‖L∞ � 1.
Let l ∈ {1, 2, . . . , k}. For each fixed f ∈ H l, we define a formula φf by

φf (g) =
2

λ[(1 + f)(2 + f) + f(2 + f) + f(1 + f)]
g.

Then one now may follow the argument in [10, Lemma 2.3] by using the properties of φf and K to show

‖∂xf‖Hl ≤ C(‖f‖H1)‖∂xf‖L2 .

For completeness, we give its proof here. For any s ∈ [0, l], it is easy to see that φf and K define an
operator in B(Hs,Hs) and B(Hs,Hs+|m0|), respectively. Thus, the composition

ψf = φf ◦ K ∈ B(Hs,Hs∗), s∗ = min{l, s + |m0|},
and the norm of ψf depends upon ‖f‖Hl . Consequently, any solution g of g = ψf (g) belongs to Hs∗ and
satisfies

‖g‖Hs∗ ≤ Cl,‖f‖
Hl

‖g‖Hs .

Applying this argument recursively, one finds that any solution g ∈ L2 belongs to H l and satisfies

‖g‖Hl ≤ C(l, ‖f‖Hl)‖g‖L2 .

Since (3.12) is equivalent to ∂xf = ψf (∂xf), a bootstrap argument shows that f ′ ∈ H l with

‖∂xf‖Hl ≤ C(l, ‖f‖H1)‖∂xf‖L2 , l = 1, 2, . . . , k.

So far we have shown that

‖f‖Hk ≤ C(k, ‖f‖H1).

Finally, recalling that w = f2 + 2f and H l is an algebra, we therefore obtain

‖w‖Hk ≤ C(k, ‖f‖H1) ≤ C(k, ‖w‖H1),

where we have used ‖w‖L∞ � 1 in the last inequality.
�

Remark 3.6. The results of the present work may be extended to a more general class of nonlinearities N .
On the one hand, we have that the leading order part of N is cubic, but this could be extended to higher
power nonlinearities. On the other hand, the multiplier operator K appearing in N can be replaced by
an operator K ′ belonging to a wider class of Fourier multipliers. For instance, it is not necessary for the
symbol of this K ′ to be of negative order. An example is K ′ = Id, which yields the nonlinearities studied
in [10].
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